

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DON’T LOSE THE THREAD: EMPOWERING LONG-HORIZON LLM AGENTS WITH COGNITIVE RESOURCE SELF-ALLOCATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Agents powered by large language models (LLMs) have demonstrated remarkable progress in solving complex reasoning tasks. However, LLM agents often falter on long-horizon tasks due to cognitive overload, as their working memory becomes cluttered with expanding and irrelevant information, which dilutes their attention and hinders effective planning and reasoning. To mitigate this challenge, we introduce **C**ognitive **R**esource **S**elf-**A**llocation (**CORAL**), a novel reasoning paradigm that empowers agents to proactively optimize their context. Implemented as an agent-callable working memory management toolset, CORAL allows an agent to maintain crucial checkpoints of its progress within its working memory and adaptively initiate a new problem-solving episode by purging cluttered working memory and resuming its reasoning from the most recent checkpoint, effectively reallocating agentic cognitive resources by implicitly sharpening their attention on the checkpoints. We further enhance the agent’s checkpoint capabilities using a Multi-episode Agentic Reinforced Policy Optimization algorithm. On several long-horizon task benchmarks, CORAL significantly outperforms standard LLM agent methods. Notably, analysis of the LLMs’ attention distribution reveals that CORAL substantially optimizes agentic RL dynamics, which in turn ensures agents maintain a focused cognitive resource allocation, thereby continuously amplifying performance gains.

1 INTRODUCTION

Recentlt, LLM-driven agents represent a powerful paradigm that extends the capabilities of Large Language Models (LLMs) through the integration of external tools (OpenAI, 2025b; Gemini, 2025; Liu et al., 2025; Li et al., 2025b), substantially outperforming methods reliant on single-turn inference. To address long-horizon tasks, these agents operate on a THOUGHT-ACTION-OBSERVATION cycle (Yao et al., 2022), engaging in multiple cycles of planning, environmental interaction, and reasoning (Erdogan et al., 2025; Qiao et al., 2024; Huang et al., 2024). A critical challenge arises as each cycle populates LLM agents’ context with verbose environmental feedback and a history of failed attempts (Wu et al., 2025b; Shinn et al., 2023). This escalating contextual noise progressively degrades the model’s planning and reasoning faculties (Yang et al., 2025), a phenomenon comparable to the cognitive overload that impairs human problem-solving when working memory becomes saturated.

Current paradigms for context optimization in LLM agents seek to prevent this contextual bloat by pruning messages or distilling salient information. The activation of these methods is generally governed by rule-based heuristics, such as fixed intervals (Zhou et al., 2025b; Yu et al., 2025a) or the imminent saturation of the context window (Wu et al., 2025c). The underlying mechanism for optimization typically involves either truncating the context directly (Luo et al., 2025) or utilizing external models to achieve compression (Wu et al., 2025c).

Fundamentally, this redundant context is a direct consequence of the agent’s imperfect planning and reasoning. Suboptimal tool use generates a high volume of irrelevant environmental feedback (Wang et al., 2025), which in turn clutters the context and further degrades the agent’s reasoning, creating a vicious cycle. To address this, one line of research employs agentic reinforcement learning (RL),

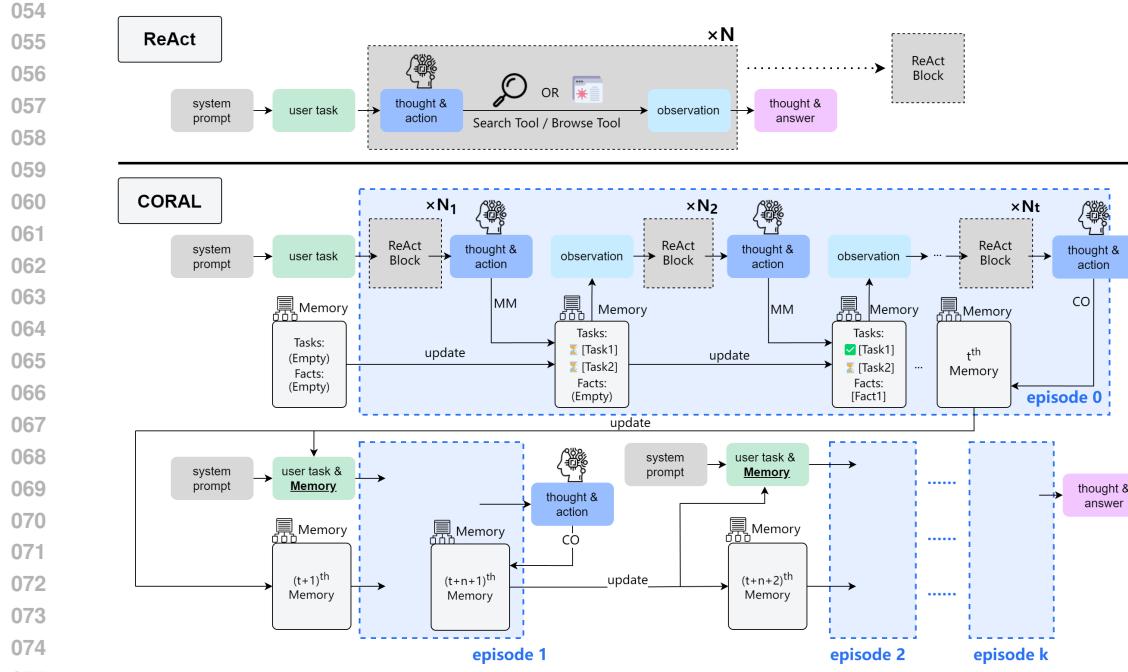


Figure 1: Comparison of the ReAct and CORAL frameworks. CORAL enhances the standard ReAct loop by incorporating two key components: a Memory Management (MM) tool and a Context Optimization (CO) tool. The memory is designed to store two categories of information: task progress and verified facts. The CO tool periodically resets the model’s context, which segments a complete trajectory into a series of independent units termed *episodes*.

using algorithms such as GRPO (Shao et al., 2024b) and DAPO (Yu et al., 2025b) with carefully designed reward functions to optimize the agent’s tool-use policy (Qian et al., 2025; Zhang et al., 2025; Jin et al., 2025). However, in long-horizon tasks involving multi-step interactions, these RL methods face significant challenges with reward sparsity. Relying solely on final outcomes makes it difficult to assign credit to intermediate actions, leading to unstable and inefficient training dynamics. While methods like estimated step-level credit assignment can mitigate this (Feng et al., 2025; Xia et al., 2025; Chandrasan et al., 2025), proactive context optimization presents a powerful, orthogonal method of improving RL training dynamics (Kimi, 2025; Wu et al., 2025c).

To address these challenges, we introduce the **COgnitive Resource Self-ALlocation (CORAL)** framework. CORAL extends existing agentic architectures with a callable toolset for working memory management, empowering an agent to dynamically optimize its context and sustain high-level planning and reasoning throughout long-horizon tasks. Specifically, the agent can autonomously invoke memory tools to create checkpoints of its progress and verified facts. The periodic insertion of these checkpoints along the task trajectory systematically refocuses the agent’s attention on its most current state, preventing cognitive resources from being squandered on obsolete information, such as prior environmental feedback or failed attempts. This process facilitates an implicit yet effective self-allocation of cognitive resources. Furthermore, CORAL allows the agent to adaptively initiate new problem-solving episodes by purging its working memory and resuming its reasoning from the latest checkpoint. We initially enhance the crucial checkpointing ability, the capacity to accurately distill key task information through Supervised Fine-Tuning (SFT).

To further enable the model to discover optimal checkpointing strategies without additional trajectory data, we introduce a Multi-episode Agentic Reinforced Policy Optimization (Multi-episode ARPO) algorithm. This approach not only refines the agent’s checkpointing policy but also significantly improves the overall agentic RL dynamics. We validate CORAL’s effectiveness on the GAIA benchmark, where it substantially outperforms existing LLM agent methods on long-horizon tasks (Levels 2 and 3). Analysis of the action-level attention distribution reveals the source of this suc-

108 cess: CORAL enables the agent to efficiently allocate its cognitive resources throughout the entire
 109 reasoning process.

110 In summary, the key contributions of this work are as follows:

112 • We introduce **CO**gnitive **R**esource **S**elf-**A**llocation (**CORAL**), a framework that empowers
 113 agents to manage their working memory through a callable toolset. By dynamically optimizing
 114 its own context, an agent using CORAL can maintain robust planning and reasoning capabilities
 115 on long-horizon tasks.

116 • We use Supervised Fine-Tuning (SFT) to instill core checkpointing skills and then leverage a
 117 multi-episode agentic reinforced policy optimization (**Multi-episode ARPO**) algorithm to allow
 118 the agent to discover optimal checkpointing strategies.

119 • On the GAIA benchmark, CORAL significantly outperforms existing approaches on complex
 120 long-horizon tasks (Level-2 and Level-3). An analysis of action-level attention distributions con-
 121 firms that CORAL’s success stems from its ability to effectively allocate the agent’s cognitive
 122 resources during reasoning.

124 2 PRELIMINARIES

126 2.1 PROBLEM FORMULATION

128 We consider a general large language model (LLM)-based agent. Upon receiving a problem spec-
 129 ification, the agent is capable of interacting with its environment and executing a sequence of
 130 reasoning and action steps to progressively derive a solution. Following the ReAct (Yao et al.,
 131 2022) framework, these steps can be formalized as iterations of *Thought-Action-Observation*.
 132 Specifically, given a question $q \in p(Q)$, the LLM agent π_θ at time step t generates *Thought*
 133 $r_t \sim \pi_\theta(\cdot | c_t)$ and a textual *Action* $a_t \sim \pi_\theta(\cdot | c_t, r_t)$. The c_t denotes the context in the time step
 134 t : $c_t = (q, r_1, a_1, o_1, \dots, r_{t-1}, a_{t-1}, o_{t-1})$. Then the environment gives the feedback as the *Obser-*
 135 *vation* o_t . The loop ends when the agent solves the question or reaches the max steps. Therefore,
 136 the final episode with M steps can be defined as:

$$e_{\text{terminated}} = (q, r_1, a_1, o_1, \dots, r_M, a_M, o_M) \quad (1)$$

$$e_{\text{completed}} = (q, r_1, a_1, o_1, \dots, r_M) \quad (2)$$

139 Note that in the completed episode, the *Thought* in the final round (r_M) contains the answer to the
 140 question, and the episode stops immediately.

142 2.2 WEB SEARCH AGENTIC TOOL DESIGN

144 At each time step t , the LLM-based agent generates a textual *Action* $a_t \in \mathcal{A}$, where \mathcal{A} denotes
 145 the predefined action space. In this work, we focus on an LLM-based tool-use agent, in which the
 146 action space \mathcal{A} comprises a set of specialized tool-use commands and interaction primitives that
 147 the agent can execute to accomplish complex tasks. To operationalize this action space, we design
 148 two purpose-built tools that collectively support web search and webpage browse. These tools are
 149 described as follows:

150 • **Web Search.** Enables the agent to issue multiple search queries in parallel via a search engine,
 151 retrieve and format the results, and present them in a structured manner.

153 • **Web Browse.** Allows the agent to intelligently retrieve and analyze content from specified web
 154 pages according to a user-defined goal, extract relevant information, summarize key findings, and
 155 identify useful external links for further exploration.

157 3 COGNITIVE RESOURCE SELF-ALLOCATION (**CORAL**)

159 Inspired from cognitive resource theory, which posits that effective problem-solving in humans re-
 160 lies on the strategic management of finite cognitive resources like attention and working memory,
 161 we draw a parallel to the operational challenges faced by LLM agents. The agent’s context serves as
 its working memory. On long-horizon tasks, this “memory” becomes progressively cluttered with

162 intermediate steps (thoughts, actions, and observations), leading to cognitive overload. To address
 163 this, we introduce **CO**gnitive **R**esource **S**elf-**A**llocation (**CORAL**), a paradigm that empowers the
 164 agent to proactively manage its own cognitive load. CORAL allows the agent to mimic the
 165 human process of consolidating progress and refocusing attention by creating checkpoints and purging
 166 irrelevant context.

167

168 3.1 WORKING MEMORY MANAGEMENT TOOLSET

169

170 We operationalize this paradigm through the following working memory management toolset:

171

- 172 • **Memory Management.** Assists the agent in managing its working memory by adding or removing
 173 knowledge units, thereby retaining essential information across context resets while discarding
 174 outdated or irrelevant data to maintain clarity and task continuity.
- 175 • **Context Optimization.** Performs a hard reset of the conversational context to mitigate token
 176 bloat and sustain performance. It clears all conversational history except for essential components—such as working memory, system prompt, and the original user request—ensuring that
 177 critical information is preserved while resetting the token count and removing accumulated tool
 178 outputs.

179

180 Specifically, in the time step t , the context is $(q, r_1, a_1, o_1, \dots, r_{t-1}, a_{t-1}, o_{t-1})$, the LLM-based
 181 agent call the Context Optimization tool, *i.e.* $a_t = a_{CO}$, the tool response o_t will be the next
 182 round's context c . Therefore, in the next round, the episode will begin like $(c, r_1, a_1, o_1, \dots)$.

182

183

184 **Multi-episode trajectory.** The context optimization tool, as described, performs a hard reset of the
 185 conversational context. This reset operation effectively segments what would otherwise be a single
 186 continuous reasoning process into multiple shorter episodes, each starting with a refreshed context
 187 while retaining only essential information. To capture this behavior, we extend the single-episode
 188 formulation to a *multi-episode trajectory*. We assume that there are N episodes in total, then the i -th
 189 episode (with M_i iterations) can be formulated as:

190

$$e_i = \begin{cases} (c_i, r_{i,1}, a_{i,1}, o_{i,1}, \dots, r_{i,M_i}, a_{i,M_i}, o_{i,M_i}), & i < N \\ (c_i, r_{i,1}, a_{i,1}, o_{i,1}, \dots, r_{i,M_i}), & i = N \end{cases} \quad (3)$$

191

$$\text{where } c_i = \begin{cases} q, & i = 1 \\ o_{i-1,M_{i-1}}, & i > 1 \end{cases} \quad (4)$$

192

193 Notice that in the final episode, the thought of the last iteration r_{N,M_N} contains the answer, then
 194 the episode ends immediately. c_i is the initial context of each episode. In the first episode, it is the
 195 question $q \in p(Q)$. While in the following episodes, it is the optimized context $o_{i-1,M_{i-1}}$ from the
 196 last *Context Optimization* tool. Then a complete trajectory with N episodes can be defined as:

197

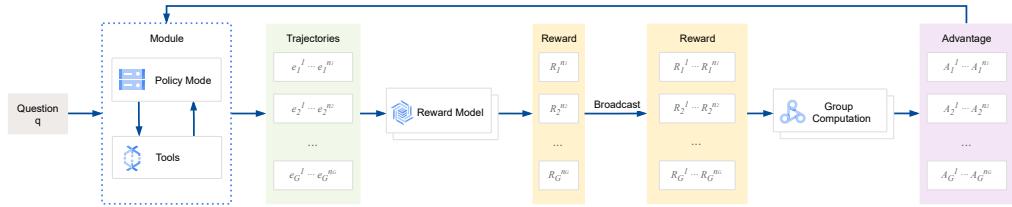
$$\mathcal{T} = (e_1, e_2, \dots, e_N) \quad (5)$$

198

199

200

201



202

203 Figure 2: Multi-episode DAPO. The reward of a multi-episode trajectory is computed using the last
 204 episode, which contains the answer. Then the reward is broadcasted to all previous episodes in the
 205 same trajectory.

206

207

208

209 3.2 CORAL FRAMEWORK

210

211

212 We propose the COgnitive Resource Self-ALlocation (CORAL) framework, a novel reasoning
 213 paradigm designed to empower LLM agents to overcome cognitive overload in long-horizon tasks.

216 The framework is built on the principle that agents should be able to proactively manage their own
 217 context, much like humans manage their working memory. As illustrated in Figure 1, we implement
 218 this capability by augmenting the traditional ReAct framework with a specialized working memory
 219 management toolset. This toolset, comprising two distinct tools, provides the agent with the explicit
 220 mechanisms needed to self-regulate its cognitive load. Specifically, the Memory Management tool
 221 enables the agent to consolidate its progress and focus on planning, while the Context Optimiza-
 222 tion tool acts as a reset mechanism, allowing it to strategically purge irrelevant information from its
 223 context.

224

225 3.3 FURTHER ENHANCEMENT METHODS

226

227 While the CORAL framework can be implemented in a prompting-only fashion, we explore dedi-
 228 cated training methods to further enhance its capabilities. **Behavior Cloning.** To endow the agent
 229 with basic function call ability, we apply behavior cloning through supervised fine-tuning (SFT) on
 230 curated, high-quality trajectories. From Equation 5 we know that a trajectory is consist of multi-
 231 ple context independent episodes, therefore, we split the trajectory into episodes, and fine-tune the
 232 model using batches of episodes. For each episode described in Equation 3 and Equation 4, we
 233 compute the loss using the following loss function:

$$234 \quad L = -\frac{1}{\sum_{i=1}^{|e|} \mathbb{I}(x_i \neq o)} \sum_{i=1}^{|e|} \mathbb{I}(x_i \neq o) \cdot \log \pi_\theta(x_i \mid x_{<i}) \quad (6)$$

235

236 where $\mathbb{I}(\cdot)$ is the indicator function. Here $\mathbb{I}(x_i \neq o)$ masks out the loss from observation tokens,
 237 ensuring the loss is computed over the agent’s own generated outputs, such as its reasoning steps
 238 (thoughts) and function calls (actions). By doing so, we only supervise the model on the behaviors
 239 it is expected to learn, rather than penalizing it for failing to predict external information from the
 240 environment.

241

242 **Multi-episode Agentic Reinforced Policy Optimization.** The classic DAPO optimization objective
 243 in Agent Reinforcement Learning (Wu et al., 2025a):

$$244 \quad \mathcal{J}_{\text{DAPO}}(\theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot \mid \text{context})} \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} \left(r_{i,t}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}} \right) \hat{A}_{i,t} \right) \right] \quad (7)$$

$$245 \quad \text{s.t. } 0 < \left| \{o_i \mid \text{is_equivalent}(a, o_i)\} \right| < G,$$

246

247 where

$$248 \quad r_{i,t}(\theta) = \frac{\pi_\theta(o_{i,t} \mid q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,<t})}, \quad \hat{A}_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}. \quad (8)$$

249

250 Noted that agentic execution o_i refers solely to the tokens generated by models, excluding any tool
 251 responses. It means the optimization is applied only to the model-generated tokens.

252

253 In this work, the trajectory consists of multiple episodes, as mentioned in Equation 5. We further
 254 extend the Agentic DAPO algorithm to handle multi-episode trajectories by treating each episode as
 255 a separate optimization unit while maintaining trajectory-level coherence. Figure 2 illustrates our
 256 main idea. For a multi-episode trajectory $\mathcal{T}_i = (e_i^1, e_i^2, \dots, e_i^N)$, we use the last episode to compute
 257 the reward. And all previous episodes in the same trajectory share this reward: $R_i^j = R_i^{n_i}$ for
 258 $1 \leq j < n_i$. Then all episodes participate in the group computation to get an advantage.

259

260 **Reward Design.** We design a simple reward function that consist of format reward R_i^{format} and
 261 answer reward R_i^{answer} . The format reward verifies whether the whole trajectory follows the pre-
 262 defined format, and all the tool call in the *json* format is valid. The answer reward uses a LLM as a
 263 judge to determine whether the final answer is correct.

264

$$R_i = R_i^{\text{format}} \times R_i^{\text{answer}} \quad (9)$$

270 Table 1: Main results on GAIA. We **boldface** the best performance and underline the second best
 271 performance. Models with size 7 or 8B and models larger than 32B are marked separately. “-”
 272 means results that are not reported.

274 Model	275 Level 1	276 Level 2	277 Level 3	278 Average
279 DIRECT INFERENCE				
280 GPT-4o	23.1	15.4	8.3	17.5
281 DeepSeek-R1	43.6	26.9	8.3	31.1
282 Claude-4.0-Sonnet	38.5	36.5	8.3	34.0
283 AGENTIC INFERENCE				
284 R1-Searcher-7B	28.2	19.2	8.3	20.4
285 WebDancer-7B	<u>41.0</u>	30.7	0.0	31.0
286 WebSailor-7B	-	-	-	37.9
287 CK-Pro-8B	56.4	<u>42.3</u>	8.3	43.7
288 WebDancer-32B	46.1	44.2	8.3	40.7
289 WebThinker-32B-RL	56.4	50.0	16.7	48.5
290 WebSailor-72B	-	-	-	55.4
291 WebShaper-72B	-	-	-	60.1
292 OpenAI DR	74.3	69.1	47.6	67.4
293 CONTEXT OPTIM				
294 ReAct	-	-	-	60.0
295 +HARD OPTIM	-	-	-	<u>66.0</u>
296 ReAct	33.3	11.5	8.3	19.4
297 +HARD OPTIM	28.2	19.2	0.0	20.4
298 +SFT	<u>41.0</u>	40.4	<u>11.1</u>	37.2
299 +RL	<u>41.0</u>	44.2	<u>25.0</u>	40.9

300 4 EXPERIMENTS

301 4.1 EXPERIMENTAL SETTINGS

302 **Baselines.** We compare our method with against three representative paradigms.

- 303 • **Direct Inference:** GPT-4.1 (OpenAI, 2025a), DeepSeek-R1 (Guo et al., 2025), Claude-4.0-
 304 Sonnet
- 305 • **Agentic Inference:** R1-Searcher (Song et al., 2025), WebDancer (Wu et al., 2025a), Web-
 306 Thinker (Li et al., 2025a), WebSailor, WebShaper, OpenAI Deep research (OpenAI, 2025b)
- 307 • **ReAct.** Classic ReAct diagram using web search and web browse tools.

308 **Benchmarks.** We use GAIA (Mialon et al., 2023) as the evaluation benchmark. We follow existing
 309 works by using the 103-sample text-only validation subset. Questions are categorized into three dif-
 310 ficulty levels, with Level 3 representing the most challenging long-horizon tasks requiring extensive
 311 reasoning chains.

312 **Dataset.** We follow the data construction pipeline of WebShaper (Tao et al., 2025) to construct
 313 high quality questions with controllable difficulty. We use commercial models to synthesize the
 314 interaction trajectories. Ultimately, this process yielded a dataset of 1115 trajectories, of which
 315 approximately 55% successfully lead to the correct answer.

316 4.2 OVERALL PERFORMANCE

317 Table 1 resents our main experimental results. CORAL demonstrates substantial improvements
 318 over existing methods, particularly excelling on the most challenging long-horizon tasks (Level 2

324 and Level 3) that require extended reasoning chains. When applied to a powerful proprietary model
 325 (Claude-4-Sonnet), our prompting-only CORAL achieves an average score of 66.0, comparable with
 326 OpenAI DR (67.4). This highlights the effectiveness of our approach even when enhancing already
 327 capable models.

328 However, when applied to Qwen3-8B, the prompting-only CORAL shows only marginal improve-
 329 ments. This can be attributed to a discrepancy between the sophistication of CORAL’s working
 330 memory management tools and the limited agentic capabilities of the base model. The model fre-
 331 quently fails to adhere to the required format or makes errors during tool calling, which negates the
 332 potential benefits of the framework.

333 This phenomenon can be mitigated through behavior cloning, i.e., by performing Supervised Fine-
 334 Tuning (SFT) on high-quality trajectories. Remarkably, our experiments demonstrate that SFT on
 335 a small dataset of just 1115 trajectories is sufficient for the model to master this operational pattern
 336 and achieve superior performance on GAIA. This is achieved even though 45% of the trajectories in
 337 the training data culminate in an incorrect final answer, suggesting the model is effectively learning
 338 the reasoning process itself. The subsequent application of Reinforcement Learning (RL) further
 339 enhances performance, with the advantages being most pronounced on long-horizon tasks (Level 2
 340 and Level 3).

342 4.3 ABLATION STUDY

344 **Does the trajectory with wrong answer degrade model’s performance?** To investigate this ques-
 345 tion, we fine-tuned a base model exclusively on trajectories from our dataset that resulted in correct
 346 answers. This model achieved a score of 31.1% on the GAIA text-only subset, a result substantially
 347 lower than that of our model fine-tuned on the complete dataset (which includes both correct and
 348 incorrect trajectories).

349 This finding indicates that including trajectories with incorrect answers is not only harmless but
 350 is, in fact, beneficial. This aligns with our hypothesis that the primary goal of Supervised Fine-
 351 Tuning (SFT) is to “clone behavior”, where the value gained from learning a high-quality reasoning
 352 process outweighs the negative signal of an incorrect final answer. Therefore, even high-quality
 353 reasoning paths that conclude with an incorrect answer can positively contribute to the model’s
 354 overall reasoning capabilities. However, whether this conclusion remains valid when the dataset is
 355 scaled up significantly requires further investigation.

358 4.4 ATTENTION ANALYSIS

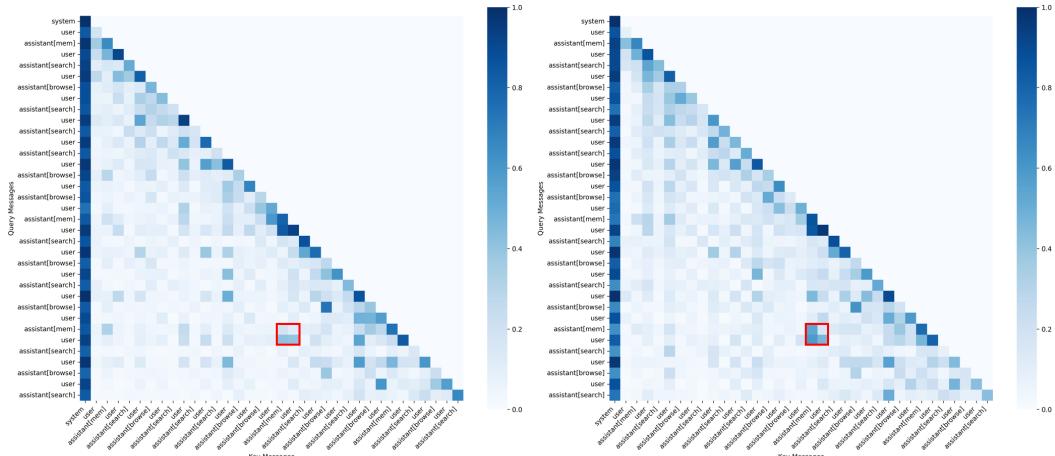
360 CORAL has shown significant improvements over baseline methods, particularly on challenging
 361 long-horizon tasks requiring extended reasoning chains.

362 In this section, we move beyond a macro-level evaluation of the CORAL framework’s performance
 363 to a micro-level analysis of the underlying mechanisms driving its success. The central hypothesis
 364 is that the CORAL framework implicitly facilitates a more efficient and effective reallocation of
 365 model’s cognitive resources. This analysis uses attention mechanisms as a lens to investigate how
 366 the model learns to prioritize critical information and steer its problem-solving trajectory.

367 **Receiver heads.** Previous work (Bogdan et al., 2025) in attention analysis has identified “important
 368 sentences” that receive heightened attention from downstream sentences, a phenomenon known as
 369 attention aggregation. Inspired by this, we also try to find important parts in the context that might
 370 get higher attention values and thus have a greater impact on the model’s behavior. In our multi-
 371 turn conversation setting, we shift the unit of analysis from tokens or sentences to messages, aiming
 372 to discover which messages are more important. Following (Bogdan et al., 2025), we refer to
 373 attention heads that narrow attention toward specific messages as “receiver heads”. We first identify
 374 the receiver heads (details in Appendix A.2), then analysis the attention distribution through these
 375 heads.

376 **Case study: Sharpening attention on checkpoints.** In Figure 3, we show a case of message-
 377 level attention from the base model and fine-tuned model. The attention map clearly shows that,
 after fine-tuning, the model pays more attention to previous checkpoint (memory management tool

378 response) when calling memory management tool, while other part of the context show a relatively
 379 lower attention value. We also find that,
 380



396 Figure 3: Comparison of attention at a checkpoint between the base model and the fine-tuned model
 397 in CORAL diagram. **Left:** Message-level attention map from the Qwen3-8B base model. **Right:**
 398 Message-level attention map from our fine-tuned Qwen3-8B. **Red box:** Attention corresponding to
 399 two consecutive memory management tool calls.

5 RELATED WORK

404 **Reinforcement learning for LLM agents.** Reinforcement learning (RL) is a crucial methodology
 405 for empowering Large Language Model (LLM) agents to operate effectively within dynamic
 406 and open-ended environments. Compared to supervised fine-tuning which relies on pre-collected
 407 expert data, RL-based methods allow agents to learn directly from their interactions with an environment.
 408 The application of RL to LLM agents has evolved significantly over time. Initial efforts
 409 utilized classical algorithms like DQN for training agents in text-based games (Narasimhan et al.,
 410 2015). Subsequently, more advanced value-based methods, such as PPO (Schulman et al., 2017)
 411 and GRPO (Shao et al., 2024a), were employed in a broader array of interactive settings, including
 412 embodied AI tasks like ALFWorld (Shridhar et al., 2021), information seeking tasks (Mialon et al.,
 413 2023; Wei et al., 2025; Zhou et al., 2025a; Xbench-Team, 2025), and strategic card games (Brock-
 414 man et al., 2016).

415 **Context Engineering in LLM Agents.** Managing context effectively is a critical challenge in developing
 416 LLM-based agents, particularly as these systems become more sophisticated and operate over
 417 extended interactions. Recent research has explored various approaches to address the limitations
 418 of context windows and maintain relevant information throughout agent execution. One prominent
 419 approach involves breaking down complex tasks into smaller, manageable subtasks to better utilize
 420 limited context windows (Luo et al., 2025; Schroeder et al., 2024). Another line of research focuses
 421 on employing context compression after each function call (Zhou et al., 2025b). While this approach
 422 can effectively manage context size, it may suffer from information loss and difficulties in maintaining
 423 high-level planning coherence across extended agent interactions. Some systems have begun to
 424 incrementally read context by splitting it into chunks (Yu et al., 2025a). However, they have only
 425 considered scenarios with fixed contexts, while dynamic contexts involving function calling remain
 426 unexplored.

6 CONCLUSION

429 In conclusion, we address the critical challenge of contextual bloat in LLM-driven agents, where the
 430 accumulation of environmental feedback and intermediate reasoning steps degrades performance on
 431 long-horizon tasks. We introduce the COgnitive Resource Self-ALlocation (CORAL) framework, a
 432 novel paradigm that empowers agents with a callable toolset to actively manage their own working

432 memory. By learning to create checkpoints and strategically reset its context, an agent equipped
 433 with CORAL can mitigate cognitive overload and sustain high-level reasoning throughout a task.
 434 Our two-stage training approach, which combines Supervised Fine-Tuning to instill core skills with
 435 a novel Multi-episode Agentic Reinforced Policy Optimization (Multi-episode ARPO) algorithm,
 436 enables the agent to discover effective, adaptive memory management policies. On the challenging
 437 Level 2 and Level 3 tasks of the GAIA benchmark, CORAL substantially outperforms existing
 438 methods. Our analysis of action-level attention distributions confirms that this performance gain is
 439 directly attributable to the agent’s improved ability to allocate its cognitive resources, focusing on
 440 salient information while discarding obsolete context.

441

442 REFERENCES

443 Paul C. Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm rea-
 444 soning steps matter? *arXiv preprint arXiv:2506.19143*, 2025.

445 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
 446 Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.

447 Prahaladh Chandrahasan, Jiahe Jin, Zhihan Zhang, Tevin Wang, Andy Tang, Lucy Mo, Morteza
 448 Ziyadi, Leonardo FR Ribeiro, Zimeng Qiu, Markus Dreyer, et al. Deep research compara-
 449 tor: A platform for fine-grained human annotations of deep research agents. *arXiv preprint*
 450 *arXiv:2507.05495*, 2025.

451 Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
 452 manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents for
 453 long-horizon tasks. *arXiv preprint arXiv:2503.09572*, 2025.

454 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
 455 agent training. *arXiv preprint arXiv:2505.10978*, 2025.

456 Gemini. Gemini deep research. <https://gemini.google/overview/deep-research>,
 457 2025.

458 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 459 Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in
 460 LLMs via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

461 Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
 462 Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. *arXiv*
 463 *preprint arXiv:2402.02716*, 2024.

464 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 465 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 466 learning. *arXiv preprint arXiv:2503.09516*, 2025.

467 Kimi. Kimi-researcher: End-to-end rl training for emerging agentic capabilities. [https://](https://moonshotai.github.io/Kimi-Researcher/)
 468 moonshotai.github.io/Kimi-Researcher/, 2025.

469 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 470 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
 471 *arXiv preprint arXiv:2504.21776*, 2025a.

472 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. *arXiv preprint*
 473 *arXiv:2503.23383*, 2025b.

474 Zhaoyang Liu, JingJing Xie, Zichen Ding, Zehao Li, Bowen Yang, Zhenyu Wu, Xuehui Wang,
 475 Qiushi Sun, Shi Liu, Weiyun Wang, et al. Scalecua: Scaling open-source computer use agents
 476 with cross-platform data. *arXiv preprint arXiv:2509.15221*, 2025.

477 Hongyin Luo, Nathaniel Morgan, Tina Li, Derek Zhao, Ai Vy Ngo, Philip Schroeder, Lijie Yang,
 478 Assaf Ben-Kish, Jack O’Brien, and James Glass. Beyond context limits: Subconscious threads
 479 for long-horizon reasoning. *arXiv preprint arXiv:2507.16784*, 2025.

486 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 487 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning*
 488 *Representations*, 2023.

489

490 Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-based
 491 games using deep reinforcement learning. In *Proceedings of the 2015 Conference on Empirical*
 492 *Methods in Natural Language Processing*, 2015.

493 OpenAI. Introducing openai gpt-4.1, 2025a. URL <https://openai.com/index/gpt-4-1/>.

494

495 OpenAI. Deep research system card, 2025b. URL <https://cdn.openai.com/deep-research-system-card.pdf>.

496

497 Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
 498 Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. *arXiv preprint arXiv:2504.13958*,
 499 2025.

500

501 Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
 502 Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. *Ad-*
 503 *vances in Neural Information Processing Systems*, 37:114843–114871, 2024.

504

505 Philip Schroeder, Nathaniel Morgan, Hongyin Luo, and James Glass. Thread: Thinking deeper with
 506 recursive spawning. *arXiv preprint arXiv:2405.17402*, 2024.

507

508 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 509 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

510

511 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 512 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 513 matical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024a.

514

515 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 516 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 517 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024b.

518

519 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 520 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing*
 521 *Systems*, 36:8634–8652, 2023.

522

523 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
 524 Hausknecht. ALFWorld: Aligning Text and Embodied Environments for Interactive Learning. In
 525 *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021.

526

527 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 528 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 529 learning. *arXiv preprint arXiv:2503.05592*, 2025.

530

531 Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
 532 Liwen Zhang, Xinyu Wang, Yong Jiang, et al. Webshaper: Agentically data synthesizing via
 533 information-seeking formalization. *arXiv preprint arXiv:2507.15061*, 2025.

534

535 Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin,
 536 Mengdi Wang, Kam-Fai Wong, and Heng Ji. Otc: Optimal tool calls via reinforcement learning.
 537 *arXiv e-prints*, pp. arXiv–2504, 2025.

538

539 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 540 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 541 challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
 Zekun Xi, Yong Jiang, Pengjun Xie, et al. Webdancer: Towards autonomous information seeking
 agency. *arXiv preprint arXiv:2505.22648*, 2025a.

540 Penghao Wu, Shengnan Ma, Bo Wang, Jiaheng Yu, Lewei Lu, and Ziwei Liu. Gui-reflection: Em-
 541 powering multimodal gui models with self-reflection behavior. *arXiv preprint arXiv:2506.08012*,
 542 2025b.

543 Xixi Wu, Kuan Li, Yida Zhao, Liwen Zhang, Litu Ou, Hufeng Yin, Zhongwang Zhang, Yong Jiang,
 544 Pengjun Xie, Fei Huang, et al. Resum: Unlocking long-horizon search intelligence via context
 545 summarization. *arXiv preprint arXiv:2509.13313*, 2025c.

546 Xbench-Team. Xbench-deepsearch, 2025. URL <https://xbench.org/agi/aisearch>.

547 Yu Xia, Jingru Fan, Weize Chen, Siyu Yan, Xin Cong, Zhong Zhang, Yaxi Lu, Yankai Lin, Zhiyuan
 548 Liu, and Maosong Sun. Agentrm: Enhancing agent generalization with reward modeling. *arXiv*
 549 *preprint arXiv:2502.18407*, 2025.

550 Minglai Yang, Ethan Huang, Liang Zhang, Mihai Surdeanu, William Wang, and Liangming Pan.
 551 How is llm reasoning distracted by irrelevant context? an analysis using a controlled benchmark.
 552 *arXiv preprint arXiv:2505.18761*, 2025.

553 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 554 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 555 2022.

556 Hongli Yu, Tingshong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
 557 Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, et al. Memagent: Reshaping long-context llm with
 558 multi-conv rl-based memory agent. *arXiv preprint arXiv:2507.02259*, 2025a.

559 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 560 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 561 at scale. *arXiv preprint arXiv:2503.14476*, 2025b.

562 Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu,
 563 Zhiding Yu, and Guilin Liu. Nemotron-research-tool-n1: Tool-using language models with rein-
 564 forced reasoning. *arXiv preprint arXiv:2505.00024*, 2025.

565 Peilin Zhou, Bruce Leon, Xiang Ying, Can Zhang, Yifan Shao, Qichen Ye, Dading Chong, Zhiling
 566 Jin, Chenxuan Xie, Meng Cao, et al. Browsecomp-zh: Benchmarking web browsing ability of
 567 large language models in chinese. *arXiv preprint arXiv:2504.19314*, 2025a.

568 Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao,
 569 Bryan Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and reasoning
 570 for efficient long-horizon agents. *arXiv preprint arXiv:2506.15841*, 2025b.

571 A APPENDIX

572 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

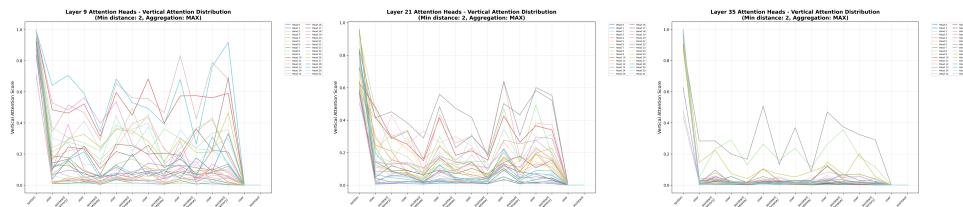
573 We used Large Language Models (LLMs) to aid in polishing the language of this manuscript. Their
 574 role was confined to improving grammar, clarity, and sentence structure. The intellectual content, in-
 575 cluding all ideas and findings, is entirely the work of the human authors, who reviewed and approved
 576 the final text.

577 A.2 THE IDENTIFICATION OF RECEIVE HEADS

578 Receive heads refers to the attention heads which consistently narrow attention toward specific mes-
 579 sages. Following (Bogdan et al., 2025), we plot the vertical attention scores for each message by
 580 the 32 different heads in 36 different layers. From Figure 4, We find that in later layers (layer
 581 35) shows a clear difference in attention values between different attention heads. In this case, the
 582 receive heads are head 9 and head 22 in layer 35.

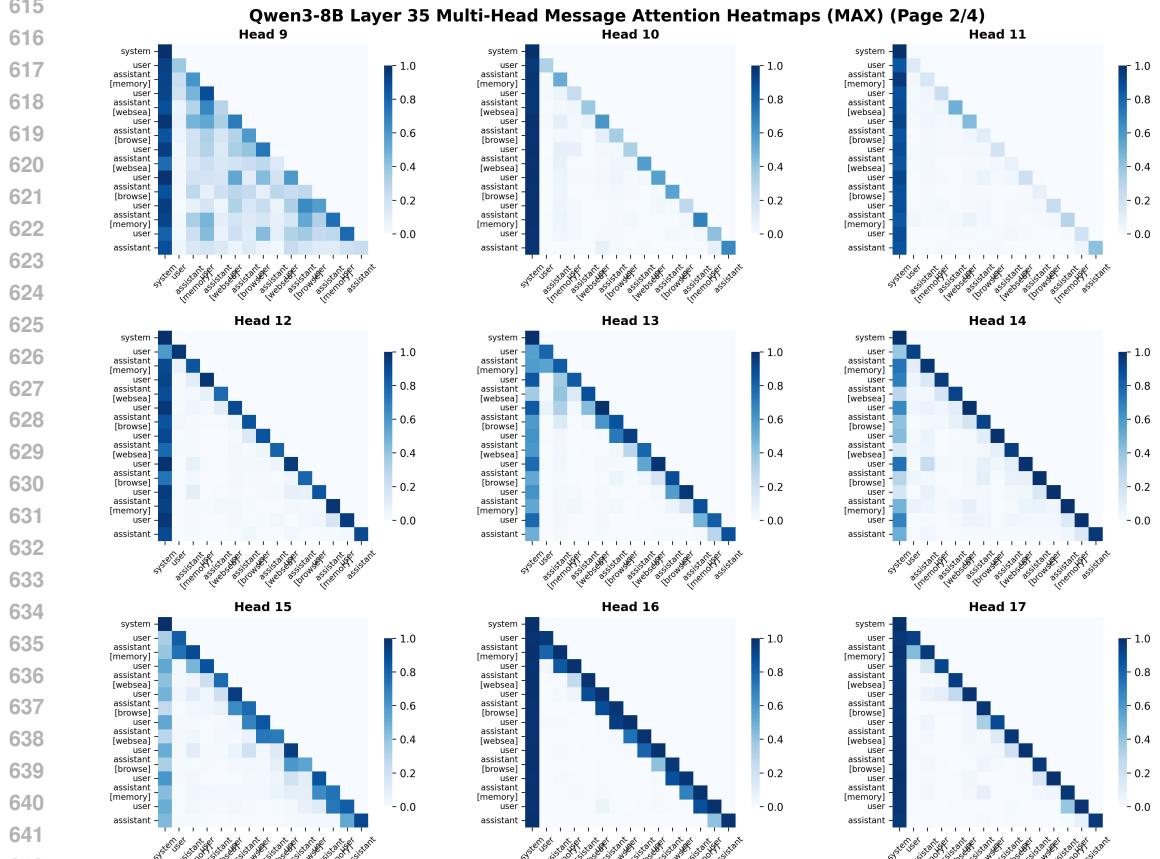
583 We take a look at these two head’s message level attention map, find that these two attention really
 584 show a relatively high attention value (see Figure 5 and Figure 6). And narrow attention toward
 585 specific messages, such as the 6th message in head 22.

594
595
596
597
598
599
600
601
602
603
604



605 Figure 4: Vertical attention scores for each message by 32 different heads in layer 9, 21, 35 respectively.
606 The backbone of the tested model is Qwen3-8B.
607

608
609
610
611
612
613
614
615



643 Figure 5: Message level attention map for head 9 layer 35 and its neighbors.
644
645
646
647

648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

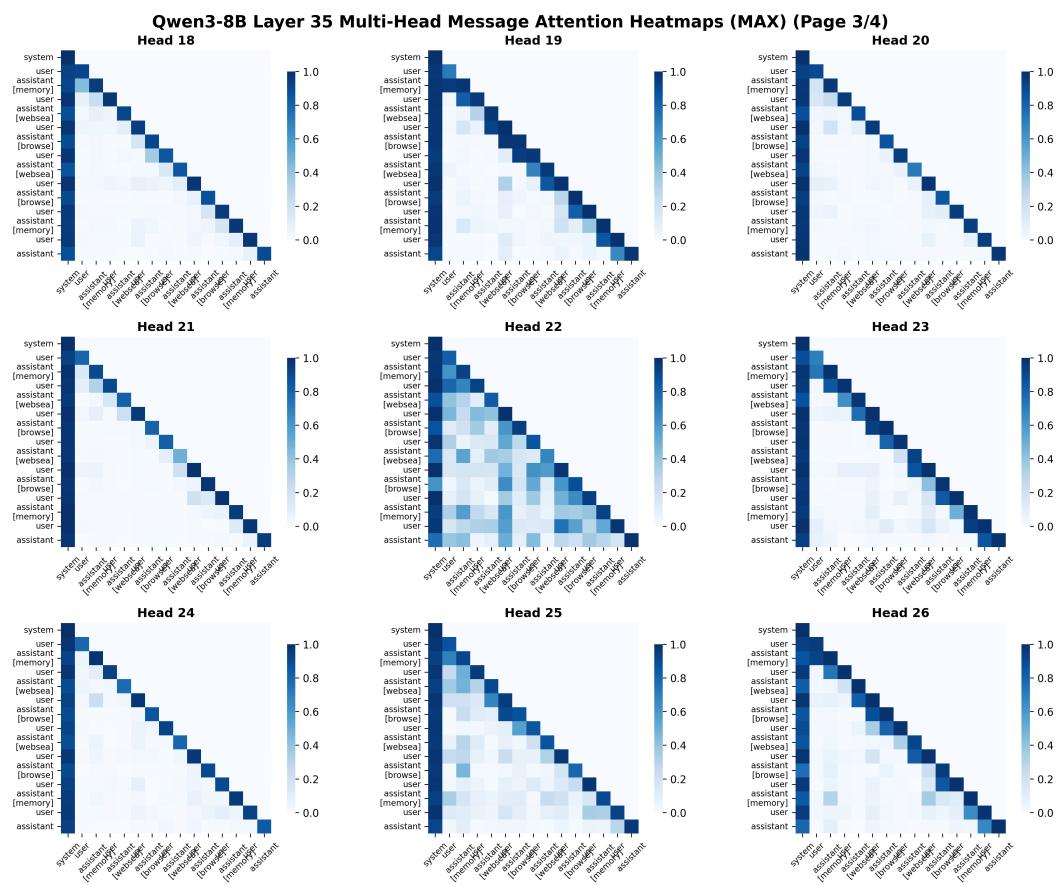


Figure 6: Message level attention map for head 22 layer 35 and its neighbors.