
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Data-Free Transformer Quantization Using Parameter-Space Symmetry

Anonymous Authors1

Abstract
Transformer models have seen widespread use
in many learning tasks but incur large memory
and compute costs, limiting their deployability.
Post-Training Quantization (PTQ) is a promising
solution but can lead to significant performance
degradation. Many PTQ methods estimate weight
and activation distributions with calibration data
to account for outliers and maintain quantized
performance. We propose a data-free approach
to improve quantization by exploiting parameter
space symmetries. We address outliers and high
variability in weights by finding a transformation
of the model weights that minimizes quantization
error variance. Our approach is light-weight, data-
free, and can be integrated as a pre-processing
step within other PTQ methods. We evaluate
our approach by testing quantized large language
models on several benchmark tasks.

1. Introduction
Transformer models (Vaswani et al., 2023) have found
widespread success as generative models for language mod-
eling and computer vision tasks. Transformers have become
increasingly complex incurring large computational and
memory storage costs far beyond other models, limiting
their usability. The highest performing models have hun-
dreds of billions of parameters (Radford et al., 2019; Zhang
et al., 2022) requiring immense training time and massive
GPU memory. Even inference on pre-trained models can
be prohibitively slow and exceed memory capacity of re-
source constrained systems. Effective model compression
is essential for addressing these limitations.

Many model compression methods such as model-
pruning (Zhu et al., 2024) and low-bit quantization (Chen
et al., 2024; Ma et al., 2024) require re-training which is
infeasible for models with billions of parameters. Post-
training quantization (PTQ) which compresses models with-
out re-training is a promising solution but can result in

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

significant performance degradation. Many PTQ methods
utilize calibration data and specialized heuristics to pre-
serve model performance (Bondarenko et al., 2021; Nagel
et al., 2020). This requires access to high-quality calibra-
tion sets and can incur additional overhead for inference
of the quantized model. Data-free methods for improving
quantization performance have been proposed for MLPs
and CNNs (Meller et al., 2019; Nagel et al., 2019) but to our
knowledge there are no similar methods for transformers.

In this paper, we develop a data-free method for improving
post-training quantization of transformers by leveraging the
symmetry of attention weights. Instead of designing a new
quantization process, we provide a pre-quantization algo-
rithm which finds equivalent weight configurations which
are less sensitive to quantization. An equivalent weight con-
figuration is a transformation of the weights which does not
change the layer output. Our approach works by finding a
linear transformation of the weights which minimizes the
expected quantization error variance. This results in a new
set of weights which when quantized results in lower quanti-
zation error during inference. There are several advantages
to this strategy. First, we operate directly on the weights
without any forward passes through the model. Second,
our method is a pre-processing step which is compatible
with any quantization algorithm allowing it to be stacked
with existing techniques. This allows our method to be very
lightweight, needing only enough memory for each layer’s
weights individually, while also being highly flexible and
fast.

Our contributions include:

• A closed-form approximation of quantization error
variance in attention.

• An optimization algorithm for finding optimal weight
transformations.

• Empirical evaluation of our method showing its impact
on simple linear quantization.

2. Related Work
Quantization of large language models (LLMs) Quan-
tization reduces the numerical precision of neural network
parameters to decrease model size and accelerate inference.
This is essential for deploying LLMs efficiently across vari-
ous hardware platforms. Common quantization techniques

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2025

include quantization-aware training (QAT) and post-training
quantization (PTQ) (Nagel et al., 2021; Zhu et al., 2024).
QAT simulates quantization during training and adjusts
model parameters to minimize quantization-induced error
(Jacob et al., 2018; Esser et al., 2019). PTQ methods di-
rectly quantize pre-trained models. PTQ techniques include
analytical methods that adjust weight distributions, such as
range equalization and bias correction, enabling accurate
quantization without access to training data (Nagel et al.,
2019; Meller et al., 2019). Other PTQ approaches optimize
quantization parameters on small calibration sets (Nagel
et al., 2020; Hubara et al., 2021; Li et al., 2021). Recently,
PTQ has become prominent for quantizing transformers
and large language models (Frantar et al., 2022; Yao et al.,
2022; Xiao et al., 2023; Dettmers et al., 2022). Our work
follows the post-training quantization paradigm, aiming to
further reduce quantization-induced accuracy loss through
optimized parameter symmetry transformations.

Using symmetry in quantization Neural networks often
have parameter space symmetries, meaning certain trans-
formations of their parameters leave the network’s loss un-
changed. Examples include the scaling symmetry in net-
works with ReLU or linear activations (Badrinarayanan
et al., 2015), and permutation symmetry among neurons
within a hidden layer (Hecht-Nielsen, 1990). Several works
have explicitly used such weight transformations to reduce
quantization error. A common strategy is to exploit scale
invariances to adjust the range of weights or activations
before quantization. For example, Nagel et al. (2019) and
Meller et al. (2019) propose equalizing weight ranges across
layers in ReLU-based networks using the scaling symme-
try. (Xiao et al., 2023) improve speed and reduce memory
during inference for linear operations, defined as computing
the product of activations (output from previous computa-
tions) and weights, by applying a loss-invariant scaling on
both parts before quantization. While this transformation
is defined jointly on parameters and activations, it can be
expressed as a parameter symmetry when the activation
is the output of a linear operation. Similarly, Kim et al.
(2024) scales activation and weights in CNN-transformer
hybrid architectures to align parameter distributions with
hardware-friendly quantization constraints, thereby improv-
ing inference efficiency. Our approach extends these ideas
by considering the full general linear group, optimizing
over a broader class of symmetry transformations to achieve
superior quantization accuracy.

Optimization in transformer model level sets Recent
works have also explored optimization over the loss level
sets in transformers for applications other than quantiza-
tion. This optimization is often done on symmetry group
orbits, leveraging the general linear group symmetry in self-
attention layers. For example, Zhang et al. (2025) improves

model fusion by minimizing the distance between two self-
attentions without affecting their loss. Their method first
finds an optimal rotation of key and query matrices, fol-
lowed by an optimal scaling. Similarly, Wu et al. (2025)
accelerates the training of transformers by searching in the
loss level set for points better suited for optimization. We
also optimize over the symmetry group orbits of transformer
models, but with the specific goal of finding transformations
that minimize accuracy loss in quantization.

3. Background
3.1. Transformer Attention

A standard transformer layer consists of two main modules:
a multi-head attention(MHA) module and a multi-layer per-
ceptron(MLP). In this work we focus on improving the
quantization of the attention module. The attention module
has four weight matrices Wq,Wk,WV ,WO. For a given
transformer layer with input x ∈ Rn×d the attention scores
are computed as:

A = xWqW
T
k xT (1)

A softmax is applied after to normalize the scores and the
final layer output is computed:

MHA(x) = softmax
(

A√
d

)
xWV WO (2)

We focus on quantizing Wq,Wk although we believe our
results may be generalized to include Wv and WO.

3.2. Quantization

At a high-level, quantization works by mapping full-
precision floating point values into a smaller set of low-bit
numbers (e.g. 8-bit, 4-bit integers). The low-bit numbers
are used during computation and then the resulting output
is reconstructed by de-quantization which uses the inverse
map to recover the approximate floating point value.

Uniform Quantization A common mapping used in quan-
tization is uniform quantization. Uniform quantization splits
the range R of a tensor Y uniformly onto a set of b-bit inte-
gers. The range R is defined as the difference between the
minimal and maximal values of Y . This mapping is defined:

Quant(Y) = Clamp
(

Round
(
Y

R

)
,−2b, 2b − 1

)
(3)

Quantization error is computed between the original ten-
sor Y and the de-quantized reconstruction Ŷ . Ŷ is ob-
tained by the inverse map DeQuant() = Quant−1(). Since
quantization is surjective, there can be errors in the recon-
struction. We write this element-wise quantization error as

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

∆Y = Ŷ − Y . The full tensor quantization error is defined
as the L2 norm of the per-element error ||∆Y ||22 = |∆Y |2.
Uniform quantization depends heavily on the range R as a
larger range results in a lower resolution mapping leading to
higher uncertainty in the reconstruction. This means quan-
tization error is driven primarily by the extremal values of
Y , so outlier values can dramatically impact quantization.
Under uniform quantization, the quantization error is ap-
proximately distributed uniformly (Marco & Neuhoff, 2005;
Lin et al., 2016):

∆Y ∼ Uniform
(

−R

2b+1
,

R

2b+1

)
(4)

4. Data-Free Estimation of Quantization Noise
To improve quantization performance, we take a similar
approach to Meller et. al (Meller et al., 2019) by analyzing
quantization noise. We compute an analytic expression for
the quantization noise, which gives a data-free objective for
minimizing the error under quantization. In what follows
Y = WqW

T
k which when quantized and reconstructed gives

Ŷ = ŴqŴk
T

. Rewriting this in terms of the quantization
error we get an expression for ∆Y :

Y +∆Y =(Wq +∆Wq)(Wk +∆Wk)
T

∆Y =Wq∆WT
k +∆WqW

T
k +∆Wq∆WT

k (5)

The element-wise quantization errors ∆Wq,∆Wk are both
random tensors approximately distributed as:

∆Wq ∼ Uniform
(
−Rq

2b+1
,
Rq

2b+1

)
(6)

∆Wk ∼ Uniform
(
−Rk

2b+1
,
Rk

2b+1

)
(7)

where Rq, Rk are the ranges of Wq,Wk respectively and
b is the quantization bit-width. This means ∆Y is also a
random tensor which depends on ∆Wq,∆Wk. We define
the quantization noise as the average element-wise variance
mean(E(|∆Y |2)) which is the expected magnitude of the
full tensor quantization error. Intuitively higher quantization
noise corresponds to higher uncertainty in the de-quantized
reconstruction Ŷ which is driven by outliers which pose
significant challenges to effective quantization. This makes
minimizing quantization noise a promising data-free objec-
tive that can lead to fewer outliers and better quantization.

We now show how to compute the quantization noise, for
a full proof see Appendix A. In what follows ⊙ is element-
wise multiplication. Expanding and simplifying E(|∆Y |2)
yields a sum over over 6 term matrices. Equations for each

of these terms is included in Appendix 1.

E(|∆Y |2) = E[|Wq∆WT
k |2 + |∆WqW

T
k |2 (8)

+ |∆Wq∆WT
k |2

+ |Wq∆WT
k | ⊙ |∆WqW

T
k |

+ |Wq∆WT
k | ⊙ |∆Wq∆WT

k |
+ |∆WqW

T
k | ⊙ |∆Wq∆WT

k |]

Since we only need the element-wise mean of this matrix
expression, these terms can be further reduced giving the
following proposition.
Proposition 4.1. Let Wq,Wk ∈ Rn×m with elements de-
noted qij , kij . Let ∆Wq,∆Wk be their quantization error
matrices respectively. If ∆Wq ∼ Uniform (−rq, rq) and
∆Wk ∼ Uniform (−rk, rk) then the mean of the elements
in the matrix expression in Equation 8 is:

r2k
n

(∑
i,j q

2
ij

12
+

∑
i,j,t qijqit

4

)
+

r2q
n

(∑
i,j k

2
ij

12
+

∑
i,j,t kijkit

4

)

+
mr2qr

2
k

16

(
m+

7

9

)
+

rqrk
2n2

∑
i,j

qij

∑
i,j

kij

+

rqr
2
k(3m+ 1)

12n

∑
i,j

qij +
r2qrk(3m+ 1)

12n

∑
i,j

kij

where the summands correspond to those in Equation 8.

5. Method
We introduce our algorithm for finding a transformation of
Wq,Wk which minimizes the quantization noise without
changing the layer function. From Equation 1, the attention
scores are computed as A = xWqW

T
k xT where Wq,Wk ∈

Rn×m. An invertible matrix g ∈ Rm×m and its inverse can
be inserted between Wq and Wk giving an equal attention
score:

A = xWqgg
−1WT

k xT (9)

Replacing the original weights with W ′
q = Wqg, and W ′

k =

Wk(g
−1)T gives a new set of weights without changing the

layer functionally.

Our goal is to find such a transformation g which mini-
mizes the quantization noise for the new weights. Instead
of searching over the group GL(m), all invertible m ×m
matrices, we restrict g to be orthogonal. The group O(m) is
compact, which assures the existence of a global minimum,
making the optimization problem well posed. Due to orthog-
onality the new weights are W ′

q = Wqg and W ′
k = Wkg.

Our objective more concretely is to solve the following
minimization:

g = argming∈O(m)mean(E(∆Y ′2)) (10)

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2025

Model SST-2 - Acc. MNLI - Acc.
Full-Prec. 92.2% 84.1%
Stand. 8-bit 91.9% 84.1%
Mod. 8-bit 91.9% 84.1%
Stand. 4-bit 91.7% 84.0%
Mod. 4-bit 91.9% 84.1%

Table 1. MNLI and SST-2 quantization performance results. Stand.
8-bit and Stand. 4-bit were quantized without weight modification.
Mod. 8-bit and Mod. 4-bit had weights modified before quantiza-
tion.

This is solvable by gradient descent using the expression
from Proposition 4.1 as a loss function. We parameterize
g by instantiating a square random matrix M and setting
g as the orthogonal component of the QR decomposition
QR(M). Since the QR decomposition is differentiable, this
makes for a suitable parameterization. We perform this
procedure for each layer of the transformer model and for
each head in multi-headed attention layers which can be
batched to improve efficiency.

6. Experimental Evaluation
As a proof of concept, we tested our approach by validating
the performance impact of quantization with and without our
transformation. We used Bertbase (Devlin et al., 2018) fine-
tuned for two benchmark GLUE tasks, SST-2 and MNLI.
The model weights were quantized to 8-bit and 4-bit integers
without any activation quantization. The transformation
optimization was run for 5,000 iterations for both tasks.
The results are summarized in Table 6. 8-bit and 4-bit
weight quantization did not degrade performance nearly at
all for either task and so our weight modifications had only a
marginal impact on quantization. We believe further testing
with activation quantization may be necessary to sufficiently
test the impact of our approach.

7. Discussion
In this paper we explored using parameter symmetries to
improve quantization. We derived an estimate for quan-
tization noise in query and key attention. Our approach
for minimizing quantization noise is a highly efficient pre-
processing step which is compatible with other downstream
quantization approaches and may be a promising technique
for outlier mitigation. In the future we plan to evaluate the
impacts of our approach on activation quantization and on
generative language tasks which have been shown to be
more sensitive to quantization. We also plan to generalize
our noise estimate to per-group and per-channel quantization
which may provide a more fine-grained estimate.

References
Badrinarayanan, V., Mishra, B., and Cipolla, R. Symmetry-

invariant optimization in deep networks. arXiv preprint
arXiv:1511.01754, 2015.

Bondarenko, Y., Nagel, M., and Blankevoort, T. Under-
standing and overcoming the challenges of efficient trans-
former quantization, 2021. URL https://arxiv.
org/abs/2109.12948.

Chen, M., Shao, W., Xu, P., Wang, J., Gao, P., Zhang, K.,
and Luo, P. Efficientqat: Efficient quantization-aware
training for large language models, 2024. URL https:
//arxiv.org/abs/2407.11062.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm.int8(): 8-bit matrix multiplication for transformers at
scale. Advances in neural information processing systems,
35:30318–30332, 2022.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R.,
and Modha, D. S. Learned step size quantization. arXiv
preprint arXiv:1902.08153, 2019.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Hecht-Nielsen, R. On the algebraic structure of feedforward
network weight spaces. In Advanced Neural Computers,
pp. 129–135. Elsevier, 1990.

Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., and Soudry,
D. Accurate post training quantization with small cal-
ibration sets. In International Conference on Machine
Learning, pp. 4466–4475. PMLR, 2021.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 2704–2713, 2018.

Kim, N. J., Lee, J., and Kim, H. Hyq: Hardware-friendly
post-training quantization for cnn-transformer hybrid net-
works. In IJCAI, 2024.

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu,
F., Wang, W., and Gu, S. Brecq: Pushing the limit of
post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021.

4

https://arxiv.org/abs/2109.12948
https://arxiv.org/abs/2109.12948
https://arxiv.org/abs/2407.11062
https://arxiv.org/abs/2407.11062
http://arxiv.org/abs/1810.04805

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2025

Lin, D. D., Talathi, S. S., and Annapureddy, V. S. Fixed
point quantization of deep convolutional networks, 2016.
URL https://arxiv.org/abs/1511.06393.

Ma, S., Wang, H., Ma, L., Wang, L., Wang, W., Huang, S.,
Dong, L., Wang, R., Xue, J., and Wei, F. The era of 1-bit
llms: All large language models are in 1.58 bits, 2024.
URL https://arxiv.org/abs/2402.17764.

Marco, D. and Neuhoff, D. The validity of the additive noise
model for uniform scalar quantizers. IEEE Transactions
on Information Theory, 51(5):1739–1755, 2005. doi:
10.1109/TIT.2005.846397.

Meller, E., Finkelstein, A., Almog, U., and Grobman, M.
Same, same but different: Recovering neural network
quantization error through weight factorization. In In-
ternational Conference on Machine Learning, pp. 4486–
4495. PMLR, 2019.

Nagel, M., Baalen, M. v., Blankevoort, T., and Welling,
M. Data-free quantization through weight equalization
and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1325–
1334, 2019.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C.,
and Blankevoort, T. Up or down? adaptive rounding for
post-training quantization. In International conference
on machine learning, pp. 7197–7206. PMLR, 2020.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko,
Y., Van Baalen, M., and Blankevoort, T. A white pa-
per on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Wu, Z., Dong, J., Aloui, A., and Tarokh, V. Teleporta-
tion with null space gradient projection for optimization
acceleration. arXiv preprint arXiv:2502.11362, 2025.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. Zeroquant: Efficient and affordable post-
training quantization for large-scale transformers. Ad-
vances in Neural Information Processing Systems, 35:
27168–27183, 2022.

Zhang, B., Zheng, Z., Chen, Z., and Li, J. Beyond the
permutation symmetry of transformers: The role of rota-
tion for model fusion. arXiv preprint arXiv:2502.00264,
2025.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. Opt: Open pre-trained transformer language mod-
els, 2022. URL https://arxiv.org/abs/2205.
01068.

Zhu, X., Li, J., Liu, Y., Ma, C., and Wang, W. A survey on
model compression for large language models. Transac-
tions of the Association for Computational Linguistics,
12:1556–1577, 2024.

5

https://arxiv.org/abs/1511.06393
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

A. Quantization Noise Estimation Proof
In this section we provide a proof of the equations found in proposition 4.1. In the following proofs, Qi,Ki denote the
m-dimensional i-th row vectors of Wq,Wk and δQi, δKi are the rows of ∆Wq,∆Wk.

1st Term: |Wq∆WT
k |2 We begin by first considering the matrix E[|Wq∆WT

k |2]. The value E[|Wq∆WT
k |2ij] at index i, j

is computed as follows:

E[|Wq∆WT
k |2ij] = E[|Qi(δKj)T |2]

= E[|
∑
u

Qi
uδK

j
u| · |

∑
v

Qi
vδK

j
v |]

Expanding this product, the expectation can be distributed through the sum. In this expanded product there are 2 cases,
when u = v and u ̸= v.

When u = v, this gives E[|Qi
uδK

j
u|2] = (Qi

u)
2 r2k

3 since |δKj
u| ∼ Uniform(0, rk). Since u, v go from 1 to m, this will give

us r2k
3

m∑
u=1

(Qi
u)

2 in the sum.

When u ̸= v, the value is E[|Qi
uδK

j
u|]E[|Qi

vδK
j
v |] since δKj

u and δKj
v are independent random values so their expectations

are multiplied. This gives r2k
4

∑
u̸=v

Qi
uQ

i
v .

Putting both cases together we get the final value for index i, j of

E[|Wq∆WT
k |2ij] =

r2k
3

n∑
u=1

(Qi
u)

2 +
r2k
4

∑
u ̸=v

Qi
uQ

i
v

=
r2k
3

n∑
u=1

(Qi
u)

2 +
r2k
4

∑
u,v

Qi
uQ

i
v −

r2k
4

n∑
u=1

(Qi
u)

2

=
r2k
12

n∑
u=1

(Qi
u)

2 + r2k
∑
u

Qi
u

∑
v

Qi
v

Note that this final value does not depend on j meaning all of the values in row i will have this value giving us a total of n
copies.

We now take the average over the n2 values in E[|Wq∆WT
k |2ij] which gives us the desired form:

mean(E[|Wq∆WT
k |2]) = r2k

n
(

∑
i,j

q2ij

12
+

∑
i

(
∑
j,t

qijqit)

4
)

2nd Term: |∆WqW
T
k |2 Following the same reasoning as the previous term, the value E[(∆WqW

T
k)2ij] is:

E[|∆WqW
T
k |2ij] = E[|δQi(Kj)T |2]

= E[|
∑
u

δQi
uδK

j
u| · |

∑
v

δQi
vK

j
v |]

The exact same simplifications as before occur but since δQi is the random vector, we instead will get a formula which does
not depend on i:

E[|Wq∆WT
k |2ij] =

r2q
12

n∑
u=1

(Kj
u)

2 +
r2q
4

∑
u

Kj
u

∑
v

Kj
v

Taking the average over the n2 values gives the final form:

mean(E[|∆WqW
T
k |2]) =

r2q
n
(

∑
i,j

k2ij

12
+

∑
i

(
∑
j,t

kijqit)

4
)

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2025

3rd Term: |∆Wq∆WT
k |2 This case is much easier since the values of ∆Wq,∆WT

k are i.i.d. and so every value of the
matrix E[|∆Wq∆WT

k |2] are equal. A single value of this matrix is computed:

E[|∆Wq∆WT
k |2ij] = |

∑
u

δQi
uδK

j
u| · |

∑
v

δQi
vδK

j
v |

In the first case u = v, the result is E[|δQi
uδK

j
u|2] =

r2qr
2
k

9 . This will happen m times since u, v go from 1 to m.

The second case u ̸= v gives E[|δQi
uδK

j
u| · |δQi

vδK
j
v |] =

r2qr
2
k

16 . This happens for when u ̸= v so we will have this m(m−1)
times in the sum.

Putting these two together we get a simplified per element value of:

E[|∆Wq∆WT
k |2ij] = m

r2qr
2
k

9
+ (m2 −m)

r2qr
2
k

16

=
mr2qr

2
k

16
(m+

7

9
)

The average value is exactly equal to the per element value since every element is equivalent under expectation.

4th Term: |Wq∆WT
k | ⊙ |∆WqW

T
k | Once again begin with the i, j entry of the matrix:

E[|Wq∆WT
k | ⊙ |∆WqW

T
k |ij] = E[|Qi(δKj)T | · |δQi(Kj)T |]

= E[|
∑
u

Qi
uδK

j
u| · |

∑
v

δQi
vK

j
v |]

= (m
rk
2

∑
u

Qi
u)(m

rq
2

∑
v

Kj
v)

Averaging over all i, j elements gives the final form:

mean(E[|Wq∆WT
k | ⊙ |∆WqW

T
k |]) = rqrk

2n2
(
∑
i,j

qij)(
∑
i,j

kij)

5th Term: |Wq∆Wk ⊙∆Wq∆Wk|

E[|Wq∆WT
k | ⊙ |∆Wq∆WT

k |ij] = E[|Qi(δKj)T | · |δQi(δKj)T |]

= E[|
∑
u

Qi
uδK

j
u| · |

∑
v

δQi
vδK

j
v |]

Once again there are 2 cases when u = v and when u ̸= v. In the first case E[(Qi
uδK

j
u)(δQ

i
uδK

j
u)] =

rq
2

r2k
3 Qi

u. In the

second case the random values are all independent so the result is: E[(Qi
uδK

j
u)(δQ

i
uδK

j
v)] =

rq
2

r2k
4 Qi

u.

Adding this up and simplifying gives the value for element i, j:

E[|Wq∆WT
k | ⊙ |∆Wq∆WT

k |ij] = m
rqr

2
k

6

∑
u

Qi
u + (m2 −m)

rqr
2
k

8

∑
u

Qi
u

Averaging over all i, j elements gives:

mean(E[|Wq∆WT
k | ⊙ |∆Wq∆WT

k |] = rqr
2
k(3m+ 1)

12n

∑
i,j

qij

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2025

6th Term: |∆WqW
T
k | ⊙ |∆Wq∆WT

k | This term follows the same reasoning as above. Starting with entry i, j:

E[|∆WqW
T
k | ⊙ |∆Wq∆WT

k |ij] = E[|δQi(Kj)T | · |δQi(δKj)T |]

= E[|
∑
u

δQi
uK

j
u| · |

∑
v

δQi
vδK

j
v |]

In the case where u = v we get E[(δQi
uK

j
u)(δQ

i
uδK

j
u)] =

r2q
3

rk
2 Kj

u. Similarly for u ̸= v gives E[(δQi
uK

j
u)(δQ

i
uδK

j
v)] =

r2q
4

rk
2 Kj

u.

Adding both cases up and simplifying gives:

E[|∆WqW
T
k | ⊙ |∆Wq∆WT

k |ij] = m
r2qrk

6

∑
u

Kj
u + (m2 −m)

r2qrk

8

∑
u

Kj
u

Averaging over all i, j elements gives the final equation:

mean(E[|∆WqW
T
k | ⊙ |∆Wq∆WT

k |] =
r2qrk(3m+ 1)

12n

∑
i,j

kij

8

