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ABSTRACT

Air pollution significantly threatens human health and ecosystems, necessitating
effective air quality prediction to inform public policy. Traditional approaches are
generally categorized into physics-based and data-driven models. Physics-based
models usually struggle with high computational demands and closed-system as-
sumptions, while data-driven models may overlook essential physical dynamics,
confusing the capturing of spatiotemporal correlations. Although some physics-
guided approaches combine the strengths of both models, they often face a mis-
match between explicit physical equations and implicit learned representations.
To address these challenges, we propose Air-DualODE, a novel physics-guided
approach that integrates dual branches of Neural ODEs for air quality prediction.
The first branch applies open-system physical equations to capture spatiotemporal
dependencies for learning physics dynamics, while the second branch identifies
the dependencies not addressed by the first in a fully data-driven way. These dual
representations are temporally aligned and fused to enhance prediction accuracy.
Our experimental results demonstrate that Air-DualODE achieves state-of-the-art
performance in predicting pollutant concentrations across various spatial scales,
thereby offering a promising solution for real-world air quality challenges. The
code is available at: https://anonymous.4open.science/r/Air-DualODE-686A.

1 INTRODUCTION

Air pollution presents a significant threat to both human health and the environment. For individuals,
prolonged exposure elevates the risk of respiratory and cardiovascular diseases (Azimi & Rahman,
2024). From an environmental perspective, air pollution contributes to phenomena such as acid
rain and ozone depletion, disrupting ecosystems and diminishing biodiversity (Cheng et al., 2024).
These detrimental effects underscore the critical need for precise air quality forecasting, not only to
protect public health but also to inform and shape governmental policies effectively.

Traditional research on air quality prediction largely relies on physics-based and data-driven ap-
proaches, each of which has their own inherent limitations. Physics-based models make predictions
by solving Ordinary or Partial Differential Equations (ODEs/PDEs), which capture the transport of
pollutants through diffusion and advection, as illustrated in Fig.1. Although these models achieve
high accuracy, they require substantial computational resources, especially when applied on large
spatial scales. Conversely, data-driven models excel at uncovering dependencies within data, yet
their lack of integration with physical principles can lead to incomplete or even erroneous repre-
sentations of spatiotemporal relationships. Therefore, it is crucial to propose a hybrid model that
effectively harnesses the strengths of both physics-based and data-driven approaches. However, the
development of such a model presents two primary challenges.

Unrealistic assumptions of physical equations in an open air quality system. Existing work em-
ploys fundamental continuity equations from physics to model the pollutant diffusion process (Mo-
hammadshirazi et al., 2023; Hettige et al., 2024). These equations assume the region of interest is
a closed system, where the total mass remains constant over time. While such assumptions have
proven effective in fields like traffic flow and epidemic modeling (Ji et al., 2022; Gao et al., 2021),
they are insufficient for real-world air quality prediction, which operates in an open system where
pollutants continuously enter and exit with airflow (e.g., A, D, E in Fig.1). Meanwhile, new pollu-
tants may be introduced by industrial activity and vehicular emissions within the region (e.g., B, C,
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(a) Diffusion: Pollutants diffuse from high concentra-
tion areas to low concentration areas.
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(b) Advection: Pollutants spread to other areas under
the influence of the wind field.

Figure 1: The heatmaps show PM2.5 concentrations of individual stations at time steps t and t+1. In
this open system, there are sinks that absorbs pollutants and sources that generates new pollutants,
along with pollutants exiting and entering the region’s boundary through diffusion and advection.

D, and E in Fig.1), while others are absorbed by natural elements like forests and lakes (e.g., A, F in
Fig.1a). Given these facts, relying on closed-system assumptions fails to adequately model physical
phenomena in open systems, and may introduce incorrect inductive biases into models.

Mismatch between explicit physical equations and implicit deep learning representations.
Physical equations provide an explicit, interpretable framework for modeling pollutant concentration
changes, with each variable tied to a well-defined physical meaning. In contrast, deep learning ap-
proaches capture spatiotemporal dependencies through implicit representations, often lacking direct
physical interpretation. To harness the strengths of both methods, researchers have begun integrating
physical equations into neural networks (Verma et al., 2024). These hybrid approaches design neural
architectures around physical principles, ensuring that latent variables align with well-established
physical meanings (Ji et al., 2022; Hettige et al., 2024; Nascimento et al., 2021). However, the
high-dimensional latent spaces in neural networks often represent nonlinear combinations or ab-
stract transformations of physical variables, making it inappropriate to interpret these dimensions
as specific physical quantities. Therefore, one of the primary challenge in integrating physics into
data-driven models is resolving this fundamental mismatch.

In this paper, we propose Air-DualODE, a Physics-guided Dual Neural ODEs that integrate physics
dynamics and data-driven dynamics for open system’s Air Pollution Prediction. For the first chal-
lenge, we propose a discrete Boundary-Aware Diffusion-Advection Equation (BA-DAE) to appro-
priately model open air systems. Due to the uncertainties associated with pollutant generation
(source) and dissipation (sink) in open air systems, pollutant changes involve significant uncertainty,
but both processes are linked to individual stations. To capture these dynamics, BA-DAE introduces
a linear correction term, breaking away from the unrealistic closed system assumption and providing
a more accurate description of physical phenomena in open air systems. Additionally, we incorpo-
rate Data-Driven Dynamics to capture spatiotemporal dependencies that BA-DAE ignores, making
our approach better suited for real-world open air systems. For example, Data-Driven Dynamics can
learn some patterns of pollutants generation, which cannot be described by BA-DAE.

To address the second challenge, we propose dual dynamics to integrate physical equations into
data-driven models while retaining the model’s ability to learn spatiotemporal correlations from
data. Physics Dynamics generates spatiotemporal sequences consistent with physical phenomena
by solving the BA-DAE, while Data-Driven Dynamics uses Neural ODE to learn dependencies not
captured by physical equations. To place the physical knowledge and data-driven representations
in the same space, we project the output of Physics Dynamics into latent spaces. However, these
representations cannot be directly fused, as they correspond in time but are not fully matched. To
resolve this, we design a dynamics fusion module with decaying temporal alignment to fuse both
representations. In conclusion, we summarize our contributions as follows:

• Considering that air pollution transport is in an open system, we redefine the discrete diffusion-
advection equation in explicit spaces and propose the BA-DAE, which makes physical equations
more consistent with pollutant transport in open air systems.

• We introduce Air-DualODE, a model that integrates Physics Dynamics and Data-Driven Dynam-
ics to harness the strengths of both physical knowledge and data-driven insights. To the best of
our knowledge, this is the first dual dynamics deep learning approach specifically designed for air
quality prediction in open system.

• Experiments have shown that Air-DualODE achieves state-of-the-art results in predicting pollutant
concentrations at both city and national spatial scales.
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2 PRELIMINARIES

2.1 PROBLEM STATEMENT

Air quality prediction relies on historical data from N observation stations, including pollutant con-
centrations X1:T ∈ RT×N×1, such as PM2.5 and NO2. It also incorporates auxiliary covariates
A1:T ∈ RT×N×(D−1), like temperature and wind speed. The objective is to forecast future pollu-
tant concentrations at these stations. Based on the region’s geographical information, we construct a
geospatial graph G = (V,E), where V is a set of stations |V| = N , and E is a set of edges. Specif-
ically, An edge Eij between nodes Vi and Vj indicates a potential pathway for pollutant transport
(See Appendix A.4 for more details). The objective of the air quality prediction task is to learn a
function f(.) that can accurately forecast future pollutant concentrations X̂T+1:T+τ ∈ Rτ×N×1.
This function can be formalized as:

X̂T+1:T+τ = f(X1:T , A1:T , G).

2.2 BASIC CONCEPTS

Continuity Equation. The continuity equation, a fundamental principle in physics, describes mass
transport. It explains that system mass changes over time due to material inflow and outflow, assum-
ing no sources like vehicle emissions or sinks like forest absorption.

∂X

∂t
+ ∇⃗ · (XF⃗ ) = 0, (1)

where X is air pollutant concentration, F⃗ is the flux of particles which describes the transport of
pollutants particles, and ∇⃗· is the divergence operator. When solving the Continuity Equation, it is
crucial to determine if the environment is an open or closed system because the boundary conditions
differ significantly, affecting the equation’s discrete form.

Diffusion-Advection Equation. By modifying the flow field F⃗ of Eq.1, both the Diffusion and
Advection equations for pollutants can be derived (Hettige et al., 2024). See Appendix A.1 for
more details.

∂X

∂t
= k · ∇2X − ∇⃗(X · v⃗), (2)

where k is diffusion coefficient, v⃗ is wind field, and ∇2 is a Laplacian operator combining divergence
and gradient.

2.3 RELATED WORK

Air Quality Prediction. Air quality prediction is a key objective in smart city. Existing ap-
proaches can be broadly categorized into two types: physics-based models and deep learning mod-
els. The former rely on domain knowledge to construct Ordinary and Partial Differential Equations
(ODEs/PDEs) that describe air pollutant transport (Li et al., 2023; Daly & Zannetti, 2007). However,
these models face two major limitations. They rely on closed-system assumptions, and their use of
numerical methods, such as finite difference or finite element methods (Özişik et al., 2017; Ŝolı́n,
2005), becomes computationally expensive at larger spatial scales. This makes rapid prediction
difficult for urban planning and policy-making. Deep learning methods have recently gained promi-
nence by using historical data and auxiliary covariates, such as weather, to extract high-dimensional
spatiotemporal representations for pollutant prediction. These models typically employ RNNs or
Transformers for temporal representations and GNNs or CNNs for spatial dependencies (Yu et al.,
2017; Guo et al., 2019; Li et al., 2017; Shang et al., 2021). Furthermore, there are models specif-
ically designed for air pollutant prediction tasks (Wang et al., 2020; Liang et al., 2023). However,
these deep learning approaches may overlook essential physical dynamics, leading to confused spa-
tiotemporal correlations that could violate physical principles.

Physics Guided Deep Learning. Recently, several studies have explored incorporating physical
knowledge into deep learning models (Karpatne et al., 2024). The most direct approach involves
using physical knowledge as constraints in loss functions (Raissi et al., 2017; Shi et al., 2021),
penalizing deviations from physical laws to encourage physically consistent patterns and improve
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Figure 2: The overall framework of Air-DualODE consists of Physics Dynamics, Data-Driven Dy-
namics, and Dynamics Fusion. FP and FD represent the ODE functions in Physics Dynamics and
Data-Driven Dynamics, respectively.

generalizability (Greydanus et al., 2019; Choi et al., 2023b). However, these methods rely on highly
accurate physical knowledge; otherwise, they may introduce inductive bias, limiting the model’s
learning capacity. Another approach is to design hybrid frameworks that integrate scientific knowl-
edge into specific modeling components (Bao et al., 2021; Xu et al., 2024), such as incorporating
physical equations into Neural ODEs (Hwang et al., 2021; Ji et al., 2022; Choi et al., 2023a; Hettige
et al., 2024). These methods often require deep latent representations to align with physical mean-
ings, forcing models to switch between abstract representations and physical quantities Nascimento
et al. (2021); Verma et al. (2024).

3 METHODOLOGY

3.1 MODEL OVERVIEW

To integrate physical knowledge into neural networks, and ensure accurate spatiotemporal correla-
tions, we propose Air-DualODE, which includes BA-DAE and dual dynamics under open air sys-
tems. As shown in Fig.2, the framework consists of three main components:

• Physics Dynamics To maintain consistency with the neural network’s implicit representations,
Physics Dynamics directly solves physical equations to obtain spatiotemporal correlations with
physical meanings. Specifically, it solves the BA-DAE, namely FP, a more realistic equation for
open air systems, to generate physical simulation results X̂P

T+1:T+τ for the next τ steps. These
results are then mapped into the latent space as ZP

T+1:T+τ .

• Data-Driven Dynamics Although BA-DAE captures pollutant changes in an open air system, it
does not account for some spatiotemporal dependencies, like the effects of temperature and humid-
ity on pollutant transport. To address this, Data-Driven Dynamics is implemented using a Neural
ODE with spatial masked self-attention (Spatial-MSA) in ODE function FD. This branch captures
unknown dynamics in latent space and generates latent dynamics representation ZD

T+1:T+τ .

• Dynamics Fusion Although ZP
T+1:T+τ and ZD

T+1:T+τ share the same latent space and time span,
they are not yet aligned. To resolve this, Decaying Temporal Contrastive Learning (Decay-TCL)
aligns them over time using decaying weights for effective fusion. A GNN then spatially fuses
two representations, and the combined result is decoded to generate the prediction X̂T+1:T+τ .
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3.2 PHYSICAL DYNAMICS OF OPEN SYSTEM’S AIR POLLUTION

3.2.1 DISCRETE DIFFUSION-ADVECTION EQUATION UNDER CLOSED SYSTEM

The Method of Lines (MOL) can discretize the PDEs (Eq.2) into a grid of location-specific ODEs
(Schiesser, 2012; Iakovlev et al., 2021). The discrete equation can be derived as follows:

dX

dt
= −k · LdiffX + LadvX. (3)

Ldiff and Ladv are the discretized graph Laplacian operators for diffusion and advection, respectively,
approximated using the Chebyshev GNN as referenced in (Defferrard et al., 2016; Hettige et al.,
2024). According to Chapman & Chapman (2015), it is necessary to define distinct graph structures
to represent diffusion on concentration gradient fields and advection on wind fields.

Diffusion Graph is an undirected weighted graph based on G, with weights computed using the in-
verse of the distance between nodes, such that Gdiff[ij] =

1
dij

(Han et al., 2023), where dij represents
the haversine distance between nodes Vi and Vj .

Advection Graph is a directed weighted graph based on G, where the direction and weight of the
edges depend on the wind direction AWd

T , and wind speed AWs

T at T timestamps. After calculating
the included angle ξ in Fig.3, we project the wind vector of Vi onto Eij to obtain the wind intensity
from Vi to Vj , as shown in the Fig.3. The Gadv[ij] is calculated as follows:

Gadv[ij] =

ReLU
(
|v|
dij

· cos ξ
)

when Gij = 1,

0 when Gij = 0.

(4)

In particular, if the wind vector’s projection at Vi does not point in the direction of Vj , i.e., cos ξ < 0,
this suggests that the pollutants at Vi are currently not influenced by advection to reach Vj . Con-
sequently, at that time, the directed edge in the advection graph will not be constructed. Notably,
Gadv differs from Gdiff. Gdiff remains static over time, representing a static graph. In contrast, Gadv
changes dynamically over time as the wind speed and direction at each node vary, making it a dy-
namic graph that varies at different timestamps.

It is easy to prove that Eq.3 has conservation property (see Appendix A.3), which means the amount
of pollutants concentration remaining constant over time:

N∑
i=1

dXi

dt
= 0. (5)

3.2.2 DISCRETE BOUNDARY-AWARE DIFFUSION-ADVECTION EQUATION FOR OPEN SYSTEM

Since air pollutant propagation does not occur in a closed system, the total pollutant mass cannot
remain constant over time. Particularly, pollutants can dissipate beyond boundaries, such as being
carried away by wind in Fig.1b. Additionally, industrial zones and vehicles contribute to pollution,
while urban lakes and rainfall absorb pollutants. Thus, the dynamics of air pollution are far more
complex than a closed system’s conservation assumption.

In an open system, changes in the total amount of pollutants can be categorized into dissipation and
generation. Pollutant dissipation refers to sinks, including transport out of the boundary through
diffusion and advection, as well as absorption by forests or lakes. Pollutant generation refers to
sources such as industrial emissions. As shown in Fig.4, the dissipation and generation at Point E
are highly relevant to its current concentrations. Therefore, we incorporate two terms into Eq.3: the
dissipation term β−⊙X (β− ∈ [−1, 0]N×1) and the generation term β+⊙X (β+ ∈ [0,+∞)N×1).
These terms can be simplified into an open system correction term: β ⊙ X (β ∈ [−1,+∞)N×1).
Boundary stations, experiencing more outward diffusion and advection, tend to have greater negative
βi. So, this equation is called as Discrete Boundary-Aware Diffusion-Advection Equation (BA-
DAE):

FP(Xt;Θ) =
dX

dt
= α⊙ (−k · LdiffX) + (1−α)⊙ (LadvX) + β ⊙X. (6)

Here, Θ represents learnable parameters used to approximate the graph Laplacian operators. The
gate value α ∈ RN×1 is estimated by a linear layer (R2 → R) based on each station’s diffusion

5
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Figure 3: Construction of Gadv[ij].

E
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Figure 4: The sources and sinks at station E.

and advection over time, representing the weighted influence of these two effects as they vary across
time and space. The diffusion coefficient k and the correction term’s coefficient β are estimated
via the Coefficient Estimator, a Recurrent Neural Network. By solving BA-DAE with ODE solver
from Chen et al. (2018), pollutant concentrations from T + 1 to T + τ are obtained, and a temporal
encoder maps these concentrations to the latent space for dynamics fusion, as illustrated in the
Physics Dynamics part of Fig 2.

X̂P
T+1:T+τ = ODESolve(XT ,F

P, [T + 1, ..., T + τ ];Θ), (7)

ZP
T+1:T+τ = EncoderP(X̂

P
T+1:T+τ ), (8)

where ZP
T+1:T+τ encodes the spatiotemporal dependencies of pollutant transport with physical

knowledge, which data-driven models may not fully capture. This compensates for the limitations
of data-driven approaches and enhances the interpretability of the model.

3.3 DATA-DRIVEN NEURAL ODE

The Data-Driven Neural ODE focuses on modeling dynamical systems that go beyond the limita-
tions of the BA-DAE, aiming to uncover knowledge that cannot be described by physical equations
alone. For instance, spatiotemporal correlations within historical data patterns are not adequately
described by the BA-DAE. However, data-driven dynamics can bridge these gaps by learning from
historical data. Additionally, relationships such as humidity and pollutant transport can also be ef-
fectively captured through this branch. Following Chen et al. (2018), Latent-ODE is employed in
the Data-Driven Dynamics branch, as depicted in Fig.2. Specifically, we utilize (X,A)1:T as input,
which is mapped to the latent variables ZD

T via an EncoderD. This serves as the initial condition for
learning and solving the Neural ODE, resulting in ZD

T+1:T+τ .

ZD
T = EncoderD(X1:T , A1:T ), (9)

ZD
T+1:T+τ = ODESolve(ZD

T ,FD, [T + 1, ..., T + τ ];Φ), (10)

where Φ represents the learnable parameters in ODE function FD. To capture spatial correlations
across different time steps within the dynamic system, a masked self-attention mechanism is incor-
porated into FD. Specifically, the adjacency matrix of G is employed as a mask in the Spatial-MSA
since intuitively, if no potential transport pathway exists between two stations, their representations
should not be correlated. This approach not only improves computational efficiency but also en-
ables the model to focus on relevant information, enhancing its effectiveness across various spatial
granularities in prediction scenarios.

3.4 DYNAMICS FUSION

Decaying Temporal Constrastive Learning. Before combining the physics and data-driven dy-
namics, it is essential to align their latent representations, ZP

T+1:T+τ and ZD
T+1:T+τ , to resolve

inconsistencies and enable effective fusion. Since both dynamics operate synchronously, three key
intuitions are considered: 1) latent representations at the same time step are more similar than those
at different time steps, 2) adjacent time steps are more similar than distant ones, and 3) representa-
tions from the same dynamics are more similar than those from different dynamics. To satisfy the
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three intuitions, we propose Decaying Temporal Contrastive Learning (Decay-TCL). It computes a
decaying weight w(t, s) based on timestamp differences and dynamics type to regulate the similarity
between latent representations. The hyperparameters λ1 and λ2 are used to differentiate the distinct
dynamics, and they must satisfy λ1 > λ2 to fulfill third intuition.

w(t, s) =

{
2 · σ(−λ1 · |t− s|) if |t− s| < τ

2 · σ(−λ2 · |t− s mod τ |) if |t− s| > τ,

where σ(·) represents sigmoid function. Let Z̄1:3τ = [ZP , ZD, ZP ]. We define the softmax proba-
bility of the relative similarities when computing the loss as:

p(t, t′) =
exp{Sim(Z̄t, Z̄t′)}∑2τ

i=1,i̸=t′ exp{Sim(Z̄t, Z̄i)}
.

The function Sim(·, ·) denotes cosine similarity. The decaying temporal contrastive loss for Z̄ at
timestamp t is defined as:

ℓ(t) = − log p(t, t+ τ)−
2τ∑

j=1,j ̸={t,t+τ}

w(t, j) · log p(t, j). (11)

Eq.11 ensures the similarity inequality in the Temporal Alignment shown in Fig.2, aligning the
physical and data-driven representations in the temporal dimension to enable better fusion. The final
loss for Decay-TCL is defined as:

Ltcl =
1

2τ

2τ∑
t=1

ℓ(t). (12)

GNN Fusion. After temporal alignment, the two latent representations are concatenated as Z(0)
t =

concat(ZP
t , ZD

t ) at each timestamp. Since the influence of stations is distance-dependent, using
MLP structures may introduce noises from distant sites, complicating the learning process thus re-
ducing accuracy (see Appendix A.16). To address this, GNNs are employed based on the geospatial
graph G to Dynamics Fusion: Z(n)

t = GNNs(Z(0)
t ), where n represents the GNN layers. The De-

coder then transforms the latent representations Z
(n)
T+1:T+τ into predicted pollutant concentrations

X̂T+1:T+τ . We jointly optimize the prediction loss and the loss functions in Eq.12, with a hyperpa-
rameter γ to balance them:

L =
1

τ

T+τ∑
t=T+1

∥Xt − X̂t∥+ γLtcl. (13)

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Datasets. We evaluate the performance of our model using two real-world air quality datasets: the
Beijing1 dataset and the KnowAir2 dataset. The Beijing dataset is evaluated at the city scale, while
the KnowAir dataset is evaluated at the national scale. Further descriptions about these two datasets
can be found in Appendix A.5. In accordance with previous studies (Liang et al., 2023), we focus
on PM2.5 concentration as the target variable, using meteorological factors—including temperature,
pressure, humidity, wind speed, and direction—as auxiliary covariates to ensure consistency be-
tween the two datasets. Similar to prior work (Liang et al., 2023; Hettige et al., 2024), we employ
a 3-hour time step and utilize data from the preceding 72 hours (24 steps) to predict the subsequent
72 hours. More details regarding the implementation can be found in Appendix A.7. Additionally,
following Liang et al. (2023), we analyze the errors in predicting sudden changes. Sudden changes
are defined as cases where PM2.5 levels exceed 75 µg/m³ and fluctuate by more than ±20 µg/m³ in
the next three hours.

1https://www.biendata.xyz/competition/kdd_2018/
2https://github.com/shuowang-ai/PM2.5-GNN
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Baselines. We evaluate Air-DualODE against baselines of four categories: 1) Classical Methods:
Historical Average (HA) and Vector Auto-Regression (VAR). 2) Differential Equation Network-
Based Methods: Latent-ODE (Chen et al., 2018), ODE-RNN (Rubanova et al., 2019) and ODE-
LSTM (Lechner & Hasani, 2020). 3) Spatio-temporal Deep Learning Methods: Diffusion Convo-
lution Recurrent Neural Network (DCRNN) (Li et al., 2017), Spatio-temporal Graph Convolutional
Network (STGCN) (Yu et al., 2017), ASTGCN (Guo et al., 2019), GTS (Shang et al., 2021),
PM2.5-GNN (Wang et al., 2020), and AirFormer (Liang et al., 2023). 4) Physics-guided Neural
Networks: AirPhyNet (Hettige et al., 2024).

Evaluation Metrics. Baselines are evaluated using Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Symmetric Mean Absolute Percentage Error (SMAPE), with smaller values
indicating better performance (see in Appendix.A.6).

4.2 PERFORMANCE COMPARISON

Overall Performance. Table 8 compares the performance of Air-DualODE with baselines over
three days and sudden changes across two datasets. Air-DualODE outperforms all baselines across
all metrics for both datasets. These results demonstrate the model’s effectiveness in integrating
Physics Dynamics and Data-Driven Dynamics within a deep learning framework to capture complex
spatiotemporal dynamics relationships.

Table 1: Overall prediction performance comparison. Bold fonts indicate the best results, while
underlined fonts signify the second-best results.

Methods
Beijing KnowAir

3days Sudden Change 3days Sudden Change
MAE RMSE SMAPE MAE RMSE SMAPE MAE RMSE SMAPE MAE RMSE SMAPE

HA 59.78 77.73 0.83 79.66 94.87 0.87 25.27 38.57 0.53 59.37 79.38 0.72
VAR 55.88 75.64 0.82 77.18 98.73 0.86 24.56 37.35 0.51 57.40 71.84 0.71

LatentODE 43.35 63.75 0.79 69.71 92.67 0.77 19.99 30.85 0.46 42.59 57.90 0.50
ODE-RNN 43.60 63.67 0.79 70.22 93.12 0.78 20.57 31.26 0.45 42.07 57.76 0.51

ODE-LSTM 43.68 64.23 0.78 70.60 93.27 0.77 20.21 30.88 0.45 41.29 56.47 0.49
STGCN 45.99 64.85 0.82 73.65 97.87 0.76 23.64 32.48 0.52 55.29 73.21 0.54
DCRNN 49.61 71.53 0.82 75.31 96.50 0.81 24.02 37.87 0.53 56.88 74.58 0.73

ASTGCN 42.88 65.24 0.79 72.75 96.68 0.83 19.92 31.39 0.44 42.06 57.50 0.52
GTS 42.96 63.27 0.80 70.36 92.70 0.76 19.52 30.36 0.43 40.87 56.20 0.49

PM25GNN 45.23 66.43 0.82 72.45 95.34 0.78 19.32 30.12 0.43 40.43 55.49 0.49
Airformer 42.74 63.11 0.78 68.80 91.16 0.75 19.17 30.19 0.43 39.99 55.35 0.49
AirPhyNet 42.72 64.58 0.78 70.03 94.60 0.78 21.31 31.77 0.47 43.23 58.79 0.50

Air-DualODE 40.32 62.04 0.74 66.40 90.31 0.73 18.64 29.37 0.42 39.79 54.61 0.49

From Table 8 we can also observe the following: 1) deep learning approaches outperform classical
methods such as HA and VAR, demonstrating their superior ability to capture complex spatiotem-
poral correlations. 2) Spatiotemporal deep learning models, originally developed for traffic flow
forecasting, such as ASTGCN and GTS, exhibit strong adaptability to air quality forecasting, pro-
ducing results comparable to SOTA air quality prediction methods like AirFormer and PM25GNN.
3) Approaches based on Neural DE networks also exhibit competitive performance compared to
spatiotemporal deep learning methods, as they capture the ODE function in latent space, which is
crucial for accurate air quality prediction. Overall, these results suggest the effectiveness of Air-
DualODE in achieving precise air quality predictions while leveraging the physics-based domain
knowledge of air pollutant transport.

Discussions: We use the current definition of sudden changes and the corresponding metrics to
ensure consistency with existing studies (Liang et al., 2023; Hettige et al., 2024). However, they
may not be the most appropriate ones. In future work, we plan to explore alternative evaluation
metrics, such as mean directional accuracy (MDA) (Van den Burg & Williams, 2020), and adopt
new sudden change definitions based on change point detection algorithms (Witzke et al., 2023).
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4.3 ABLATION STUDY

Effect of Dual Dynamics. To validate the effectiveness of Dual Dynamics, we test each branch of
Air-DualODE independently across both datasets: a) w/o Physics Dynamics, which solely relies on
Data-Driven Dynamics augmented by the spatial-MSA mechanism; b) w/o Data-Driven Dynamics,
employing only Physics Dynamics without the encoder. Both configurations exclude Dynamics Fu-
sion. As shown in Table 2, the removal of either branch results in diminished performance. Notably,
the absence of Data-Driven Dynamics leads to notably poor performance from BA-DAE on both
datasets, since physical equations often idealize real-world scenarios. Conversely, the integration
of both branches significantly enhances performance, demonstrating that Data-Driven and Physics
Dynamics provide complementary insights.

Table 2: Effect of dual dynamics, fusion on latent space, Decay-TCL and Spatial-MSA.

Methods Beijing KnowAir
MAE RMSE SMAPE MAE RMSE SMAPE

w/o Physics Dynamics 42.75 63.45 0.75 19.69 30.65 0.45
w/o Data-Driven Dynamics 44.33 65.60 0.82 21.21 33.09 0.56

Explicit Fusion 41.32 63.08 0.76 19.06 30.28 0.43
Cross-Space Fusion 41.97 63.12 0.77 19.27 30.54 0.44

w/o Decay-TCL 42.34 66.56 0.82 19.10 29.79 0.43
w/o Spatial-MSA 40.52 62.49 0.75 18.97 30.01 0.43

Air-DualODE 40.32 62.04 0.74 18.64 29.37 0.42

Effect of Fusion on Latent Space. To further validate Dynamics Fusion in the latent space, we
test alternative fusion strategies: a) Explicit Fusion: After solving ODE-Func FD in the latent
space using Data-Driven Dynamics, we apply a Decoder to map it to explicit space (i.e., pollu-
tant concentration) before fusion. b) Cross-Space Fusion: We combine the explicit-space output
of Physics Dynamics with the deep representations of Data-Driven Dynamics. Both methods use
GNN for fusion, consistent with Air-DualODE. As shown in Table 2, both methods led to a de-
cline in performance. Fusion in explicit space experienced information loss during the decoding of
deep representations, whereas fusion across different spaces encounter mismatched representations,
which exacerbats performance deterioration. This underscores the importance of aligning and fusing
Dynamics within the latent space to achieve optimal results.

40

40.5

41

41.5

42

M
AE

(a) Beijing
18

18.5

19

19.5

20

(b) KnowAir

Diff-c Adv-c DAE-c BA-DAE-o

Figure 5: Effect of Physical Knowledge on MAE.

Effect of Physical knowledge. To further
demonstrate the impact of incorporating physi-
cal knowledge, we compare Air-DualODE with
three other closed-system variations: a) Diff-c,
which only considers the diffusion process, b)
Adv-c, which only considers the advection pro-
cess, and c) DAE-c, which accounts for both
processes. Additionally, we compare these with
d) BA-DAE-o, namely Air-DualODE, as pro-
posed in Section 3.2.2 for open air systems.
Fig.5 shows that integrated physical knowl-
edge is crucial, and inadequate modeling leads
to reduced performance. Consistent with Air-
PhyNet (Hettige et al., 2024), DAE-c outperforms Diff-c and Adv-c, but its inability to model dis-
sipation and generation makes it less effective than BA-DAE-o. This underscores the effectiveness
of BA-DAE in modeling open air systems. While Data-Driven Dynamics can compensate for some
deficiencies in the physical equations, it still cannot match the effectiveness of direct physical mod-
eling.

Effect of Spatial-MSA. To assess the impact of Spatial-MSA in FD,we compare it with w/o
Spatial-MSA, which uses standard self-attention (SA). Table 2 suggests that the performance with-
out Spatial-MSA is similar to Air-DualODE on the Beijing dataset, while there is a significant per-
formance gap on the KnowAir dataset. This is because stations in Beijing are geographically close
with no major barriers, making Spatial-MSA almost equivalent to SA. In contrast, with KnowAir
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being a national dataset with distant stations, the performance gap highlights that distant station
representations offer little useful information.

Effect of Decay-TCL. To validate Decay-TCL, we test the model w/o Decay-TCL, where Ltcl is
removed from Air-DualODE. Table 2 shows that directly fusing Dual Dynamics in the latent space
leads to a performance drop. This is because the latent representations of Physics Dynamics, after
being mapped through the Encoder, may not align with those of Data-Driven Dynamics, resulting in
mismatches and inconsistencies during fusion.

4.4 CASE STUDY

We present two case studies to demonstrate the interpretability of the physical equations within the
dual dynamics. To highlight its physical significance, we visualize the predicted PM2.5 concen-
trations alongside wind direction data from the Beijing dataset. Fig.6 displays the PM levels at
monitoring stations at two consecutive prediction timestamps. The emergence of a southeast wind
in Fig.6 causes the pollutant concentrations to shift in the direction of the wind, most noticeably in
the circled regions. Specifically, PM2.5 concentrations decrease in the purple-circled regions, while
they increase in the black-circled regions. This indicates that Air-DualODE successfully captures
certain spatiotemporal correlations between wind direction and pollutant concentrations based on
the Advection equation in the BA-DAE.

Beijing 2018-2-15 6:00
southeast wind

Beijing 2018-2-15 9:00
southeast wind

Figure 6: Visualization of predicted
PM2.5 concentrations under advection.
The heatmap shows PM2.5 concentration,
while arrows represent wind direction.

Figure 7: Visualization of β, where negative and pos-
itive values separately indicate dissipation and gener-
ation. The arrow direction represents wind direction,
and the length reflects wind speed at each station.

Next, we visualize the β in BA-DAE under two scenarios on the Beijing dataset (see Fig.7). As
described in Section 3.2.2, negative values represent PM2.5 dissipation (blue colorbar), while posi-
tive values indicate PM2.5 generation (red colorbar). We observe two distinct scenarios: In the first
scenario (left side of Fig.7), with wind present, dissipation significantly increases at boundary sta-
tions in the wind direction (denoted by circles), resulting in larger negative βi. Additionally, some
boundary stations exhibit positive βi, which is reasonable because the wind at these stations carries
pollutants from outside the region. In other words, this can be considered as pollutant generation. In
the second scenario (right side of Fig.7), with no wind, boundary stations exhibit greater dissipation
due to forest absorption and diffusion beyond the boundary, leading to negative βi at the outskirts of
Beijing. Notably, the city center of Beijing exhibits higher βi at 9 a.m., indicating pollutant genera-
tion. This is expected, as 9 a.m. coincides with Beijing’s morning rush hour, when a large number
of vehicles are present in the area. This example demonstrates that our model successfully captures
the increase in pollutants caused by vehicle emissions. Overall, by integrating physical equations,
Air-DualODE demonstrates excellent interpretability.

5 CONCLUSION AND FUTURE WORKS

We design Air-DualODE to predict air quality at both city and national levels. Our method employs
a dual-dynamics approach, leveraging Neural ODEs to model physical (known) and data-driven
(unknown) dynamics, which are subsequently aligned and fused in the latent space. By integrating
physical equations into deep learning, Air-DualODE allows existing physical knowledge to enhance
the model’s learning, inference, and ultimately, its prediction accuracy. While the results are promis-
ing, predicting sudden changes remains a significant challenge in air quality forecasting. Therefore,
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Designing specific mechanisms to better handle sudden changes is an important and promising re-
search direction. Moreover, we plan to further explore Physics-guided DualODE and extend its
application to more general spatiotemporal prediction tasks.
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A APPENDIX

A.1 NOTATION

Table 3: Summary of Notations used in the paper

Symbol Description
G Geospatial Graph

Gdiff Diffusion Graph (static)
Gadv Advection Graph (dynamic)
N Number of Nodes

V, Vi Nodes of the G and i-th node
E Set of Edges in G

Xt Pollutant Concentration at t timestamp (Xt ∈ RN×1)
At Auxiliary covariates at t timestamp (At ∈ RN×(D−1))
F⃗ Flux of Particles
v⃗ Wind Field

Ldiff Discrete Laplacian operator on Gdiff

Ladv Discrete Laplacian operator on Gadv

AWs
t Wind speed at at t timestamp

AWd
t Wind direction at at t timestamp
k Diffusion Coefficient
β Correction term’s coefficient in BA-DAE (β ∈ RN×1)
βi β = [β1, ..., βi, ..., βN ]

A.2 THE DERIVATION OF DIFFUSION-ADVECTION EQUATION

According to the Eq.1, by modifying the flow field F⃗ , both the Diffusion and Advection equations
for pollutants can be derived. X(p, t) denotes the spatiotemporal distribution of pollutants, where p
corresponds to the spatial variable and t refers to the temporal variable.

Diffusion Equation The driving flow field for Diffusion is dictated by the distribution of pollutant
concentrations, specifically the gradient field of the pollutants. Thus, the Diffusion equation de-
scribes the phenomenon where pollutants always diffuse from areas of higher concentration to areas
of lower concentration.

∂X

∂t
− k · ∇2X = 0. (14)

Advection Equation The driving flow field for Advection is the natural wind field. Consequently,
the Advection equation describes the phenomenon where pollutants propagate in the direction of the
wind, with the magnitude of propagation dependent on the wind speed.

∂X

∂t
+ ∇⃗(X · v⃗) = 0. (15)

The Method of Lines (MOL) can discretize the PDEs into a grid of location-specific ODEs for
solving Eq.14 and Eq.15 (Schiesser, 2012). According to Chapman & Chapman (2015), the discrete
equation can be drived as follow:

Discrete Diffusion Equation

dXi

dt
= k ·

∑
j∈N(i)

Gdiff[ij](Xi −Xj), (16)
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where Gdiff[ij] represents the pollutants transport weight from Vi to Vj under the diffusion scenario,
k denotes diffusion coefficient, and N(i) denotes the set of neighbours of Vi.

Discrete Advection Equation

dXi

dt
= −

∑
∀k←i

Gadv[ik]Xi +
∑
∀j→i

Gadv[ji]Xj , (17)

where Gadv[ij] represents the transport of pollutants from Vi to Vj under the advection scenario.
The first term indicates that the pollutant concentration at Vi decreases due to the wind blowing
pollutants from Vi to Vj , while the second term reflects the contribution of pollutants transported
by the wind from other stations to Vi.

A.3 PROOF OF CLOSED SYSTEM’S CONSERVATION PROPERTY

In this section, we use the Discrete Diffusion Equation (Eq.16) as an example to illustrate the mass
conservation law in a closed system. By applying the Method of Lines (MOL) for spatial discretiza-
tion, we derive the spatially discrete form of Eq.14. Next, we demonstrate the validity of Eq. 5.

dXi

dt
= −k · LdiffX = k ·

∑
j∈N(i)

Gdiff[ij](Xi −Xj), ∀i ∈ N

Given Xi(0).

Proof:

N∑
i=1

dXi

dt
= k ·

N∑
i=1

∑
j∈N(i)

Gdiff[ij](Xi −Xj)

= k ·
N∑
i=1

 ∑
j∈N(i)

Gdiff[ij]Xi −
∑

j∈N(i)

Gdiff[ij]Xj


= k ·

N∑
i=1

Xi

∑
j∈N(i)

Gdiff[ij]−
∑

j∈N(i)

Gdiff[ij]Xj


= k ·

N∑
i=1

Xidi − k ·
N∑
i=1

∑
j∈N(i)

Gdiff[ij]Xj

= 0

The final equality holds because the number of times Xj is added depends on how many vertices it
is connected to, which is represented by its degree, di.

It follows the same principle as the discrete Advection equation, meaning the discrete Diffusion-
Advection Equation also adheres to the mass conservation law.

A.4 GEOSPATIAL GRAPH

It is essential to clarify the conditions under which pollutants can propagate. According to the
settings in Wang et al. (2020), pollutants cannot propagate when the distance is too great or when
geographical barriers such as mountains exist between stations. The formula is as follows:

GGeo-Spatial[ij] = H(dθ − dij) · H(mθ −mij)
dij = ∥ρi − ρj∥

mij = sup
λ∈(0,1)

{h[λρi + (1− λ)ρi]− Max{h(ρi), h(ρj)}}
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In this context, H(·) denotes the Heaviside step function, which outputs 1 if the value is greater than
0 and 0 if it is less than 0. The symbol h(·) represents elevation, while ρi denotes the latitude and
longitude of station i. Utilizing topographic data along with specified geographical coordinates, we
can determine the elevation of all regions nationwide. By doing so, we can establish a basic graph
structure G. Upon this foundation, by constructing a Diffusion graph and an Advection graph, and
subsequently building GNN Blocks for each, we can approximate the Laplacian operator required
by the DAE.

A.5 DATASETS DESCRIPTION

Beijing dataset comprises data from 35 air quality monitoring stations (measuring PM2.5, PM10,
O3, NO2, SO2, and CO), and meteorological reanalysis data (temperature, pressure, humidity, wind
speed, and wind direction), organized in a grid format. The dataset contains hourly observations
from January 1, 2017, to March 31, 2018. Meteorological data for each station is obtained from
the nearest grid point. Missing air quality data is initially filled using information from the nearest
station, and gaps of less than 5 hours are interpolated along the time dimension. Gaps exceeding 5
hours are removed to preserve data integrity. The dataset is divided chronologically in a 7:1:2 ratio
for training, validation, and testing.

KnowAir dataset includes PM2.5 data and 17 meteorological attributes from 184 cities across China,
with observations recorded at three-hour intervals from January 1, 2015, to December 31, 2018.
Unlike the Beijing dataset, the KnowAir dataset is divided chronologically in a 2:1:1 ratio due to its
ample four-year data span (Wang et al., 2020).

A.6 EVALUATION METRICS

Let x = (x1, . . . , xm) represents the ground truth, and x̂ = (x̂1, . . . , x̂m) represents the predicted
pollutant concentrations. The evaluation metrics we used in this paper are defined as follows:

Mean Absolute Error (MAE)

MAE(x, x̂) =
1

m

m∑
i=1

|xi − x̂i|

Root Mean Square Error (RMSE)

RMSE(x, x̂) =

√√√√ 1

m

n∑
i=1

(xi − x̂i)2

Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE(x, x̂) =
1

m

m∑
i=1

|xi − x̂i|
|xi|+|x̂i|

2

A.7 IMPLEMENTS DETAILS

All experiments are conducted using PyTorch 2.3.0 and executed on an NVIDIA GeForce RTX 3090
GPU, utilizing the Adam optimizer. The batch size is set to 32, and the initial learning rate is 0.005,
which decays at specific intervals with a decay rate of 0.1. A GRU-based RNN encoder is employed
for the Coefficient Estimator and the encoders of both the Physics Dynamics and Data-Driven Dy-
namics. For the ODE solver, we adopt the dopri5 numerical integration method in combination with
the adjoint method (Chen et al., 2018). For Dynamics Fusion, λ1 and λ2 are set to 1 and 0.8, re-
spectively, to differentiate distinct dynamics, and the number of GNN layers is set to 3. The solver’s
relative tolerance (rtol) and absolute tolerance (atol) are set to 1e-3.
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A.8 NUMERICAL STABILITY

Given that Air-DualODE utilizes an ODE solver in its dual branches and incorporates complex struc-
tures like GNN Fusion, it is necessary to verify the model’s numerical stability. The training loss
curves on the Beijing and KnowAir datasets (Fig. 8) demonstrate that Air-DualODE achieves con-
vergence. Besides, our model incorporates normalization techniques, such as Layer Normalization,
which contributes to numerical stability.
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Figure 8: The training curves on the two datasets experimentally demonstrate that Air-DualODE
achieves convergence.

A.9 THE CASE STUDY OF KNOWAIR

Similar to Fig.6, we visualized a sample from the KnowAir dataset. Since KnowAir is a national-
level dataset, we selected time points with a two-day interval. Notably, within the purple circle,
pollutant concentrations are influenced by the southwest wind, resulting in a gradual decrease in
pollutant levels across mainland China. The case studies in Fig.6 and Fig.9 demonstrate that, re-
gardless of the scale of the pollutant prediction scenario, Air-DualODE effectively captures the
behavior of the Advection equation, thanks to its dual-branch framework.

Figure 9: Visualization of predicted PM2.5 concentrations under advection. The heatmap shows
PM2.5 concentration, while arrows represent wind direction.

A.10 MORE EXPERIMENT RESULTS

To highlight the superiority of Air-DualODE, we provide more comprehensive comparisons by eval-
uating prediction performance for one-day, two-day, and three-day intervals. Table 4 is more com-
plete than Table 1 in Section 4.2, providing additional short-term prediction results.

At the period-of-time level, from Table 4, it is evident that Air-DualODE outperforms all competitive
baselines across all three time intervals within three days. To further evaluate its performance over
step error, we provide the MAE results at 12 individual time steps. From Table 5, Air-DualODE
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Table 4: More experiment results on Beijing and KnowAir datasets. The bold and underlined font
show the best and the second best result respectively.

Dataset Model
1-24h 24-48h 48-72h

MAE RMSE SMAPE MAE RMSE SMAPE MAE RMSE SMAPE

Beijing

LatentODE 37.28 54.31 0.70 46.08 67.11 0.83 46.67 68.82 0.84
PM25GNN 38.58 56.72 0.73 47.29 70.43 0.86 49.82 72.14 0.87
Airformer 35.88 55.01 0.69 45.62 65.61 0.81 46.73 68.69 0.83
AirPhyNet 35.69 58.35 0.68 45.06 66.83 0.81 47.42 68.52 0.83

Air-DualODE 32.70 50.61 0.62 43.11 65.35 0.78 45.15 67.59 0.81

KnowAir

LatentODE 16.82 26.93 0.39 20.56 31.35 0.47 22.59 33.86 0.52
PM25GNN 15.99 25.53 0.37 20.39 31.33 0.45 21.59 32.99 0.48
Airformer 15.63 25.51 0.36 20.37 31.52 0.45 21.49 33.02 0.47
AirPhyNet 17.74 27.75 0.40 21.72 32.41 0.48 24.47 34.75 0.53

Air-DualODE 15.43 24.76 0.35 19.60 30.49 0.44 20.90 32.32 0.47

Table 5: Three-Day MAE Comparison at Each Step on Beijing and KnowAir Datasets. The bold
and underlined font show the best and the second best result respectively.

Dataset Model 1st 3rd 5th 7th 9th 11th 13th 15th 17th 19th 21st 23rd

Beijing

LatentODE 28.06 34.55 39.38 42.58 44.91 45.96 46.37 46.57 46.68 46.61 46.58 46.73
PM25GNN 27.45 36.11 41.59 43.09 45.34 47.33 47.85 48.37 49.62 49.66 49.45 49.33
Airformer 23.88 31.94 38.17 41.76 44.18 45.37 45.72 45.83 46.32 46.63 46.46 46.79
AirPhyNet 23.17 31.66 37.76 40.88 43.95 44.27 45.61 45.67 46.13 46.65 46.82 47.96

Air-DualODE 18.57 29.68 36.00 39.80 42.00 42.85 43.21 43.76 44.39 44.80 45.23 45.71

KnowAir

LatentODE 14.26 16.11 17.37 18.23 19.26 20.23 20.83 21.24 21.82 22.39 22.74 22.98
PM25GNN 10.45 15.60 17.35 17.98 19.03 20.30 20.82 20.85 21.08 21.66 21.82 21.65
Airformer 10.28 14.66 16.74 18.01 19.15 19.98 20.54 20.81 21.12 21.34 21.69 21.79
AirPhyNet 14.41 17.18 18.56 19.21 20.27 21.38 22.06 22.44 23.17 24.05 24.71 25.23

Air-DualODE 10.26 14.65 16.59 17.66 18.54 19.33 19.82 20.17 20.47 20.79 21.02 21.12

also surpasses all baselines in the step-by-step comparison. These results demonstrate its strong
short-term and long-term prediction capabilities.

A.11 HYPERPARAMETER SENSITIVE ANALYSIS

To examine the robustness of Air-DualODE to different hyperparameters, we selected the number of
layers n in the GNN Fusion module (Section 3.4) and the coefficient γ in the loss function (Eq.??)
for sensitivity analysis. As shown in Fig.10 below, both hyperparameters exhibit low sensitivity on
the two datasets, achieving consistently good performance.

A.12 ODE SOLVER SENSITIVE ANALYSIS

To examine the robustness and runtime differences of Air-DualODE across different solvers, we
trained the model using three different solvers (Euler, RK4, and Dopri5) on two datasets. The
inference time refers to the runtime on the entire test dataset. The results are as follows:

As shown in Table 6, Air-DualODE demonstrates a certain level of robustness to different solver
types. Dopri5, as an adaptive high-order ODE solver, achieves the best performance on both
datasets. Although it incurs a slight increase in runtime, it provides a corresponding improvement
in accuracy.

A.13 VISUALIZATION OF ADVECTION GRAPH

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1 2 3 4 5
n

20

40

60

M
A

E

Beijing

1 2 3 4 5
n

10

20

30

M
A

E

KnowAir

0.1 0.5 1 3 520

40

60

M
A

E

Beijing

0.1 0.5 1 3 510

20

30

M
A

E

KnowAir

1 2 3 4 5
n

40

60

80

R
M

SE

Beijing

1 2 3 4 5
n

0

25

50

R
M

SE

KnowAir

0.1 0.5 1 3 540

60

80

R
M

SE

Beijing

0.1 0.5 1 3 50

25

50

R
M

SE

KnowAir

1 2 3 4 5
n

0.0

0.5

1.0

SM
A

PE

Beijing

1 2 3 4 5
n

0.0

0.5

1.0

SM
A

PE
KnowAir

0.1 0.5 1 3 50.0

0.5

1.0

SM
A

PE

Beijing

0.1 0.5 1 3 50.0

0.5

1.0

SM
A

PE

KnowAir

Figure 10: Sensitivity of MAE, RMSE and SMAPE to n and γ on Beijing and KnowAir.

Table 6: Sensitivity and Runtime study of different ODE solver on two datasets.

Solver MAE RMSE MAPE Inference time(s)

Beijing-euler 41.23 63.09 0.74 0.9
Beijing-rk4 40.80 62.90 0.74 1.5

Beijing-dopri5 40.32 62.04 0.74 1.98
KnowAir-euler 18.92 30.77 0.42 11.4
KnowAir-rk4 18.94 30.42 0.42 18.9

KnowAir-dopri5 18.64 29.37 0.42 22.5

As mentioned in Section 3.2.1, the construction of the Advection Graph is defined in Eq.4. To
better understand the dynamic nature of Gadv, we visualized the wind speed and direction of several
stations in Beijing at different time, along with their corresponding Gadv, as shown in Fig.11.
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Figure 11: Visualization of Gadv in Beijing. The blue arrows indicate wind direction, and their
lengths represent wind speed at each station. The orange arrows illustrate the direct edges of Gadv.

In Fig.11, the changes in the Advection Graph depend on variations in wind speed and direction.
Specifically, wind direction influences the connectivity between nodes, while wind speed determines
the weight of each edge.
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A.14 THE DETAILS OF FD

FD represents the ODE function of the data-driven branch, incorporating a Spatial-MSA structure
as shown in Fig.2 (FD: Masked Attention-Based ODE Fusion). The following section provides
details about the formula for FD.

Q,K, V = Projection(ZD),

ZD = ZD + Spatial-MSA(Q,K, V ),

dZD

dt
= LN(ZD + MLP(LN(ZD))) = FD.

Among these, Q, K, and V are obtained through a linear projection of ZD. The spatiotemporal
dependencies are then captured using the carefully designed Spatial-MSA and a residual connection
in the form of a data-driven derivative. Layer normalization is applied to ensure numerical stability.

We consider air pollutant propagation as a spatiotemporal dynamic system. Neural ODE, serving as
a bridge between dynamic systems and neural networks, is better suited for modeling the spatiotem-
poral dynamics of pollutants compared to traditional sequence models like RNN and Transformer.

A.15 VISUALIZATION OF SUDDEN CHANGES’ RESULTS

To validate whether Air-DualODE can predict upward or downward trends during sudden changes
(as described in Section 4.1), we visualized sudden changes at specific stations, as shown in Fig.12.
The visualization results demonstrate that Air-DualODE can predict the overall upward and down-
ward trends, providing important support for downstream decision-making by policymakers. How-
ever, in some cases, such as those illustrated in Fig.12a and Fig.12b, the peak pollutant concentra-
tions were not well predicted. Although Air-DualODE outperforms other methods in the quantitative
analysis of sudden changes prediction, as shown in Table 8, predicting sudden changes remains a
significant challenge.
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(a) Sudden change’s upward trend.
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(b) Sudden change’s upward trend.
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(c) Sudden change’s downward trend.
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(d) Sudden change’s downward trend.

Figure 12: Sudden change visualization on KnowAir dataset.
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A.16 ABLATION STUDY ON GNN FUSION

To experimentally demonstrate the effectiveness of GNN Fusion, we replaced GNN Fusion with
other variants. Among these, MLP Fusion maps from RN×2D → RN×1, while Equivalent MLP
Fusion uses an equivalent number of MLP layers as GNN Fusion. Additionally, we tested Pool-
ing Fusion, which applies mean or sum pooling to each station’s representations. The results are
presented in Table 7.

Table 7: Effect of GNN Fusion in Dynamics Fusion.

Methods Beijing KnowAir
MAE RMSE SMAPE MAE RMSE SMAPE

MLP Fusion 41.49 63.14 0.76 21.50 32.92 0.56
Equivalent MLP Fusion 41.45 63.23 0.75 21.42 32.83 0.56
Mean-Pooling Fusion 43.23 68.88 0.80 20.03 31.22 0.45
Sum-Pooling Fusion 43.12 68.30 0.80 19.97 31.10 0.44

Air-DualODE 40.32 62.04 0.74 18.64 29.37 0.42

According to Table 7, we observe that both MLP-based Fusion and Pooling Fusion exhibit degra-
dation on the Beijing dataset because the Beijing dataset is city-level, where stations are relatively
close to each other. Since Pooling Fusion does not consider representations from other stations,
its performance degrades more significantly than that of MLP-based Fusion. Conversely, on the
KnowAir dataset, we observe that MLP-based fusion methods exhibit significant degradation. This
is because, during fusion, these methods incorporate representations from distant nodes, which act
as noise for predicting the target station. Such noisy representations fail to provide useful infor-
mation and instead interfere with prediction accuracy. Additionally, since Pooling fusion methods
do not consider representations from other stations, its results outperform the two MLP-based fu-
sion methods. These two extreme fusions highlight the importance of incorporating representations
from neighboring stations during fusion. Based on this intuition, we designed GNN Fusion, which
leverages the geospatial graph G to fuse representations from nearby stations. The results in Table
7 demonstrate this design choice is effective.

A.17 DISCUSSIONS

Numerical instability when removing layer normalization. In our experiments, we observe that
Air-DualODE’s numerical stability relies on Layer Normalization when using the Dopri5 ODE
solver. Without it, gradient explosion and NaN occur after a few training epochs, preventing the
model from converging stably. This dependency on Layer Normalization is closely related to solving
the dual dynamics with the adaptive ODE solver, as we do not observe this phenomenon when using
either a single dynamics branch alone or simpler ODE solvers (e.g., Euler and RK4). The dual
dynamics, with their inconsistent numerical ranges, lead to instability during adaptive forward and
backward propagation. However, Layer Normalization ensures consistency of the numerical ranges
in the dual dynamics’ adaptive solving during each iteration, thereby ensuring numerical stability.

Comparison with AirPhyNet.

Table 8: The difference between Air-DualODE and AirPhyNet.

Difference AirPhyNet Air-DualODE
Air system modeling Closed system Open system

Physics-guided approaches Explicit physical equation on latent space Explicit physical equation on explicit space and GNN fusion
Matching physics with latent representations No mechanism to ensure Decay-TCL

Spatial module GNN-based differential equation NODE with Spatial-MSA and BA-DAE
Temporal module GNN-based differential equation NODE and BA-DAE

Computational efficiency Slow Fast

• Air-DualODE models open air systems, making it more realistic compared to the closed system
assumption of AirPhyNet.
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• Air-DualODE applies physical equations directly to explicit variables, which is more reasonable
than applying them to latent variables that no longer hold actual physical meanings.

• Air-DualODE employs Decay-TCL for alignment to address the mismatch between explicit phys-
ical equations and data-driven latent representations, whereas AirPhyNet overlooks this issue.

• AirPhyNet relies only on GNN-based differential equations to model spatiotemporal dependen-
cies, whereas Air-DualODE incorporates multiple components, including BA-DAE for modeling
in the explicit space and NODE with Spatial-MSA for capturing additional dependencies in the
latent space.

• Air-DualODE outperforms AirPhyNet in terms of computational efficiency and scalability to a
larger number of nodes.

A.18 LIMITATIONS

Generalization to other domains. In this paper, Air-DualODE is specifically designed for air
pollutant prediction. To apply it to spatiotemporal prediction tasks in other domains (e.g., traffic
forecasting and water quality prediction), the physical branch would require adaptive modifications.

Handling sudden changes. As mentioned in Appendix A.15, predicting sudden changes remains
a challenge in air quality prediction. This is an issue that demands significant attention because
sudden changes in pollutant concentrations are critical to societal activities and production. In fact,
many spatiotemporal dependencies underlying sudden changes cannot be effectively captured by
deterministic methods or physical equations, as such changes are often influenced by uncertainties in
weather and human interventions. In the future, we plan to explore and address this challenge further
by incorporating probabilistic approaches like variational inference into the data-driven branch. We
leave this as an important and promising future research direction.
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