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Abstract
Mercury is a Python library developed at BBVA, specifically de-
signed to enhance collaboration among data scientists by enabling
the efficient sharing of code, thereby addressing inefficiencies in
the development and deployment of predictive models for financial
applications. Featuring a modular architecture, Mercury ensures
adaptability and ease of use, while significantly enhancing the devel-
opment process of analytical models. The library’s evolution from
innersource to open-source has broadened its accessibility and fos-
tered a global community of users and contributors. This paper
discusses the main modules in Mercury, including advanced schema
management, extensive model and data testing, event prediction
analysis, model explainability, and mechanisms for monitoring data
and model drift. Together, these components streamline the end-to-
end ML model development process, providing a robust solution to
the challenges of rapid deployment and scalability in a competitive
environment.
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1 Introduction
The development of Artificial Intelligence-based products within
large organizations like BBVA demands significant resources, partic-
ularly for the design, implementation, and validation of algorithms
by teams spread worldwide. Commonly, these teams, despite vary-
ing use cases, find themselves developing similar solutions inde-
pendently, leading to duplicated efforts and substantial resource
wastage.Addressing these inefficiencies, Mercury is strategically
positioned to complement the functionality of existing open source
libraries, such as scikit-learn, rather than replicate them, it focuses
on complementing these resources by providing tools and features
not covered by existing solutions. It facilitates efficient sharing and
utilization of code components among teams and enhances the de-
velopment process by reducing redundancy while maintaining high
code quality standards. This is achieved through its modular archi-
tecture, which allows teams to use only the components they need,
tailored to specific project requirements. Mercury, deployed across
BBVA and available to the open-source community via GitHub, aims
tomitigate duplications and promotes internal efficiency, streamline
development processes, and enhance the globalization and reuse
of analytical products by embracing and extending open-source
practices. These practices, known as Inner Source Software (ISS)
[5, 11, 21], foster a culture of transparency, collaboration, and in-
novation within organizations—principles that are central to the
Open Source software (OSS) movement [1, 25]. This approach not
only accelerates development cycles [22] but also enhances the
quality and adaptability of software solutions, making Mercury a
cornerstone for developing robust, scalable machine learning work-
flows in finance. Mercury’s open-source strategy exemplifies and
amplifies these benefits, demonstrating a commitment to foster-
ing a collaborative, innovative, and efficient software development
environment.

A core contributor to Mercury’s evolution is BBVA’s internal
innovation initiative known as the "X Program". This program is
designed to rapidly prototype ideas into tangible solutions through
short, focused projects. Each X project brings together small cross-
functional teams for a two-to-three-month period to develop a
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functional prototype that addresses shared challenges across differ-
ent business areas. These prototypes, although not fully integrated
or production-ready, serve as minimum viable products (MVPs),
allowing other teams to adopt, test, and further evolve them. The X
Program fosters an agile prototyping process by enabling rapid ex-
perimentation, early validation of ideas, and iterative testing. This
approach feeds directly into Mercury’s architecture, enriching the
platform with new modules and features that address real-world
financial challenges. By focusing on rapid prototyping and imme-
diate functionality, these projects provide Mercury with a steady
influx of innovations, ensuring that it remains a cutting-edge frame-
work for transitioning ML models from prototype to production
within financial environments.

Mercury is designed as a highly modular library, with vari-
ous OSS modules available, such as mercury-dataschema for ad-
vanced schema management in data preprocessing, mercury-robust
for performing robust testing on machine learning (ML) models
and datasets, and others. These modules are accessible along with
their source code, binaries, and full documentation at https://www.
bbvaaifactory.com/mercury/, empowering developers and researchers
to leverage the capabilities of Mercury. This paper describes the
mercury modules released to the open source community.

2 Mercury modules
Mercury has become a major project, featuring 6 OSS modules that
expose around 100 components, each offering a wide variety of
functionalities across various domains. Aware of the complexity
and diversity inherent in the project, the library was architecturally
designed with modularity at its core. This design philosophy allows
users to selectively install only the components required for their
specific project needs. Consequently, Mercury is structured with
multiple micro-repositories in a highly modular design, each capa-
ble of operating autonomously. This modular configuration permits
a tailored and flexible integration, aligning with the unique require-
ments of individual users. The next subsections briefly describes
the main mercury modules released to the OSS community.

2.1 § Mercury-dataschema 1: Advanced
Schema Management for Data Preprocessing

Mercury-dataschema enhances data preprocessing by offering ad-
vanced schema management capabilities. This module is especially
valuable for ensuring that financial data inputs are efficiently and ac-
curately processed, a relevant factor in risk assessment and decision-
making processes. The DataSchema class within this submodule
specializes in the automatic inference of feature types from a pro-
vided Pandas DataFrame. This is not just about identifying data
types; it involves interpreting the underlying characteristics of a fea-
ture to determine their appropriate categorizations. For instance, in
credit risk modeling, a feature such as scoring, typically represented
as a float, might be intelligently classified by Mercury-dataschema
as a categorical variable, thus simplifying further risk segmentation
processes. Beyond type inference, the mercury-dataschema module
computes various statistics based on the inferred types, facilitat-
ing comprehensive data analysis and validation. This functionality
1Mercury-dataschema online documentation: https://bbva.github.io/mercury-
dataschema/

ensures consistency across different datasets, validating whether
they adhere to the same schema, or employing derived statistics
to assess data drift, which can signal shifts in customer behavior
or market conditions. mercury-dataschema is a core module used
by other Mercury sub-modules, it also offers the flexibility to be
used independently, making it a versatile tool in the pre-processing
and exploration of data sets. This utility exemplifies how Mercury
streamlines data management and analysis processes, enhancing
the ability of the bank to develop robust financial products and
adapt to new regulatory environments efficiently.

2.2 § Mercury-robust 2: Performing Robust
Testing on ML Models and Datasets

Mercury-robust is a framework to perform robust testing on ML
models and datasets. ML systems behavior heavily depend on data,
and even the most advanced models are easily fooled by almost
imperceptible perturbations of their inputs [15, 20].

Consequently, the need to test and monitor production-readiness
ofML systems is becoming increasingly evident [4]. In the industrial
environment, it is necessary to ensure that when a trainedMLmodel
is deployed, it behaves properly in the real world. To this end, it
must be provided with a strong resilience to adverse situations and
changes in its environment. In addition, it is essential to ensure
that future updates to the model do not add potential points of
failure in the system, which could jeopardize its reliability and
performance. To address these issues, mercury-robust was born as
a framework. Designed to address the multifaceted requirements
of robust ML model testing, it offers a suite of analytical tools
and methodologies. By incorporating robustness assessment into
the model development lifecycle, mercury-robust facilitates the
identification and mitigation of vulnerabilities, thereby ensuring
model reliability and performance in real-world deployments. At a
high level, mercury-robust is divided into two types of components:
Data Test and Model Test, depending on whether they involve a
model or just the data, respectively. Table 1 shows the different tests
available 3. By executing these tests when creating our datasets and
training our models, we can avoid issues like introducing a feature
with leaking, wasting computational resources and increasing the
maintenance cost with unnecessary features, or deploying a model
that performs worse in a group of our population. The framework
includes the TestSuite class, which allows to create a battery of tests
that we can re-run every time we update a model.

Mercury-robust can be applied beyond tabular data. As exam-
ple, at BBVA it is applied in some text classification use cases, like
classifying bank transactions or detecting the degree of urgency
of a customer message. Annotating text datasets is an error-prone
process and, if left unverified, is not unsurprising to find datasets
with inconsistencies and inaccuracies in the labels. Based on confi-
dent learning [13], the NoisyLabelsTest helps to identify issues in
the annotated texts and ensure that the datasets that we create to
train these models exhibit the required label quality. While text
classification models can reach a high accuracy, it is not infrequent
to fail to detect behavioral failures such as changing the model

2Mercury-robust online documentation: https://bbva.github.io/mercury-robust/
3Mercury-robust cheatsheet summary: https://www.bbvaaifactory.com/mercury/Mercury-
robust_cheatsheet.pdf
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Data Test
SameSchemaTest Ensures that a DataFrame exhibits identical columns and feature types as specified

in the DataSchema.
DriftTest Verifies that the distributions of individual features have not undergone significant

changes between the data used for training and data used for inference.
LinearCombinationsTest Validates the absence of redundant or unnecessary columns.
NoDuplicatesTest Confirms the absence of duplicate samples in the dataset, as this can introduce bias

into performance metrics.
SampleLeakingTest Checks for the presence of test or validation dataset samples that are already

included in the training dataset.
LabelLeakingTest Ensures that no feature leaks information about the target variable.
NoisyLabelsTest Validates the quality of dataset labels, identifying low-quality labels characterized

by a high number of mislabeled samples or unclear label separation.
CohortPerformanceTest Evaluates whether a specified metric performs disproportionately worse for a

particular subset of the data. For example, it can be configured to assess if a accuracy
of the model is lower for one gender compared to another.

Model Test
ModelReproducibilityTest Trains a model twice and verifies that the predictions (or a specific metric) from

the two versions do not exhibit significant differences.
FeatureCheckerTest Estimates feature importance and re-trains the model by iteratively removing the

least important features.
TreeCoverageTest Specifically designed for tree-based models, this test ensures that, given a test

dataset, the samples "activate" a minimum number of branches in their respective
tree(s) once a model is trained.

ModelSimplicityChecker Compares the performance of the model against a simpler baseline (typically a
linear model by default, though users can specify their own baseline).

ClassificationInvarianceTest Evaluates whether the model remains unchanged when subjected to perturbations
that should not impact the sample labels.

DriftResistanceTest Assesses the model’s resistance to drift in the data, ensuring its robustness under
changing environmental conditions.

Table 1: Mercury-robust Tests

prediction when applying label-preserving perturbations. For ex-
ample, our model detecting the urgency of a customer message
should not change the prediction when a person’s name is changed
in the message. By applying the ClassificationInvarianceTest we
check that each new version of this model is not susceptible to
these behavioral flaws.

2.3 § Mercury-settrie 4: A High-Performance
Implementation with Text Indexing
applications

Mercury-settrie is a highly efficient C++ implementation of the
settrie algorithm [18] to find subsets and supersets from a given
query set within a collection of sets stored in the structure. It derives
from the trie data structure [17] and both have wide applications in
data mining, object-relational databases, rule-based expert systems
and recommender systems. The key idea is a sorted tree of elements
as shown in figure 1.

A typical application is finding the list of documents containing
a specific set of words. Conceptually, each document can be viewed
as a set of words and the collection itself is a collection of sets
stored in a settrie structure. Given a set of words used to query,

4Mercury-settrie online documentation: https://bbva.github.io/mercury-settrie/

Figure 1: A settrie structure storing sets of words in a tree.
The circle markers identify the end of each set. Note how the
sets {Sue, runs, home} and {Sue, runs, home, now} share their
common elements.

the superset of that set, which is retrieved in logarithmic time, is
the list of documents. Mercury-settrie can be used in finance for
regulatory compliance and regulatory reporting, where financial
institutions need to quickly identify and retrieve all documents
containing terms related to specific regulatory requirements or
audits. For example, in BBVA Mercury-settrie is used to efficiently
locate all transaction records with specific characteristics for use in
different processes, facilitating faster response times to regulatory
queries or generating data sets to train other models.
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Notably, this data structure finds utility in auto-complete appli-
cations as well.

The library has a Python 3 interface. It provides the speed and
limited storage from the C++ implementation combined with a
Pythonic API supporting iterators and automatic serialization. Re-
markably, an off-the-shelf computer can store representations in
RAM corresponding to terabytes of documents and deliver query
results at a pace far exceeding typing speeds. In performance com-
parison with pure Python implementations, mercury-settrie demon-
strates superiority by being approximately 200 times faster and 20
times more memory efficient.

2.4 § Mercury-reels 5: Analyzing Transactional
Data for Event Prediction

Mercury-reels is a library to analyze sequences of events extracted
from transactional data to predict when related target events may
occur in the future. These events can be automatically discovered
or manually defined. As show in figure 2, Mercury-reels identifies
events by assigning them event codes and creates clips, which are
sequences of (code, time of occurrence) tuples for each client. Using
these clips, a model can be generated to predict the time at which
target events may occur in the future.

Figure 2: The main phases in a reels pipeline: a. identifying
events, b. building sequences and c. training a model.

Originally conceived for analyzing web navigation transactional
data, mercury-reels finds natural applications in cybersecurity and
any scenario where event prediction or risk scoring based on histori-
cal data is pertinent. The definition of relevant events can be derived
from transactional data or established through domain expertise.
Alternatively, the Reels event optimizer facilitates a semi-automated
approach for iteratively learning and refining event predictions.
Implemented in C++ with a Python interface, mercury-reels boasts
single-threaded efficiency, seamlessly accommodating millions of
clients and billions of records with hundreds of thousands of events.
For enhanced parallelization, data can be partitioned by dividing
the client set into smaller subsets and operate on each subset inde-
pendently. The library provides the tool, a filter by client ids, to do
it easily.

Mercury-reels uses discrete events. Even in cases where contin-
uous time series analysis is more appropriate, the prediction made
by Reels can be used as a score in other methods. This leverages
the sequence-of-events perspective other methods may not capture
as well. The library offers flexible support for defining relevant
predictive events, accommodating manual, fully automatic, or as-
sisted approaches. Notably, Reels facilitates the prediction of target
events within or outside the transactional dataset. Implemented in
C++, Reels prioritizes optimized performance, while its Pythonic
5Mercury-reels online documentation: https://bbva.github.io/mercury-reels/

interface ensures seamless interoperability with serializable objects,
iterators, and interfaces with popular data processing libraries like
pandas and pyspark.

2.5 § Mercury-Explainability 6: Explainability
in highly regulated industries

Mercury-explainability stands as a comprehensive library with
implementations of different state-of-the-art methods in the field
of explainability. Particularly relevant in highly regulated sectors
such as financial services, with regulations such as the General
Data Protection Regulation (GDPR) in the European Union, which
requires transparency in automated decisions. An application of
this module can be seen in loan prediction algorithms. These algo-
rithms, while not directly employing protected categories such as
race or gender, can use variables significantly correlated with these
categories, which can lead to inadvertent discriminatory practices.
Mercury explainability helps to disentangle these complex rela-
tionships by providing clear and understandable explanations for
the decisions of the model, thus ensuring compliance and avoiding
any unintended bias. For example, in the scenario where a lending
model might be indirectly discriminating based on zip codes closely
correlated with ethnic demographics, Mercury-explainability can
pinpoint how each characteristic influences the loan approval pro-
cess, thus allowing the institution to adjust the model to eliminate
unfair bias. This capability is crucial not only to meet regulatory
requirements, but also to maintain the confidence of clients and
regulators. It ensures that all automated decisions are transparent
and defensible, allowing for a thorough understanding and auditing
of the loan approval process. Extensive works [3, 6, 7] has explored
this imperative, leading to the compilation of numerous state-of-the-
art interpretability algorithms within Mercury. They are designed
to work efficiently and to be easily integrated with the main ML
frameworks. The basic block of mercury-explainability is the Ex-
plainer class. Each explainer offers a unique approach to model
interpretation, often yielding an Explanation object encapsulating
the results.

6Mercury-explainability online documentation: https://bbva.github.io/mercury-
explainability/
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Figure 3: Accumulated Local Effects.

Figure 4: Counterfactual Explanations.

• Accumulated Local Effects (ALE)[2, 12]: show how model
inputs affect the prediction on average. ALE Plots tend to be
more useful in cases where there are correlations between
different model inputs. For example, if we have a model that
predicts the probability of default when granting credit, it
can help us understand that our model tends to decrease
the probability of default when the model input "monthly
income" increases. In Figure 3 we present plots that illustrate
the impact of various input features on model predictions
across different classes. These visualizations clearly demon-
strate how changes in feature values influence the outcome.

• Counterfactual Explanations (CE): This method looks for
the necessary changes in inputs to achieve a predefined
model output, rather than the actual prediction [8, 23]. In
the context of a loan impact prediction model, Counterfac-
tual Explanations can elucidate the adjustments needed in
input features to reduce the probability of default. Within the
mercury-explainer framework, two counterfactual methods,
namely CounterFactualExplainerBasic and Counterfactual-
ProtoExplainer , provide avenues for exploring these alter-
nate scenarios. In Figure 4 is presented an illustrative exam-
ple of a counterfactual explanation generated by Mercury-
interpretability. The first two charts detail the adjustments
needed in each feature to achieve the desired outcome, il-
lustrating the absolute and relative changes necessary for
reaching a specific decision threshold. These adjustments
indicate how much each feature’s value should be increased

or decreased. The final plot tracks the evolution of the prob-
ability of achieving the target outcome across successive
iterations, showcasing the trajectory of the decision-making
process as adjustments are made to the model inputs.

• ClusteringTreeExplainer (CTE): Leveraging DecisionTree
models, this explainer elucidates the behavior of clustering
models, offering valuable insights into the underlying struc-
ture of the data. This method is based on the papers Iterative
Mistake Minimization (IMM) [9] and ExKMC [10]. By con-
structing decision trees aligned with clustering results, this
method facilitates the interpretation of cluster groupings
within the data, contributing to enhanced model understand-
ing.

• Anchors Explanations (AE): offers insights into model predic-
tions by identifying rules in input features that consistently
lead to specific outcomes [16]. These rules highlight sub-
sets of inputs where model predictions remain unchanged,
irrespective of variations in other inputs, thus enhancing
interpretability and trust in the model’s decisions.

With mercury-explainability, users can navigate the intricacies
of model decision-making processes, fostering transparency and
trust in ML systems.

deviation

2.6 § Mercury-monitoring 7: data drift and
model degradation detection

Mercury-monitoring is a library designed to monitor data and
model drift, which are critical for the correct deployment of ML
systems in production environments. The performance of ML mod-
els relies on the consistency of their input data. When working
in these environments, these models may experience performance
degradation over time due to abrupt or gradual shifts in input data
distribution. Classical software systems trigger alerts upon encoun-
tering unexpected inputs. In contrast, ML models often fail without
any indicative warning unless equipped with appropriate moni-
toring tools to detect such drifts [14]. These drifts can occur for
various reasons, including changes in the operational environment,
such as economic fluctuations. Other factors include the introduc-
tion of new competitor products and the emergence of novel fraud
techniques. Changes in input units can also cause drifts. Seasonal
phenomena, such as a sudden surge in inquiries about tax declara-
tions during relevant months, can impact text classifiers aimed at
identifying customer message themes.

At BBVA, we include monitoring in critical processes such as
early debt recovery, whose goal is to prevent and assist the client
in overcoming situations in which they have fallen behind their
payments. Monitoring our debt recovery models helps us adjust
the models to current economic realities. These methods often
rely on capturing the statistical properties of metrics, input data
or output data. Nonetheless, in problems such as regression in
loan repayment risk, the accuracy of model predictions remains
uncertain until the loans are repaid, thus rendering those men-
tioned methods incapable of monitoring these processes. For those

7Mercury-monitoring online documentation: https://bbva.github.io/mercury-
monitoring/
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scenarios, Mercury-Monitoring incorporates a component dedi-
cated to predicting model performance in the absence of outputs.
This predictive methodology, as outlined in [19], diverges from
traditional approaches by not requiring explicit assumptions about
distributional changes between source and service data. Instead,
it utilizes common variations and errors within datasets to train a
performance predictor for the model. This system is designed to
autonomously trigger alerts upon detecting performance drops in
unseen service data, similar to those observed with the introduc-
tion of synthetic errors. While numerous resources [24] provide
extensive descriptions of various types of data drift, in general, we
can distinguish between:

(1) Concept drift: Changes over time on the statistical properties
between input features and the target variable, that cause
model predictions to become less accurate.

(2) Feature drift: Variations in the distribution of the model’s
input variables over time compared to the data used during
training.

(3) Label drift: Error drift that manifests when the distribution
of input variables remains constant, but the target variable
undergoes changes.

For those methods that detect changes in input and output data,
Mercury-Monitoring incorporates algorithms grouped into two
different categories. First, we can find components that address
the issue by looking separately at each feature in a dataset using
statistical methods. We can use the KSDrift, Chi2Drift and His-
togramDistanceDrift components in this category. Alternatively,
we can use components that focus on the joint distribution of the
features. Here we find the DomainClassifierDrift, AutoencoderDrift-
Detector , and the DensityDriftDetector components, which are all
model-based detectors.

3 Conclusions
In this paper, we introduced Mercury, a Python library developed
by BBVA aimed at fostering collaboration among data scientists
through efficient code sharing. Mercury offers a wide range of state-
of-the-art algorithms and utilities, empowering data scientists to
accelerate the creation of analytical models across various domains.
One of the key advantages of Mercury lies in its modular design,
allowing users to selectively install only the components they re-
quire, thereby enhancing reusability and scalability. By using all the
modules in Mercury, data scientists can reduce the time-to-value
and time-to-market of their analytical solutions. This acceleration
enables the swift innovation and deployment of ML models. A crit-
ical enabler of this acceleration is Mercury’s integration with the
agile prototyping processes from the X Programs. By supporting
rapid prototyping, Mercury allows teams to quickly experiment
with new ideas, validate them in early stages, and bring them into
production. This iterative process fosters innovation by reducing de-
velopment cycles and facilitating early feedback, while minimizing
risks associated with large-scale deployments. Through prototyp-
ing, teams can create MVPs that are functional enough for testing
and adoption by other teams, accelerating the transition from idea
to operational model in real-world financial applications. Collec-
tively, the integrated components of Mercury enhance the entireML

model development lifecycle. This integration offers a solid foun-
dation to overcome the common challenges of rapid deployment
and scalability, ensuring competitive advantage in dynamic market
environments. Furthermore, the transition of Mercury from an ISS
model to an OSS framework marks a milestone. By embracing open-
source practices, Mercury not only fosters collaboration and knowl-
edge sharing within BBVA but also invites external contributions
and feedback from the wider developer community. This openness
facilitates continuous improvement and innovation, driving Mer-
cury towards becoming a more robust and versatile ML systems.
Looking ahead, Mercury continues to evolve and new lines of devel-
opment are being explored in areas such as embedding techniques,
synthetic data generation and graph analysis. These additions are
intended to further enrich the capabilities of the library.

In conclusion, Mercury simplifies development and deployment
of ML models for enterprises, offering flexibility, efficiency, and
openness. Its modular architecture, coupled with its integration
of state-of-the-art algorithms, promises to revolutionize the way
data scientists approach analytical challenges, ultimately leading
to greater productivity and innovation in the field of artificial intel-
ligence.
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