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Abstract

Large pre-trained models can dramatically reduce the amount of task-specific data required
to solve a problem, but they often fail to capture domain-specific nuances out of the box.
The Web likely contains the information necessary to excel on any specific application, but
identifying the right data a priori is challenging without knowing where the model is lacking
in knowledge. This paper shows how to leverage recent advances in multi-modal learning
to augment a pre-trained model with search engine retrieval. We propose to retrieve useful
data from the Web based on instances the model is uncertain about. These uncertain cases
are used without access to their labels to generate search queries with varying granularity
of descriptiveness. For the final step of retrieval, we propose a geometry-aware refinement
technique to discard images unrelated to the task. We demonstrate substantial performance
improvements, e.g. a remarkable increase of 15 percentage points in accuracy on the Stan-
fordCars and Flowers datasets while requiring two orders of magnitude less data compared
to the state-of-the-art. We also present extensive experiments giving insights about what to
expect of the proposed approach beforehand while exploring the impact of noisy retrieval
and different learning strategies.

1 Introduction

The World Wide Web is the source of most training data for today’s largest models. The abundance and
diversity of the data available online has played a pivotal role in developing state-of-the-art models for vision,
natural language processing (NLP), and multi-modal tasks (e.g., DINO (Caron et al., 2021), GPT (Brown
et al., 2020) LLama (Touvron et al., 2023)), ). Large pre-trained models have shown remarkable versatility
across domains, and settings, but their breadth often hides their limitations. Data quality and curation
remains important (Fang et al., 2022; Nguyen et al., 2022), and increasing dataset sizes only masks the
models’ failure to generalize to out of distribution data (Teney et al., 2023).

One popular method for addressing some of the limitations of large pre-trained models is retrieval-augmented
inference (Teney & Hengel, 2019; Guu et al., 2020a; Shuster et al., 2022). These methods retrieve instances
at test time to produce the output. Existing methods rely on a supplementary (e.g., up-to-date or domain-
specific) dataset, from which the model can retrieve information to supplement its pre-trained knowledge.
Identifying relevant instances is challenging, these methods incur an increased computational cost at test
time, and the limitations related to finite datasets remain (Wang et al., 2020; Xiong et al., 2021).

In contrast to the fixed static datasets of machine learning, humans continuously update their knowledge
using new information, often acquired by querying the Web through search engines. The idea of connecting
learning algorithms with the web and search engines is not new but is challenging to implement effec-
tively (Carlson et al., 2010a; Chen et al., 2013; Chen & Gupta, 2015; Shen et al., 2018; Teney & Hengel,
2019). We present a novel approach that exploits recent advances in NLP and multimodal learning (Jain
et al., 2022; Girdhar et al., 2023; Dong et al., 2023) to significantly improve on the state-of-the-art.

This paper examines how pre-trained models, which capture rich concept knowledge, can be enhanced using
search engines that provide diverse information based on text queries. We introduce a method to identify
uncertain cases before fine-tuning by generating search queries that describe the object’s predicted attributes
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Figure 1: We propose a method to enrich a pre-trained visual recognition model using web search. We start
by assessing the model’s uncertainty about the given input and candidate labels, then issue a text query to
acquire data for model updates. The predictions of the original and updated models are compared to assess
information gained and generate the final output.

and scene context. These queries retrieve relevant images, which are then refined using a geometry-aware
approach to filter out irrelevant data, as depicted in Figure 1. The refined images are used for minimal
fine-tuning of the pre-trained model, improving its predictions with a compact task-specific model.

Contemporary to our efforts, Li et al. (2023) recently proposed Internet Explorer, a method for representation
learning that also involves an active exploration of the web. Their approach, formulated as reinforcement
learning, samples concepts from ConceptNet (Speer et al., 2017) to uncover potentially relevant images.
Our approach aims to be much more frugal and efficient in retrieving data. We use a more directed search
strategy, and the process is only triggered when the pre-trained model shows high uncertainty while lowering
the number of required images further using the proposed refinement technique.

On the other hand, our approach distinguishes itself from traditional active learning (Settles, 2010; Parvaneh
et al., 2022) where the objective is to minimize the number of labels requested from annotators, given a fixed
set of candidate examples. In contrast, our approach seeks new instances by formulating a textual search
query. It then uses them as noisy, weakly-supervised examples to improve the model.

We observe that instances with low predictive entropy (i.e., deemed certain) remain largely unchanged after
fine-tuning with retrieved images. This suggests that the pre-trained model may require adjustments in its
conceptual decision boundaries to better handle nuanced instances and accurately classify the desired classes.

We find that the model’s representations allow us to clearly link the zero-shot task (the unlabeled images
used for determining the uncertain cases and the list of all class labels for the task) and the improvement
achieved from employing our approach. We further found if the task is to benefit from our approach, the
best margin of improvement is achieved when the class name (provided by the dataset) is used as the search
query rather than more complicated alternatives such as descriptions or instance-level queries from image
captioning (Li et al., 2022b). This highlights the efficacy of contemporary search engines in aggregating
related concepts and the generic class-level nature of features in datasets. In summary, the contributions of
this paper are:
• We propose a novel approach for enriching a pre-trained visual recognition model through access to web

search with no need for additional labels or manual inputs. We show this approach integrates seamlessly
into existing machine learning pipelines and improves performance.

• We implement the method on top of CLIP and derive a measure of uncertainty based on the classification
entropy to make the method efficient in the amount of retrieved data. Technically, we use the projection
of image embeddings onto a hypersphere and characterize the distribution of underlying concepts using
a mixture of von Mises-Fisher distributions.

• We obtain significant improvements on the StanfordCars (Krause et al., 2013) and Flowers (Nilsback &
Zisserman, 2008) datasets with improvements of over 15 percent in accuracy. We demonstrate a strong
correlation between the observed improvements and the specific characteristics of the zero-shot task at
hand. This correlation allows us to proactively assess whether the proposed search-engine augmented
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approach is advantageous for the task. If our approach proves unsuitable for the task, acquiring manually
labeled data is a viable alternative.

2 Related Work

Using unlabelled or weakly labelled data. One area that shares some similarities with the proposed
approach is active learning (Settles, 2010). In this paper, instead of relying on human experts, the proposed
approach leverages the vast knowledge source available online. The proposed approach also connects to
weakly supervised learning, where the aim is to learn from data that is only partially labelled (Zhou et al.,
2018). In this case, the data collected from the search engine provides weak supervision for enhancing the
model’s performance. While weakly supervised learning often focuses on improving the label quality, the
proposed approach aims to leverage the search engine as a source of inductive biases to improve the model’s
predictions.

Cross-Modal retrieval. Cross-modal retrieval is another area that is relevant to the proposed approach,
where the goal is to retrieve relevant data from different modalities such as text, image, and video (Jiang
et al., 2017). While cross-modal retrieval typically focuses on retrieving data from a fixed repository, the
proposed approach enables real-time, up-to-date, and relevant information to be retrieved from the internet
using natural language queries.

Language models. The success of the proposed approach also relies on recent advances in language models,
such as OpenAI’s GPT-3, which enables machines to interact and process natural language text (Brown
et al., 2020). Jointly learning image and text in models such as OpenAI’s CLIP (Radford et al., 2021) or
Google’s ALIGN (Radford et al., 2021) have shown promise for improving the performance of visual models.
In addition, self-supervised learning and generative modelling have shown promise for learning from noisy
labels (Chen et al., 2020). By utilizing these technologies, the proposed approach takes a significant leap
forward that otherwise would not be possible.

Retrieval-augmented. Retrieval-augmented learning offers an exciting avenue for enhancing the capabili-
ties of models in an era where access to vast and dynamic information is paramount. For instance, Guu et al.
(2020b;a); Shuster et al. (2022) learn to leverage large additional data sources for predictions. However, that
requires using a common embedding space and implementation of indexing mechanisms. Xie et al. (2023)
on the other hand, train independent retrieval networks alongside attention modules on top of CLIP while
using large static datasets as sources of retrieval.

Webly-supervised learning. NELL (Carlson et al., 2010b) and NEIL (Chen et al., 2013) are amongst
the first to explore acquiring new concepts and relationships that are periodically being refined with human
supervision from the web. Ideas from webly-supervised learning, where the focus is on harnessing the vast
and noisy data available on the web have lent ideas for large pre-training (Guo et al., 2018; 2017; Dai et al.,
2018). In Beser & Bulling (2021) and Li et al. (2018) webly supervised zero-shot learning in natural language
processing is explored. Further, Zhang et al. (2017) demonstrates how web data can enhance fine-grained
categorization tasks. Zang et al. (2019); Zhang et al. (2017) combines webly supervised and zero-shot learning
techniques for fine-grained recognition tasks. Together, these works offer valuable insights into leveraging
web data for training machine learning models. However, using search engines where text is the medium for
representation remains under-explored.

3 Multimodal Pre-trained Models

A large pre-trained model such as CLIP is trained using a self-supervised objective to align the output (i.e.,
, representations) obtained from both language and image outputs, respectively. The significance of this
is that when trained (unsupervised), we can map either textual or visual inputs using their corresponding
neural encoders ϕt, ϕx to the same semantic space (assuming the outputs are normalized). One way to
interpret these models is to consider an image x ∈ X and its corresponding textual description t ∈ T as
p(x, t) ∝ exp(⟨ϕx(x), ϕt(t)⟩). Here, X , T denote the space of image and text collected in a large corpus.
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Then, for the downstream classification task with the label set Y, we have:

ppre(y | x) =
exp

(
⟨ϕx(x), ϕt(y)⟩

)∑
y′∈Y exp(⟨ϕx(x), ϕt(y′)⟩) , (1)

where the labels y are used in their textual form, benefiting from the inherent capability of such pre-trained
models for open-ended problems. The label is predicted as y⋆ = arg maxy′∈Y ppre

(
y′ | x

)
.

4 Search-engine Augmented Learning

Our main goal is to improve the performance of a pre-trained model at inference time, i.e., CLIP. In our
setting, we are given an (unlabelled) “target” dataset X of images and a list of potential labels Y. We are
interested in training a complementary model on a “small” retrieved dataset to predict the target labels. To
build such a dataset, we leverage the vast amount of data on the internet by creating a retrieval mechanism
(note there is no curated labelled training set). We propose a retrieval mechanism that considers the
uncertainty in the classification of the pre-trained model, queries and downloads images from search engines
like Google. Our retrieval mechanism aims to effectively cover the uncertain classes in the target dataset. The
retrieved dataset is expected to be noisy, containing unrelated images for certain class names. For example,
one can look after images of flowers with the class name ‘Prince of Wales feathers’ and retrieve images of
royalty instead of flowers. In light of this, our retrieval mechanism also incorporates a refinement process to
clean the dataset before training a classifier. We consider the following steps as the general algorithm:

1. determine the uncertain instances in the given unlabelled target dataset (see Sec. 4.1)
2. formulate a query and invoke the search engine to retrieve the relevant images (see Sec. 4.2)
3. refine and filter out the unrelated images (see Sec. 4.3)
4. train a small model (e.g., a linear probe) for classification (see Sec. 4.4)

Formally, for the set of uncertain labels Yuncertain, with access to a search engine qse that allows sampling n
most appropriate images given an uncertain class label yr, we consider

θ⋆ =arg max
θ

1
n

∑
xr,yr

log
(

pθ(yr | xr)I[f(xr|X)]
)

, (2)

xr ∼qse(xr | yr, X), ∀ yr ∈Yuncertain , (3)

where θ is a small number of parameters compared to the ones in the pre-trained model (e.g., a simple
classifier optimized on a frozen CLIP backbone) and f(xr | X) is a function indicating whether a given
sample xr belongs to the same distribution as those in X (see Sec. 4.3). The optimal inference-time θ⋆ are
the maximum likelihood parameters for the set {(xr, yr)} obtained from the search engine. Effectively, a
search engine enables us to sample from the distribution of all images potentially relevant to a query yr.

4.1 Uncertainty in Pre-trained models

To construct the dataset, we focus on the image samples whose label is uncertain for the pre-trained model.
Considering the conditional probability in equation 1, we can use the Shannon entropy as a measure of
uncertainty, with a threshold τH to construct a subset of uncertain instances i.e.,

Xuncertain = {x
∣∣ Hpre(y | x) ≥ τH , ∀x ∈ X} . (4)

Note that this uncertainty measures the uniformity of predictions for the given labels using the pre-trained
model. If the model is not confident, i.e., produces a higher score for a class, this uncertainty will be high.
We collect samples whose entropy is higher than a threshold needing additional information for prediction.
We pick all the class labels in the top-k predictions for the uncertain instances x ∈ Xuncertain and create an
uncertain label set Yuncertain.

4.2 Creating a Search Engine-based Dataset

With the uncertain label set identified, we can now generate queries to obtain relevant images from the
search engine. In this stage, we leverage the uncertain class labels to construct a query for the search engine.
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We subsequently collect the retrieved images. We consider the following strategies for search queries for each
uncertain class:

1. Classnames (pcls): Directly using “{class_name}" which is the name given to the class in the dataset
(e.g., CLIP Benchmark (CLIP Benchmark, 2022)). In other words, for a specific uncertain label, we
simply search for the class name.

2. Descriptions (pdesc): Employing an LLM, i.e., GPT-3, to generate “{description}"s for the class
names similar to Menon & Vondrick (2023). For each class, we generate multiple descriptions. Then,
the class names are concatenated with these descriptions, i.e., “{class_name} which (is/has/etc)
{description}}" to produce a search query.

3. Captioning (pcap): Using a captioning methods such as BLIP (Li et al., 2022b). The class name is
then concatenated with this caption as “{class_name} {caption}". Note that in this approach, the
query is constructed for each instance individually as opposed to the previous two alternatives.

We can now create a dataset of retrieved images. For instance, for Classnames, we have:

Dcls
uncertain =

{
(xr, yr)

∣∣∣ xr ∼ qse(xr | yr, X) , ∀yr ∈ Yuncertain

}
,

where qse(xr | yr, X) =
∑
ỹr

p(xr | ỹr)pcls(ỹr | yr, X),

p(xr | ỹr) = I [xr ∈ SearchEngine(ỹr, n))] , (5)

and n indicates the number of top images retrieved. Here, ỹr denotes the search query obtained using one
of the strategies above (i.e., classnames, similarly for description or captioning). We use Duncertain to denote
any dataset constructed from the above-mentioned strategies.

4.3 Refinement

Ideally, the samples in Duncertain should consist of images from a distribution similar to that of the target
dataset, yet possessing distinctive features that can enhance performance. However, either due to query
ambiguity or dataset specificity, there might be images in Duncertain that do not conform to the distribution
of those in X. Therefore, a refinement step is required to discard the potentially noisy samples and create
a refined subset Drefined. To this end, we propose an approach to compare the distributions of the retrieved
and target datasets.

Instead of adopting complex density estimation models, such as those necessitating the training of additional
neural networks (e.g., , Kingma & Welling (2013); Abbasnejad et al. (2020; 2019); Ho et al. (2020)), we note
CLIP’s image embeddings, like many other contrastive learning alternatives, are inherently normalised to
the unit hypersphere (Shi et al., 2023) (see Figure B.9). Thus, we leverage the mixture of von Mises-
Fisher Distributions (MoVMF) (Banerjee et al., 2005) to model this hypersphere distribution. The mixture
of von Mises-Fisher distributions is a statistical model that combines multiple von Mises-Fisher (VMF)
distributions to represent data distributed on a hypersphere in high-dimensional space, allowing for the
modelling of complex directional data patterns. Once optimised, MoVMF allows us to represent the target
distribution as p(x | X) =

∑
i πipµi,κi

(x), where πi represents the mixing coefficient, and µi and κi are the
parameters of the distribution. We then use the most likely component to assign a hard cluster for each
instance.

Subsequently, we only keep samples that are sufficiently close to the mean of each von Mises-Fisher compo-
nent, i.e.,

f(xr | X) = I
[
⟨ϕx(xr), µi∗⟩ < τR

]
, (6)

i∗ = arg max
i

pµi,κi
(xr). (7)

We explore two alternative approaches (see Appendix C), but empirical results demonstrate MoVMF out-
performs them. It is straightforward to implement and imposes minimal assumptions on the data.
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Table 1: Geometric analysis of the CLIP feature space.

Pets Flowers Cars Food ImageNet
Label Span 0.2885 0.2620 0.3298 0.4496 0.1579
Dataset-Duncertain Modality Sim. 0.9618 0.9836 0.9889 0.8943 0.9671
Dataset-Duncertain Class Sim. 0.9540 0.9590 0.9800 0.8930 0.9350

4.4 Prediction

In the final step, we train a classifier pθ on the refined retrieved samples. However, if there is no information
gained (i.e., information gain or mutual information of label and additional data is not positive), we fall back
to the pre-trained model. In other words, we only use this new model if it leads to a reduced entropy (i.e.,
the confidence in predictions improves):

y∗ = arg max
y

{
pθ⋆(y | x), if IG(y | x, Drefined) ≤ 0
ppre(y | x), otherwise

, (8)

where IG(y | x, Drefined) = Hpre(y | x) − Hθ⋆ (y | x, Drefined) is the information gain, y∗ is the predicted class
for x, and Hθ⋆(y | x, Drefined) denotes the entropy of the classifier pθ⋆ (i.e., the entropy once the model is
updated).

5 Experiments

We employ CLIP (Radford et al., 2019) as the pre-trained model to validate our approach while under
the assumption of not having access to a labeled training dataset. Consequently, our initial comparison
revolves around assessing the performance against the baseline zero-shot CLIP. Nevertheless, we also provide
supplementary experiments exploring alternative zero or few-shot settings, which can be found in Appendix H
for a more comprehensive understanding of our approach. We use NVIDIA A100 GPUs for all experiments.

5.1 Datasets and metrics

We evaluate our method on five popular image classification datasets: Flowers (Nilsback & Zisserman,
2008), Pets (Parkhi et al., 2012), Stanford Cars (Krause et al., 2013), Food (Bossard et al., 2014) and
ImageNet (Deng et al., 2009). These datasets consist of 102, 37, 196, 101 and 1000 classes. We evaluate the
impact of the retrieved dataset Duncertain by training a linear probe and combining its predictions with those
made by CLIP using the accuracy metric. We retrieve 100 images from the search engine for constructing
Dcls

uncertain. For each class, on average, 5 descriptors were generated using (Menon & Vondrick, 2023). For
each descriptor, we retrieve 100 images to construct Ddes

uncertain. Due to the instance-level captioning approach
for construction of Dcap

uncertain, we retrieve only the top-5 images to target the closest images to the given
caption-based query. For hyperparameters, we perform grid search using a validation set. Refinement
threshold ranges from 0.1 to 0.7 and the learning rate is searched over on a logarithmic scale. The accuracy
remains consistent across different seeds.

5.2 What tasks are expected to benefit?

Before using Duncertain for classifier training, we evaluate the quality of retrieved images by measuring their
distance from the dataset in CLIP’s feature space which informs us of any domain shifts between the two
sets of images. When datasets contain labels with higher specificity, the domain shift between the retrieved
images and the dataset is expected to be reduced. So we use the span of the text modality as a proxy for
specificity. These values are detailed in Table 1. The label span is derived using the cosine similarity between
the two most distant label names in the CLIP feature space. Similarly, the dataset-to-image similarity is
determined using the similarity between the mean vectors of each image set (titled modality similarity in
Table 1). Another similar approach can be taken where instead of the entire image set, images of the same
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Table 2: Results of training with retrieval techniques Dcls
uncertain, Dcap

uncertain, Ddesc
uncertain and the impact of

refinement alongside the retrieved number of images.

Dataset Number of Images Accuracy Results (%)
(Unrefined / Refined) (Unrefined / Refined)

Dcls
uncertain Dcap

uncertain Ddes
uncertain ZS Dcls

uncertain Dcls+cap
uncertain Dcls+des

uncertain Dcls+cap+des
uncertain

Pets 4096
4011

50653
50428

23226
22973 89.04 92.61 ↑3.57

92.64 ↑3.60
92.45 ↑3.41
92.56 ↑3.52

92.59 ↑3.55
92.67 ↑3.63

92.78 ↑3.74
93.00 ↑3.96

Flowers 11197
10938

27932
27506

79508
75111 71.15 86.24 ↑15.09

86.32 ↑15.17
85.44 ↑14.29
86.27 ↑15.12

85.77 ↑14.62
86.09 ↑14.94

86.36 ↑15.21
86.62 ↑15.47

Cars 21514
19416

149820
139458

156491
120293 64.71 80.52 ↑15.81

80.48 ↑15.77
80.33 ↑15.62
81.82 ↑17.11

80.81 ↑17.10
80.79 ↑17.08

82.32 ↑17.61
82.38 ↑17.67

Food 11100
7062

619521
362849

56929
31228 88.73 88.97 ↑0.24

88.35 ↓-0.38
88.89 ↑0.16
88.87 ↑0.14

88.87 ↑0.14
88.63 ↓-0.10

88.86 ↑0.13
88.82 ↑0.09

ImageNet 198044
21725

558868
25000

502898
61160 68.33 69.05 ↑0.72

67.04 ↓-1.29
69.54 ↑1.21
69.78 ↑1.45

69.80 ↑1.47
69.73 ↑1.40

70.14 ↑1.81
70.33 ↑2.00

Table 3: Comparison of training a LinearProbe (LP) using (1) the labelled training set (Tr) and (2) the
training set (Tr) augmented with the retrieved dataset Duncertain.

Flowers Pets Cars Food ImageNet
ZS ViT-B-16 71.15 89.04 64.71 88.73 68.33

Ours 86.62 ↑15.47 93.00 ↑3.96 82.38 ↑17.67 88.97 ↑0.24 70.33 ↑2.00

LP w/ Tr 96.41 92.72 85.64 92.08 78.66
LP w/ Duncertain + Tr 96.57 ↑0.16 93.62 ↑0.9 86.03 ↑0.39 92.15 ↑0.07 78.94 ↑0.28

class from the retrieved dataset can be compared to the dataset images (titled class similarity in Table 1). In
terms of the label span, ImageNet obtains the broadest span (lowest similarity), which is expected due to the
large number of classes present in this dataset. In contrast, the span of labels in Food forms the narrowest
cone in the CLIP feature space among all the studied datasets suggesting either low specificity or insufficient
training data per category. As for the image similarities in Table 1, the features of retrieved images for Cars
and Flowers are the closest to that of the target dataset. Meanwhile, the noticeable deviation for the same
value for Food indicates the retrieved images for this dataset might not be as informative for the classifier
due to domain shifts between the dataset and retrieved images, leading to a smaller accuracy improvement.

5.3 On the different retrieved datasets

Table 2 shows the accuracy comparison of the proposed query constructions Dcls
uncertain, Dcap

uncertain and
Ddesc

uncertain, section 4.2, to model’s ZeroShot accuracy (ZS) and the effect of the refinement process. For
Ddesc

uncertain, we use the descriptions from Menon & Vondrick (2023).

The refinement process does not always improve the performance of the initial retrieved dataset. Excluding
Food, this approach consistently works for datasets constructed with more diverse queries like Dcap

uncertain.
The images tend to be more diverse and cover more of the real distribution of each label when we construct
datasets Dcap

uncertain and Ddesc
uncertain. However, those procedures also add more noisy instances. Using refine-

ment, we can retrieve more samples and simultaneously remove ambiguous images that could decrease the
performance of our method.

Except for the retrieved datasets Dcls
uncertain with refinement for Food and ImageNet, we obtain improvements

compared to zero-shot ViT-B-16 when we use the retrieved dataset. This is noticeable for the cases of Flowers
and Cars, where our method obtains an accuracy improvement on average of 14.92% and 16.01%, respectively.
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Figure 3: Uncertain plots for each dataset: (a) percentage of uncertain instances, (b) the ratio of uncertain
classes, and (c) the overlap between incorrect and uncertain instances, against the uncertainty threshold τH .
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Figure 4: Accepted/rejected examples using our refinement.

5.4 Comparison with SOTA
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Figure 2: Analysis of improvements or cer-
tain/uncertain instances: Solved: shows
the percentage of cases incorrectly pre-
dicted before linear probe and corrected
afterwards. Unsolved cases are incor-
rectly predicted before and after when using
search engine data; Reverted: instances
predicted correctly when using CLIP but
wrongly predicted after linear probe; Un-
changed: cases were correctly predicted
before fine-tuning and are still correctly
predicted afterwards.

We compare our method with Internet Explorer (IE) (Li et al.,
2023), SuS-X (Udandarao et al., 2023), and RECO (Iscen et al.,
2023) which are SOTA methods directly comparable to our ap-
proach, as they do not modify the pre-trained model’s struc-
ture. Due to the implementation of each SOTA on different
CLIP backbones, we implemented our work on ViT-B-32, and
ResNet-50 alongside ViT-B-16 for a fair comparison. In Ta-
ble 4, we compare the performance on datasets Flowers, Pets,
Food, Cars, and ImageNet.

Using two orders of magnitude fewer data, we outperform IE
on the Pets and Food datasets by 0.37% and 1.37%. In the
case of Flowers. It should be noted that our zeroshot base-
line has a much lower performance (66.22%) than the baseline
(94.6%) in Li et al. (2023). Despite this, we obtain a larger mar-
gin improvement (24%) than IE (4.5%) on the Flowers dataset
which we attribute to our retrieval approach. Compared to
SuS-X across all backbones, our approach achieves a consis-
tent improvement over this SOTA approach without any use
of image generation models or static datasets such as LAION-
5B. Compared to RECO, we observe significant improvements
using ViT-B-32 and ResNet-50 and across all datasets simi-
lar to SuS-X. Iscen et al. (2023) do not report any results on
ViT-B-16.

To identify the source of improvement over the SOTA, we con-
ducted two experiments. (1) We compared retrieving images from the web with using a static dataset like
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Table 4: Comparison with the state-of-the-art retrieval methods for image classification across 3 different
backbones. As can be seen, our approach significantly outperforms the alternatives.

Backbone Method Pets Cars Flowers Food ImageNet

ViT-B-16 SuS-X 91.58 66.13 73.08 86.08 70.00
Ours 93.00 82.38 86.62 88.82 70.33

ViT-B-32

RECO - 68.10 56.20 - 59.40
SuS-X 87.95 61.19 68.17 80.31 64.73
Ours 90.13 75.44 83.48 84.02 65.76

RN50

RECO - 39.80 56.20 - 59.40
SuS-X 86.35 57.14 67.32 77.02 61.66

IE 90.80 - 99.10 84.60 -
Ours 91.17 69.97 90.39 85.97 62.04

LAION-5B. Since we lack access to training set labels for uncertain cases, we retrieved images from the
most certain ones for CLIP. In this case, we aim to retrieve images similar to certain instances so we can
assign the same label to these retrieved images. As shown in Table 5, the accuracy is significantly lower
when using static data compared to web data, highlighting the effectiveness of search engines for retrieval.
(2) To evaluate the impact of linear probing versus more complex methods like Tip-Adapter (Zhang et al.,
2021), we present results in Figure H.14. Using Tip-Adapter with Dcls

uncertain as the retrieved dataset yields
higher accuracy than SuS-X (which used an improved Tip-Adapter) on Pets, Cars, Flowers, and Food, and
is competitive on ImageNet. This demonstrates the advantage of web data, as our approach consistently
improves over the pretrained model regardless of the inference method.
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Figure 5: Effect of the threshold τR on
the number of images and accuracy.
Dashed lines represent no refinement.

As another alternative to LP, we experiment with LoRA (Hu et al.,
2022), a parameter-efficient fine-tuning method for transformers.
Table 5 shows that LP outperforms CLIP-LoRA on the Flowers and
Pets datasets, with only marginal gains on Cars and Food. Despite
this, using the retrieved dataset Dcls

uncertain improves LoRA’s perfor-
mance. This suggests that LoRA’s additional parameters may cause
overfitting to the retrieved data. Thus, effective data retrieval yields
better improvements compared to complex adaptation methods in
the SOTA.

5.5 Complementarity of datasets

In Table 3, we show (Top) the zeroshot accuracy of CLIP and our
proposed method with Linear Probing (LP) trained on the best-
retrieved dataset (from Tab. 2). Also, we show (Bottom) the accu-
racy of these methods when they are trained on the combination of
the training set of each target dataset and the retrieved dataset. We
can see our method consistently outperforms ZS CLIP. We observe
a significant improvement in Flowers and Cars datasets with over
15% in accuracy, showing that the samples retrieved from the search
engine best helps with the features needed to perform well on the
test set of these datasets.

On Food and ImageNet, we obtain a slight improvement of 0.24%
and 1.81%, respectively. These two are challenging datasets in terms
of constructing queries. In the case of Food, we speculate due to the
diversity and variability of the food images online and the specificity of this dataset, the improvements
remained marginal. Regarding ImageNet, a significant challenge arises from the fact that certain classes
necessitate the inclusion of highly specialized types of images. Take, for instance, classes representing
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Table 5: Performance of LP vs LoRA on Dcls
uncertain and using LAION-5B for retrieval.

Flowers Pets Cars Food
ZS ViT-B-16 71.15 89.04 64.71 88.73

Using LAION-5B 61.86 ↓-9.29 80.84 ↓-8.20 56.60 ↓-8.10 88.35 ↓-0.38

LP w/ Dcls
uncertain 86.24 ↑15.09 92.61 ↑3.57 80.52 ↑15.81 88.97 ↑0.24

LoRA w/ Dcls
uncertain 84.29 ↑13.14 92.56 ↑3.52 80.55 ↑15.84 88.98 ↑0.25

specific dog species. When attempting to collect images from the web for these classes, we encounter two
prevalent issues: a considerable increase in variability within the images or a prevalence of highly specific,
limited-content images.

Also, we found possible misinterpretations of the search engines in terms of concepts. Some category names
could confuse search engines. For example, for the category name Agama in ImageNet, which for Google
could be an Indian religion or the lizard that we are looking for. In the case of Pets, we obtain a significant
improvement of more than 3% of accuracy, surpassing the performance of training a Linear Probe on the
training set of the target dataset.

when we combined our retrieved dataset with the target dataset’s training set, we observed consistent
improvements over baseline methods, indicating that the retrieved images supplement the dataset’s training
distribution.

Figure 2 shows a more detailed comparison of CLIP predictions before and after update using retrieved
images. In this bar plot, we can see that the slight improvement in the Food dataset is due to the small
margin in the reverted cases relative to the solved cases. This is while reverted cases make up a much smaller
percentage of the changes in the uncertain cases of other datasets. Moreover, the effect of our method is
minimal in certain cases where the percentage of unchanged cases makes up the largest fraction of every
dataset. In other words, adding a Linear Probe to deal with uncertain instances does not affect the instances
where CLIP is certain about the prediction.

5.6 On the refinement process

The value of threshold τR. Figure 5 shows the effect of a strict to a more relaxed refinement threshold
τR on the accuracy of our refinement process in the retrieved dataset Dcap

uncertain. Notice that small values
in τR mean we reduce the acceptance range (see section 4.3). We use a threshold of 0.45 across all the
datasets, where we observe performance improvement in a variety of benchmarks whilst not removing too
large a portion of the retrieved dataset, thus covering the target dataset distribution (see section 7).
Qualitative analysis of refinement. Figure 4 shows random samples of our refinement process’s accepted
and rejected instances for Pets and Food datasets. Other datasets are in Appendix I. The refinement process
can reject images that contain words related to the class names on the dataset but do not necessarily contain
the object of interest, thus not providing any useful information.

5.7 On the value of the threshold τH

To examine the effects of the Shannon confidence threshold τH on uncertainty quantification (4.1), we perform
experiments on the target dataset’s training set. Figure 3 (c) shows a correlation between the number of
incorrectly predicted samples considered uncertain at a given τH and the total incorrect predictions. This
correlation highlights the effectiveness of using uncertainty as a proxy for identifying incorrect predictions,
consistently observed across all datasets.

Figure 3 (b) shows the percentage of uncertain classes as a factor of the threshold τH . For the Food and
ImageNet datasets, uncertainty approaches 100% indicating at least one uncertain instance per class across
thresholds. In contrast, other datasets show a gradual increase in uncertainty, suggesting the model is more

10



Under review as submission to TMLR

Table 6: Number and percentage of leaked images of the test set.

Flowers Pets Cars Food ImageNet
Target test set size 6148 3669 8041 25250 50000

Dcls
uncertain 5 (≈ 0.0%) 2 (≈ 0.0%) 105 (1.3%) 0 (0.0%) 107 (≈ 0.0%)

Dcap
uncertain 4 (≈ 0.0%) 7 (≈ 0.0%) 448 (5.5%) 0 (0.0%) 121 (≈ 0.0%)

Ddesc
uncertain 5 (≈ 0.0%) 17 (≈ 0.0%) 245 (3.0%) 0 (0.0%) 184 (≈ 0.0%)

Accuracy Drop (%) 0.01 0.00 0.08 0.00

confident about some classes. To maximize the capture of incorrectly predicted samples using uncertainty,
selecting a threshold value near 0.9 would achieve this objective.

6 Evaluating possible data leaks

A key concern with using search engines to build datasets is the risk of performance gains being driven
by retrieving test set images. Here we assess the extent to which the retrieved images match those found
in the test set of the target dataset by employing a hash comparison method. We use Difference Hashing
(dHash) (Buchner, 2023) to evaluate the similarity between images. This method first converts each image
in the target and retrieved sets to its byte representation and hashes it, resulting in a unique identifier for the
individual content of each image. The number of overlapping hash codes, serving as a quantitative measure
of data leakage between the datasets, are reported in Table 6. Our method retrieves a minuscule portion
of test set images online, thus no leakage. Therefore, the substantial consistent improvement resulting from
our approach cannot be attributed to test set leakage, implying that its enhanced performance stems from
improved feature learning and generalization.

7 Target and retrieved datasets against refinement thresholds

Figure 6 shows the UMAP visualization of the image features of the target dataset (Cars) and the retrieved
dataset for two choices of the threshold τR. First, we can see that the retrieved dataset matches the
distribution of the training set. The retrieved dataset can fill the gap in the distribution of each class.
This explains why our LinearProbe can improve the performance of CLIP in uncertain cases. Moreover, we
can see how a more strict threshold τR retained less number of instances in the retrieved set. A balanced
compromise can be achieved by selecting a retrieved dataset that best overlaps the target distribution while
excluding noisy samples.

Dataset Retrieved Images

Figure 6: UMAP visualization of the distribution of the image features from ViT-B-16 for the training split
of the original and retrieved dataset. It shows the effect of the choice of the threshold τR refinement method
on the retrieved dataset from a less (bottom) to a more strict (top) refinement.
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8 On the number of images per query

To study the effect of the number of images retrieved per class, we train a classifier on subsets of increasing
size from Dcls

uncertain and report the accuracy results for each dataset in Figure 7. For Cars, Flowers and Pets
we observe a steady increase in accuracy as the number of images from the retrieved set used for training
increases. This is while the lowest number of used images (25 for all datasets) still outperforms the zero-shot
accuracy for every dataset except Food. In ImageNet, on the other hand, we observe a slight decline in
accuracy when using 50 images, but the overall trend is upward with more images.

Furthermore, in Cars, Flowers, and Pets datasets, the rate of accuracy improvement in relation to the
increase in the number of images diminishes as more data is incorporated, eventually reaching a plateau at
around 100 images. This phenomenon arises from insufficient additional information in newer images or the
limitations of the search engine in retrieving more relevant images for the classifier.
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Figure 7: Exploring the impact of varying the number of images utilized in training a LinearProbe.

9 Conclusion

The proposed method of using search engines for machine learning is innovative and intersects with areas like
active learning, weakly supervised learning, cross-modal retrieval, and language models. In the future, we
envision pre-trained models dynamically accessing the internet to acquire new knowledge and handle novel
concepts as they arise. This contrasts with traditional static models, which are designed to handle unseen
instances, a challenge that current out-of-distribution generalization research aims to overcome. Similar to
effective prompt engineering, our approach suggests that crafting well-constructed search queries (potentially
with LLMs) could enhance performance, warranting further exploration. It is worth noting that our approach
may face limitations in resource-constrained areas, like specialized medical fields, where purpose-built search
engines might be more effective. One avenue for potential future research involves amalgamating results from
various search engines. This could lead to divergent sets of retrieved data. Additionally, the susceptibility
to bias is a pertinent concern with such datasets. As these methods mature, addressing such issues becomes
increasingly important.
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A Effects of prompt specificity on prediction confidence

Since predictions from CLIP are reliant not only on the input images but also on the text prompt, the
uncertainty of the prediction will also be affected by this text. To study the effects of the specificity of the
input prompt on the confidence in the prediction, we use six methods of prompting, each at different levels
of descriptiveness. The results of this study are visualized in Figure A.8.

The prompt named CLS refers to using class names with the format
“{class_name}" to prompt CLIP. ZS expands this approach by adding a
generic description of the dataset in the format “{class_name}, a type of
{description}", e.g. the prompt used for Pets is “{class_name}, a type of pet". For GPT3, a
description of the class name is generated by OpenAI GPT3 first, and the description is used for
prompting without the addition of the class name that was used to generate the description or any other
phrases. Wordnet and Wikidef refer to the definition of the class name in WordNet (Miller, 1998) and
Wiktionary (Wiktionary Contributors, 2023). Similar to GPT3, no additional phrases were added for
prompting. Finally, Hi refers to generating a prompt using the WordNet hierarchy where the last three
words in the ontological tree leading to the class name are concatenated and used as the prompt.

Figure A.8 indicates that utilizing ZS individually, or in combination with CLS, marginally enhances the
network’s confidence in predictions. This enhancement is attributable to a more refined representation
of the prompts, thereby reducing text ambiguity. A notable observation is the significant reduction in
network confidence with the use of GPT-3 descriptions compared to simpler prompts such as CLS or ZS. An
examination of these descriptions revealed that GPT-3 prompts tend to be more narrative and detailed rather
than focusing on keyword specificity. That is, instead of representing a concise combination of the class’s
crucial characteristics, these prompts offer extensive narratives, often overlooking the visually distinguishable
aspects of the class.
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(a) Cars dataset (b) Pets dataset

Figure A.8: Boxplot of confidence values when prompts with varying specificity are used. CLS refers to using
class names from the dataset for prompting. ZS are prompts specific to each dataset described in more detail
in Appendix A. GPT3, Wikidef, Hi and Worddef are prompt templates taken from Li et al. (2022a).
GPT3 refers to descriptions of each class generated by OpenAI-GPT3 (Zhao et al., 2023) and used as the
prompt. Worddef and Wikidef are Wordnet (Miller, 1998) and Wiktionary (Wiktionary Contributors,
2023) definitions of each class in the dataset (With the exception of Cars for which no classes have Wordnet
definitions). Hi refers to a set of words extracted from Wordnet based on the ontological hierarchy of the
class name.

B Refinement using on-manifold clustering

Figure B.9 shows a visualization of the clustering on the hypersphere using von Mises-Fisher distributions.
The images from the dataset may be used for forming clusters where the colormap of the manifold in Figure
B.9 visualizes the probability density. We reject features corresponding to retrieved images that are too
far off from the clusters by setting a threshold across datasets. For cases where the number of clusters and
images are too large (such as ImageNet), we initialize the centers of the clusters using the normalized outputs
of a Riemannian k-means algorithm for faster convergence.

Rejected

Class 1
Class 2
Class 3

Figure B.9: Conceptual visualisation of CLIP features. Dots represent images from 3 classes and the colormap
indicates probability density from a mixture of VMF distributions. Threshold lines demonstrate selection
boundaries, with images beyond these lines (in red) rejected during refinement.

C Other refinement methods

The refinement method described in section 4.3 shows the exclusion of unrelated and noisy images from
the retrieved set; however, this method is intrinsically dependent on the training split of the target dataset.
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Figure C.10: Refinement using the labels of the target dataset

In this experiment, we investigate an alternative refinement approach that is not dependent on accessing
images from the dataset and explore an approach that circumvents the computationally demanding clustering
strategy depicted in section 4.3.

For refining retrieved images, we need anchor points that facilitate gauging the similarity of each retrieved
image to the target data distribution. Even without access to images from the target dataset, textual values
of labels for the target dataset can still serve as a viable alternative. Essentially, this process involves
conducting inference on the retrieved images, identifying text with the highest similarity to each image,
and discarding those images with their similarity value falls below a predefined threshold, denoted as τR
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Figure C.11: Refinement using the tangent space of the image modality with k-means clustering
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according to the following equation:

f(xr | y) = I
[
⟨ϕx(xr), ϕt(yi∗)⟩ < τR

]
, (9)

i∗ = arg max
i

⟨ϕx(xr), ϕt(yi∗)⟩. (10)

On the other hand, as a substitute for the clustering on the unit hypersphere methodology detailed in section
4.3, we investigate the application of the more efficient k-means clustering. Recognizing that k-means is not
inherently designed for clustering on a sphere, we start by elevating each point on the hypersphere to the
tangent space at the mean of the image modality. This mean is obtained using the images from the training
split of the target dataset. Consequently, the overall procedure for this strategy is similar to the one described
in section 4.3 with the exception of employing the Euclidean tangent space, thereby facilitating clustering
using k-means. The outcome of the text-based approach is visualized in Figure C.10 and for the k-means
approach in Figure C.11.

While the approach proposed in section 4.3 gives better results than the ones seen in Figure C.10 and C.11,
we still see some improvement especially for Cars in both figures. Two observed issues with the tangent
space clustering are the issues with the distortion in the projection of images to the tangent space and the
other is the problems with failure of k-means in finding appropriate cluster centers leading to large decline
in the accuracy observed in Figure C.11a.

D Image distributions comparison

To qualitatively investigate the differences between the distribution of images from the target dataset to
that of the retrieved dataset, we train a classifier to detect which dataset the images are coming from.
In particular, analogous to a discriminator in a generative adversarial network (GAN), we train a binary
classifier to distinguish the retrieved dataset from the target one. The outputs of this classifier are shown in
Figure D.12 for different datasets. We anticipate that instances characterized by increased overlap–indicative
of greater confusion by the classifier–will exhibit a more closely aligned distribution. For the Food and Pets
dataset, there is minimal overlap, suggesting that the retrieved data exhibits less similarity.

We hypothesize that this easy distinction by the classifier is because of a combination of reasons, one of
which is a genuine shift between the distribution of retrieved and target images. This could be due to the
lack of specificity in the class names used to retrieve images. Consider the scenario of retrieving images of
cars produced by a specific manufacturer. In this case, images of the same cars, sharing the same make and
model, from both the retrieved and target datasets may exhibit little visual distinction. This is attributed
to their common manufacturer and the descriptive nature of the class names, which facilitates a close match
between the images in the two datasets. On the other hand, when it comes to the Food or Pets dataset,
images retrieved by a search engine will be much more diverse than their corresponding curated ones, which
indicates biased distributions. Therefore, distribution shifts are expected for these datasets. The Flowers
dataset seems to have a good overlap while retrieving many distinct images.

Another potential reason for this distinction could be much shallower than the previously suggested one.
The images from the target dataset are curated images that commonly have a fixed height-to-width ratio.
On the other hand, retrieved images will have different ratios even between themselves. While resizing and
cropping images before inputting them into CLIP, there’s a potential for consistent content cropping in the
retrieved images, whereas the entirety of the object’s content in the target dataset remains intact. This could
serve as a superficial cue for the classifier, potentially leading to shortcut learning.

E Quantitative measure of difference between retrieved and target datasets

To quantify the difference between the distribution of features of the retrieved images compared to that of
the target dataset, we use the Earth Mover’s Distance (EMD) (Rubner et al., 2000). EMD or the Wasserstein
distance between the two distributions can show how different the retrieved images are in the feature space
compared to the target dataset by quantifying the minimum cost of turning one distribution into the other,
where cost is measured in terms of moving mass through the space. The value for Pets, Cars, Flowers and
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(a) Pets image distribution

(b) Cars image distribution

(c) Flowers image distribution

(d) Food image distribution

Figure D.12: Distribution of the retrieved images compared to the images from the target dataset.
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Figure E.13: EMD between the feature distribution of the retrieved and target images

Table F.7: Performance of different CLIP backbones by using our method. We can see a consistent perfor-
mance improvement in each of the datasets.

Flowers Pets Cars Food ImageNet
Zero Shot CLIP ViT-g-14 LAION-2B 77.35 94.33 92.92 91.55 76.64

Ours 86.53 ↑9.18 94.41 ↑0.81 93.73 ↑0.81 91.61 ↑0.06 77.12 ↑0.48

Zero Shot CLIP ViT-L-14 OpenAI 79.17 93.43 77.94 97.36 75.53
Ours 87.88 ↑8.71 94.28 ↑0.85 85.76 ↑7.82 97.24 ↓0.12 76.06 ↑0.53

Food datasets is visualized in Figure E.13. Comparing the datasets to each other, Flowers has the lowest
difference between the retrieved and target dataset while Pets has the highest difference. When crossing
these values with the results in Table 3, no correlations are observed between the EMD and obtained increase
in accuracy given that the EMD for the Food dataset lies between datasets that obtain larger improvements.
However, when comparing these results with Figure 6, it is evident that the retrieved images are mostly close
to the clusters formed by the images from the target dataset. This implies that although the Wasserstein
distance between the retrieved and target datasets is low, the observed increase in accuracy may be attributed
to the retrieval of images situated at the tails of the distribution, particularly notable in datasets like Food,
which feature a diverse array of images.

F Ablations on CLIP backbones

We perform ablations on using different CLIP backbones with our retrieved datasets Dcls
uncertain, i.e., ViT-g-14

and ViT-L-14. Consistently achieving enhanced zero-shot classification performance across these datasets,
with the exception of Food. Notably, in the case of ViT-L-14, Food is already achieving an accuracy level of
97%. The primary factor hindering improvement in this instance is that CLIP ViT-L-14 already encompasses
a substantial portion of the Food dataset’s distribution. Consequently, our retrieved set does not contribute
additional information, see Table F.7.

G Analysis of using pre-trained model vs updated model using the retrieved set

Once the classifier is trained on the retrieved images, the decision to use either the classifier or CLIP itself
during inference will be determined by Eq. (8), as detailed in the paper. Table G.8 provides the proportion of
instances the LP classifier is used. Datasets with the largest accuracy gains, namely Flowers and Cars, pass
the largest proportion of images through the classifier. Conversely, Food101 showed minimal improvement
and the lowest classifier utilization rate correspondingly. This shows the effectiveness of the entropy-driven
classifier selection method: better retrieved images for Flowers and Cars led to lower entropy in the classifier’s
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decisions, enhancing confidence in its predictions relative to CLIP. Conversely, the suboptimal image retrieval
for Food101 leads to increased entropy and diminishes the reliability of classifier predictions in comparison
to CLIP’s outcomes.

Table G.8: Percentage of instances from each split of a dataset passed through the classifier as opposed to
CLIP according to Eq. (8).

Pets Flowers Cars Food101 ImageNet
Train 76.30 89.11 87.90 65.94 80.47
Test 75.87 89.44 87.69 65.95 80.74

H Using our method for few-shot learning

Tip-Adapter (Zhang et al., 2021) is an adaptation technique designed for CLIP, enabling few-shot classifi-
cation without extensive training. It inherits the training-free advantage observed in zero-shot CLIP, while
simultaneously achieving competitive performance in comparison to methods requiring extensive training.
Tip-Adapter constructs an adapter using a key-value cache model based on the few-shot training set. More-
over, by fine-tuning the cache model, Tip-Adapter can achieve state-of-the-art (SOTA) performance with
significantly fewer training epochs than existing methods, demonstrating both effectiveness and efficiency.
We chose this method to test our dataset since it is a training-free technique that can show how relevant it
is to have a dataset that matches the distribution of the target dataset. We performed experiments using
Tip-Adapter with the retrieved dataset Dcls

uncertain. These experiments are performed 100 times per dataset
with different seeds. Thus, using different images for each k-shot. We use k = 2, 4, 8.16 instances from the
retrieved dataset. Figure H.14 shows the performance in each benchmark. We noted that both variants of
the Tip-Adapter (Training-Free and Fine-Tuning) derived benefits from our retrieved dataset. This under-
scores the effectiveness of our methodology in automatically constructing a dataset that comprehensively
represents the distribution of the target dataset, extending beyond just our linear probing approach.

I Qualitative analysis of the refinement

To give a more intuitive sense of what images are rejected or accepted during the refinement process we
provide the visualizations in Figure I.15, Figure I.16 and Figure I.17. These visualizations show random
samples from the retrieved dataset that were accepted/rejected by the refinement procedure. A common
phenomenon in the retrieval process is the acquisition of images that merely match the textual description
of the queried class name but lack any shared visual similarity. As the CLIP features are employed in the
refinement procedure, we effectively filter out unrelated images by applying a threshold to the similarity
between the features of the retrieved and target datasets.

J Accuracy improvement of top classes

To study the changes in the accuracy of each dataset on a more granular level, we quantify the changes in
the accuracy of each class. Then, we visualize the top-10 and bottom-10 classes according to these values
in Figure J.18, Figure J.19, Figure J.20, Figure J.21 and Figure J.22. We also provide visualizations of the
confidence for each of the top and bottom classes in the corresponding figure. In general, the bottom-10
classes exhibit higher confidence (lower entropy), meaning that in the case of Dcls

uncertain, either no images
are retrieved for that class or using Eq. 8, we rely mainly on CLIP for these classes. Meanwhile, in the case
of Dcap

uncertain due to the instance-based retrieval method that generates a query per uncertain image, more
images could be retrieved for classes for which CLIP has a lower overall confidence.
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Figure H.14: Few-shot experiments using Tip-Adapter (Zhang et al., 2021) with our retrieved dataset
Dcls

uncertain
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(a) Accepted Samples for OxfordPetIII (b) Rejected Samples for OxfordPetIII

(c) Accepted Samples for Flowers102 (d) Rejected Samples for Flowers102

Figure I.15: Random samples from each retrieved dataset based on the refinement procedure described in
section 4.3

(a) Accepted Samples for StanfordCars (b) Rejected Samples for StanfordCars

(c) Accepted Samples for Food101 (d) Rejected Samples for Food101

Figure I.16: Random samples from each retrieved dataset based on the refinement procedure described in
section 4.3

(a) Accepted Samples for ImageNet (b) Rejected Samples for ImageNet

Figure I.17: Random samples from each retrieved dataset based on the refinement procedure described in
section 4.3
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(a) Flowers accuracy change for top-10 and bottom-10 classes
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(b) Flowers entropy boxplot for top-10 and bottom-10 classes

Figure J.18: Accuracy improvements and the corresponding confidence values for each class in Flowers.
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(a) Pets accuracy change for top-10 and bottom-10 classes
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(b) Pets entropy boxplot for top-10 and bottom-10 classes

Figure J.19: Accuracy improvements and the corresponding confidence values for each class in Pets.
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(a) Cars accuracy change for top-10 and bottom-10 classes
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(b) Cars entropy boxplot for top-10 and bottom-10 classes

Figure J.20: Accuracy improvements and the corresponding confidence values for each class in Cars.
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(a) Food101 accuracy change for top-10 and bottom-10 classes
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(b) Food101 entropy boxplot for top-10 and bottom-10 classes

Figure J.21: Accuracy improvements and the corresponding confidence values for each class in Food101.
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(a) ImageNet accuracy changes for top-10 and bottom-10 classes
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(b) ImageNet confidence boxplot for top-10 and bottom-10 classes

Figure J.22: Accuracy improvements and the corresponding confidence values for each class in ImageNet.
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