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ABSTRACT

Agents powered by large language models (LLMs) have demonstrated remark-
able progress in solving complex reasoning tasks. However, LLM agents often
falter on long-horizon tasks due to cognitive overload, as their working memory
becomes cluttered with expanding and irrelevant information, which dilutes their
attention and hinders effective planning and reasoning. To mitigate this challenge,
we introduce COgnitive Resource Self-ALlocation (CORAL), a novel reason-
ing paradigm that empowers agents to proactively optimize their context. Im-
plemented as an agent-callable working memory management toolset, CORAL
allows an agent to maintain crucial checkpoints of its progress within its working
memory and adaptively initiate a new problem-solving episode by purging clut-
tered working memory and resuming its reasoning from the most recent check-
point, effectively reallocating agentic cognitive resources by implicitly sharpen-
ing their attention on the checkpoints. We further enhance the agent’s checkpoint
capabilities using a Multi-episode Agentic Reinforced Policy Optimization algo-
rithm. On several long-horizon task benchmarks, CORAL significantly outper-
forms standard LLM agent methods. Notably, analysis of the LLMs’ attention
distribution reveals that CORAL substantially optimizes agentic RL dynamics,
which in turn ensures agents maintain a focused cognitive resource allocation,
thereby continuously amplifying performance gains.

1 INTRODUCTION

Recentlt, LLM-driven agents represent a powerful paradigm that extends the capabilities of Large
Language Models (LLMs) through the integration of external tools (OpenAI, 2025b; Gemini, 2025;
Liu et al., 2025; Li et al., 2025b), substantially outperforming methods reliant on single-turn infer-
ence. To address long-horizon tasks, these agents operate on a THOUGHT-ACTION-OBSERVATION
cycle (Yao et al., 2022), engaging in multiple cycles of planning, environmental interaction, and
reasoning (Erdogan et al., 2025; Qiao et al., 2024; Huang et al., 2024). A critical challenge arises
as each cycle populates LLM agents’ context with verbose environmental feedback and a history of
failed attempts (Wu et al., 2025b; Shinn et al., 2023). This escalating contextual noise progressively
degrades the model’s planning and reasoning faculties (Yang et al., 2025), a phenomenon compara-
ble to the cognitive overload that impairs human problem-solving when working memory becomes
saturated.

Current paradigms for context optimization in LLM agents seek to prevent this contextual bloat
by pruning messages or distilling salient information. The activation of these methods is generally
governed by rule-based heuristics, such as fixed intervals (Zhou et al., 2025b; Yu et al., 2025a) or
the imminent saturation of the context window (Wu et al., 2025c). The underlying mechanism for
optimization typically involves either truncating the context directly (Luo et al., 2025) or utilizing
external models to achieve compression (Wu et al., 2025c).

Fundamentally, this redundant context is a direct consequence of the agent’s imperfect planning and
reasoning. Suboptimal tool use generates a high volume of irrelevant environmental feedback (Wang
et al., 2025), which in turn clutters the context and further degrades the agent’s reasoning, creating
a vicious cycle. To address this, one line of research employs agentic reinforcement learning (RL),
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Figure 1: Comparison of the ReAct and CORAL frameworks. CORAL enhances the standard ReAct
loop by incorporating two key components: a Memory Management (MM) tool and a Context Op-
timization (CO) tool. The memory is designed to store two categories of information: task progress
and verified facts. The CO tool periodically resets the model’s context, which segments a complete
trajectory into a series of independent units termed episodes.

using algorithms such as GRPO (Shao et al., 2024b) and DAPO (Yu et al., 2025b) with carefully
designed reward functions to optimize the agent’s tool-use policy (Qian et al., 2025; Zhang et al.,
2025; Jin et al., 2025). However, in long-horizon tasks involving multi-step interactions, these RL
methods face significant challenges with reward sparsity. Relying solely on final outcomes makes it
difficult to assign credit to intermediate actions, leading to unstable and inefficient training dynam-
ics. While methods like estimated step-level credit assignment can mitigate this (Feng et al., 2025;
Xia et al., 2025; Chandrahasan et al., 2025), proactive context optimization presents a powerful,
orthogonal method of improving RL training dynamics (Kimi, 2025; Wu et al., 2025c).

To address these challenges, we introduce the COgnitive Resource Self-ALlocation (CORAL)
framework. CORAL extends existing agentic architectures with a callable toolset for working mem-
ory management, empowering an agent to dynamically optimize its context and sustain high-level
planning and reasoning throughout long-horizon tasks. Specifically, the agent can autonomously in-
voke memory tools to create checkpoints of its progress and verified facts. The periodic insertion of
these checkpoints along the task trajectory systematically refocuses the agent’s attention on its most
current state, preventing cognitive resources from being squandered on obsolete information, such
as prior environmental feedback or failed attempts. This process facilitates an implicit yet effective
self-allocation of cognitive resources. Furthermore, CORAL allows the agent to adaptively initiate
new problem-solving episodes by purging its working memory and resuming its reasoning from the
latest checkpoint. We initially enhance the crucial checkpointing ability, the capacity to accurately
distill key task information through Supervised Fine-Tuning (SFT).

To further enable the model to discover optimal checkpointing strategies without additional trajec-
tory data, we introduce a Multi-episode Agentic Reinforced Policy Optimization (Multi-episode
ARPO) algorithm. This approach not only refines the agent’s checkpointing policy but also signifi-
cantly improves the overall agentic RL dynamics. We validate CORAL’s effectiveness on the GAIA
benchmark, where it substantially outperforms existing LLM agent methods on long-horizon tasks
(Levels 2 and 3). Analysis of the action-level attention distribution reveals the source of this suc-
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cess: CORAL enables the agent to efficiently allocate its cognitive resources throughout the entire
reasoning process.

In summary, the key contributions of this work are as follows:

• We introduce COgnitive Resource Self-ALlocation (CORAL), a framework that empowers
agents to manage their working memory through a callable toolset. By dynamically optimizing
its own context, an agent using CORAL can maintain robust planning and reasoning capabilities
on long-horizon tasks.

• We use Supervised Fine-Tuning (SFT) to instill core checkpointing skills and then leverage a
multi-episode agentic reinforced policy optimization (Multi-episode ARPO) algorithm to allow
the agent to discover optimal checkpointing strategies.

• On the GAIA benchmark, CORAL significantly outperforms existing approaches on complex
long-horizon tasks (Level-2 and Level-3). An analysis of action-level attention distributions con-
firms that CORAL’s success stems from its ability to effectively allocate the agent’s cognitive
resources during reasoning.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

We consider a general large language model (LLM)-based agent. Upon receiving a problem spec-
ification, the agent is capable of interacting with its environment and executing a sequence of
reasoning and action steps to progressively derive a solution. Following the ReAct (Yao et al.,
2022) framework, these steps can be formalized as iterations of Thought-Action-Observation.
Specifically, given a question q ∈ p(Q), the LLM agent πθ at time step t generates Thought
rt ∼ πθ(·|ct) and a textual Action at ∼ πθ(·|ct, rt). The ct denotes the context in the time step
t: ct = (q, r1, a1, o1, ..., rt−1, at−1, ot−1). Then the environment gives the feedback as the Obser-
vation ot. The loop ends when the agent solves the question or reaches the max steps. Therefore,
the final episode with M steps can be defined as:

eterminated = (q, r1, a1, o1, ..., rM , aM , oM ) (1)
ecompleted = (q, r1, a1, o1, ..., rM ) (2)

Note that in the completed episode, the Thought in the final round (rM ) contains the answer to the
question, and the episode stops immediately.

2.2 WEB SEARCH AGENTIC TOOL DESIGN

At each time step t, the LLM-based agent generates a textual Action at ∈ A, where A denotes
the predefined action space. In this work, we focus on an LLM-based tool-use agent, in which the
action space A comprises a set of specialized tool-use commands and interaction primitives that
the agent can execute to accomplish complex tasks. To operationalize this action space, we design
two purpose-built tools that collectively support web search and webpage browse. These tools are
described as follows:

• Web Search. Enables the agent to issue multiple search queries in parallel via a search engine,
retrieve and format the results, and present them in a structured manner.

• Web Browse. Allows the agent to intelligently retrieve and analyze content from specified web
pages according to a user-defined goal, extract relevant information, summarize key findings, and
identify useful external links for further exploration.

3 COGNITIVE RESOURCE SELF-ALLOCATION (CORAL)

Inspired from cognitive resource theory, which posits that effective problem-solving in humans re-
lies on the strategic management of finite cognitive resources like attention and working memory,
we draw a parallel to the operational challenges faced by LLM agents. The agent’s context serves as
its working memory. On long-horizon tasks, this ”memory” becomes progressively cluttered with
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intermediate steps (thoughts, actions, and observations), leading to cognitive overload. To address
this, we introduce COgnitive Resource Self-ALlocation (CORAL), a paradigm that empowers the
agent to proactively manage its own cognitive load. CORAL allows the agent to mimic the hu-
man process of consolidating progress and refocusing attention by creating checkpoints and purging
irrelevant context.

3.1 WORKING MEMORY MANAGEMENT TOOLSET

We operationalize this paradigm through the following working memory management toolset:

• Memory Management. Assists the agent in managing its working memory by adding or remov-
ing knowledge units, thereby retaining essential information across context resets while discard-
ing outdated or irrelevant data to maintain clarity and task continuity.

• Context Optimization. Performs a hard reset of the conversational context to mitigate token
bloat and sustain performance. It clears all conversational history except for essential compo-
nents—such as working memory, system prompt, and the original user request—ensuring that
critical information is preserved while resetting the token count and removing accumulated tool
outputs.
Specifically, in the time step t, the context is (q, r1, a1, o1, ..., rt−1, at−1, ot−1), the LLM-based
agent call the Context Optimization tool, i.e. at = aCO, the tool response ot will be the next
round’s context c. Therefore, in the next round, the episode will begin like (c, r1, a1, o1, ...).

Multi-episode trajectory. The context optimization tool, as described, performs a hard reset of the
conversational context. This reset operation effectively segments what would otherwise be a single
continuous reasoning process into multiple shorter episodes, each starting with a refreshed context
while retaining only essential information. To capture this behavior, we extend the single-episode
formulation to a multi-episode trajectory. We assume that there are N episodes in total, then the i-th
episode (with Mi iterations) can be formulated as:

ei =

{
(ci, ri,1, ai,1, oi,1, ..., ri,Mi

, ai,Mi
, oi,Mi

), i < N
(ci, ri,1, ai,1, oi,1, ..., ri,Mi

), i = N
(3)

where ci =

{
q, i = 1
oi−1,Mi−1

, i > 1
(4)

Notice that in the final episode, the thought of the last iteration rN,MN
contains the answer, then

the episode ends immediately. ci is the initial context of each episode. In the first episode, it is the
question q ∈ p(Q). While in the following episodes, it is the optimized context oi−1,Mi−1

from the
last Context Optimization tool. Then a complete trajectory with N episodes can be defined as:

T = (e1, e2, ..., eN ) (5)

Question
q

Trajectories

e1
1 ··· e1

n1

e2
1 ··· e2

n2

eG
1 ··· eG

nG

···
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···
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Figure 2: Multi-episode DAPO. The reward of a multi-episode trajectory is computed using the last
episode, which contains the answer. Then the reward is broadcasted to all previous episodes in the
same trajectory.

3.2 CORAL FRAMEWORK

We propose the COgnitive Resource Self-ALlocation (CORAL) framework, a novel reasoning
paradigm designed to empower LLM agents to overcome cognitive overload in long-horizon tasks.
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The framework is built on the principle that agents should be able to proactively manage their own
context, much like humans manage their working memory. As illustrated in Figure 1, we implement
this capability by augmenting the traditional ReAct framework with a specialized working memory
management toolset. This toolset, comprising two distinct tools, provides the agent with the explicit
mechanisms needed to self-regulate its cognitive load. Specifically, the Memory Management tool
enables the agent to consolidate its progress and focus on planning, while the Context Optimiza-
tion tool acts as a reset mechanism, allowing it to strategically purge irrelevant information from its
context.

3.3 FURTHER ENHANCEMENT METHODS

While the CORAL framework can be implemented in a prompting-only fashion, we explore dedi-
cated training methods to further enhance its capabilities. Behavior Cloning. To endow the agent
with basic function call ability, we apply behavior cloning through supervised fine-tuning (SFT) on
curated, high-quality trajectories. From Equation 5 we know that a trajectory is consist of multi-
ple context independent episodes, therefore, we split the trajectory into episodes, and fine-tune the
model using batches of episodes. For each episode described in Equation 3 and Equation 4, we
compute the loss using the following loss function:

L = − 1∑|e|
i=1 I(xi ̸= o)

|e|∑
i=1

I(xi ̸= o) · log πθ(xi | x<i) (6)

where I(·) is the indicator function. Here I(xi ̸= o) masks out the loss from observation tokens,
ensuring the loss is computed over the agent’s own generated outputs, such as its reasoning steps
(thoughts) and function calls (actions). By doing so, we only supervise the model on the behaviors
it is expected to learn, rather than penalizing it for failing to predict external information from the
environment.

Multi-episode Agentic Reinforced Policy Optimization. The classic DAPO optimization objective
in Agent Reinforcement Learning (Wu et al., 2025a):

JDAPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|context)[

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)]
s.t. 0 <

∣∣∣{oi | is equivalent(a, oi)}
∣∣∣ < G,

(7)

where

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, Âi,t =

Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (8)

Noted that agentic execution oi refers solely to the tokens generated by models, excluding any tool
responses. It means the optimization is applied only to the model-generated tokens.

In this work, the trajectory consists of multiple episodes, as mentioned in Equation 5. We further
extend the Agentic DAPO algorithm to handle multi-episode trajectories by treating each episode as
a separate optimization unit while maintaining trajectory-level coherence. Figure 2 illustrates our
main idea. For a multi-episode trajectory Ti = (e1i , e

2
i , ..., e

N
i ), we use the last episode to compute

the reward. And all previous episodes in the same trajectory share this reward: Rj
i = Rni

i for
1 ≤ j < ni. Then all episodes participate in the group computation to get an advantage.

Reward Design. We design a simple reward function that consist of format reward Rformat
i and

answer reward Ranswer
i . The format reward verifies whether the whole trajectory follows the pre-

defined format, and all the tool call in the json format is valid. The answer reward uses a LLM as a
judge to determine whether the final answer is correct.

Ri = Rformat
i ×Ranswer

i (9)
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Table 1: Main results on GAIA. We boldface the best performance and underline the second best
performance. Models with size 7 or 8B and models larger than 32B are marked separately. “-”
means results that are not reported.

Model Level 1 Level 2 Level 3 Average

DIRECT INFERENCE

GPT-4o 23.1 15.4 8.3 17.5
DeepSeek-R1 43.6 26.9 8.3 31.1
Claude-4.0-Sonnet 38.5 36.5 8.3 34.0

AGENTIC INFERENCE

R1-Searcher-7B 28.2 19.2 8.3 20.4
WebDancer-7B 41.0 30.7 0.0 31.0
WebSailor-7B - - - 37.9
CK-Pro-8B 56.4 42.3 8.3 43.7

WebDancer-32B 46.1 44.2 8.3 40.7
WebThinker-32B-RL 56.4 50.0 16.7 48.5
WebSailor-72B - - - 55.4
WebShaper-72B - - - 60.1
OpenAI DR 74.3 69.1 47.6 67.4

CONTEXT OPTIM

ReAct - - - 60.0
+HARD OPTIM - - - 66.0

ReAct 33.3 11.5 8.3 19.4
+HARD OPTIM 28.2 19.2 0.0 20.4
+SFT 41.0 40.4 11.1 37.2
+RL 41.0 44.2 25.0 40.9

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines. We compare our method with against three representative paradigms.

• Direct Inference: GPT-4.1 (OpenAI, 2025a), DeepSeek-R1 (Guo et al., 2025), Claude-4.0-
Sonnet

• Agentic Inference: R1-Searcher (Song et al., 2025), WebDancer (Wu et al., 2025a), Web-
Thinker (Li et al., 2025a), WebSailor, WebShaper, OpenAI Deep research (OpenAI, 2025b)

• ReAct. Classic ReAct diagram using web search and web browse tools.

Benchmarks. We use GAIA (Mialon et al., 2023) as the evaluation benchmark. We follow existing
works by using the 103-sample text-only validation subset. Questions are categorized into three dif-
ficulty levels, with Level 3 representing the most challenging long-horizon tasks requiring extensive
reasoning chains.

Dataset. We follow the data construction pipeline of WebShaper (Tao et al., 2025) to construct
high quality questions with controllable difficulty. We use commercial models to synthesize the
interaction trajectories. Ultimately, this process yielded a dataset of 1115 trajectories, of which
approximately 55% successfully lead to the correct answer.

4.2 OVERALL PERFORMANCE

Table 1 resents our main experimental results. CORAL demonstrates substantial improvements
over existing methods, particularly excelling on the most challenging long-horizon tasks (Level 2

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and Level 3) that require extended reasoning chains. When applied to a powerful proprietary model
(Claude-4-Sonnet), our prompting-only CORAL achieves an average score of 66.0, comparable with
OpenAI DR (67.4). This highlights the effectiveness of our approach even when enhancing already
capable models.

However, when applied to Qwen3-8B, the prompting-only CORAL shows only marginal improve-
ments. This can be attributed to a discrepancy between the sophistication of CORAL’s working
memory management tools and the limited agentic capabilities of the base model. The model fre-
quently fails to adhere to the required format or makes errors during tool calling, which negates the
potential benefits of the framework.

This phenomenon can be mitigated through behavior cloning, i.e., by performing Supervised Fine-
Tuning (SFT) on high-quality trajectories. Remarkably, our experiments demonstrate that SFT on
a small dataset of just 1115 trajectories is sufficient for the model to master this operational pattern
and achieve superior performance on GAIA. This is achieved even though 45% of the trajectories in
the training data culminate in an incorrect final answer, suggesting the model is effectively learning
the reasoning process itself. The subsequent application of Reinforcement Learning (RL) further
enhances performance, with the advantages being most pronounced on long-horizon tasks (Level 2
and Level 3).

4.3 ABLATION STUDY

Does the trajectory with wrong answer degrade model’s performance? To investigate this ques-
tion, we fine-tuned a base model exclusively on trajectories from our dataset that resulted in correct
answers. This model achieved a score of 31.1% on the GAIA text-only subset, a result substantially
lower than that of our model fine-tuned on the complete dataset (which includes both correct and
incorrect trajectories).

This finding indicates that including trajectories with incorrect answers is not only harmless but
is, in fact, beneficial. This aligns with our hypothesis that the primary goal of Supervised Fine-
Tuning (SFT) is to “clone behavior”, where the value gained from learning a high-quality reasoning
process outweighs the negative signal of an incorrect final answer. Therefore, even high-quality
reasoning paths that conclude with an incorrect answer can positively contribute to the model’s
overall reasoning capabilities. However, whether this conclusion remains valid when the dataset is
scaled up significantly requires further investigation.

4.4 ATTENTION ANALYSIS

CORAL has shown significant improvements over baseline methods, particularly on challenging
long-horizon tasks requiring extended reasoning chains.

In this section, we move beyond a macro-level evaluation of the CORAL framework’s performance
to a micro-level analysis of the underlying mechanisms driving its success. The central hypothesis
is that the CORAL framework implicitly facilitates a more efficient and effective reallocation of
model’s cognitive resources. This analysis uses attention mechanisms as a lens to investigate how
the model learns to prioritize critical information and steer its problem-solving trajectory.

Receiver heads. Previous work (Bogdan et al., 2025) in attention analysis has identified “important
sentences” that receive heightened attention from downstream sentences, a phenomenon known as
attention aggregation. Inspired by this, we also try to find important parts in the context that might
get higher attention values and thus have a greater impact on the model’s behavior. In our multi-
turn conversation setting, we shift the unit of analysis from tokens or sentences to messages, aiming
to discover which messages are more important. Following (Bogdan et al., 2025), we refer to
attention heads that narrow attention toward specific messages as “receiver heads”. We first identify
the receiver heads (details in Appendix A.2), then analysis the attention distribution through these
heads.

Case study: Sharpening attention on checkpoints. In Figure 3, we show a case of message-
level attention from the base model and fine-tuned model. The attention map clearly shows that,
after fine-tuning, the model pays more attention to previous checkpoint (memory management tool

7
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response) when calling memory management tool, while other part of the context show a relatively
lower attention value. We also find that,

Figure 3: Comparison of attention at a checkpoint between the base model and the fine-tuned model
in CORAL diagram. Left: Message-level attention map from the Qwen3-8B base model. Right:
Message-level attention map from our fine-tuned Qwen3-8B. Red box: Attention corresponding to
two consecutive memory management tool calls.

5 RELATED WORK

Reinforcement learning for LLM agents. Reinforcement learning (RL) is a crucial methodol-
ogy for empowering Large Language Model (LLM) agents to operate effectively within dynamic
and open-ended environments. Compared to supervised fine-tuning which relies on pre-collected
expert data, RL-based methods allow agents to learn directly from their interactions with an envi-
ronment. The application of RL to LLM agents has evolved significantly over time. Initial efforts
utilized classical algorithms like DQN for training agents in text-based games (Narasimhan et al.,
2015). Subsequently, more advanced value-based methods, such as PPO (Schulman et al., 2017)
and GRPO (Shao et al., 2024a), were employed in a broader array of interactive settings, including
embodied AI tasks like ALFWorld (Shridhar et al., 2021), information seeking tasks (Mialon et al.,
2023; Wei et al., 2025; Zhou et al., 2025a; Xbench-Team, 2025), and strategic card games (Brock-
man et al., 2016).

Context Engineering in LLM Agents. Managing context effectively is a critical challenge in devel-
oping LLM-based agents, particularly as these systems become more sophisticated and operate over
extended interactions. Recent research has explored various approaches to address the limitations
of context windows and maintain relevant information throughout agent execution. One prominent
approach involves breaking down complex tasks into smaller, manageable subtasks to better utilize
limited context windows (Luo et al., 2025; Schroeder et al., 2024). Another line of research focuses
on employ context compression after each function call (Zhou et al., 2025b). While this approach
can effectively manage context size, it may suffer from information loss and difficulties in maintain-
ing high-level planning coherence across extended agent interactions. Some systems have begun to
incrementally read context by splitting it into chunks (Yu et al., 2025a). However, they have only
considered scenarios with fixed contexts, while dynamic contexts involving function calling remain
unexplored.

6 CONCLUSION

In conclusion, we address the critical challenge of contextual bloat in LLM-driven agents, where the
accumulation of environmental feedback and intermediate reasoning steps degrades performance on
long-horizon tasks. We introduce the COgnitive Resource Self-ALlocation (CORAL) framework, a
novel paradigm that empowers agents with a callable toolset to actively manage their own working
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memory. By learning to create checkpoints and strategically reset its context, an agent equipped
with CORAL can mitigate cognitive overload and sustain high-level reasoning throughout a task.
Our two-stage training approach, which combines Supervised Fine-Tuning to instill core skills with
a novel Multi-episode Agentic Reinforced Policy Optimization (Multi-episode ARPO) algorithm,
enables the agent to discover effective, adaptive memory management policies. On the challenging
Level 2 and Level 3 tasks of the GAIA benchmark, CORAL substantially outperforms existing
methods. Our analysis of action-level attention distributions confirms that this performance gain is
directly attributable to the agent’s improved ability to allocate its cognitive resources, focusing on
salient information while discarding obsolete context.

REFERENCES

Paul C. Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm rea-
soning steps matter? arXiv preprint arXiv:2506.19143, 2025.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Prahaladh Chandrahasan, Jiahe Jin, Zhihan Zhang, Tevin Wang, Andy Tang, Lucy Mo, Morteza
Ziyadi, Leonardo FR Ribeiro, Zimeng Qiu, Markus Dreyer, et al. Deep research compara-
tor: A platform for fine-grained human annotations of deep research agents. arXiv preprint
arXiv:2507.05495, 2025.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents for
long-horizon tasks. arXiv preprint arXiv:2503.09572, 2025.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Gemini. Gemini deep research. https://gemini.google/overview/deep-research,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Kimi. Kimi-researcher: End-to-end rl training for emerging agentic capabilities. https:
//moonshotai.github.io/Kimi-Researcher/, 2025.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
arXiv preprint arXiv:2504.21776, 2025a.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025b.

Zhaoyang Liu, JingJing Xie, Zichen Ding, Zehao Li, Bowen Yang, Zhenyu Wu, Xuehui Wang,
Qiushi Sun, Shi Liu, Weiyun Wang, et al. Scalecua: Scaling open-source computer use agents
with cross-platform data. arXiv preprint arXiv:2509.15221, 2025.

Hongyin Luo, Nathaniel Morgan, Tina Li, Derek Zhao, Ai Vy Ngo, Philip Schroeder, Lijie Yang,
Assaf Ben-Kish, Jack O’Brien, and James Glass. Beyond context limits: Subconscious threads
for long-horizon reasoning. arXiv preprint arXiv:2507.16784, 2025.

9

https://gemini.google/overview/deep-research
https://moonshotai.github.io/Kimi-Researcher/
https://moonshotai.github.io/Kimi-Researcher/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) to aid in polishing the language of this manuscript. Their
role was confined to improving grammar, clarity, and sentence structure. The intellectual content, in-
cluding all ideas and findings, is entirely the work of the human authors, who reviewed and approved
the final text.

A.2 THE IDENTIFICATION OF RECEIVE HEADS

Receive heads refers to the attention heads which consistently narrow attention toward specific mes-
sages. Following (Bogdan et al., 2025), we plot the vertical attention scores for each message by
the 32 different heads in 36 different layers. From Figure 4, We find that in later layers (layer
35) shows a clear difference in attention values between different attention heads. In this case, the
receive heads are head 9 and head 22 in layer 35.

We take a look at these two head’s message level attention map, find that these two attention really
show a relatively high attention value (see Figure 5 and Figure 6). And narrow attention toward
specific messages, such as the 6th message in head 22.
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Figure 4: Vertical attention scores for each message by 32 different heads in layer 9, 21, 35 respec-
tively. The backbone of the tested model is Qwen3-8B.

Figure 5: Message level attention map for head 9 layer 35 and its neighbors.
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Figure 6: Message level attention map for head 22 layer 35 and its neighbors.
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