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Abstract

Mental visualization, the ability to construct and manipulate visual representations
internally, is a core component of human cognition and plays a vital role in tasks
involving reasoning, prediction, and abstraction. Despite the rapid progress of Mul-
timodal Large Language Models (MLLMs), current benchmarks primarily assess
passive visual perception, offering limited insight into the more active capability of
internally constructing visual patterns to support problem solving. Yet mental visu-
alization is a critical cognitive skill in humans, supporting abilities such as spatial
navigation, predicting physical trajectories, and solving complex visual problems
through imaginative simulation. To bridge this gap, we introduce Hyperphantasia,
a synthetic benchmark designed to evaluate the mental visualization abilities of
MLLMs through four carefully constructed puzzles. Each puzzle is procedurally
generated and presented at three difficulty levels, enabling controlled analysis of
model performance across increasing complexity. Our comprehensive evaluation
of state-of-the-art models reveals a substantial gap between the performance of
humans and MLLMs. Additionally, we explore the potential of reinforcement
learning to improve visual simulation capabilities. Our findings suggest that while
some models exhibit partial competence in recognizing visual patterns, robust
mental visualization remains an open challenge for current MLLMs. Our dataset
is publicly available at Huggingface1, and the evaluation code can be found at
GitHub2.

1 Introduction

The human capacity for mental visualization – the ability to internally simulate scenes, structures,
and dynamics – is central to perception and reasoning. Decades of work in cognitive science have
demonstrated that people can mentally rotate objects in three-dimensional space [25], infer the future
trajectory of moving bodies from a static snapshot [4], and fill in occluded or missing information
in a scene based on prior experience [3]. These abilities reflect an underlying mental model of the
physical and spatial world, enabling prediction in situations where direct perceptual input is limited
or ambiguous.

In recent years, large language models (LLMs) have demonstrated strong performance on a wide range
of linguistic and reasoning tasks, mostly driven by scale and training on massive text corpora. Building
on this success, vision-language models (VLMs), which fuse textual and visual representations, have
extended these capabilities to multimodal domains. VLMs have achieved impressive results on

1https://huggingface.co/datasets/shahab7899/Hyperphantasia
2https://github.com/AIF4S/Hyperphantasia

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.
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Figure 1: Overview of puzzles in Hyperphantasia

benchmarks that assess a variety of skills, including visual problem-solving [33], visual Math
reasoning [19], and visual question answering (VQA) [9]. These benchmarks have become de facto
standards for evaluating VLM performance. However, the majority of these tasks involve directly
using the information given in the image, offering limited insight into the models’ ability to simulate,
extrapolate, or reason about the latent structure of a scene.

In this work, we introduce Hyperphantasia, a new benchmark suite aimed at evaluating vision-
language models on tasks that require mental visualization. Our contributions are as follows:

• We present a novel synthetic benchmark consisting of four distinct puzzle types, each
spanning three difficulty levels, designed to probe the mental visualization capabilities of
MLLMs. The full dataset contains 1200 samples, 100 per difficulty level for each task, and
is publicly available.

• We conduct a comprehensive evaluation of state-of-the-art MLLMs on our benchmark,
revealing a lack of robust mental visualization abilities.

• We explore the use of reinforcement learning to elicit mental visualization behavior, and
analyze how task difficulty and diversity affect model generalization and performance.

• We identify additional failure modes, beyond the lack of mental visualization, that contribute
to model failure on Hyperphantasia tasks.

2 Background

Vision Language Models (VLMs) – Vision-language models (VLMs) extend the capabilities of
traditional language models by incorporating visual information, enabling joint reasoning over text
and images within a single architecture. Initial approaches like CLIP [21], and ALIGN [12] used
contrastive learning to align visual and textual embeddings, laying the foundation for multimodal
understanding. This was followed by autoregressive and encoder-decoder architectures such as
Flamingo [1] and BLIP-2 [17], which introduced mechanisms to condition language generation
on visual inputs through cross-attention and intermediate adapters. LLaVA [18] directly aligns a
pretrained and frozen visual encoder with a language model by optimizing a projection module using
image-text pairs.

VLM Benchmarks – The rapid development of vision-language models has been accompanied
by a proliferation of benchmarks aimed at evaluating their capabilities across a range of tasks and
reasoning demands. VQAv2 [9] tests models on answering natural language questions about images.
To probe deeper reasoning abilities, recent benchmarks have introduced more diverse and challenging
tasks. MediConfusion [22] challenges medical VLMs by introducing visually confusing image
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pairs and posing differentiable questions that require fine-grained visual understanding. MMMU
[33] assesses VLM performance across multiple professional domains, including medicine, law,
and engineering, requiring expert-level knowledge and MathVista [19] specifically targets visual
mathematical reasoning. MLLM-CompBench [13] focuses on evaluating the comparative reasoning
capabilities of VLMs when given an image pair. OCRBench [7] isolates and evaluates optical
character recognition (OCR) capabilities of VLMs. Other recent efforts, such as SEED-Bench [15],
MM-Vet [32], and MME [6] expand this landscape by stress testing knowledge, integration of various
multimodal capability combinations, and reasoning. VHELM [14] extends the HELM framework to
VLMs, offering a unified evaluation across many aspects, including visual perception, knowledge,
reasoning, and multilinguality, which combines/uses earlier benchmarks mentioned earlier.

There has also been a flurry of works in evaluating visual manipulation, specifically, a model’s ability
to mentally simulate or infer structure from incomplete visual information. Xu et al. [31] probe
mental rotation and spatial manipulation of 3D objects, while SRBench [26] targets spatial reasoning
of VLMs. LEGO-Puzzles [27] evaluate spatial understanding and sequential reasoning through
LEGO-based tasks. While these benchmarks push toward more cognitively demanding evaluations,
none systematically assess the core and extent of a model’s ability to visually construct, simulate, and
extrapolate information. Moreover, they do not explicitly analyze or isolate the generalization and
robustness of mental visualization itself.

Mental Visualization – The ability to internally simulate spatial, physical, or causal properties of the
world has long been studied as a core component of human cognition. Foundational experiments in
cognitive psychology have demonstrated that humans can perform sophisticated internal operations
on visual representations without external stimuli. Shepard and Metzler [25] showed that the time
required to judge whether two 3D objects are congruent is linearly related to the angle of rotation,
suggesting that people mentally rotate objects in a continuous, analog fashion. Similarly, the classic
paper-folding or hole-punch experiments [28] revealed that participants could anticipate the resulting
patterns of punched holes on folded paper, requiring mental transformation and spatial projection. On
another thread, studies of intuitive physics have explored how people simulate object dynamics in the
absence of direct observation, such as predicting the trajectory of a ball under gravity of reasoning
about pulley systems and mechanical interactions [11]. These capabilities rely on the construction
and manipulation of internal models of space, force, and causality.

3 Hyperphantasia Dataset

Our goal is to evaluate the mental visualization capabilities of Multimodal Large Language Models
(MLLMs). In this context, mental visualization refers to the cognitive process of internally construct-
ing and manipulating visual representations without explicit external stimuli. While the majority
of existing benchmarks [8, 29] primarily target perception, captioning, or retrieval abilities, they
offer limited insight into a model’s capacity for active visual reasoning and imagination abilities
that are crucial in real-world scenarios requiring dynamic visual understanding. For instance, an
autonomous vehicle must be able to anticipate the trajectory of nearby moving objects to make safe
and timely decisions. To address this gap, we introduce Hyperphantasia, a benchmark consisting of
four synthetic tasks specifically designed to probe different aspects of mental visualization. In this
section, we describe the overall design of tasks in Hyperphantasia and outline the unique cognitive
abilities targeted by each task.

3.1 Overview of Hyperphantasia

The tasks in Hyperphantasia are organized into two main categories: Interpolation and Extrapolation,
each comprising of two sub-categories. The Interpolation tasks evaluate a model’s ability to infer
internal boundaries and recognize visual concepts from partial information. The Extrapolation tasks
assess the model’s capacity to anticipate and extend visual structures beyond the information explicitly
provided. In the following sections, we describe each category along with the corresponding puzzles.
Figure 1 illustrates examples of each puzzle in our benchmark.

To systematically assess model performance, Hyperphantasia has three levels of difficulty: Easy,
Medium, and Hard, with each level containing 100 puzzles per sub-category, resulting in a total of
1,200 samples. These difficulty levels control the visual and cognitive complexity of the tasks. Easy
puzzles are straightforward and require minimal visual inference, while Medium and Hard puzzles
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demand more extensive reasoning and mental simulation. Table 1 summarizes the hyperparameters
used to define difficulty across tasks. Examples of puzzles at different difficulty levels are shown in
Figure 2.

Easy Medium Hard

1

(a) Connect the Dots

Easy Medium Hard

1

(b) Linear Trajectory

Easy Medium Hard

1

(c) Parabolic Trajectory

Figure 2: Examples of Hyperphantasia puzzles across difficulty levels. (a) In Connect the Dots,
models must identify an object among four options based on samples of its outer contour. (b) In
Linear Trajectory, the model must mentally complete a missing edge of a triangle and identify the
correct vertex. (c) In Parabolic Trajectory, the model is asked to extrapolate the partial trajectory of a
dropped ball and predict its impact point. We omit Seven Segments as it consists of uniformly styled
dot grids and differs only in the number of digits per puzzle.

3.2 Interpolation Tasks

In these tasks, we present the model with an incomplete image and require it to infer or mentally
complete the missing parts based on visual cues or explicit instructions. The goal is to assess the
model’s ability to interpolate missing visual information by leveraging spatial reasoning and partial
patterns. The two puzzles in this category are:

• Seven Segments: In this puzzle, the model is shown a grid of numbered dots along with
a list of edges to connect. Based on the resulting shape formed by these connections, the
model must identify the digit that is implicitly drawn. The number of digits in the final
shape influences the puzzle’s difficulty. To generate these questions, we randomly sample
a number and convert it into a set of segment-like connections inspired by seven-segment
display patterns.

• Connect the Dots: In this task, the model is given a set of dots sampled from the external
contour of an object and is asked to identify the object from four given options. To generate
these puzzles, we begin by manually selecting 100 expressive images from distinct categories
within the Clipart subset of the DomainNet dataset [20]. We then apply automated visual
processing to extract the outer contour and sample dot points using a tunable minimum
distance parameter. Larger minimum distances reduce visual fidelity and increase task
difficulty. To generate the answer options, we use GPT-4o to select three visually similar
but incorrect labels from the full label set and manually verify that there is only one correct
option.
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3.3 Extrapolation Tasks

This category evaluates the model’s ability to predict object trajectories by mentally extending
observed visual patterns, based on either linear or non-linear assumptions. Tasks in this group require
the model to continue a trajectory beyond the given information in order to identify its point of impact
with a specific boundary or structure. The puzzles included in this category are:

• Linear Trajectory: In this puzzle, the model is shown a triangle in which a portion of
one edge has been removed. The task is to identify the node corresponding to the missing
segment from four given points. We control the difficulty by varying how much of the edge
is removed, as shorter visible segments require more precise extrapolation. To generate
these puzzles, we randomly sample parameters such as the angles between edges to create a
diverse set of triangle configurations.

• Parabolic Trajectory: These puzzles present a partial trajectory of a thrown ball, and the
model is asked to determine its impact point on a horizontal surface from four options.
As with the previous puzzle, difficulty is modulated by adjusting the length of the visible
trajectory. Puzzles with shorter arcs demand more advanced motion prediction capabilities.
Puzzle generation of this task involves random sampling of parameters such as the angle of
the drop and initial height.

Table 1: Hyperparameters for different difficulty settings of Hyperphantasia.

Interpolation Extrapolation

Seven Segments Connect the Dots Linear Trajectory Parabolic Trajectory

Difficulty No. digits Min. distance (pixel) Visible portion of the edge (%) Visible portion of the trajectory (%)

Easy 3 10 90 90
Medium 4 20 60 60
Hard 5 25 40 40

4 Experiments

In this section, we describe our experimental setup and present a comprehensive evaluation of
state-of-the-art Multimodal Large Language Models (MLLMs). Our results highlight the poor
performance of current models on mental visualization tasks. We further analyze the distinct abilities
exhibited by different models, revealing task-specific strengths and weaknesses across interpolation
and extrapolation challenges. To address these limitations, we explore the use of reinforcement
learning to improve performance and examine its effectiveness across puzzle types. Finally, we
investigate whether augmenting input images with visual cues can help improve the models.

4.1 Experimental Setup

Models: We evaluate Hyperphantasia on a range of state-of-the-art MLLMs, including o4-mini
(2025-04-16), GPT-4o (2024-08-06), Gemini 2.5 Pro (June 2025 update), Claude 3.7 Sonnet
(20250219), Qwen-VL-2.5 (7B and 32B) [2], LLaMA 3.2 (11B and 90B) [10], LLaVA-OneVision
(7B and 72B) [16], Molmo (7B and 72B) [5], and Deepseek-VL2 [30]. To evaluate large open-source
models (above 11B), we use four NVIDIA H100 GPUs; for Deepseek-VL 2, we use three NVIDIA
A100 GPUs; and for the remaining open-source models, we use a single A100 GPU. For proprietary
models, we use their APIs, which do not require any significant compute resources. Evaluation time
ranges from 1 to 3 hours, depending on the model.

Human Evaluation: For Seven Segments, each digit is clearly recognizable based on its edges,
making the task trivial for humans. Moreover, we manually evaluated several Seven Segments
puzzles and found them consistently easy to solve, so we report 100% accuracy on this task. For the
remaining puzzles, we recruited human participants while ensuring that each question was answered
by at least three individuals. We report the average human accuracy across all tasks and difficulty
levels. For Connect the Dots problems, since all difficulty variants are derived from the same base
examples, we assigned different participants to different difficulty levels to avoid biases.
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Evaluation Protocol: In the prompt, we allow models to explain their reasoning but require them
to enclose the final answer between two <ANSWER> tags. We set the temperature to 0 to ensure
deterministic outputs and regenerate the response up to three times if the model fails to follow the
required format. All evaluated models consistently adhered to this format, except for Deepseek-VL2,
for which we allowed free-form output and extracted the answer via response parsing. Each puzzle
includes a single image in jpg format with a resolution of 384× 384 pixels.

4.2 Results

Table 2 reports the accuracy of various models on Hyperphantasia across the Easy, Medium, and
Hard difficulty levels. Overall, current state-of-the-art MLLMs exhibit clear limitations in mental
visualization, with performance degrading significantly as task difficulty increases. Additionally,
we observe substantial variation in model performance across different puzzle types, indicating that
models possess uneven capabilities across different tasks.

Most strikingly, all models fail on Seven Segments puzzles except for Gemini and o4-mini, which
achieve 51% and 83% accuracy on the easy set, respectively. However, the rest of the models almost
completely fail, regardless of difficulty. Upon inspecting model responses, we observe that some
models repeatedly output fixed guesses regardless of the input. For example, Qwen-VL 2.5 7B
answered "012" in 32 out of 100 Easy examples. This behavior suggests that these models are not
engaging with the underlying visual reasoning task at all and instead resort to memorized patterns or
default completions, further underscoring their lack of mental visualization ability. Examples of this
behavior are provided in the Appendix 8.

Unlike Seven Segments puzzles, models perform relatively well on Connect the Dots puzzles in the
Easy setting, with Gemini and GPT-4o reaching 97% and 96%, respectively. However, performance
degrades significantly on Medium and Hard, with Gemini being the best model with 75% accuracy
on the Hard set. While human accuracy also declines with increased difficulty, the drop is much
smaller (around 4%) and the accuracy consistently remains above 94%. Furthermore, despite the
relative simplicity of the task, models such as Molmo and Deepseek struggle with Medium and Hard
sets and perform near the level of random guessing. Upon closer inspection of model outputs, we find
that some models confidently justify incorrect answers by hallucinating features related to the wrong
option, which are not present in the image. This suggests that, rather than grounding their answers in
the visual input, models often rely on loosely associated or imagined patterns, revealing limitations in
both visual grounding and fine-grained perceptual reasoning. We provide examples of such answers
in the Appendix 8.

Extrapolation tasks also prove to pose a major challenge to the models. In Linear Trajectory puzzles,
Claude achieves 60% in the Easy set, the highest among all models, but drops to the level of random
guessing on Medium and Hard. o4-mini shows a similar trend, scoring 43% on Easy but struggling
with more difficult examples. Interestingly, LLaVA-OneVision 72B, which performs modestly on
Connect the Dots puzzles, performs on par with 4o-mini on Linear Trajectory Easy difficulty level.
Overall, except for Claude, all models have below 50% accuracy in Easy Linear Trajectory puzzles.
The struggle with this task is particularly notable given that the human accuracy on Easy problems is
100%. In this puzzle, we see a larger drop in human accuracy as the difficulty level increases, but the
accuracy remains fairly high (89% on Hard).

Parabolic Trajectory puzzles are even more difficult for the models. Although Claude again has
the best performance in the Easy set, its accuracy rapidly deteriorates in the Medium and Hard
sets. Moreover, almost all models fall to near random guessing on the Medium and Hard sets.
One exception is LLaMA 3.2 72B, which achieves 31% in Medium Parabolic Trajectory despite
underperforming on earlier tasks. LLaVA-OneVision continues to perform competitively, again on par
with o4-mini and outperforming the remaining models. A noteworthy trend we observe in responses
to extrapolation tasks is that some models resort to overly simplistic and incorrect heuristics, such as
selecting the rightmost point as the impact location. This further demonstrates a failure to perform
genuine trajectory reasoning. Examples of this behavior are provided in Appendix 8. Notably, human
accuracy on Easy examples is close to 100%, but drops substantially to around 50% on Medium and
Hard. We hypothesize that participants can eliminate two implausible options but often struggle to
confidently choose between the final two, leading to a near-random guessing performance.
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Overall, these findings underscore the limitations of current state-of-the-art MLLMs in performing
mental visualization tasks, revealing a significant gap between models and human capabilities. Even
the best-performing models struggle with tasks that require mentally constructing or extending visual
structures, which are intuitive and nearly trivial for humans. This persistent gap emphasizes the need
for deeper investigation into how MLLMs can acquire the ability to reason over visual abstractions.

Table 2: Accuracy (%) of models on Hyperphantasia. We report the best accuracy for each puzzle
across difficulties in bold and underscore the second-best accuracy.

Interpolation Extrapolation

Seven Segments Connect the Dots Linear Trajectory Parabolic Trajectory Mean

Model Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

o4-mini 83 85 85 90 69 64 43 26 23 35 25 33 62.75 51.25 51.25
GPT4-o 3 4 0 96 80 59 28 23 24 16 17 27 35.75 31.00 27.50
Gemini 2.5 pro 51 44 40 97 74 75 31 26 29 26 24 23 51.25 42.00 41.75
Claude 3.7 Sonnet 1 0 0 86 56 49 60 19 24 40 21 27 44.25 24.00 25.00
Qwen VL 2.5 7B 0 0 0 66 36 35 27 18 24 16 22 18 27.25 19.00 19.25
Qwen VL 2.5 32B 1 0 0 68 32 34 40 24 27 19 23 25 32.00 19.75 21.50
Llama 3.2 11B 0 0 0 64 39 28 36 18 24 32 26 22 33.00 20.75 18.50
Llama 3.2 90B 0 0 0 83 40 43 30 23 22 28 31 26 35.25 23.50 22.75
LLaVA-OneVision 7B 0 0 0 92 64 52 22 29 27 19 28 22 33.25 30.48 25.25
LLaVA-OneVision 72B 0 0 0 89 44 43 42 27 26 32 34 22 40.75 26.25 22.75
Molmo 7B 0 0 0 66 28 28 28 19 20 27 19 20 30.25 16.50 17.00
Molmo 72B 0 0 0 62 32 24 29 27 25 26 29 22 29.25 22.00 17.75
Deepseek-VL2 0 0 0 75 38 28 20 11 11 12 15 14 26.75 16.00 13.00

Human 100.00 100.00 100.00 98.86 94.00 95.20 100.00 91.33 89.33 100.00 54.40 52.33 99.72 84.93 84.22

Random Guess 0.00 0.00 0.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00

4.3 Improving Mental Visualization via Reinforcement Learning

We investigate Reinforcement Learning (RL) as a potential remedy for the poor performance of
MLLMs on mental visualization tasks in Hyperphantasia. We focus on RL rather than Supervised
Fine-Tuning (SFT), as our goal is to improve the model’s ability to reason about the problem.
However, we do not have access to detailed thinking traces, and without such supervision, SFT
typically fails to generalize from easier examples to harder ones.

Due to the limited number of Connect the Dots samples and the fact that models can solve Seven
Segments puzzles by memorizing edge patterns, bypassing the need for genuine visual reasoning, we
restrict our RL experiments to the extrapolation tasks. We construct multiple training datasets with
varying difficulty and task composition, as summarized in Table 3. For each experiment, we generate
new training and test samples and train Qwen-VL 2.5 7B using the publicly available GRPO [23]
implementation from Sheng et al. [24]. We select the best model checkpoint based on test loss and
evaluate it on the original extrapolation puzzles of Hyperphantasia.

We use four NVIDIA H100 GPUs for training and follow the implementation and hyperparameter
settings provided by Sheng et al. [24]. Models are trained for 30, 20, and 15 epochs for datasets
containing 2000, 3000, and 4000 samples, respectively. Each training run takes roughly 7 hours.

Table 4 reports the accuracy of trained models across Hyperphantasia and their respective test samples.
We find that training solely on Easy puzzles results in weak generalization to more difficult puzzles.
For instance, training the model on Easy Linear Trajectory puzzles causes it to adopt a superficial
heuristic of selecting the point closest to the red line which works for the Easy set, but results in
an extremely poor performance on medium Linear Trajectory puzzles, yielding only 9% accuracy,
well below random guessing. In contrast, models trained on Medium puzzles exhibit stronger
generalization. For instance, the model trained on Medium Parabolic Trajectory puzzles surpasses
o4-mini and achieves 40% accuracy on Hard Parabolic Trajectory, a substantial gain given that human
accuracy is 52.33% and the model only has 7B parameters.

Our experiments exhibit that combining Easy and Medium puzzles further improves generalization.
The model trained on mixed Parabolic Trajectory puzzles attains high performance on different
difficulties of Parabolic Trajectory puzzles with 44% accuracy on Hard Parabolic Trajectory, which
is much better than o4-mini. This model also achieves the accuracy of 44% in Easy Linear Trajectory
puzzles, suggesting cross-task transfer of mental visualization. Among broader mixtures, the model
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trained on the All Mix dataset performs well across tasks but appears to overfit to easier Linear
Trajectory examples. In contrast, the model trained on the Hard Mix dataset, which does not include
Easy Linear Trajectory examples, demonstrates robust and consistent performance across all tasks.

These findings suggest that training on Easy examples alone is not only insufficient but may also
encourage reliance on shallow heuristics. However, training on diverse and non-trivial problems
enables models to develop more generalized and transferable mental visualization capabilities.

Table 3: Datasets used for RL training.

Training Samples Test Samples

Linear Trajectory Parabolic Trajectory Linear Trajectory Parabolic Trajectory

Name Easy Medium Easy Medium Total Easy Medium Easy Medium Total

Linear Easy 2000 0 0 0 2000 300 0 0 0 300
Linear Medium 0 2000 0 0 2000 0 300 0 0 300
Parabolic Easy 2000 0 0 0 2000 300 0 0 0 300
Parabolic Medium 0 0 0 2000 2000 0 0 0 300 300
Linear Mix 1000 1000 0 0 2000 150 150 0 0 300
Parabolic Mix 0 0 1000 1000 2000 0 0 150 150 300
All Mix 1000 1000 1000 1000 4000 150 150 150 150 600
Hard Mix 0 1000 1000 1000 3000 0 200 200 200 600

Table 4: Accuracy (%) of models trained with reinforcement learning on the Extrapolation puzzles
of Hyperphantasia.

Test Data

Linear Trajectory Parabolic Trajectory

Training Data Test Samples Easy Medium Hard Easy Medium Hard

None (Base model) - 27 18 24 16 22 18

Linear Easy 98.33 95 9 24 21 18 19
Linear Medium 51.33 50 52 30 22 18 18
Parabolic Easy 65.33 28 17 22 36 26 22

Parabolic Medium 50.67 25 23 29 18 39 40
Linear Mix 63.67 85 36 37 21 21 21

Parabolic Mix 63.00 44 23 25 60 52 44
All Mix 46.50 74 35 35 30 33 29

Hard Mix 46.17 37 36 32 35 35 32

4.4 Investigating Model Failure on Seven Segments Puzzles

To better understand the surprisingly poor performance of models on Seven Segments puzzles, we
conduct an additional experiment in which we augment the input images of the Easy set by explicitly
drawing the edges between the specified points. An example of such a modified image is shown in
Figure 3. The original prompt remains unchanged, but the added edges serve as clear visual cues that
should make the intended digit immediately recognizable.

Table 5 summarizes the results of this experiment. Strikingly, only GPT-4o and Gemini are able
to leverage the visual cues and solve the task, achieving 76% and 98% accuracy, respectively. All
other models continue to fail, with 0% accuracy across the board. These results suggest that, at least
for Seven Segments puzzles, the failure of most models cannot be fully attributed to the lack of
mental visualization alone. Instead, most models appear to struggle with extracting and interpreting
even simple geometric patterns when presented in a slightly out-of-distribution visual format that is
otherwise trivial for humans.
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Figure 3: An example of Seven Segments
puzzle with added edges as visual cues.

Table 5: Accuracy of models on Seven Seg-
ments puzzles when the edges are explicitly
added to the image.

Model Accuracy (%)

GPT-4o 76
Gemini 2.5 Pro 98
Claude 3.7 Sonnet 0
Qwen VL2.5 7B 0
Llama 3.2 11B 0
LLaVA-OneVision 7B 0

5 Discussion

5.1 Mental Visualization in MLLMs

Our results indicate that current MLLMs lack consistent and generalizable mental visualization
capabilities. Performance is highly task-dependent: some models perform well on extrapolation
tasks but fail on interpolation tasks, and vice versa. This inconsistency suggests that models do not
possess a unified internal mechanism for visual reasoning, but instead rely on task-specific shortcuts.
Furthermore, we observe cases where models hallucinate visual features that are not present in the
image, falsely grounding their predictions in imagined evidence. This behavior implies that, rather
than genuinely engaging in visual reasoning, models may be mimicking it through learned patterns,
without a true understanding of the underlying visual content.

Moreover, model performance often deteriorates sharply with even modest increases in task difficulty.
This is particularly evident in the steep drop from Easy to Medium levels in tasks such as Connect the
Dots or Linear Trajectory. While these puzzles remain simple for humans despite added complexity,
most models fail to adapt, revealing the brittleness of their mental visualization capabilities. Unlike
human cognition, which can rely on approximate or partial inferences in the face of uncertainty,
MLLMs tend to break down entirely, lacking the flexibility to generalize beyond narrowly defined
settings.

5.2 Learning Mental Visualization via Reinforcement Learning

Our RL experiments demonstrate that mental visualization abilities can be learned through training,
even with a relatively small model, provided that the training signal is carefully structured. Exposure
to diverse and moderately challenging tasks enables models to generalize to harder and even novel
tasks. In contrast, training on overly simplistic datasets with limited variability encourages brittle
heuristics that fail under minor distribution shifts. These findings underscore that improving mental
visualization is not solely a matter of scale or capacity, but it depends critically on training data that
is both diverse and sufficiently challenging to promote robust and transferable skills.

5.3 Visual Recognition Failures in Seven Segments

Our targeted intervention in Seven Segments tasks by adding explicit visual cues revealed a surprising
failure mode. Despite removing the need for internal construction, most models still failed to
interpret the rendered image. This suggests that poor performance is not solely due to weak mental
visualization but also reflects an inability to extract structure from slightly out-of-distribution visual
inputs. The failure to recognize even clean, simple geometric shapes under minor format shifts
highlights a broader limitation in visual robustness that undermines performance across many tasks.

These results point to a missing layer in current MLLMs, the ability to do visual reasoning over
structured visual abstractions in a robust and flexible manner. Without this capability, models remain
vulnerable to small visual perturbations and fail to generalize beyond tightly constrained and simple
visual tasks.
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5.4 Future Directions

Beyond reinforcement techniques, we believe that a promising direction is to equip models with visual
thinking capabilities. Current models reason entirely in the language domain, but Hyperphantasia
puzzles and many real-world scenarios, the thinking cannot be explained with language, and they
require visual thinking. While recent "omni" models offer some potential in this area, they are still
significantly behind state-of-the-art language models in overall performance.

Importantly, we do not believe that omni models are the only path forward. Visual thinking tokens do
not need to correspond to meaningful or interpretable images. Instead, they could function as internal
visual representations. However, designing and training such models requires careful consideration,
especially in how to cue or supervise this form of internal visualization. Some early efforts in this
direction, such as [1], have explored visual reasoning in constrained setups, but these remain narrow
in scope. We see Hyperphantasia as an ideal testbed to encourage progress in this direction.

6 Conclusion

In this work, we introduce Hyperphantasia, a novel synthetically generated benchmark designed to
evaluate the mental visualization capabilities of MLLMs. The dataset comprises four puzzle types,
each spanning three difficulty levels and organized into two categories. Our evaluation of various
open-source and proprietary state-of-the-art MLLMs reveals that existing models lack consistent and
generalizable mental visualization abilities. To remedy this issue, we explore the use of reinforcement
learning to elicit mental visualization and find that, when trained on moderately difficult and diverse
examples, models can begin to generalize to more difficult and even new tasks. Additionally, our
analysis highlights another key limitation: models often fail to interpret slightly out-of-distribution
visual inputs, even when the task is visually simple. Together, these findings position Hyperphantasia
as an effective benchmark for measuring and developing visual reasoning capabilities in multimodal
models. However, we note that Hyperphantasia focuses on a small set of tasks and thus captures
only a subset of the broader space of mental visualization capabilities. Future work may expand
the benchmark with additional task variety to more comprehensively evaluate visual imagination in
MLLMs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims are supported by empirical evidence in the form of numerical experi-
ments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the Conclusions section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work does not involve rigorous theory.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we provide our configurations along with our code and data. We also
disclosed our procedures and hyperparameters in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code and data are publicly available along with the documentation to use
them and our configurations.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we describe our setup in the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Running and training MLLMs multiple times is prohibitively expensive to
perform.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discussed our compute resources and execution time in the Experiments
section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the paper conforms to the guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our dataset is entirely synthetic and consists of simple, abstract puzzles. As
such, we did not identify any foreseeable societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We identified no threats of potential misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the paper of the dataset of images used in one of our puzzles, as well
as the original paper and repository for the RL training code we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, our dataset and its evaluation code are publicly available with sufficient
documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The full text of the instructions given to participants is exactly the puzzle
descriptions used in the benchmark, as they are self-explanatory and designed to be easily
understood without additional context. No modifications or extra instructions were added
for the human study. These descriptions are provided in Appendix 7.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We obtained an NHSR determination as our research does not meet the
regulatory definition of "human subjects research".

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We discuss the usage of LLMs to generate answer options for one of our
puzzles.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

7 Evaluation Prompts

In this part, we provide the exact prompts used for the evaluation of each task.

7.1 Seven Segments

For these puzzles, the edges to connect and the number of digits vary among puzzles, but the rest of
the prompt is the same for all samples.

Solve the following puzzle. The rules are as follows.
1. You see a grid of dots.
2. Every dot is denoted by a red number on top right of it.
3. Connect the following dots:
**EDGES TO CONNECT**
4. What is the **N**-digit number formed in the image after drawing these connections?

You can explain your reasoning but you should specify your final answer by putting <ANSWER>
before and after it like <ANSWER>FINAL_ANSWER<ANSWER> where FINAL_ANSWER is
your answer. For example, if your answer is A, you should say <ANSWER>A<ANSWER>

7.2 Connect the Dots

In these prompts, the options vary for different puzzles.

In the image you see a set of dots. These dots were sampled from the outer contour of an image.
Based on these dots, which of these options best describes the image?
A: **OPTION A**
B: **OPTION B**
C: **OPTION C**
D: **OPTION D**
Answer with the letter of the option that you think is correct.

You can explain your reasoning but you should specify your final answer by putting <ANSWER>
before and after it like <ANSWER>FINAL_ANSWER<ANSWER> where FINAL_ANSWER is
your answer. For example, if your answer is A, you should say <ANSWER>A<ANSWER>

7.3 Linear Trajectory

We use the same prompt for all of the puzzles.

The image shows a triangle composed of two blue edges and one red edge. A portion of the red
edge has been removed. The red line originates from the left red vertex and should connect to a
point along the blue edge on the right side of the triangle. There are four possible points marked on
this blue edge: A, B, C, and D. Question: Based on the direction and alignment of the red edge,
extrapolate the rest of the red line and determine which point (A, B, C, or D) is the vertex of the trian-
gle corresponding to the missing part of the red edge? Select the most geometrically consistent option.

You can explain your reasoning but you should specify your final answer by putting <ANSWER>
before and after it like <ANSWER>FINAL_ANSWER<ANSWER> where FINAL_ANSWER is
your answer. For example, if your answer is A, you should say <ANSWER>A<ANSWER>
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7.4 Parabolic Trajectory

We use the same prompt for all of the puzzles.

You are given an image showing part of a ball’s parabolic trajectory (in red) as it moves through the
air. The ball will eventually land on a horizontal surface shown in blue. Along this surface, four
positions are marked: A, B, C, and D (from right to left). Question: Based on the shape and direction
of the visible trajectory, extrapolate the rest of the trajectory and determine which point (A, B, C, or
D) is the first likely impact point of the ball on the surface?

You can explain your reasoning but you should specify your final answer by putting <ANSWER>
before and after it like <ANSWER>FINAL_ANSWER<ANSWER> where FINAL_ANSWER is
your answer. For example, if your answer is A, you should say <ANSWER>A<ANSWER>

8 Examples of Hallucinations in the Models

In this part, we provide examples of hallucination and fix answers that some models provide.

8.1 Seven Segments

For this puzzle, some models tend to repeatedly produce a fixed answer, such as 012, regardless of
changes in the input. These default responses vary across models, and there is no single answer
that is universally repeated. Additionally, some of the generated answers contain a different number
of digits than what is specified in the prompt, indicating a failure to follow basic task constraints.
Table 6 summarizes this behavior for a subset of models that exhibit these patterns.

Table 6: Number of occurrences for the most frequent responses across levels of difficulties in Seven
Segments.

Model Difficulty Answer Number of occurrence (out of 100)

Claude 3.7 Sonnet
Easy 409 20

Medium 2023 60
Hard 20235 10

Qwen VL 2.5 7B
Easy 012 32

Medium 0123 26
Hard 01234 18

Qwen VL 2.5 32B
Easy 888 29

Medium 2023 25
Hard 22222 or 2023 17

LLaVA-OneVision 7B
Easy 123 50

Medium 0123 25
Hard 12345 22

Molmo 7B
Easy 170 or 161 28

Medium 2300 or 2310 25
Hard 272829 32

8.2 Connect the Dots

In this part, we provide examples of answers in which the model hallucinates non-existent features.
Example 1: We showed Figure 4a to Molmo 7B, and in its response, it is hallucinating features of a
swan:
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Molmo: The image appears to show a dotted outline of a bird in flight. The shape is elongated and
curved, with a distinctive neck and head form that’s characteristic of certain waterfowl. The overall
silhouette suggests a graceful, soaring posture.

Given the options provided, the bird that most closely matches this dotted outline is:

<ANSWER>A<ANSWER>

This dotted shape best represents a swan in flight. Swans are known for their long, elegant
necks and graceful forms, which align well with the curved outline visible in the dotted image. The
elongated body and the way the neck curves upwards to form the head are particularly indicative of a
swan’s silhouette.

Example 2: We showed Figure 4b to Llama 3.2 11B, and it hallucinated onion features:

Llama: To determine the correct answer, let’s analyze the shape formed by the dots. The dots outline
a teardrop shape with a narrow top and a wider bottom. This shape is most similar to an onion, which
has a similar teardrop shape with a narrow top and a wider bottom.

The other options do not match the shape formed by the dots. A carrot is typically long
and thin, an onion is bulbous with a narrow top and a wider bottom, and a pineapple is round with a
crown on top.

Therefore, based on the shape formed by the dots, the correct answer is:

<ANSWER>B<ANSWER>"

Example 3: We showed Figure 4a to Claude 3.7 Sonnet, and it hallucinated features of a swan:

Claude: Looking at the dotted outline in the image, I can see a shape that appears to have:
- A long, curved neck
- A rounded body
- What looks like a tail at the back
- A distinctive shape at the bottom that could represent feet or a base

The overall silhouette strongly resembles a bird with a long, curved neck. Among the op-
tions:

A: Swan - Swans have long, curved necks and a distinctive body shape that matches this
outline quite well
B: Flamingo - Flamingos have long necks but they’re typically shown with their necks in an S-curve
and standing on one leg
C: Parrot - Parrots typically have shorter necks and a more compact body shape
D: Butterfly - Butterflies have a completely different shape with wings

The curved neck, body proportions, and overall posture most closely match a swan in pro-
file. The dots appear to outline a swan with its neck curved gracefully and its body in a resting
position.

<ANSWER>A<ANSWER>

Example 4: We showed Figure 4c to Qwen VL 2.5 32B, and the model hallucinated the existence of
features of a snail’s shell.
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Qwen: To determine which option best describes the image based on the given set of dots, let’s
analyze the shape formed by the dots:

1. **Shape Analysis**:
- The dots form a continuous, curved line that loops back on itself.
- The overall shape resembles a spiral or a coiled structure.

2. **Comparison with Options**:
- **A: Sea Turtle**: Sea turtles typically have a more defined shell shape with straighter edges and a
distinct head and tail. The given shape does not resemble a sea turtle.
- **B: Snake**: Snakes have a long, slender body that is usually straight or slightly curved. The
given shape is too coiled to represent a snake.
- **C: Snail**: Snails have a spiral shell, which matches the coiled, looping pattern of the dots in the
image.
- **D: Lobster**: Lobsters have a segmented body with claws and antennae, which do not match the
coiled shape of the dots.

3. **Conclusion**:
- The shape formed by the dots most closely resembles the spiral shell of a snail.

<ANSWER>C<ANSWER>

(a) Image of a bird (b) Image of a pineapple (c) Image of a lobster

Figure 4: Images which caused hallucination in the models.

8.3 Extrapolation Puzzles

We observe that some models try to find over simplistic heuristics to answer the extrapolation
questions. In this part, we provide examples of this behavior.

Example1: After seeing Figure 5a, Qwen VL 2.5 32B thinks that the farthest point to the right should
be the answer for the Parabolic Trajectory puzzle.

Qwen: To determine the first likely impact point of the ball on the surface, let’s analyze the given
information step by step:
1. **Shape of the Trajectory**: The red curve represents a parabolic trajectory, which is typical for
objects moving under the influence of gravity. Parabolas are symmetric about their vertex, and the
path of the ball will continue downward after reaching the peak.
2. **Direction of Motion**: The ball is moving from left to right along the parabolic path. This
means that as the ball descends, it will continue moving horizontally until it intersects with the blue
surface.
3. **Extrapolation of the Path**: Since the ball is already descending and moving toward the right,
we can infer that the ball will continue its downward motion and intersect the blue surface at some
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point. The point of intersection will be the first point where the parabolic path meets the horizontal
surface.
4. **Positioning of Points A, B, C, and D**: The points A, B, C, and D are arranged from right to
left along the blue surface. Given the direction of the ball’s motion (from left to right), the ball will
first reach the farthest point to the right on the surface.
5. **Conclusion**: Since the ball is moving from left to right and will first hit the surface at the
point closest to its current position, the first likely impact point is **A**.
Thus, the final answer is:
<ANSWER>A<ANSWER>

Example 2: Molmo 7B thinks that the lower point should be the answer when answering Figure 5b.

Molmo: To determine the most geometrically consistent point for the vertex of the triangle, I’ll
consider the direction and alignment of the red edge:
1. The red edge starts from the left red vertex and extends diagonally upward to the right.
2. It intersects with the blue edge at four possible points: A, B, C, and D.
3. The edge should continue in a straight line after the intersection.
Given these observations, the most geometrically consistent option would be one that maintains the
straight line continuation of the red edge. Points A, B, and C are all along the blue edge, which
suggests they could be potential continuation points. However, point D stands out as it’s positioned
slightly lower on the blue edge compared to A, B, and C.
This positioning of D makes it more likely to be the continuation point that would maintain the
straight line of the red edge. It creates a more balanced and symmetrical triangle compared to using
A, B, or C.
<ANSWER>D<ANSWER>

(a) An image of Parabolic Trajectory
puzzle

(b) An image of Linear Trajectory
puzzle

Figure 5: Extrapolation images shown to the models.
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9 Ablation on Prompting

In this section, we explore different prompting techniques and their effects on models’ performance
on Hyperphantasia.

9.1 Investigating the prompt sensitivity of the models

To ensure fairness in comparison, we conduct an experiment with different prompt formatting to
investigate the effects of prompt formatting on models’ performance. For this purpose, we curated
four alternative prompts and used them for answering the Easy Linear Trajectory task. Table 7
provides the curated alternative prompts, and the results are in Table 8.

Table 7: List of prompts we use to evaluate sensitivity of model performance to prompt variations.
The second column shows the high-level rationale for the variation, and the specific prompt is included
in the last column.

# Change Prompt

0 Original The image shows a triangle composed of two blue edges and one red edge. A
portion of the red edge has been removed. The red line originates from the left
red vertex and should connect to a point along the blue edge on the right side
of the triangle. There are four possible points marked on this blue edge: A,
B, C, and D. Question: Based on the direction and alignment of the red edge,
extrapolate the rest of the red line and determine which point (A, B, C, or D)
is the vertex of the triangle corresponding to the missing part of the red edge?
Select the most geometrically consistent option.
You can explain your reasoning but you should specify your fi-
nal answer by putting <ANSWER> before and after it like <AN-
SWER>FINAL_ANSWER<ANSWER> where FINAL_ANSWER is your
answer. For example, if your answer is A, you should say <AN-
SWER>A<ANSWER.

1 Shorten Based on the incomplete edge of the triangle in the image, which point among
A, B, C, and D is a vertex of the triangle?
You can explain your reasoning but you should specify your fi-
nal answer by putting <ANSWER> before and after it like <AN-
SWER>FINAL_ANSWER<ANSWER> where FINAL_ANSWER is your
answer. For example, if your answer is A, you should say <AN-
SWER>A<ANSWER.

2 Instruct the model for extra care and attention Carefully and skillfully review the image and answer the following question.
The image shows a triangle composed of two blue edges and one red edge. A
portion of the red edge has been removed. The red line originates from the left
red vertex and should connect to a point along the blue edge on the right side of
the triangle. There are four possible points marked on this blue edge: A, B, C,
and D.
Question: Based on the direction and alignment of the red edge, extrapolate the
rest of the red line and determine which point (A, B, C, or D) is the vertex of the
triangle corresponding to the missing part of the red edge? Carefully, select the
most geometrically consistent option.
You can explain your reasoning but you should specify your fi-
nal answer by putting <ANSWER> before and after it like <AN-
SWER>FINAL_ANSWER<ANSWER> where FINAL_ANSWER is your
answer. For example, if your answer is A, you should say <AN-
SWER>A<ANSWER.

3 Instruct the model for single letter answering The image shows a triangle composed of two blue edges and one red edge. A
portion of the red edge has been removed. The red line originates from the left
red vertex and should connect to a point along the blue edge on the right side
of the triangle. There are four possible points marked on this blue edge: A,
B, C, and D. Question: Based on the direction and alignment of the red edge,
extrapolate the rest of the red line and determine which point (A, B, C, or D)
is the vertex of the triangle corresponding to the missing part of the red edge?
Select the most geometrically consistent option.
Your answer should be a single letter: A, B, C, or D without any explanation or
additional text.

4 Define AI expert You are an expert mental visualization AI with deep visual thinking capabilities.
The image shows a triangle composed of two blue edges and one red edge. A
portion of the red edge has been removed. The red line originates from the left
red vertex and should connect to a point along the blue edge on the right side
of the triangle. There are four possible points marked on this blue edge: A,
B, C, and D. Question: Based on the direction and alignment of the red edge,
extrapolate the rest of the red line and determine which point (A, B, C, or D)
is the vertex of the triangle corresponding to the missing part of the red edge?
Select the most geometrically consistent option.
You can explain your reasoning but you should specify your fi-
nal answer by putting <ANSWER> before and after it like <AN-
SWER>FINAL_ANSWER<ANSWER> where FINAL_ANSWER is your
answer. For example, if your answer is A, you should say <AN-
SWER>A<ANSWER.
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Table 8: Results of prompt variations.

Model Prompt 0 Prompt 1 Prompt 2 Prompt 3 Prompt 4

Qwen VL 2.5 7B 27 32 26 23 25
Qwen VL 2.5 32B 40 38 35 35 27
Llama 3.2 11B 36 43 39 27 41
Llama 3.2 90B 30 28 32 21 27
LLaVA-OneVision 7B 26 40 32 41 24
LLaVA-OneVision 72B 42 43 26 39 34

These results highlight the fact that the prompt formatting has little effect on the performance of the
models and it cannot solve the underlying problem.

9.2 Multi-shot prompting

To further explore the effects of prompting, we conducted an additional experiment with 3-shot
prompting. Similar to the previous setup, we use the Easy Linear Trajectory puzzles for this
experiment. Table 9 shows the results of this experiment. We do not report the 3-shot accuracy of
LLaVA-OneVision 72B, as it was unable to produce a meaningful answer when multiple images were
included in the prompt. We speculate that this may be due to the lack of multi-image inputs in its
training data. Interestingly, this issue does not arise with the smaller version of the model, which was
able to provide valid answers.

Table 9: Results of multi-shot prompting.

Model Zero-Shot 3-Shot

o4-mini 43 40
Qwen VL 2.5 7B 27 30
Qwen VL 2.5 32B 40 31
LLaVA-OneVision 7B 26 29
LLaVA-OneVision 72B 42 -
Llama 3.2 11B 36 35
Llama 3.2 90B 30 31

As with the previous experiment, we observe minimal to no improvement in model performance,
suggesting that multi-shot prompting alone is insufficient to overcome the fundamental limitations of
current models in mental visualization tasks.

10 Language-only Seven Segments task

Seven Segments puzzles are the only task in Hyperphantasia that can be completely explained in a
language-only format without showing the image. As a result, we curate a new text-only prompt
for the Easy Seven Segments puzzles and use it to test some of the previously tested models and
language-only models. Here is the curated prompt:

Solve the following puzzle:
Imagine a 3 by 6 grid of dots arranged as follows (rows: top to bottom, columns: left to right):

Column 1: [0] [1] [2]
Column 2: [3] [4] [5]
Column 3: [6] [7] [8]
Column 4: [9] [10] [11]
Column 5: [12] [13] [14]
Column 6: [15] [16] [17]

Now, imagine the following pairs of dots are connected with straight lines:
<CONNECTIONS>
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What 3-digit number is formed by these connections?

You can explain your reasoning but you should specify your final answer by putting <ANSWER>
before and after it like <ANSWER>FINAL_ANSWER<ANSWER> where FINAL_ANSWER is
your answer.
Your answer should be a three digit number formed by the connections.

In the prompt, <CONNECTIONS> refers to the specific connections of each puzzle. Table 10
summarizes the results of this experiment.

Table 10: Results of the text-only Seven Segments task. The second column indicates whether the
model is Language-only (L) or Vision-Language (VL). The final column reports the accuracy of each
Vision-Language model on the original image-based version of this puzzle.

Model Model type Accuracy in text-only format Accuracy in image format

o4-mini VL 88 83
GPT-4o VL 1 4
Qwen VL 2.5 7B VL 0 0
Qwen VL 2.5 32B VL 1 0
Qwen 2.5 32B Instruct L 0 -
DeepSeek-R1 distill Qwen 32B L 0 -
Llama 3 8B Instruct L 0 -

These results demonstrate that language-only models are unable to solve this task. This outcome is
expected, as these models are not trained on any visual data and therefore lack the mental visualization
capabilities. Additionally, we observe that the multi-modal models which previously succeeded on
this task (such as o4-mini and, to a lesser extent, GPT-4o) continue to solve it even in the text-only
format. Meanwhile, other models that initially failed still struggle with this version of the task.
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