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Abstract

Recently, Flow Matching models have pushed the boundaries of high-fidelity
data generation across a wide range of domains. It typically employs a single
large network to learn the entire generative trajectory from noise to data. Despite
their effectiveness, this design struggles to capture distinct signal characteristics
across timesteps simultaneously and incurs substantial inference costs due to
the iterative evaluation of the entire model. To address these limitations, we
propose Blockwise Flow Matching (BFM), a novel framework that partitions the
generative trajectory into multiple temporal segments, each modeled by smaller
but specialized velocity blocks. This blockwise design enables each block to
specialize effectively in its designated interval, improving inference efficiency and
sample quality. To further enhance generation fidelity, we introduce a Semantic
Feature Guidance module that explicitly conditions velocity blocks on semantically
rich features aligned with pretrained representations. Additionally, we propose
a lightweight Feature Residual Approximation strategy that preserves semantic
quality while significantly reducing inference cost. Extensive experiments on
ImageNet 256×256 demonstrate that BFM establishes a substantially improved
Pareto frontier over existing Flow Matching methods, achieving 2.1× to 4.9×
accelerations in inference complexity at comparable generation performance. Code
is available at https://github.com/mlvlab/BFM.

1 Introduction

Recent advances in generative modeling have been driven by the success of diffusion and flow-
matching frameworks [1–4], which learn to transform noise into high-quality data through a sequence
of denoising steps. Powered by advanced transformer architectures [5, 6], these approaches have
expanded the frontiers of high-fidelity data generation across many fields, including images [7–10],
3D data [11–14] and videos [15–19]. In particular, the Flow Matching (FM) framework [3, 20–22]
has emerged as a simple yet effective training paradigm, adopted by several state-of-the-art generative
models [23, 24].

A common design choice in FM models is to use a single large neural network to learn the entire
velocity field, from noise to data. While parameter-efficient, this monolithic design faces two key
limitations. First, the generative trajectory from noise to data inherently involves distinct signal
characteristics across time [4]: our frequency-domain analysis (Figure 3) shows that early timesteps
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Figure 1: Blockwise Flow Matching (BFM) achieves a more favorable Pareto-frontier between
generation performance (FID) and inference complexity (GFLOPs) on ImageNet 256 × 256.
While standard Flow Matching models train a single model, our BFM partitions the flow trajectory
into distinct temporal segments, each handled by a smaller but specialized velocity block, improving
generation quality and efficiency.

are dominated by irregular, low-frequency patterns, while later timesteps require modeling refined,
high-frequency details. This temporal heterogeneity imposes conflicting demands on a single shared
model, limiting its ability to effectively capture both coarse global structure and subtle local variations
simultaneously. Second, using one large model across timesteps incurs high inference costs, as the full
model must be evaluated at every solver step, resulting in a total computational complexity ofO(SK),
where S is the number of steps and K is the model’s size in FLOPs. Together, these limitations make
it challenging to balance the trade-off between sample quality and inference efficiency.

To address these challenges, we propose Blockwise Flow Matching (BFM), a novel framework that
rethinks the monolithic architecture of standard FM. Instead of training a large, shared model, BFM
partitions the flow trajectory into distinct temporal segments, each handled by a smaller, specialized
velocity block (Figure 1). This segmentation strategy allows each block to focus on a narrower
temporal window and better adapt to the specific signal characteristics, as supported by our spectral
power analysis (Figure 6). As a result, BFM not only improves generation quality but also reduces
inference cost by activating only a subset of the model at each timestep.

However, temporal segmentation limits each block’s exposure to clean signals, potentially restrict-
ing their capacity to learn high-level semantic features. To mitigate this, we propose a Semantic
Feature Guidance (SemFeat), a module that explicitly conditions each velocity block on semantic
features aligned with powerful pretrained encoders, such as DINOv2 [25] (Figure 2a). SemFeat
significantly enhances the generation fidelity, at a cost of increased computation. To reduce this, we
propose an additional lightweight module, Feature Residual Approximation, which efficiently approx-
imates semantic features during inference, preserving sample quality while significantly reducing
computational cost (Figure 2b and 2c).

Through extensive experiments on ImageNet at 256 × 256 resolution, we demonstrate that BFM
establishes a more favorable Pareto frontier, achieving substantial improvements in both generation
quality and inference efficiency over existing state-of-the-art flow matching methods (Figure 1,
Table 2). Notably, we achieve comparable or better generation quality with a 2.1× to 4.9× reduction in
inference complexity compared to current best-performing models [26], highlighting the effectiveness
of our proposed components.

Our main contributions are summarized as follows:

• We propose Blockwise Flow Matching (BFM), a novel framework that divides the generative
trajectory into temporal segments, each modeled by smaller but specialized velocity blocks.
This blockwise modeling improves both generation quality and inference efficiency.

• We introduce Semantic Feature Guidance and Feature Residual Approximation modules
that significantly enhance visual fidelity while preserving efficiency gains enabled by BFM.

• Extensive experiments demonstrate that BFM achieves a substantially improved Pareto
frontier on ImageNet 256× 256, yielding 2.1× to 4.9× faster inference than state-of-the-art
generative models with comparable performance.
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2 Related Work

2.1 Diffusion and Flow Matching models

Diffusion models [1, 2, 15, 27, 28] have emerged as powerful tools for generative modeling, achieving
state-of-the-art performance across diverse domains [4, 13, 15, 29–31]. More recently, Flow Matching
(FM) [3, 20, 21, 32] has been proposed as a general framework that unifies and extends diffusion-based
approaches. By directly modeling continuous-time velocity fields between noise and data, FM enables
simulation-free training with improved stability and sample quality. Building on this foundation,
transformer-based FM architectures like SiT [22] and FiT [6] have achieved strong performance
across various generative tasks. However, these models remain computationally expensive at inference
time, due to their large model size and the need for repeated evaluations across solver steps. In
parallel, there has been growing interest in integrating semantic representation learning into generative
models [26, 33, 34]. For instance, RCG [33], REPA [26], and DDT [35] show that semantic features
from pretrained visual encoders (e.g., CLIP [36] or DINO [25]) can significantly improve generation
fidelity. While these approaches enrich representations, they does not consider distinct characteristics
at different diffusion timesteps and are computationally inefficient. In contrast, our method introduces
Blockwise Flow Matching with our SemFeat module, enabling efficient and high-quality generation.

2.2 Efficient generation

Recent research has explored various strategies to improve the inference efficiency of diffusion and
flow-based generative models. One direction involves distillation-based methods, such as consistency
models [37–42], distribution matching distillation [43–46], which aim to reduce the number of solver
steps by training a student model to imitate the behavior of a pretrained teacher. While effective
in accelerating generation, these methods require strong teacher models, multi-stage optimization,
and in some cases, adversarial training, which can increase both training complexity and instability.
Our method is orthogonal to these approaches and could benefit from distillation techniques to
further accelerate generation. Another line of work focuses on model-based compression, which
reduces per-step computation by streamlining the network architecture. Prior works such as token
merging [47], token pruning [48], and layer pruning [49] propose removing redundant computation
during inference. Recently, dynamic inference approaches [50, 51] have introduced input- or timestep-
aware mechanisms to adjust the computational graph during generation. However, these methods rely
on a single shared model to handle the entire generative trajectory. In contrast, our method partitions
the generative trajectory into multiple temporal segments, each modeled by a smaller, specialized
velocity block. BFM is complementary to pruning and dynamic routing strategies, which could be
applied within individual blocks to further improve efficiency.

3 Preliminary

Diffusion and flow-based models [1–3, 20] aim to learn a continuous transformation between a simple
reference distribution π0 (e.g., Gaussian noise) and a target data distribution π1. Given samples
x0 ∼ π0 and x1 ∼ π1, the transformation is defined over a continuous time interval t ∈ [0, 1] by the
following ordinary differential equation:

dxt
dt

= v(xt, t), (1)

where xt denotes a time-dependent interpolation between x0 and x1, and v : Rd × [0, 1]→ Rd is the
velocity field defined over the data-time joint domain. The interpolation is formulated as:

xt ∼ N (αtx1, σ
2
t I) where α0 = σ1 = 0, α1 = σ0 = 1. (2)

Different choices of interpolation coefficients αt and σt yield different instantiations of diffusion
or flow models [20, 52]. Following recent practices [22], we adopt a linear interpolation schedule:
αt = t and σt = 1− t. To learn the velocity field, a neural network vθ is trained to approximate the
ground-truth conditional velocity field v by minimizing the mean squared error:

min
θ

Ex0,x1,t

[
∥v(xt, t)− vθ(xt, t)∥2

]
. (3)

This formulation is commonly referred to as the standard flow matching framework for training
continuous-time generative models.
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Figure 2: Overall pipeline of our method. (a) Blockwise Flow Matching partitions the flow trajectory
into M segments, each modeled by a specialized velocity block v(m)

θ . Semantic Feature Guidance
enhances the velocity block by explicitly conditioning features ft from the feature alignment network
fϕ. (b) After training velocity models and fϕ, we freeze them and train the Feature Residual Network
(FRN) to efficiently approximate ft by a residual connection. (c) During inference, samples can be
efficiently generated by evaluating fϕ once per segment, reducing inference complexity.

4 Method

4.1 Blockwise Flow Matching (BFM)
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Figure 3: Spectral entropy (SE)
and high-frequency ratio across
timesteps.

Standard Flow Matching (FM) models [3, 20, 22] train a single
large neural network to model the entire flow trajectory from
noise to data. However, this design imposes two key limita-
tions. First, it forces a network to simultaneously handle the
distinct spectral characteristics at different timesteps [4, 53].
As illustrated in Figure 3, early timesteps are dominated by
irregular, low-frequency signals, while later timesteps contain
more structured, high-frequency content. This gives conflicting
demands on a single model, which may struggle to represent
them effectively. Second, it results in high inference cost, as
the full model must be evaluated at every solver step, yielding
a total complexity of O(SK), where S is the number of solver
steps and K is the model’s size in FLOPs.

To address these limitations, we propose Blockwise Flow
Matching (BFM), which partitions the flow trajectory into
a sequence of specialized velocity blocks of model size K

′
,

each focusing on a distinct temporal segment. By dedicating each block to a smaller temporal region,
these blocks can efficiently capture interval-specific dynamics, allowing the use of smaller networks
with size K

′
< K. Consequently, at each timestep, only the corresponding block is evaluated,

reducing the inference complexity. Formally, consider flow trajectories defined from pure noise at
timestep t = 0 to clean data at timestep t = 1. We divide this interval into M non-overlapping
segments defined by intervals {[tm−1, tm)}Mm=1, where 0 = t0 < t1 < · · · < tM = 1, and each
segment is modeled by its velocity block v(m)

θ . To train the m-th block on segment [tm−1, tm), we
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Table 1: Component analysis: progressively adding components to our BFM-S backbone. All
models are trained for 100K iterations and evaluated using the 250 ODE Euler solver without
classifier-free guidance. FLOPs are averaged across solver steps and number of samples. ↓ indicates
that lower values are better. Values in parentheses denote relative performance compared to the
vanilla FM model (SiT-S). Implementation details are in the supplementary material.

Method GFLOPs ↓ FID ↓ Solver
steps

Avg.
Params/step

Total
Params

Vanilla Flow Matching (SiT-S [22]) 5.45 (×1) 82.6 246 33M 33M

Vanilla BFM-S (M = 6) 3.64 (×1.50) 81.5 (−1.1) 246 18M 99M
+ SemFeat (BFM-SSF) 5.01 (×1.09) 66.9 (−15.7) 246 23M 70M
+ Residual approx. (BFM-SSF-RA) 2.96 (×1.84) 68.3 (−14.3) 246 16M 75M

define the corresponding start and end points of the segment by interpolating between a clean data
sample and a Gaussian noise sample:

Start : xtm−1
∼ N (tm−1x1, (1− tm−1)

2I), (4)

End : xtm ∼ N (tmx1, (1− tm)2I). (5)

We use sample noise for Equation (4) and (5) to enhance the straightness of the flow trajectory across
segments. For a randomly sampled t ∈ [tm−1, tm), we sample intermediate data xt as:

xt = (1− am(t))xtm−1
+ am(t)xtm , (6)

where am(t) = (t− tm−1)/(tm− tm−1). Then, the ground-truth conditional velocity at time t within
the m-th segment is given by:

v
(m)
t =

dxt
dt

=
xtm − xtm−1

tm − tm−1
. (7)

We train each block v(m)
θ to predict the target velocity using the blockwise flow-matching loss:

LBFM(θ) := Ex0,x1,t

[
∥v(m)
θ (xt, c)− v(m)

t ∥2
]
, (8)

where c denotes optional conditioning information, e.g., class labels. We omit t for notation simplicity.
During inference, given a current state xt and timestep t, we evaluate only the corresponding velocity
block v

(m)
θ . As empirically demonstrated in Table 1, our proposed BFM-S with six segments

(second row) reduces overall inference complexity (FLOPs) while improving generation quality (FID)
compared to the standard FM baseline (SiT-S [22]) using the identical transformer blocks.

4.2 Semantic Feature Guidance

While our blockwise modeling enables efficient inference and segment-wise specialization, the
temporal scope of each velocity block restricts its exposure to the clean data distribution. In particular,
blocks operating in early timesteps primarily observe noisy samples, making it challenging to capture
high-level semantic features. Motivated by recent studies [26, 33, 34] demonstrating the effectiveness
of semantic representations in generative performance, we propose a semantic conditioning technique,
called Semantic Feature Guidance (SemFeat), which enhances each velocity block by conditioning
rich semantic context ft (Figure 2a).

Specifically, we introduce a shared feature alignment network fϕ which aims to extract robust
semantic features from noisy intermediate states xt. To ensure these extracted features carry strong
global semantic information, we train this alignment network by aligning its output features with
embeddings from pretrained visual encoder E , such as DINOv2 [25]. Given an intermediate noisy
input xt at timestep t, the alignment network produces a semantic feature: ft = fϕ(xt, c), where
fϕ : Rdx × [0, 1]×Rdc → Rdx and c ∈ Rdc denotes conditioning information. This feature is trained
to match the pretrained embedding h∗ = E(x1) by minimizing the following feature alignment loss:

Lalign(ϕ, ψ) := Ex0,x1,t [d (hψ(fϕ(xt, c)), h
∗)] , (9)

where hψ is the learnable projection MLP layer to match the dimensionalities, and d(·, ·) is a
distance metric such as cosine similarity. Then, the velocity block v(m)

θ takes the current state
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Figure 4: Samples from BFM-XLSF on ImageNet 2562 with classifier-free guidance (w = 4.0).

xt, timestep t, condiction c, and semantic feature ft as inputs to estimate the conditional velocity
field: v̂(m)

t = v
(m)
θ (xt, c, ft). The blockwise flow matching loss with the semantic feature guidance

becomes:

LBFM(θ, ϕ) := Ex0,x1,t

[
∥v̂(m)
t − v(m)

t ∥2
]
. (10)

Finally, the overall training objective is a weighted sum of the blockwise flow matching and feature
alignment losses:

L = LBFM + λLalign, (11)
where λ controls the contribution of the feature alignment objective. Refer to Algorithm 1 for training
pseudo code. This conditioning strategy allows each block to access semantically rich guidance,
significantly improving generation quality. As demonstrated in Table 1, integrating SemFeat into
BFM (third row in Table 1) achieves substantial FID gains compared to the vanilla BFM.

Comparision with REPA [26]. Our SemFeat is inspired by recent works in representation-aligned
diffusion, particularly REPA. However, there is a key difference in design: REPA aligns the internal
hidden states of the velocity model directly with semantic features. In contrast, SemFeat introduces
a dedicated alignment network fϕ whose output is explicitly conditioned on the velocity blocks,
thereby separating feature alignment from velocity prediction. We observe that this modular design
leads to a more coherent and rich representation (Figure 8) and improved generation quality (Table 6).

4.3 Feature Residual Approximation

The feature alignment network fϕ significantly improves generation quality by providing rich semantic
guidance. However, evaluating the alignment network at every timestep during inference can
undermine the efficiency gains by our BFM. To address this, we propose training a lightweight
network that enables an efficient approximation of semantic features during inference (Figure 2b).

Specifically, after the initial training phase where we jointly optimize the feature alignment network
fϕ and the velocity blocks vθ, we freeze the parameters of both sets of networks. Then, in a second
training stage, we introduce a smaller network fη, denoted as Feature Residual Network (FRN), to
approximate semantic features within the m-th temporal segment [tm−1, tm). This is motivated by
the observation in Figure 5 that the discrepancy between start point feature ftm−1

and intermediate
feature ft increases as t increases within [tm−1, tm).

Given the start point xtm−1
, we first compute its corresponding semantic feature using the alignment

network: ftm−1
= fϕ(xtm−1

, c). For the subsequent timestep t where t ∈ [tm−1, tm), we approxi-
mate its feature incrementally via a residual connection defined by: f̂t = ftm−1 + bm(t) · fη(xt, c),
where bm(t) = t−tm−1

tm−tm−1
is normalized offset from tm−1. This allows the network fη to scale the

residual contribution based on how far the timestep t is from the segment start point tm−1. FRN fη
is trained to match the output of the frozen alignment network fϕ at intermediate timestep t, i.e.,
ft = fϕ(xt, c), using the following feature regression loss:

LFRN(η) := E
[
∥f̂t − ft∥2

]
, (12)
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Table 2: System-level comparison on ImageNet 256 × 256 class-conditioned generation with
classifier-free guidance [28, 58]. FLOPs are averaged across the solver steps and number of samples.
↓ and ↑ indicate whether lower or higher values are better, respectively. † use of guidance scheduling.

Method Epochs #Params. Step GFLOPs ↓ FID ↓ IS ↑ Pre. ↑ Rec. ↑
ADM [59] 400 554M 250 1120 3.94 186.7 0.82 0.52
CDM [27] 2160 - - - 4.88 158.7 - -
LDM-4 [4] 200 400M 250 104 3.60 247.7 0.87 0.48
VDM++ [60] 560 - - - 2.40 225.3 - -

U-ViT-H [61] 240 501M - 113 2.29 263.9 0.82 0.57
MDTv2-XL [62]† 1080 675M - 129.6 1.58 314.7 0.79 0.65
MaskDiT [63] 1600 675M - - 2.28 276.6 0.80 0.61
FlowDCN [64] 400 618M - - 2.00 263.1 0.82 0.58
SimpleDiffusion [65] 800 2B - - 2.44 256.3 - -
SD-DiT [34] 480 - - - 3.23 - - -

FiTv2-3B [6] 400 3B 250 653 2.15 276.3 0.82 0.59
FiTv2-XL [6] 400 671M 250 147 2.26 260.9 0.81 0.59
DiT-XL [5] 1400 675M 250 114.5 2.27 278.2 0.83 0.57
SiT-XL [22] 1400 675M 250 114.5 2.06 270.3 0.82 0.59
REPA-XL [26] 800 675M 250 114.5 1.80 284.0 0.81 0.61
DiffMoE-L [51] 600 458M 250 - 2.13 274.3 0.81 0.60
DyDiT-XLλ=0.7 [50] - 678M 250 84.3 2.12 284.3 0.81 0.60
DyDiT-XLλ=0.5 [50] - 678M 250 57.9 2.07 248.0 0.80 0.61

BFM-XLSF (Ours) 400 942M 246 107.8 1.75 289.4 0.82 0.61
BFM-XLSF-RA (Ours) 600 1038M 246 37.8 2.03 278.1 0.80 0.62

By leveraging this lightweight residual approximation, we drastically reduce inference cost, since the
feature alignment network fϕ is only computed once per segment, and subsequent semantic features
within each segment are computed efficiently by the FRN (see Figure 2c). Empirically, our analysis
demonstrates that this residual approximation (third row in Table 1) retains over 98% of the BFM-SSF
fidelity while reducing inference complexity by 41% (5.01 to 2.96). Refer to Algorithm 2 for pseudo
code.

4.4 Inference

At the beginning of the m-th segment, we compute the semantic feature ftm−1
using the feature

alignment network fϕ. For subsequent timesteps t ∈ [tm−1, tm), we approximate the semantic feature
either using FRN fη or the full alignment network fϕ, depending on the desired trade-off between
speed and fidelity. Then, the velocity block v(m)

θ predicts the velocity: v̂(m)
t = v

(m)
θ (xt, c, ft). The

intermediate state is updated iteratively via a numerical solver using the predicted velocity. This
process repeats until reaching t = 1, yielding the final sample x1 ∼ pdata. A full pseudocode
implementation of the inference process is provided in the Appendix (Algorithm 3 and 4).

5 Experiment

We primarily compare our method with recent flow matching models built on diffusion transformer
architectures [5, 6, 22, 26], demonstrating state-of-the-art performance in generative tasks. We
follow the experimental setup established by SiT [22] and REPA [26]. Most of the experiments are
conducted on the ImageNet dataset at a resolution of 256× 256, unless stated otherwise. We utilize an
off-the-shelf pretrained VAE from Stable Diffusion [4], which applies an 8× downsampling factor. We
evaluate generation quality using several established metrics, including FID [54], sFID [55], Inception
Score (IS) [56], Precision, and Recall [57]. Following recent architectural best practices [5, 6, 22], we
adopt a DiT-style transformer backbone for both vθ, fϕ, and fη . To integrate conditions to vθ, we sum
the semantic feature ft with the timestep embeddings element-wise and inject it at the attention layers
via AdaLN-Zero modulation [5]. Our model configurations are based on -S and -XL architectures
with a patch size of 2 and M = 6. More implementation details are available in the Appendix A.
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5.1 Comparison with state-of-the-art models

In Table 2, we present a comprehensive comparison of our Blockwise Flow Matching (BFM)
framework against recent state-of-the-art generative models. Our BFM with Semantic Feature
Guidance (BFM-XLSF) achieves an FID score of 1.75, surpassing closely related diffusion transformer
models such as FiTv2 [6], DIT [5], SiT [22], and REPA [26]. Notably, compared to the previous
best-performing model, REPA, our model demonstrates consistent improvements across FID and IS
with a notable improvement of IS by 5.4 points, while also reducing inference complexity in terms
of FLOPs by approximately 5% (from 114.5 to 107.8). Furthermore, by incorporating our efficient
Feature Residual Approximation module (BFM-XLSF-RA), we achieve an even more substantial
inference efficiency gain, a 67% reduction in FLOPs over REPA, corresponding to roughly a 3×
speed-up. When benchmarked against the recent efficiency-focused model, DyDiT-XLλ=0.5 [10],
our BFM-XLSF-RA not only reduces inference complexity from 57.9 to 37.8 GFLOPs but also
significantly improves generation quality, reflected by a 30.1 points increase in IS. These results
highlight our model’s superior capability in balancing both generation performance and inference
efficiency compared to current state-of-the-art approaches.

Table 3: Generation performance for differ-
ent number of solver steps. ∆ indicates the
absolute degradation in performance.

Method Step IS ↑ ∆ ↓ FID ↓ ∆ ↓

SiT-XL 250 270.3 - 2.06
6 179.2 91.1 12.91 10.85

REPA-XL 250 305.7 - 1.42 -
6 182.9 122.8 13.02 11.6

BFM-XLSF
246 315.4 - 1.36 -
6 248.2 62.8 8.01 6.65

Few-step sampling. We further evaluate our
model’s performance under a small number of solver
steps in Table 3, an essential setting for achieving ef-
ficient and practical image generation. In real-world
scenarios, reducing the number of function evalua-
tions (NFEs) directly translates to faster sampling
and lower inference cost, often at the expense of gen-
eration quality. Remarkably, BFM-XLSF achieves an
Inception Score of 248.2 and an FID of 8.01 using
only six solver steps, demonstrating strong robust-
ness with minimal degradation as the number of steps
decreases. In contrast, SiT-XL and REPA-XL exhibit
substantial performance drops of 91.1 and 122.8 in Inception Score, respectively, whereas BFM-
XLSF shows a much smaller reduction of 62.8. Furthermore, BFM-XLSF attains an FID of 8.01,
outperforming SiT-XL and REPA-XL by large margins of 4.9 and 5.01 FID points, respectively.
These results indicate that BFM maintains high-quality generation even under extremely low NFE
settings, validating its effectiveness for fast and resource-efficient inference. We attribute this superior
few-step performance to the coherent and semantically rich representations provided by our Semantic
Feature Guidance, which stabilize the velocity field and enable more consistent dynamics even at
early timesteps, as visualized in Figure 8.

5.2 Generalization and Scalability

Compatibility to MeanFlow To further demonstrate the effectiveness of our method, we integrate
BFM into the recently proposed MeanFlow [66], which enables high-quality generation using only a
few solver steps. Specifically, we adapt our approach by constructing four specialized velocity blocks
corresponding to the four-step diffusion trajectory in MeanFlow and applying the MeanFlow objective
independently to each temporal segment. This design allows each block to learn distinct dynamics
across the generative process, enabling efficient sampling with only four function evaluations (one
per segment). As summarized in Table 10, our integrated model (BFMSF+MeanFlow) achieves a
substantially lower FID of 9.7 compared to the MeanFlow baseline of 13.2, despite using the same
number of sampling steps. This result highlights the strong compatibility of BFM with existing
few-step generative frameworks and demonstrates its effectiveness in improving both efficiency and
sample quality with lower inference cost.

Training at higher resolution. To examine the scalability of our approach to higher image resolu-
tions, we compare our model against the SiT baseline on ImageNet at 5122 resolution. For this setting,
we adopt the S-architecture configuration with a patch size of 4. The results, summarized in Table 11,
clearly demonstrate that our BFM with Semantic Feature Guidance substantially outperforms the SiT
baseline, achieving a remarkable 14.69 improvement in FID. This consistent improvement at a higher
resolution highlights the robustness and scalability of our framework in capturing fine-grained visual
details and maintaining semantic coherence across larger spatial resolution.
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Table 4: Ablation on the number
of segments with a fixed number
of layers per segment.

Seg. Lay. FLOPs (G) FID

4 8 3.64 85.1
6 8 3.64 81.5
8 8 3.64 79.1

12 8 3.64 76.7

Table 5: Ablation on the number
of segments with a fixed total
network capacity.

Seg. Lay. FLOPs (G) FID

4 12 5.46 81.7
6 8 3.64 81.5
8 6 2.72 88.1

12 4 1.82 95.2

Table 6: Comparison of our pro-
posed SemFeat and REPA [26] on
FM and BFM framework.

Method FLOPs
(G) FID

(a) FM + REPA 5.45 72.9
(b) FM + SemFeat 6.88 68.5

(c) BFM + SemFeat 5.01 66.9

Block number
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Figure 5: Discrepancy between
ftm−1

and ft within each block
averaged over 50 samples.
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Fréchet distance(×𝟏𝟎!𝟑)

54.9SiT

49.5BFM

Spatial Frequency

Po
w

er
 S

pe
ct

ru
m

Figure 6: Fourier power spec-
trum of real images, SiT-
generated images, and BFM.

Training steps
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Figure 7: Training loss LFRN
over time with and without fea-
ture residual approximation.

5.3 Analysis

To show the efficacy of our components, we conduct a comprehensive component-wise analysis.

Effect of temporal segments. First, we investigate how varying the number of temporal segments
M in BFM influences generation quality and computational efficiency under two complementary
settings. This analysis provides insight into how temporal decomposition affects specialization and
scalability within the flow-matching framework.

1) Fixed per-segment capacity. In Table 4, we fix the number of layers within each segment while
varying the total number of segments M , thereby keeping the per-segment capacity constant. We
observe that increasing M consistently improves FID scores, suggesting that finer-grained temporal
partitioning enables each velocity network to specialize more effectively in modeling localized
dynamics along the generative trajectory. Importantly, these improvements come without any increase
in inference complexity, highlighting BFM’s ability to scale up without added inference cost.

2) Fixed total network capacity: In Table 5, we fix the overall model capacity by increasing the
number of segments while proportionally decreasing the number of layers per segment. This setup
demonstrates a trade-off: while more segments provide greater temporal specialization, shallower
blocks may lack sufficient capacity to model complex signals. Empirically, we find that a moderate
segmentation level (e.g., M = 6) achieves the optimal balance, allowing for effective specialization
while preserving sufficient expressiveness within each block.

Spectral analysis. To further investigate whether blockwise modeling promotes specialized learning
across different stages of the generative trajectory, we conduct a frequency-domain analysis of
generated images. Following the methodology of [67], we compute the 2D Fourier power spectrum
for both real and generated images and apply azimuthal integration to derive their mean spectral
power distributions. This analysis allows us to assess how well each model captures structural details
across spatial frequencies, from coarse global layouts to fine-grained textures.

As illustrated in Figure 6, the Fréchet distance between the spectral distributions of real images and
those generated by BFM-XLSF (0.049) is smaller than that of SiT-XL (0.054), indicating that our
model more faithfully reproduces the frequency characteristics of natural images across the spectrum.
This result supports our core design hypothesis: segment-wise specialization enables different blocks
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Figure 9: Generated images
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to more effectively capture diverse signal characteristics across the diffusion trajectory, leading to
improved spectral fidelity.

SemFeat vs. REPA. We analyze the effectiveness of our proposed SemFeat by comparing it
against the closely related approach, REPA [26]. As discussed in Section 4.2, SemFeat differs from
REPA in a key design: SemFeat leverages an external feature alignment network that explicitly
conditions features on the velocity model, whereas REPA aligns semantic features implicitly within
the velocity model itself. This modular design separates representation learning from generative
modeling, enabling SemFeat to learn more coherent and stable semantic representations.

To empirically validate this, we conducted a feature-level analysis by applying Principal Component
Analysis (PCA) to the semantic features ft extracted from each model. We visualize the top
three components in Figure 8: SemFeat exhibits high semantic consistency across varying noise
levels, capturing temporally stable and semantically meaningful information. In contrast, REPA
generates noticeably noisier and less consistent semantic features, even within the same object
region, highlighting the advantage of SemFeat’s modular conditioning. Quantitative comparisons in
Table 6 confirm these observations. Starting from standard FM with REPA (a), replacing REPA with
SemFeat (b) yields a significant FID improvement of 4.4 points, underscoring the effectiveness of
explicit modular conditioning. Moreover, integrating SemFeat within our BFM framework (c) further
improves the FID score by an additional 1.6 points, while reducing inference complexity.

Effectiveness of feature residual approximation. To demonstrate the effectiveness of our feature
residual approximation approach, we first compare it against a direct approximation method that
independently predicts semantic features, i.e., f̂t = fη(xt, c) without residual connections. Figure 7
shows that our residual approximation method converges faster and achieves lower feature approxi-
mation loss (LFRN), highlighting the efficacy of modeling semantic features as residual increments
from the segment’s start point. Additionally, as demonstrated in Table 1 and 2, incorporating resid-
ual approximation significantly reduces inference complexity: BFM-SSF-RA reduces 41% FLOPs
compared to BFM-SSF and BFM-XLSF-RA reduces 65% FLOPs compared to BFM-XLSF, all while
preserving generation quality. Qualitative visual comparisons in Figure 9 also demonstrate marginal
perceptual differences, validating efficient feature approximation.

6 Conclusion
In this paper, we introduced Blockwise Flow Matching (BFM), a novel generative framework that
partitions the generative trajectory into distinct temporal segments, each handled by compact and
specialized velocity blocks. This design allowed each block to effectively capture the unique
signal characteristics of its interval, leading to improved generation quality and efficiency. By further
incorporating our proposed Semantic Feature Guidance and Feature Residual Approximation modules,
we demonstrated that BFM establishes a significantly improved Pareto-frontier between generation
performance and inference complexity on ImageNet 256×256: 2.1× and 4.9× acceleration in
inference complexity compared to the existing state-of-the-art generative methods.
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A Implementation details

Table 7: Architecture and training configurations of Blockwise Flow Matching
Vanilla BFM-S BFM-SSF BFM-SSF-RA BFM-XLSF BFM-XLSF-RA

(Table 1) (Table 1,4,6,7,12) (Table 1) (Table 2,3,5,7-10) (Table 2,8,10)

Num. segments M 6 6 6 6 6
Each Velocity Block v

(m)
θ

Num. layers 8 4 4 5 5
Hidden dims 384 384 384 1152 1152
Num. heads 6 6 6 16 16

Feature Alignment Network fϕ
Num. layers – 6 6 20 20
Hidden dims – 384 384 1152 1152
Num. heads – 6 6 16 16

Feature Residual Network fη
Num. layers – – 2 – 4
Hidden dims – – 384 – 1152
Num. heads – – 6 – 16

Training Config.
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 1e-4 1e-4 1e-4 1e-4 1e-4
Batch size 864 864 864 864 864
λ – 0.5 – 0.5 –
Visual Encoder E – DINOv2-B DINOv2-B DINOv2-B DINOv2-B
d(·, ·) – cosine sim. cosine sim. cosine sim. cosine sim.

We provide the overall hyperparameter setup in Table 7.

Training. We implement our model based on the original SiT implementation [22] with recent
improvements such as SwiGLU [68] activations, RMS normalization [68], and Rotary Positional
Embeddings (RoPE) [69]. Following FiTv2 [6], we reassign model parameters and adopt AdaLN-
LoRA [70] within transformer blocks to mitigate the parameter overhead of AdaLN modules. This
adjustment substantially reduces the total parameter count while maintaining comparable perfor-
mance.

We use pre-computed latent vectors derived from raw pixels via the Stable Diffusion VAE, without
applying data augmentation, following [26]. For feature projection, we employ a three-layer MLP
with SiLU activations. We adopt uniform temporal partitioning with tm = m

M for simplicity, though
preliminary experiments indicate that non-uniform, data-adaptive partitioning could further improve
performance. To train multiple velocity networks across temporal segments, one simple approach is
to randomly sample a velocity network per iteration; however, this may lead to uneven updates among
networks. Instead, we uniformly divide each training batch according to the number of temporal
segments and assign corresponding timesteps to each subset. For example, with a batch size of
256 and four temporal segments, each segment receives 64 samples. This training strategy ensures
balanced updates across all velocity networks and reduces training variance by evenly sampling
timesteps across the entire time horizon. All experiments are conducted with a global batch size of
864 using eight NVIDIA A100 GPUs. Full training pseudocode is provided in Algorithms 1 and 2.

Training complexity. Our Blockwise Flow Matching (BFM) can be viewed as a form of sparse
activation, analogous to a Mixture-of-Experts (MoE) model with a fixed router, where each velocity
network serves as an expert. Similar to MoEs, BFM increases the total parameter count while
maintaining comparable computational cost and latency. We evaluate the training resource usage
on ImageNet 256 × 256 for XL configuration using NVIDIA A100 GPU with a batch size of 32.
We use deepspeed profiler to measure the FLOPs and results are summarized in Table 8. We use
multiply-accumulates (MACs) to represent FLOPs. For both simple and balanced training strategies,
BFM achieves per-iteration FLOPs and training throughput comparable to SiT and REPA. Although
BFM introduces more parameters, its memory footprint increases only moderately (from 30–31 GB
to 47 GB), remaining well within the capacity of modern GPUs. These results demonstrate that BFM
is both practical and scalable for large-scale training. Furthermore, it is possible to train each block
parallelly (and separately) across multiple GPUs, which can further improve the training scalability.

16



Table 8: Training efficiency. Per-iteration com-
putational cost, throughput, and memory usage. †

indicates our balanced training strategy.
Method TFLOPs / iter. Iters / sec Mem. (GB)
SiT-XL/2 7.59 2.54 30
REPA-XL/2 7.72 2.62 31
BFM-XL/2 (Ours) 7.47 2.78 45
BFM-XL/2 (Ours)† 7.71 2.24 47

Table 9: Inference efficiency. Wall-clock run-
time and total FLOPs at 256×256 resolution
with 246 NFEs.

Method NFE Runtime (s) GFLOPs
SiT-XL/2 246 44.51 114.5
REPA-XL/2 246 44.51 114.5
BFM-XL/2SF (Ours) 246 40.37 107.8
BFM-XL/2SF-RA (Ours) 246 19.42 37.8

Table 10: Compatibility to MeanFlow [66]
framework on ImageNet 2562 for 400K train-
ing iterations.

Model NFE FID ↓
MeanFlow 4 13.2
BFMSF+MeanFlow 4 9.7

Table 11: System-level performance comparison
on ImageNet 5122 resolution for 400K training
iterations.

Method FID ↓ NFE ↓
SiT-S/4 102.54 246
BFM-S/4 (Ours) 87.85 246

Inference. For inference, we use the Euler solver with the ODE (Tables 1,3,4,5,6 in the main paper)
or the Euler-Maruyama solver [22] with the SDE (Table 2 in the main paper). We keep the 246 solver
steps (41 solver steps for each segment) except for Table 3 in the main paper.

Specifically, given an initial noise input xt0 = x0 ∼ pnoise, the generation proceeds sequentially
through each temporal segment [tm−1, tm). At the beginning of the m-th segment, we compute
the semantic feature ftm−1

using the feature alignment network fϕ. For subsequent timesteps
t ∈ [tm−1, tm), we approximate the semantic feature either using FRN fη or the full alignment
network fϕ, depending on the desired trade-off between speed and fidelity. Then, the velocity block
v
(m)
θ predicts the velocity: v̂(m)

t = v
(m)
θ (xt, c, ft). The intermediate state is updated iteratively via a

numerical solver using the predicted velocity. This process repeats until reaching t = 1, yielding the
final sample x1 ∼ pdata. A full pseudocode implementation of the inference process is provided in
Algorithm 3 and 4.

Inference complexity. We benchmark the wall-clock inference time of our models against baseline
methods on a single NVIDIA A100 GPU with a batch size of 32. The results are summarized in
Table 9. Empirically, our primary model, BFMSF, achieves a 9.4% reduction in inference time than
the baselines while attaining better FID scores. Furthermore, the most efficient variant, BFMSF-RA,
achieves a remarkable 63% reduction in runtime while maintaining performance comparable to
SiT. These results demonstrate that the reduction in FLOPs achieved by BFM translates directly into
real-world speedups, validating its inference efficiency.

Metrics. We evaluate generation performance using standard metrics including FID [54] (Fréchet
Inception Distance), IS [56] (Inception Score), and Precision/Recall [57, 71]. Unless otherwise noted,
we follow the evaluation protocol of [59] and report results using 50K generated samples.

FID is the most commonly used metric, measuring the feature distance between real and generated
image distributions. It is computed using the Inception-V3 network under the assumption that both
feature distributions follow multivariate Gaussian statistics.

IS, also based on Inception-V3, evaluates both image quality and diversity by measuring the KL-
divergence between the marginal and conditional label distributions derived from the network logits.

Finally, Precision captures the fraction of generated samples that lie close to the real data manifold,
while Recall measures how well the generated distribution covers real data samples. Together, these
complementary metrics provide a more holistic assessment of generative performance in terms of
both fidelity and diversity.

B Analysis details

Component analysis (Table 1). We provide additional implementation details for the experimental
configurations reported in Table 1 of main paper. For the vanilla Flow Matching model, we train
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Algorithm 1 Training Blockwise Flow Matching (BFM)

Require: Feature alignment network fϕ, velocity network vθ, and projection layer hψ
1: repeat
2: Sample a mini-batch of size B: {(x(i)0 , x

(i)
1 , c(i))}Bi=1 ▷ x0: data, x1: noise

3: Initialize losses: LBFM ← 0, Lalign ← 0
4: Partition sample indices i uniformly into M disjoint groups: I1, . . . , IM
5: for each segment m = 1, . . . ,M do
6: for each sample index i ∈ Im do ▷ All samples can be computed parallel
7: Sample t(i) ∼ U [tm−1, tm)

8: x
(i)
tm−1

← (1− tm−1)x
(i)
0 + tm−1x

(i)
1

9: x
(i)
tm ← (1− tm)x

(i)
0 + tmx

(i)
1

10: am(t)(i) ← t(i)−tm−1

tm−tm−1
, x

(i)
t ← (1− am(t)(i))x

(i)
tm−1

+ am(t)(i)x
(i)
tm

11: Semantic features: h∗(i) ← E(x(i)1 ), f
(i)
t ← fϕ(x

(i)
t , c(i))

12: Segment velocity target: v(m,i)t ←
x
(i)
tm − x

(i)
tm−1

tm − tm−1
13: Per-sample losses:
14: Lalign += d

(
hψ(f

(i)
t ), h∗(i)

)
15: LBFM +=

∥∥v(m)
θ (x

(i)
t , c(i)f

(i)
t )− v(m,i)t

∥∥2
16: end for
17: end for
18: Normalize losses: L ← 1

B

(
LBFM + λLalign

)
19: Update θ, ϕ, ψ with a gradient step on L
20: until convergence

Algorithm 2 Training Feature Residual Network (FRN)

1: Freeze parameters vθ, fϕ hψ , and introduce FRN parameters fη
2: repeat
3: Sample m ∼ U [1, ...,M ]
4: Sample t ∼ U [tm−1, tm)
5: Compute semantic feature at segment start: ftm−1 = fϕ(xtm−1 , c)
6: Compute semantic target at intermediate step t: ft = fϕ(xt, c)

7: Compute normalized time offset bm(t) = t−tm−1

tm−tm−1

8: Approximate semantic feature at intermediate step t: f̂t = ftm−1
+ b · fη(xt, c)

9: Compute residual approximation loss LFRN = ∥f̂t − ft∥2
10: Update FRN parameters η via gradient step on LFRN
11: until convergence

the original SiT-S model (12 transformer blocks) with architectural improvements. For our vanilla
BFM-S model (second row of Table 1), we train the same transformer architecture (except that we
reassign model parameters with AdaLN-LoRA) with six temporal segments. We assign each velocity
block with 8 transformer blocks. When adding a feature alignment network (BFM-SSF, third row of
Table 1), we reduce the number of layers of each velocity block, as shown in Table 7.

Spectral Entropy and High-Frequency Ratio (Figure 3). To analyze the frequency characteristics
of generated images across timesteps, we compute two key metrics: Spectral Entropy (SE) and the
High-Frequency Ratio (HFR). Spectral Entropy quantifies the distributional complexity of a signal in
the frequency domain. Specifically, we treat the normalized 2D power spectrum of an image as a
probability distribution and compute its Shannon entropy. A higher SE indicates a more uniform,
less structured distribution of spectral energy (i.e., more randomness), while a lower SE reflects a
concentration of energy in fewer frequencies, indicating more structured signals. High-Frequency
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Algorithm 3 Inference

1: Initialize: xt0 = x0 ∼ pnoise
2: for m = 1, 2, ...,M do
3: Define K solver steps within segment: tm−1 = t(0) < · · · < t(K) = tm
4: for k = 0, 1, ...,K − 1 do
5: Compute semantic feature: ft(k) = fϕ(xt(k) , c)

6: Compute velocity: v̂t(k) = v
(m)
θ (xt(k) , c, ft(k))

7: Update state with solver Φ step size ∆t:
8: xt(k+1) = Φ(xt(k) , v̂t(k) ,∆t)
9: end for

10: end for
11: Output final generated sample: x1 ∼ pdata

Algorithm 4 Efficient inference with Feature Residual Network

1: Initialize: xt0 = x0 ∼ pnoise
2: for m = 1, 2, ...,M do
3: Compute semantic feature once at segment start:
4: ftm−1

= fϕ(xtm−1
, c)

5: Define K solver steps within segment: tm−1 = t(0) < · · · < t(K) = tm
6: for k = 0, 1, ...,K − 1 do
7: Compute normalized time offset bm(t(k)) = t(k)−tm−1

tm−tm−1

8: Approximate semantic feature efficiently: ft(k) = ftm−1 + bm(t(k)) · fη(xt(k) , c)

9: Compute velocity: v̂t(k) = v
(m)
θ (xt(k) , c, ft(k))

10: Update state with solver Φ step size ∆t:
11: xt(k+1) = Φ(xt(k) , v̂t(k) ,∆t)
12: end for
13: end for
14: Output final generated sample: x1 ∼ pdata

Ratio measures the proportion of total spectral energy in the high-frequency range. It captures the
relative contribution of fine-grained details in the image.

To compute both metrics, we randomly sample 10,000 real images from the ImageNet set and
transform them to noisy versions at specific timesteps by interpolation formulation. Each image
is converted to the frequency domain via a 2D Fourier Transform. We then calculate the power
spectrum and apply azimuthal integration to obtain the spectral distribution. SE is computed as the
Shannon entropy of the normalized spectrum, while HFR is obtained by summing the energy above a
predefined frequency threshold (=0.5) and dividing by the total energy.

Fourier power spectrum (Figure 6). We perform a frequency-domain analysis to evaluate how
well the spectral characteristics of generated images match those of real images. This experiment
tests whether our blockwise modeling strategy improves spectral fidelity by allowing different blocks
to specialize in capturing distinct frequency components along the generative trajectory. Specifically,
we randomly sample 100 images from each model (BFM-XLSF and SiT-XL [22]) and 100 real images
from ImageNet. We compute the 2D Fourier power spectrum for each image and apply azimuthal
integration to obtain a 1D mean spectral power distribution, following the procedure in [67]. We then
calculate the Fréchet Distance [72] between the spectral distributions of generated and real images to
quantify their similarity.

Discrepancy between ftm−1 and ft (Figure 5). For each segment m, we randomly sample 50
images from the ImageNet dataset and convert them into their corresponding noisy versions xtm−1

and xt at timesteps tm−1 and t ∈ [tm−1, tm), respectively We then evaluate the temporal consistency
of the semantic features extracted by the alignment network by computing the mean squared error
(MSE) between ftm−1

= fϕ(xtm−1
, c) and ft = fϕ(xt, c). A lower MSE indicates that the feature

alignment network learns temporally stable, time-invariant representations across the segment.
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Quantitative comparison between REPA [26] and SemFeat (Table 6). We provide additional
implementation details for the experimental configurations reported in Table 6. All models are trained
for 100K iterations using DINOv2-B [25] as the target representation, with a loss weight of λ = 0.5
and negative cosine similarity as the alignment objective. Feature projection layers are implemented
with identical configurations across all methods for a fair comparison. (a): We implement REPA
using the SiT-S architecture (12 transformer layers), aligning the hidden representations at the 8th
transformer layer to the DINOv2-B targets. (b): We incorporate our proposed SemFeat into the
standard FM framework by decomposing the SiT-S model into two modules: a feature alignment
network composed of 8 transformer layers, and a velocity model composed of 4 transformer layers.
(c): This setting corresponds to our BFM-SSF in Table 7.

PCA results (Figure 8, 10) For the PCA analysis, we extract semantic features from noisy inputs
xt using both REPA-XL and BFM-XLSF. In the case of REPA-XL, we use the hidden representations
from the 8th transformer layer, as this layer is aligned with DINO features during training. For
BFM-XLSF, we directly use the outputs of the feature alignment network, ft = fϕ(xt, c). We perform
Principal Component Analysis across features collected from multiple timesteps to capture their
dominant variations. The top three principal components are then mapped to the RGB channels for
visualization, allowing us to assess the semantic consistency and structure of features across time.
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C Additional PCA results

In Figure 10, we present additional PCA visualizations of semantic features across varying noise
levels. SemFeat consistently produces semantically coherent and temporally stable representations,
maintaining structural consistency even under significant noise. In contrast, REPA exhibits greater
variability and noise in its feature representations, with noticeable inconsistencies across the same ob-
ject regions. These observations further support the effectiveness of SemFeat’s modular conditioning
in capturing robust and meaningful semantic information throughout the generative trajectory.
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Figure 10: Semantic features over timesteps. We visualize the PCA of features from BFM and
REPA for the source images. Compared to REPA, the semantic features extracted from BFM are
more consistent across timesteps.
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D More qualitative results

Figure 11: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “fox squirrel”
(335).

Figure 12: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “Cacatua ga-
lerita” (89).

Figure 13: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “shield, buckler”
(787).

Figure 14: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “snow leopard”
(289).
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Figure 15: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “American robin”
(15).

Figure 16: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “volcano” (980).

Figure 17: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “Great Dane”
(246).

Figure 18: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “green mamba”
(64).
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Figure 19: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “Cliff” (972).

Figure 20: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “Coral Reef”
(973).

Figure 21: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “Alp” (970).

Figure 22: Uncurated generation results
of BFM-XLSF. We use classifier-free guid-
ance with w = 4.0. Class label = “Lakeside”
(975).
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Figure 23: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “bald eagle,
American eagle, Haliaeetus leucocephalus”
(22).

Figure 24: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “Norwegian
elkhound, elkhound” (174).

Figure 25: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “hippopotamus,
hippo, river horse, Hippopotamus amphibi-
ous” (344).

Figure 26: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “lesser panda,
red panda, panda, bear cat, cat bear, Ailurus
fulgens” (387).
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Figure 27: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “altar” (406).

Figure 28: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “castle” (483).

Figure 29: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “coffee mug”
(504).

Figure 30: Uncurated generation results of
BFM-XLSF. We use classifier-free guidance
with w = 4.0. Class label = “library” (624).
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E Limitations and Future work

Reliance on external features. Our method relies on semantic features extracted from a pretrained
visual encoder (e.g., DINOv2) to guide the velocity models through SemFeat. While this enables
stronger semantic conditioning and improves generation quality, it introduces an external dependency
and limits the model’s generality to domains where such pretrained encoders are available. In future
work, we plan to explore self-supervised alternatives that jointly learn semantic representations during
training, potentially eliminating the need for external networks.

Multi-modal large-scale datasets. Our current evaluation focuses on single-modality image gen-
eration using ImageNet. While BFM scales well in this setting, applying the same framework to
multi-modal, large-scale datasets (e.g., text-to-image or video datasets) remains an open challenge.
Future research could investigate how to adapt blockwise modeling and semantic conditioning to
settings that require more complex cross-modal reasoning and longer temporal consistency, such as
text-driven video generation.

Non-uniform partitioning schedule. In this work, we adopt a uniform temporal segmentation strat-
egy for simplicity. However, the generative trajectory exhibits varying complexity across timesteps,
suggesting that certain regions (e.g., early noisy stages or late refinement phases) may benefit from
finer-grained modeling. Future work could explore non-uniform or learnable partitioning sched-
ules that allocate computational resources adaptively based on local signal complexity, potentially
improving both performance and efficiency.

F Broader impact

The goal of this work is to improve the efficiency and scalability of generative models. By introducing
Blockwise Flow Matching (BFM), we reduce the computational burden of high-quality generation,
making diffusion-based models more accessible for researchers and practitioners with limited re-
sources. This has potential societal benefits in democratizing access to generative AI, enabling smaller
labs, startups, and educational institutions to experiment with cutting-edge models without requiring
extensive computational infrastructure. However, improved efficiency also lowers the barrier for
misuse. Generative models can be exploited to produce content such as deepfakes or misinformation
at scale. We acknowledge that its capabilities could be repurposed in harmful ways. Mitigating such
misuse requires responsible downstream deployment, as well as efforts from the broader community
to develop and enforce ethical standards around generative AI.
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