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Abstract

In interactions between users and language001
model agents, user utterances frequently ex-002
hibit ellipsis (omission of words or phrases)003
or imprecision (lack of exactness) to prioritize004
efficiency. This can lead to varying interpre-005
tations of the same input based on different006
assumptions or background knowledge. It is007
thus crucial for agents to adeptly handle the in-008
herent ambiguity in queries to ensure reliability.009
However, even state-of-the-art large language010
models (LLMs) still face challenges in such011
scenarios, primarily due to the following hur-012
dles: (1) LLMs are not explicitly trained to deal013
with ambiguous utterances; (2) the degree of014
ambiguity perceived by the LLMs may vary015
depending on the possessed knowledge. To ad-016
dress these issues, we propose Alignment with017
Perceived Ambiguity (APA), a novel pipeline018
that aligns LLMs to manage ambiguous queries019
by leveraging their own assessment of ambigu-020
ity (i.e., perceived ambiguity). Experimental021
results on question-answering datasets demon-022
strate that APA empowers LLMs to explicitly023
detect and manage ambiguous queries while024
retaining the ability to answer clear questions.025
Furthermore, our finding proves that APA ex-026
cels beyond training with gold-standard labels,027
especially in out-of-distribution scenarios.028

1 Introduction029

Large Language Models (LLMs) (Ouyang et al.,030

2022; Team et al., 2023; Achiam et al., 2023) have031

demonstrated remarkable capabilities in text gen-032

eration, proving particularly effective for question-033

answering (QA) tasks (Zhang et al., 2023; Etezadi034

and Shamsfard, 2023). QA systems in the wild fre-035

quently encounter unexpected user input, such as036

unanswerable (Kim et al., 2023b; Yin et al., 2023)037

or ambiguous questions (Cole et al., 2023; Lee038

et al., 2023; Kim et al., 2023a). To build an agent039

that is both reliable and user-friendly, it is essential040

for the model to robustly handle such inputs. In this041

When was the last time UGA won a national championship?

1. National tennis championship, 2019

2. National golf championship, 2005

3. National baseball championship, 1990

…

1. National tennis championship, 2019

Can you clarify 
your question?

UGA won the national
championship in 2019.

Model A Model B

Intrinsic Model Knowledge Intrinsic Model Knowledge

Figure 1: An example of an ambiguous query from
AmbigQA. The term “national championship” poses
diverse denotations, causing ambiguity. (Left) A model
with diverse relevant knowledge might perceive the case
as ambiguous. (Right) In contrast, the query can be
deemed unambiguous when the model lacks substantial
related knowledge. Thus, the perceived ambiguity may
differ depending on the model’s intrinsic knowledge.

work, we seek to extend the scope of research to 042

manage invalid inputs effectively. Specifically, we 043

focus on managing “ambiguity” (Gleason, 1963; 044

Mackay and Bever, 1967), which poses a signif- 045

icant challenge in Natural Language Processing 046

(NLP) (Jurafsky, 1996). 047

Ambiguity refers to cases where an expression 048

conveys multiple denotations (Wasow et al., 2005). 049

Users may pose queries with clear intentions that, 050

possibly due to insufficient domain knowledge or 051

omission during the utterance, result in ambiguous 052

requests. If a model arbitrarily responds to such am- 053

biguity, there is a risk of misinterpreting the user’s 054

original intent, potentially harming the model’s re- 055

liability. This is particularly evident in domains 056

requiring high reliability, such as legal (Schane, 057
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2002; Choi, 2024) or medical (Stevenson and Guo,058

2010; Gyori et al., 2022), where misinterpretations059

may lead to severe consequences. Despite such im-060

portance, approaches to manage ambiguity robustly061

are still significantly unexplored.062

Properly processing ambiguous inputs is chal-063

lenging primarily due to the following two hurdles.064

Firstly, models are not trained to express ambi-065

guity explicitly. Even if a model is capable of066

recognizing ambiguity, confirming this recognition067

requires explicit cues from the model itself, such068

as expressing uncertainty or offering multiple inter-069

pretations. The second challenge is that the degree070

of ambiguity perceived by the model can vary071

based on its intrinsic knowledge. Consider the sce-072

nario depicted in Figure 1. The initial query is073

ambiguous as the phrase “national championship”074

poses various denotations, such as “national tennis075

championship” or “national golf championship”.076

With comprehensive knowledge across possible de-077

notations, a model can likely recognize the query’s078

ambiguity (Figure 1, left). However, limited knowl-079

edge would lead the model to perceive the query as080

unambiguous (Figure 1, right). Therefore, how a081

model interprets ambiguity hinges on its knowledge082

scope, which we define as perceived ambiguity.083

To overcome these issues, this paper proposes084

Alignment with Perceived Ambiguity (APA)— a085

novel alignment pipeline for models to explicitly086

handle ambiguous queries by leveraging their per-087

ceived ambiguity. Specifically, we design a proxy088

task that guides the model in utilizing its intrinsic089

knowledge for self-disambiguation of a given query.090

We then quantify the information gained from this091

disambiguation as an implicit measure of the extent092

to which the model perceives the input as ambigu-093

ous. This measure serves as a cue for ambiguous094

sample selection. For the selected ambiguous query095

and its disambiguation, the model generates a clar-096

ification request regarding the ambiguity. Finally,097

the model is trained to request explicit clarification098

in response to ambiguous queries.099

Experimental results from a range of QA100

datasets demonstrate that APA enables a lan-101

guage model to properly handle ambiguous in-102

puts while maintaining its inherent capabilities103

of answering unambiguous queries. Furthermore,104

we present three new datasets to provide a com-105

prehensive framework for assessing ambiguity:106

AmbigTriviaQA, AmbigWebQuestions, and Am-107

bigFreebaseQA. These datasets facilitate a more108

extensive evaluation of models’ robustness in ad-109

dressing ambiguity, thus contributing to the further 110

expansion of related research. 111

2 Related Work 112

Ambiguity in NLP An expression is ambigu- 113

ous if it has two or more distinct denotations (Wa- 114

sow et al., 2005). Ambiguity poses a significant 115

challenge to NLP applications by obscuring the 116

intended meaning of expressions, preventing mod- 117

els from accurately performing specific tasks. Ef- 118

forts to address this issue span across various do- 119

mains, including machine translation (Pilault et al., 120

2023), coreference resolution (Poesio and Artstein, 121

2005; Yuan et al., 2023), and natural language in- 122

ference (Liu et al., 2023). The challenge intensifies 123

in the scope of QA, as ambiguous questions may 124

yield multiple answers that may not align with the 125

user’s initial intent. Min et al. (2020) introduce 126

the AmbigQA dataset to tackle ambiguity in open- 127

domain QA and Stelmakh et al. (2022) expand it 128

to long-form generation. Furthermore, Cole et al. 129

(2023) demonstrate that quantifying sampling rep- 130

etition presents a reliable uncertainty measure for 131

ambiguity, while Kim et al. (2023a) generate tree- 132

of-clarification (ToC) that refines input ambiguity. 133

While we share the goal of handling ambiguity, we 134

propose a method of directly aligning the model. 135

Alignment of LLMs LLMs are typically trained 136

through causal language modeling, a process essen- 137

tial for understanding and generating text of high 138

fluency and consistency. To better harness these 139

models, approaches have been developed to align 140

them with human preferences (Leike et al., 2018; 141

Ji et al., 2023b) through various forms, such as 142

Reinforcement Learning from Human Feedback 143

(RLHF) (Ouyang et al., 2022; Chakraborty et al., 144

2024), and Supervised Fine-tuning (SFT) (Dong 145

et al., 2023; Yang et al., 2023; Zhou et al., 2024). 146

Previous works focused on preferences such as 147

helpfulness (Ding et al., 2023; Köpf et al., 2023; 148

Xu et al., 2024), safety (Bai et al., 2022; Ji et al., 149

2023a; Liu et al., 2024b), and factuality (Yang et al., 150

2023; Tian et al., 2024). Building on this founda- 151

tion, our research expands the scope of research 152

by focusing on aligning models to understand and 153

manage ambiguity effectively. 154

Data Quality Control for Alignment Data- 155

centric AI (Chu et al., 2016; Majeed and Hwang, 156

2023; Kumar et al., 2024) highlights the importance 157

of data quality in model training. In the context 158
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When was the last 

time UGA won a 

national 

championship?

Please 

disambiguate the 

question!

When was the last 

time UGA won a 

national 

championship?

When was the last 

time UGA won a 

national tennis 

championship?

Information-gain > 𝝐

When was the last 

time UGA won a 

national 

championship?

UGA won the 

national 

championship in 

2019.

When was the last 

time UGA won a 

national tennis 

championship?

The question is 

ambiguous.

Please specify the sport

you are referring to.

1. Initial Prediction  

    Assessment

2. Perceived Ambiguity Detection

2-2. Measure Information-gain

3. Response Construction

When was the last 

time UGA won a 

national 

championship?
The question is 

ambiguous.

Please specify the

sport you are

referring to.

4. SFT

𝒙

ෝ𝒙𝐝𝐢𝐬𝐚𝐦𝐛𝐢𝐠

𝒙 ෝ𝒙𝐝𝐢𝐬𝐚𝐦𝐛𝐢𝐠

𝒙 𝒚𝐜𝐥𝐚𝐫𝐢𝐟𝐲ෝ𝒚

𝒙
2-1. Disambiguation

When was the last 

time UGA won a 

national tennis 

championship?

ෝ𝒙𝐝𝐢𝐬𝐚𝐦𝐛𝐢𝐠

𝒚𝐜𝐥𝐚𝐫𝐢𝐟𝐲

Figure 2: The overall process of APA. We select incorrect samples from the model (Stage 1) and let the model
self-disambiguate them with the intrinsic knowledge. We measure the information gain (INFOGAIN) between the
input and the disambiguation and select samples with high INFOGAIN as ambiguous (Stage 2). Then, the model
generates a clarification request regarding the ambiguity (Stage 3), which is used as the label for training (Stage 4).

Unambiguous
Query

Ambiguous
Query

Model Prediction
Correct

Clarification
Request

①

Incorrect
Prediction

②

Correct
Prediction

③

Incorrect 
Prediction

④
Incorrect

Incorrect
Clarification

Request

⑤

Figure 3: Illustration of five possible results from our
scenario. For ambiguous queries, the prediction is cor-
rect ( 1⃝) if the model generates a clarification request;
otherwise, all the other responses are classified as incor-
rect ( 2⃝). When evaluating unambiguous queries, we
compare the predictions to the ground-truth labels and
categorize them as the correct prediction ( 3⃝), incorrect
prediction ( 4⃝), or incorrect clarification request ( 5⃝).

of instruction-following techniques, LIMA (Zhou159

et al., 2024) demonstrates that effective model160

alignment can be achieved with just 1,000 high-161

quality, human-curated samples. Similarly, Alpa-162

Gasus (Chen et al., 2024) leverages only a small163

subset of the Alpaca dataset (Taori et al., 2023),164

filtered by ChatGPT, for an effective alignment.165

Various approaches for data selection have been166

explored, including those based on factors such167

as length and complexity (Liu et al., 2024a), and168

gradient similarity from validation sets (Xia et al.,169

2024). This work proposes a new viewpoint on data170

quality estimation: assessing how well data aligns171

models for ambiguity management. For this pur-172

pose, we utilize the model’s perceived ambiguity 173

as an implicit cue for measuring data quality. 174

3 Methodology 175

The primary goal of our research is to align mod- 176

els in a way that they can explicitly handle poten- 177

tially ambiguous inputs, leveraging the model’s per- 178

ceived ambiguity. To this end, we propose Align- 179

ment with Perceived Ambiguity (APA), a four- 180

stage alignment pipeline, illustrated in Figure 2. 181

In this section, we first formulate the problem and 182

describe each stage in detail regarding the five pos- 183

sible results depicted in Figure 3. Further imple- 184

mentation details are stipulated in Appendix A. 185

Problem Formulation In this study, we focus 186

on open-domain QA. The model M is expected to 187

generate a prediction ŷunambig for an unambiguous 188

query xunambig given a pre-defined inference tem- 189

plate t(·). ŷunambig is compared to the ground-truth 190

label y and categorized as correct prediction ( 3⃝), 191

incorrect prediction ( 4⃝), or incorrect clarification 192

request ( 5⃝). As we expand our input scope to 193

ambiguous queries1, the model prediction for the 194

ambiguous query ŷambig is anticipated to serve as a 195

clarification request yclarify to resolve the ambiguity. 196

This approach is grounded on the assumption that 197

1Separating ambiguous from unambiguous queries is in-
herently challenging due to subjective factors such as various
perspectives and underlying assumptions. Despite the com-
plexity, we simplify the problem and follow the pre-defined
ambiguity from the training dataset for the alignment.
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the user is best positioned to clarify their intent.2198

ŷambig is considered correct ( 1⃝) if it is a proper199

clarification request. Otherwise, responses that fail200

to address the ambiguity are classified as incorrect201

( 2⃝). The final objective of the alignment is to in-202

crease the number of samples corresponding to 1⃝203

while simultaneously maintaining or improving the204

proportion of responses classified as 3⃝.205

3.1 Initial Prediction Assessment206

The initial stage focuses on identifying samples that207

the model currently fails to handle. To do so, we208

compare the model’s prediction with the ground-209

truth label, where samples are categorized based210

on accuracy. Specifically, we assess the correctness211

by matching ŷunambig with y and ŷambig with yclarify.212

A total of n correct samples, included in 1⃝ and 3⃝,213

are collected as Dcorrect = {(xicorrect, y
i
correct)}ni=1.214

Incorrect samples falling under categories 2⃝, 4⃝,215

and 5⃝ are unified as a separate dataset, Dincorrect.216

3.2 Perceived Ambiguity Detection217

This stage aims to identify samples from Dincorrect218

that the model perceives as ambiguous. Given that219

it is challenging for the model to express ambiguity220

explicitly, we construct a proxy task to estimate the221

ambiguity from the model’s perspective. Specifi-222

cally, the model is prompted to self-disambiguate223

the given query x and generate a disambiguation224

x̂disambig. The model leverages its intrinsic knowl-225

edge related to x to generate further details in this226

process. If x is underspecified and the model pos-227

sesses related knowledge necessary to compensate,228

then x̂disambig would yield a higher certainty (lower229

entropy) from the model’s perspective. On the other230

hand, if x requires no specification or the model231

lacks the necessary knowledge, x̂disambig would ex-232

hibit a similar level of uncertainty as x. To quantify233

the uncertainty associated with x and x̂disambig, we234

employ the model’s average entropy (Malinin and235

Gales, 2021; Abdar et al., 2021). Formally, the en-236

tropy of an output distribution is defined as follows:237

Hx,i = −
∑
v∈V

px,i(v) log px,i(v) (1)238

where px,i(v) is the probability of the ith token v239

of a sentence x from the full vocabulary set V . The240

2We explored alternatives for ambiguity management but
found them to be impractical. For instance, arbitrarily select-
ing one of the valid answers may not accurately capture the
user’s intent. Presenting all possible answers is often unfeasi-
ble due to the potentially vast number of valid responses.

average entropy for x can be defined as: 241

Hx =
1

N

∑
i

Hx,i (2) 242

with x composed of N -tokens. We quantify the 243

additional information gained from x̂disambig by the 244

difference in average entropy, which we define as 245

information gain (INFOGAIN). 246

INFOGAINx,x̂disambig = Hx −Hx̂disambig (3) 247

A meaningful specification from x̂disambig would 248

result in a substantial INFOGAIN, suggesting that 249

the model perceives x as ambiguous. Regardless 250

of the ground-truth ambiguity, samples with INFO- 251

GAIN greater than the threshold ϵ are classified as 252

ambiguous, denoted as xambig. 253

3.3 Response Construction 254

In this stage, we define yclarify, which represents 255

the clarification request the model should generate 256

in response to an ambiguous query. We explore 257

two approaches for response generation: Fixed re- 258

sponse and Generated response. 259

Fixed Response We utilize a pre-defined clarifi- 260

cation request as yclarify for xambig. 261

Generated Response The model is prompted 262

to generate a clarification request specifying the 263

source of the ambiguity. To do so, we provide the 264

model with xambig and x̂disambig to identify the as- 265

pect that causes the ambiguity, thereby generating 266

yclarify specific to the identified factor. 267

3.4 Supervised Fine-Tuning (SFT) 268

The objective of this stage is to construct datasets 269

for the alignment. Specifically, We label m samples 270

identified as ambiguous and construct an ambigu- 271

ous dataset Dambig = {(xjambig, y
j
clarify)}mj=1, where 272

yclarify serves as the ground-truth label. To prevent 273

the potential loss of the model’s existing knowl- 274

edge, we also incorporate Dcorrect for training. The 275

number of samples from both datasets are balanced 276

so that n = m. The final training dataset is thus 277

established as D = Dcorrect +Dambig. Utilizing the 278

dataset D = {(xk, yk)}n+m
k=1 , the model is trained 279

to generate y for xunambig and yclarify for xambig, em- 280

ploying the identical inference template t(·). The 281

model M with parameter θ is trained as follows: 282

min
θ

∑
(x,y)∈D

|y|∑
i=1

− logMθ(yi|y<i, t(x)) (4) 283
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Two versions of APA are trained based on the type284

of yclarify: APAFIXED and APAGEN, which utilizes285

fixed and generated responses, respectively.286

4 Experimental Setting287

4.1 Datasets288

The capability of the model to perform within the289

trained domain is pivotal. However, for real-world290

applicability, the model must generalize to out-of-291

distribution (OOD) queries, as queries that diverge292

from the training data are frequently confronted293

in practice. Therefore, we utilize AmbigQA (Min294

et al., 2020) as the in-domain dataset for training295

and validation. The dataset includes both ambigu-296

ous and unambiguous queries, with unambiguous297

queries labeled with ground-truth answers. Situat-298

edQA (Zhang and Choi, 2021) is used as a held-out299

OOD test dataset with two different splits, denoted300

as SituatedQA-Geo and SituatedQA-Temp, each301

focusing on geographical and temporal ambigui-302

ties. To further evaluate ambiguity across diverse303

QA domains, we have constructed three additional304

datasets: AmbigTriviaQA, AmbigWebQuestions,305

and AmbigFreebaseQA, each derived from Triv-306

iaQA (Joshi et al., 2017), WebQuestions (Berant307

et al., 2013), and FreebaseQA (Jiang et al., 2019)308

respectively. We prompt gpt-4o3 to ambiguate the309

initial query from the original dataset and verify310

the generation. To mitigate the potential biases311

in the validation process, we further evaluate the312

verified samples with human annotators and select313

samples for the final dataset. More details on the314

datasets and the construction process are described315

in Appendix B.316

4.2 Baselines317

To evaluate the effectiveness of our approach, we in-318

troduce two sets of baselines: inference-only meth-319

ods and trained methods. Specific implementation320

details are described in Appendix C.321

Inference-Only Methods Inference-only meth-322

ods address ambiguity by utilizing different prompt-323

ing strategies. We employ direct prompting324

(DIRECT) as a fundamental baseline, applying325

a simple QA prompt. Furthermore, we explore326

ambiguity-aware prompting (AMBIG-AWARE),327

which incorporates additional instructions on han-328

dling ambiguous inputs. We also examine Sample329

Repetition (SAMPLE REP) (Cole et al., 2023) by330

3https://openai.com/index/hello-gpt-4o/

measuring the consistency of the sampled genera- 331

tions. Finally, we compare SELF-ASK (Amayuelas 332

et al., 2023), where the model generates an answer 333

and subsequently determines the ambiguity based 334

on the generation. 335

Trained Methods Given the lack of directly com- 336

parable prior work, we compare APA with fine- 337

tuned baselines wherein the model is trained with 338

the in-domain training set. We follow the ambiguity 339

as defined within the in-domain dataset, and train 340

the model accordingly. We compare FULL-SET, 341

which applies the entire training dataset. Further- 342

more, we compare two variations that leverages 343

the equal number of training samples with APA. 344

SUBSETRAND is trained on a randomly selected 345

subset with an equal number of ambiguous and 346

unambiguous samples. SUBSETENT applies the en- 347

tropy of the model’s prediction of the ambiguous 348

query as the uncertainty measure. Ambiguous sam- 349

ples with the most significant entropy are selected, 350

and unambiguous samples are selected at random. 351

4.3 Evaluation Metrics 352

A successful alignment should preserve the model’s 353

capability to handle unambiguous inputs while ef- 354

fectively managing ambiguous queries. Based on 355

the five possible results illustrated in Figure 3, we 356

define two distinct metrics to quantify such capa- 357

bilities. Further details of the evaluation process 358

are described in Appendix D. 359

Unambiguous Prediction F1 (F1u) The model 360

must generate accurate answers to unambiguous 361

queries while minimizing arbitrary responses to 362

ambiguous queries. To measure this, we utilize 363

the unambiguous prediction F1 score, which is the 364

harmonic mean of precision ( 3⃝
2⃝+ 3⃝+ 4⃝ ) and recall 365

( 3⃝
3⃝+ 4⃝+ 5⃝ ) for ambiguous queries. 366

Ambiguity Detection F1 (F1a) Given an am- 367

biguous input, the model should be able to de- 368

tect them and generate clarification requests ac- 369

cordingly. However, models may exhibit biased 370

predictions toward clarification requests. Taking 371

these aspects into account, we evaluate the model’s 372

ambiguity detection capability with the F1-score, 373

which captures both the precision ( 1⃝
1⃝+ 5⃝ ) and 374

recall( 1⃝
1⃝+ 2⃝ ). 375

4.4 Implementation Details 376

For our experiments, we utilize LLAMA2 7B & 377

13B (Touvron et al., 2023), and MISTRAL 7B 378

5
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Method
# Training
Samples

SituatedQA-
Geo

SituatedQA-
Temp

Ambig-
TriviaQA

Ambig-
WebQuestions

Ambig-
FreebaseQA

F1u F1a F1u F1a F1u F1a F1u F1a F1u F1a

LLAMA2 7B

DIRECT 0 30.44 0.00 28.38 0.00 47.68 0.00 24.87 0.00 50.07 0.00
AMBIG-AWARE 0 7.33 32.44 3.23 35.53 27.23 68.14 14.53 62.40 51.27 76.62
SAMPLE REP 0 6.83 34.43 8.28 38.43 53.11 72.63 13.31 69.21 63.11 78.70
SELF-ASK 0 29.66 8.18 26.97 18.48 48.04 4.99 20.81 3.02 48.54 5.03
SUBSETRAND 3,088 31.90 37.17 29.48 33.68 54.71 70.97 38.69 73.84 63.59 77.70
SUBSETENT 3,088 39.33 40.84 34.28 34.62 58.83 74.98 42.39 75.86 72.18 83.89
FULL-SET 10,036 37.67 41.45 29.59 36.92 58.10 71.25 40.46 73.84 69.97 80.34

APAFIXED 3,088 39.99 41.86 31.74 39.63 62.97 75.50 49.15 77.07 73.37 84.19
APAGEN 3,088 41.01 43.10 34.38 41.89 59.27 75.74 47.26 76.64 73.18 84.90

MISTRAL 7B

DIRECT 0 11.29 0.00 15.34 0.00 33.19 0.00 17.85 0.00 31.37 0.00
AMBIG-AWARE 0 3.66 26.01 8.43 22.48 26.26 48.43 8.39 30.52 32.96 54.91
SAMPLE REP 0 7.64 25.31 7.83 21.13 29.52 17.04 8.99 12.10 27.25 16.31
SELF-ASK 0 11.29 0.00 15.34 0.00 33.19 0.00 17.85 0.00 31.37 0.00
SUBSETRAND 1,382 41.42 33.95 34.14 37.01 60.57 67.82 45.16 71.74 70.60 75.93
SUBSETENT 1,382 47.34 29.49 42.00 32.04 62.17 67.16 50.93 71.11 72.94 77.17
FULL-SET 10,036 35.99 41.28 31.16 33.72 66.67 76.38 41.83 74.72 76.98 84.67

APAFIXED 1,382 38.43 41.84 45.01 43.95 70.70 83.48 54.02 81.07 80.84 90.12
APAGEN 1,382 39.55 42.07 43.29 40.70 67.73 82.14 51.41 79.54 80.27 89.22

LLAMA2 13B

DIRECT 0 30.44 0.00 29.69 0.00 46.43 0.00 27.59 0.00 49.17 0.00
AMBIG-AWARE 0 5.99 33.10 4.22 36.66 24.80 68.19 4.81 65.28 43.81 73.40
SAMPLE REP 0 11.57 32.85 16.56 37.87 49.93 72.44 7.89 67.26 61.05 79.33
SELF-ASK 0 30.44 0.00 29.69 0.00 46.43 0.00 27.59 0.00 49.17 0.00
SUBSETRAND 3,216 33.11 36.87 28.57 37.84 63.19 73.52 44.31 72.99 70.40 78.29
SUBSETENT 3,216 40.19 38.39 31.03 38.00 64.95 76.03 48.70 77.43 73.38 81.93
FULL-SET 10,036 37.58 38.39 29.41 34.37 68.33 76.82 47.20 75.27 76.56 83.00

APAFIXED 3,216 31.31 40.23 36.45 42.18 70.83 80.99 53.69 79.22 79.92 88.03
APAGEN 3,216 34.04 39.89 31.72 39.36 69.25 79.57 52.96 78.46 79.80 87.61

Table 1: Experimental results for five different datasets. We report the unambiguous and ambiguous F1-scores as
F1u and F1a, respectively. For each dataset, the best method is highlighted in bold and the second-best method is
underlined. APA outperforms all the baselines by utilizing the perceived ambiguity.

(Jiang et al., 2023). We employ QLoRA (Dettmers379

et al., 2023) to facilitate efficient training. Results380

are averaged over three different random seeds.381

5 Experimental Results382

The main results are presented in Table 1.383

Inference-only methods exhibit significant384

limitations in handling ambiguous queries. DI-385

RECT fails to manage ambiguous queries, as evi-386

denced by its consistent zero F1a scores. AMBIG-387

AWARE and SAMPLE REP demonstrate a strong388

bias towards clarification requests, exhibiting defi-389

cient F1u. SELF-ASK displays a subpar F1a, indi-390

cating it is challenging to resolve ambiguity by just391

“asking” the model without task-specific training.392

Trained methods present enhanced perfor- 393

mance compared to inference-only approaches. 394

Specifically, SUBSETRAND exhibits improved 395

performance across both metrics compared to 396

inference-only methods. FULL-SET demonstrates 397

superior performance among the baselines, lever- 398

aging the entire training set. Notably, SUBSETENT 399

surpasses SUBSETRAND by a large margin and even 400

outperforms FULL-SET in some datasets. The re- 401

sults of SUBSETENT verify that entropy is capable 402

of capturing ambiguity to some extent and is benefi- 403

cial when incorporated into the alignment process. 404

APA achieves superior performance across all 405

datasets. Despite employing an identical inference 406

template, APA achieves a notable enhancement 407
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Figure 4: Misaligned Clarification Request Rate (MCR)
of trained methods. Low MCR indicates that the model
retains its intrinsic knowledge even after the alignment
process. In all instances, APA exhibits the lowest MCR.
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Figure 5: Changes in the F1a score according to the
threshold value. Regardless of the threshold value, APA
consistently outperforms all the baselines.

in F1u compared to DIRECT. This improvement408

is especially surprising considering that APA was409

trained on Dcorrect, which consists of samples that410

the model is already capable of handling. More-411

over, APA consistently outperforms across all the412

datasets in terms of F1a, achieving gains up to413

6 points. The results highlight the effectiveness414

of leveraging perceived ambiguity for alignment,415

enhancing generalization and robustness. When416

compared to SUBSETENT, the improvement of APA417

suggests that INFOGAIN provides better quantifi-418

cation of ambiguity than entropy. The efficacy419

of leveraging only the data perceived ambiguous,420

comprising approximately 32% in the LLAMA2421

family and 13% in MISTRAL, again emphasizes422

the importance of data quality over quantity (Zhou423

Method
SituatedQA-

Geo
SituatedQA-

Temp
Ambig-

TriviaQA
Ambig-

FreebaseQA

RAND
39.31
(1.28)

38.34
(0.44)

72.05
(0.58)

81.28
(1.88)

MIN
34.95
(1.71)

36.03
(0.90)

70.30
(1.50)

79.19
(2.02)

MAX
40.96
(0.71)

39.33
(0.88)

73.95
(1.03)

82.23
(1.31)

APA
43.10
(0.39)

41.89
(2.02)

75.74
(1.52)

84.90
(0.40)

Table 2: Average and standard deviation (in parentheses)
of F1a scores of different data selection methods. The
first , second , and third best results are highlighted.

Results show that utilizing INFOGAIN regardless of the
ground-truth ambiguity is effective for data selection.

et al., 2024; Chen et al., 2024). Furthermore, 424

APAFIXED generally exhibits enhanced performance 425

compared to APAGEN. This is because APAGEN en- 426

gages in a more challenging task of generating 427

specific clarification requests. 428

6 Ablation Study 429

In this section, we perform a series of ablation stud- 430

ies to further evaluate APA. Unless otherwise speci- 431

fied, all experiments are conducted on LLAMA2 7B 432

across four datasets: SituatedQA-Geo, SituatedQA- 433

Temp, AmbigTriviaQA, and AmbigFreebaseQA. 434

Additional details are stipulated in Appendix E. 435

6.1 Analysis on Sample-level Misalignment 436

The alignment process of generating clarification 437

requests for ambiguous queries may lead to a po- 438

tential trade-off, where the model incorrectly gen- 439

erates clarification requests for unambiguous in- 440

puts that were previously well-handled. To assess 441

such a case, we define Misaligned Clarification 442

Request Rate (MCR), which measures the propor- 443

tion of unambiguous samples that were correctly 444

answered ( 3⃝ in Figure 3) before training but in- 445

correctly shifted to erroneously generating clarifi- 446

cation requests ( 5⃝ in Figure 3) after alignment. A 447

low MCR is desirable, representing that the model 448

preserves its existing capabilities even after the 449

alignment. We can observe from Figure 4 that, 450

overall, APA consistently demonstrates the lowest 451

MCR, indicating that the model successfully learns 452

to handle ambiguity while effectively preserving 453

the existing capabilities. 454

6.2 The Effect of Threshold Values 455

The number of training samples used for alignment 456

depends on the threshold value ϵ. To understand the 457
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Type Generations

x How many pages in a brave new world?
x̂disambig How many pages in the 1932 edition of the book brave new world by Aldous Huxley?
yclarify Your question is ambiguous. Which edition of the book are you interested in?

x Who was the commander of the british forces in boston?
x̂disambig Who was the commander of the british forces in boston during the american revolution?
yclarify Your question seems ambiguous. Can you be more specific about the event or time?

Table 3: Examples of generated yclarify and x̂disambig from the initial query x. Additional specification from the
disambiguation is highlighted in bold and the specification of the clarification requests are underlined.

impact of ϵ on performance, we conduct an analysis458

by applying different ϵ for ambiguous data selec-459

tion. We compare SUBSETENT and SUBSETRAND,460

each with an equal number of training samples. Fig-461

ure 5 presents the F1a scores measured under dif-462

ferent ϵ. In general, larger ϵ reduces the data avail-463

able for training, resulting in declined performance.464

SUBSETRAND consistently demonstrates subpar per-465

formance, whereas SUBSETENT is a strong baseline466

across all scenarios. Nevertheless, APA outper-467

forms all the baselines across different ϵ values.468

6.3 Impact of INFOGAIN for Data Selection469

For a deeper analysis of INFOGAIN on data selec-470

tion within APA, we conducted an ablation study471

by varying the criteria for selecting ambiguous data.472

With the correct dataset Dcorrect held constant, we473

alter the strategies of selecting m ambiguous sam-474

ples as follows:475

• Random Selection (RAND) We randomly se-476

lect m ground-truth ambiguous samples.477

• INFOGAIN-based Selection We explore two478

different selection methods leveraging INFO-479

GAIN: MAX selects top-m samples with the480

largest INFOGAIN from the ground-truth am-481

biguous samples. MIN selects the bottom-m482

samples with the minimum INFOGAIN among483

those that are ground-truth ambiguous.484

APA differs from the baselines by utilizing sam-485

ples perceived as ambiguous, allowing the potential486

inclusion of ground-truth unambiguous samples.487

Table 2 demonstrates the overall results. RAND488

consistently lags behind MAX by a margin of 1 to 4489

points. The disparity underscores the effectiveness490

of data selection based on INFOGAIN, even with491

ground-truth ambiguous samples. Moreover, APA492

outperforms all the baselines across all the datasets.493

Notably, even though the perceived ambiguity does494

not always coincide with ground-truth ambiguity, 495

results show that exploiting model-perceived am- 496

biguity significantly enhances alignment. MIN 497

demonstrates the worst performance among the 498

methods evaluated. We speculate that this decline 499

is because the training samples with low INFOGAIN 500

are perceived as unambiguous, yet are trained as 501

ambiguous. This misalignment likely accounts for 502

the degradation in performance. 503

6.4 Case Study 504

Table 3 demonstrates examples of generated dis- 505

ambiguation x̂disambig and the clarification request 506

yclarify from the query x. We can observe that the 507

model generates factual specifications about the 508

query leveraging its intrinsic knowledge (e.g., 1932 509

edition of the book). Furthermore, given x and 510

x̂disambig, the model successfully generates a clari- 511

fication request, specifically mentioning the factor 512

that causes the ambiguity (e.g., Which edition). Fur- 513

ther examples of disambiguations and failure cases 514

are in Appendix F. 515

7 Conclusion 516

In this work, we present a novel alignment pipeline, 517

dubbed Alignment with Perceived Ambiguity 518

(APA), designed to enhance the ability of LLMs 519

to address ambiguities within queries, leveraging 520

the model’s intrinsic knowledge. Our method em- 521

ploys an implicit measure INFOGAIN to quantify 522

the ambiguity perceived by the model itself. The 523

model learns to effectively manage (un)ambiguous 524

queries through alignment based on this metric. Ex- 525

perimental results demonstrate the effectiveness of 526

APA, which outperforms all the baselines across 527

various QA datasets. As a future avenue, we plan 528

to explore extending this methodology to broader 529

domains and more complex types of ambiguities, 530

further solidifying the role of LLMs in managing 531

the inherent uncertainty present in NLP tasks. 532

8



Limitations533

The scope of our research is mainly focused on534

short-form QA tasks. The research scope could be535

expanded to long-form generation tasks such as de-536

tailed reasoning. Furthermore, there are cases when537

a query becomes ambiguous by considering addi-538

tional contexts, e.g., cases in conversational QA539

(Guo et al., 2021). As our research focuses solely540

on situations where a single query is given, future541

work may consider scenarios where additional con-542

text is provided to the model. For experiments, we543

explore the most widely used models for evalua-544

tion, specifically LLAMA2 and MISTRAL. Despite545

this, a more comprehensive evaluation encompass-546

ing a broader range of LLMs could have enriched547

our findings, providing insights across different548

architectures and capabilities. Larger-scale mod-549

els may exhibit different tendencies and, therefore,550

should be explored in future research. Furthermore,551

our work mainly focuses on supervised fine-tuning552

(SFT) as the alignment method. However, alter-553

native methods, such as Reinforcement Learning554

from Human Preference (RLHF) (Ouyang et al.,555

2022) or Direct Preference Optimization (DPO)556

(Rafailov et al., 2023), could offer distinct advan-557

tages toward our objective.558
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A Implementations Details 940

A.1 Pipeline Details 941

For initial prediction assessment (Stage 1), we uti- 942

lize the same inference template as DIRECT (Table 943

4) and disambiguate the given query with the tem- 944

plate from Table 5. We use the greedy generation 945

for the disambiguation. The threshold ϵ is empir- 946

ically set to 0.1 for selecting ambiguous inputs. 947

When balancing training set size, if n > m, we 948

randomly select m samples from Dcorrect, where 949

n = |Dcorrect| and m = |Dambig|. If n < m, we 950

select n samples from Dambig with the largest IN- 951

FOGAIN. For APAGEN, we use the template from 952

Table 6 to generate specific clarification requests 953

for each ambiguous queries. Furthermore, for 954

APAFIXED, we randomly set yclarify from the fol- 955

lowing pre-defined phrases : [The questions is 956

ambiguous. Please clarify your question. 957

Your question is ambiguous. Can you 958

clarify your question? Your question is 959

not clear. Can you clarify your question 960

please?] 961

A.2 Training Details 962

For training, we applied AdamW optimizer 963

(Loshchilov and Hutter, 2019) with a batch size 964

of 32. We selected the model with the best per- 965

formance in the validation set from learning rates 966

{1e-3, 5e-4, 1e-4} and training epochs {1, 2, 967

3}. All the experiments were implemented with Py- 968

torch (Paszke et al., 2019) and Huggingface Trans- 969

formers library (Wolf et al., 2020). For efficient 970

training, we applied QLoRA from Huggingface 971

PEFT library (Mangrulkar et al., 2022) with r=4 972

and alpha=16. The training takes about half an 973

hour on a single Tesla V100 GPU. All experiments 974

are averaged over three different random seeds. 975
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Answer the following question.
Question: <question>
Answer:

Table 4: Direct prompting template.

Evaluate the clarity of the input
question. If the question is ambiguous,
enhance it by adding specific details
such as relevant locations, time
periods, or additional context needed
to resolve the ambiguity. For clear
questions, simply repeat the query as
is.

Example:
Input Question: When did the Frozen
ride open at Epcot?
Disambiguation: When did the Frozen
ride open at Epcot?

Input Question: What is the legal age
of marriage in the USA?
Disambiguation: What is the legal
age of marriage in each state of the
USA, excluding exceptions for parental
consent?

Input Question: <question>
Disambiguation:

Table 5: Disambiguation template used in Perceived
Ambiguity Detection Stage of APA. We provide 2-shot
demonstrations from AmbigQA train set.

The full results of APA and trained baseline meth-976

ods with the standard deviation are demonstrated977

in Table 18.978

B Dataset Overview979

B.1 Dataset Details980

This section stipulates the details of the datasets we981

used in the experiments. The statistics of ambigu-982

ous and unambiguous samples for each dataset is983

specified in Table 7.984

AmbigQA (Min et al., 2020) is a derivative of985

the Natural Questions dataset (Kwiatkowski et al.,986

2019), designed to verify ambiguous data points.987

The dataset covers diverse sources of ambiguity,988

such as event and entity references. The dataset989

Engage with the provided ambiguous
question by extracting the key point
of ambiguity, and interactively ask
for clarification based on the
disambiguated question.

Example 1:
Ambiguous Question: Who won?
Disambiguation: Who won the 2020 U.S.
presidential election?
Clarification Request: Your question
seems ambiguous. Could you specify
which competition or event you are
asking about?

Example 2:
Ambiguous Question: What’s the weather
like?
Disambiguation: What’s the weather
like in Miami today?
Clarification Request: Your question
is ambiguous. Where are you interested
in the weather report for?

Ambiguous Question: <ambiguous
question>
Disambiguation: <disambiguation>
Clarification Request:

Table 6: Template for generating clarification request for
the given ambiguous query. The model is prompted to
extract the factor that causes the ambiguity and generate
a clarification request based on the extracted factor.

consists of pre-defined ambiguous and unambigu- 990

ous queries, where unambiguous queries are la- 991

beled with ground-truth answers. We set AmbigQA 992

as the in-domain dataset and utilize it for training 993

and validation. Specifically, we follow the ambi- 994

guity defined by the dataset and train the model 995

to generate ground-truth answers for unambiguous 996

queries and pre-defined clarification requests for 997

ambiguous queries. Further training details are 998

stipulated in Appendix C. 999

SituatedQA (Zhang and Choi, 2021) focuses 1000

explicitly on temporal and geographic ambiguity 1001

from the input query. As the cause of ambiguity 1002

and its construction process are distinct, we assess 1003

performance on the temporal and geographic split 1004

separately, denoted as Temp and Geo, respectively. 1005
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Dataset Train Validation / Test
Unambig. Ambig. Unambig. Ambig.

AmbigQA 5,287 4,749 830 1,172
SituatedQA-Geo - - 506 129
SituatedQA-Temp - - 2,795 876
AmbigTriviaQA - - 500 500
AmbigWebQuestions - - 500 500
AmbigFreebaseQA - - 500 500

Table 7: Number of ambiguous and unambiguous sam-
ples for each datasets. We utilize AmbigQA for in-
domain training and validation. The rest of the datasets
are evaluated as OOD test sets.

Please make the following question
ambiguous. Your task is to introduce
ambiguity by altering the specificity
of the noun phrase or omitting crucial
details from the statement. Keep the
rest of the sentence unchanged except
for the modified sections. Generate
only the revised statement.

Question: <question>
Ambiguation:

Table 8: Template to ambiguate the input query for
dataset construction. We prompt gpt-4o for the genera-
tion.

TriviaQA (Joshi et al., 2017) consists of1006

question-answer-evidence triplets collected from1007

Wikipedia and the web. For our experiments, we1008

only utilize the question-answer pairs. We ambigu-1009

iate the subset of TriviaQA to build AmbigTrivi-1010

aQA.1011

WebQuestions (Berant et al., 2013) is a question-1012

answering dataset that uses Freebase as the knowl-1013

edge base. The dataset consists of questions from1014

the Google Suggest API and then answers obtained1015

from Amazon Mechanical Turk. In creating Am-1016

bigWebQUestions, we applied ambiguity to the1017

subset of WebQuestions.1018

FreebaseQA (Jiang et al., 2019) is an open-1019

domain QA over the Freebase knowledge graph.1020

The question-answer pairs are collected from vari-1021

ous sources such as TriviaQA, QuizBalls, and Quiz-1022

Zone. AmbigFreebaseQA is derived from the sub-1023

set of FreebaseQA.1024

B.2 Dataset Construction Details1025

To further examine the model’s capability to in-1026

terpret and generate responses to intentionally am-1027

An ambiguous question has multiple
valid answers. Is the following
question ambiguous with multiple
possible answers? Answer only in Yes
or No.

Question: <ambiguous generation>

Yes or No:

Table 9: Template for validating the generated am-
biguated queries. We prompt gpt-4o for the validation.
Samples with the output "Yes" are considered a valid
ambiguation.

You are given an ambiguous question
and its possible ambiguation. Please
verify whether the ambiguous question
poses proper ambiguity. An ambiguous
question must have multiple valid
answers.

Original Question: <original question>
Ambiguous Question: <ambiguated
question>

Yes or No:

Table 10: Instructions for human validation for dataset
construction. Samples selected as "Yes" are considered
a valid ambiguation.

biguous queries, we constructed AmbigTriviaQA, 1028

AmbigWebQuestions, and AmbigFreebaseQA by 1029

ambiguating the TriviaQA, WebQuestions, and 1030

FreebaseQA, respectively. We first prompt gpt-4o 1031

to ambiguate the original question with the tem- 1032

plate from Table 8. To further validate the gener- 1033

ation and control the dataset’s quality, we again 1034

prompt gpt-4o for secondary verification. We uti- 1035

lize the template in Table 9 and collect samples 1036

verified as ambiguous. Validating the generations 1037

from the same model may pose unnecessary biases. 1038

To mitigate the potential biases in the validation 1039

process, we evaluate the verified samples with hu- 1040

man annotators and select samples for the final 1041

dataset. (Table 10) This human-in-the-loop data 1042

construction ensures the quality and fairness of the 1043

dataset. The process yielded 1,000 question-answer 1044

pairs, with 500 ambiguous and 500 unambiguous 1045

pairs. Examples from AmbigTriviaQA are demon- 1046
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Answer the following question. If
the question is ambiguous, it is
proper to answer with “The question is
ambiguous”.
Question: <question>
Answer:

Table 11: Ambiguity-aware prompting. We explicitly
describe how to handle ambiguity.

Answer the following question. Given
the question and answer, is the
question ambiguous or unambiguous?
Answer only ambiguous or unambiguous.
Question: <question>
Answer: <generated answer>

Is the question ambiguous or
unambiguous? Answer only ambiguous or
unambiguous.
Ambiguous or Unambiguous:

Table 12: Verification template for SELF-ASK. With the
generated answer and the original question, the model
is prompted to verify the ambiguity of the initial query.

strated in Table 14.1047

C Baseline Details1048

In this section, we describe implementation details1049

of the baselines.1050

DIRECT We make a direct inference using the1051

template from Table 4. The greedy generation re-1052

sult with temperature 0 is used for evaluation.1053

AMBIG-AWARE We utilize the template from Ta-1054

ble 11, where we explicitly describe how to handle1055

ambiguity. Identically, we use the greedy genera-1056

tions for evaluation.1057

SAMPLE REP The template from Table 4 is used1058

to generate a single greedy generation and ten sam-1059

pled generations with sampling temperature of 1.0.1060

We quantify the rate of sampled generations that1061

match the greedy generation as the uncertainty mea-1062

sure, where 1.0 is the most certain and 0.0 being1063

the least certain. Samples with the measure below1064

a specific threshold are considered ambiguous. For1065

instance, if three out of ten samples exactly match1066

the greedy generation, then the uncertainty for the1067

given query is 0.3. We empirically select a thresh-1068

old that demonstrates the best F1u and F1a with 1069

the least trade-off. 1070

SELF-ASK We initially prompt the model with 1071

the template from Table 4 and generate a greedy 1072

generation. Then, the initial query and the gen- 1073

erated answer are utilized with the template from 1074

Table 12 and prompt the model to verify the query’s 1075

ambiguity. We modified the prompt from Amayue- 1076

las et al. (2023) so that the model can specifically 1077

focus on ambiguity. The ambiguity detection is 1078

determined based on the model’s final verification 1079

of "Yes" or "No". 1080

FULL-SET The entire training set is utilized for 1081

training. Following APAFIXED, we label the ground- 1082

truth ambiguous samples with pre-defined clarifi- 1083

cation requests as yclarify. (Pre-defined clarification 1084

requests are listed in Appendix A.1.) The model 1085

is trained to generate y for xunambig and yclarify for 1086

xambig with the inference template from Table 4. 1087

SUBSETRAND The training method is identical to 1088

FULL-SET, but SUBSETRAND utilizes a subset of the 1089

training set. We randomly select |D| samples from 1090

the training data, with the equal number (|D|/2) of 1091

ambiguous and unambiguous samples. 1092

SUBSETENT The training of SUBSETRAND is iden- 1093

tical to SUBSETRAND except the ambiguous sample 1094

selection method. When xambig is given, we mea- 1095

sure the entropy of the generated result from the 1096

model. A high entropy value indicates that the 1097

model is uncertain about the prediction of the am- 1098

biguous query. Therefore, among the xambig in the 1099

train set, we select |D|/2 samples with the highest 1100

output entropy and use them as ambiguous sam- 1101

ples. 1102

D Evaluation Details 1103

In this section, we describe the evaluation details of 1104

our experiments. We utilize the greedy generation 1105

from the model for the evaluation. 1106

D.1 Unambiguous Query Evaluation 1107

For unambiguous queries, we measure the quality 1108

of the generation by employing RougeL4 (Lin and 1109

Och, 2004) with all the possible valid answers. The 1110

prediction from the model is regarded as correct if 1111

the score is above 0.3. 1112

4https://huggingface.co/spaces/
evaluate-metric/rouge
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Threshold 0.1 0.3 0.5 0.7 0.9
# Samples 3,088 3,088 1,860 886 396

Table 13: Number of training samples for different
threshold values. We vary the threshold value from
0.1 to 0.9.

D.2 Ambiguous Query Evaluation1113

For ambiguous questions, we expect the model to1114

generate clarification requests. Since there are vari-1115

ous ways to express clarification requests, we use1116

the following phrases to detect the requests. The1117

presence of pre-defined ambiguity-related phrases1118

in the model’s output is treated as a successful de-1119

tection. The pre-defined phrases are the follows:1120

[ambiguous, ambig, unclear, not clear,1121

not sure, confused, confusing, vague,1122

uncertain, doubtful, doubt, questionable,1123

clarify, not clear]1124

E Details of Ablation Experiments1125

E.1 Details of Sample-level Misalignment1126

Analysis1127

To measure Misaligned Clarification Request rate1128

(MCR), we start with a base model (e.g., LLAMA21129

7B or MISTRAL 7B) which has not undergone any1130

alignment training. We prompt the model using the1131

template in Table 4 and select the correct, unam-1132

biguous samples. Subsequently, we evaluate the1133

aligned models, such as FULL-SET, SUBSETENT,1134

or APAGEN, leveraging these pre-selected samples.1135

We then count the cases where the aligned model’s1136

predictions shifted from providing correct answers1137

to generating wrong clarification requests post-1138

alignment. MCR is measured as the proportion1139

of these shifted samples relative to the total num-1140

ber of initially correct, unambiguous samples. The1141

metric quantified the extent to which the model’s1142

alignment process leads to unnecessary clarifica-1143

tion requests for previous well-handled unambigu-1144

ous queries.1145

E.2 Details of Threshold Ablation1146

To measure the performance with different thresh-1147

old values, we apply ϵ ∈ {0.1, 0.3, 0.5, 0.7,1148

0.9}. The number of selected samples for training1149

is illustrated in Table 13.1150

E.3 Details of Data Selection Ablation1151

This section details the data selection methods from1152

Section 6.3, with the corresponding visualization in1153

Low INFOGAIN
(Perceived Unambiguous)

High INFOGAIN
(Perceived Ambiguous)

Ambiguous Samples

Unambiguous Samples

APA
Ambiguous Samples

Unambiguous Samples

Ambiguous Samples

Unambiguous Samples

Ambiguous Samples

Unambiguous Samples

Ambiguous Samples

Unambiguous Samples

RAND

MAX

MIN

INFOGAIN 

distribution 
of the train set

Figure 6: Illustration of ground-truth ambiguous and
unambiguous samples sorted by the INFOGAIN. We
highlight the chosen samples for each data selection
method. APA selects samples with the largest INFO-
GAIN regardless of the ground-truth ambiguity. On the
other hand, baseline methods select training data from
ground-truth ambiguous samples with different selec-
tion strategies.

Figure 6. Consider the case where the ground-truth 1154

ambiguous and unambiguous queries are sorted 1155

based on their INFOGAIN. APA selects m-samples 1156

with the largest INFOGAIN regardless of the ground- 1157

truth ambiguity, focusing on perceived ambiguity. 1158

In contrast, RAND randomly selects m-samples 1159

as ambiguous from the ground-truth ambiguous 1160

queries (highlighted in blue in Figure 6). MAX and 1161

MIN select top-m and bottom-m samples regarding 1162

the INFOGAIN from the ground-truth ambiguous 1163

queries, respectively. Unlike the baseline methods, 1164

which only consider the ground-truth ambiguity, 1165

APA leverages the perceived ambiguity, which may 1166

not always align with the ground-truth ambiguity. 1167

F Additional Case Studies 1168

F.1 Failure Cases Before Alignment 1169

Table 15 demonstrates generations by models 1170

before alignment for ambiguous queries from 1171

SituatedQA-Geo. Given the diverse denotations 1172

of the query, each model interprets the query dif- 1173

ferently based on their intrinsic knowledge. For 1174

instance, the first question is ambiguous due to 1175

the numerous possible “revolution” it could ref- 1176

erence. Each model interprets “revolution” dif- 1177

ferently: LLAMA2 7B as the “Russian revolu- 1178

tion”, MISTRAL 7B as the “French revolution”, 1179

and LLAMA2 13B as the “American Revolutionary 1180

War”. Consequently, each model generates fac- 1181
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tual responses corresponding to its interpretation.1182

We regard this phenomenon as problematic since1183

the user likely has a specific “revolution” in mind1184

while querying the model. However, the model1185

may misinterpret the input and generate responses1186

not aligned with the user’s intended reference. Con-1187

sequently, this misalignment can lead to providing1188

incorrect or irrelevant answers.1189

F.2 Case Study of Disambiguations1190

Table 16 demonstrates examples of initial query1191

x and its disambiguation x̂disambig. The first ex-1192

ample is when x is inherently ambiguous, yet the1193

model perceives it as unambiguous. Specifically,1194

the model generates hallucination ("in the 1960s")1195

where the song "don’t mess around with jim" was1196

originally released in 1972. This non-factual gen-1197

eration would not provide any information gain to1198

the model, classifying x as ambiguous. In such a1199

case, x should be considered "unknown" with no1200

related knowledge within the model. The second1201

and third examples are correctly classified, as the1202

model properly applies its intrinsic knowledge to1203

perceive ambiguity. Regardless of the quantity of1204

additional context generated, the model is capa-1205

ble of verifying its ambiguity. The last example1206

is a misclassification as ambiguous. Despite dis-1207

ambiguation provides factually correct information1208

("1932 novel" and "by Aldous Huxley") for "brave1209

new world", we speculate that the misclassification1210

may arise from the existence of various media, such1211

as movies and songs or even different versions of1212

the book, sharing the title "brave new world".1213

F.3 Failure Cases of Clarification Request1214

Generation1215

Table 17 presents failure cases of clarification re-1216

quest generation. Even when the model success-1217

fully provides valid disambiguation (e.g., in the1218

usa or in 2015), in some cases the model fails to1219

consider the aspect that causes the ambiguity while1220

generating clarification requests. For example, the1221

first case generates "What is the book the title refers1222

to?", which does not address the relevant ambiguity.1223

Furthermore, the second example only requests for1224

clarification and fails to provide further specifica-1225

tions regarding the ambiguity.1226
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Original Question Ambiguated Question

Who wrote the 19th century novel ‘Anna Karenina’? Who wrote a 19th century novel?

What was President Gerald Ford’s middle name? What was the middle name of a former U.S. president?

Where in England was actor Nigel Hawthorne born? Where in the UK was the actor born?

Table 14: Examples of the original question and its ambiguation from AmbigTriviaQA. The ambiguated phrase is
highlighted in bold.

Question Llama2 7B Mistral 7B Llama2 13B

When did the revolution be-
gin?

The revolution began in
1917. (Russian revolution)

The revolution began in
1789. (French revolution)

The revolution began in
1775. (American Revolu-
tionary War)

When did we host the world
cup?

1992 (Not factual) 1994 (15th World Cup) 1996. (Not factual)

Who was the first elected
president?

George Washington George Washington The first elected president
of India was Dr. Rajendra
Prasad.

Table 15: Model predictions of ambiguous queries from SituatedQA-Geo before alignment. Ambiguous query,
due to its variety of denotations, leads the model to interpret the query differently based on its intrinsic knowledge,
consequently generating diverse answers.

Model
Prediction

Ground
Truth Type Generated Text

Unambig. Ambig. x Who sings don’t mess around with jim?
x̂disambig Who sings don’t mess around with jim, in the 1960s?

Unambig. Unambig.
x Who is winner in bigg boss season 5 kannada?

x̂disambig
Who is the winner of the fifth season of the kannada version of the indian reality
television series bigg boss?

Ambig. Ambig. x How many jury members in a criminal trial?
x̂disambig How many jury members are required in a criminal trial in the united states?

Ambig. Unambig. x How many pages in a brave new world?
x̂disambig How many pages are in the 1932 novel brave new world by aldous huxley?

Table 16: Example of initial query x and its disambiguation x̂disambig. Additional specification from the model is in
bold. Unambig. and Ambig. refers to Unambiguous and Ambiguous, respectively.

Type Generations

x Where was the old man and the sea published?
x̂disambig Where was the old man and the sea published in the usa?
yclarify Your question is ambiguous. What is the book the title refers to?

x Who won last triple crown of horse racing?
x̂disambig Who won the triple crown of horse racing in 2015?
yclarify I’m not sure about your question, could you provide some more information.

Table 17: Failure cases of generated clarification request yclarify from the initial query x and its disambiguation
x̂disambig. Additional specification from the disambiguation is highlighted in bold. Despite the correct disambigua-
tions, the model fails to generate clarification requests regarding the ambiguity.
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Method LLAMA2 7B MISTRAL 7B LLAMA2 13B
F1u F1a F1u F1a F1u F1a

SituatedQA-Geo

SUBSETRAND 31.90 (3.29) 37.17 (0.97) 41.42 (3.08) 33.95 (1.62) 33.11 (3.21) 36.87 (0.85)

SUBSETENT 39.33 (3.77) 40.84 (0.28) 47.34 (1.41) 29.49 (4.36) 40.19 (0.95) 38.39 (1.80)

FULL-SET 37.67 (1.87) 41.45 (1.19) 35.99 (1.18) 41.28 (0.40) 37.58 (1.71) 38.39 (1.01)

APAFIXED 39.99 (0.96) 41.86 (0.39) 38.43 (1.17) 41.84 (0.39) 31.31 (3.32) 40.23 (0.40)

APAGEN 41.01 (0.89) 43.10 (0.39) 39.55 (5.14) 42.07 (1.13) 34.04 (4.59) 39.89 (2.10)

SituatedQA-Temp

SUBSETRAND 29.48 (7.72) 33.68 (7.24) 34.14 (5.02) 37.01 (0.82) 28.57 (3.09) 37.84 (1.39)

SUBSETENT 34.28 (1.52) 34.62 (2.56) 42.00 (1.71) 32.04 (2.73) 31.03 (2.02) 38.00 (1.33)

FULL-SET 29.59 (0.85) 36.92 (1.43) 31.16 (4.97) 33.72 (8.36) 29.41 (8.25) 34.37 (8.93)

APAFIXED 31.74 (1.16) 39.63 (0.89) 45.01 (2.06) 43.95 (2.07) 36.45 (0.38) 42.18 (3.37)

APAGEN 34.38 (0.40) 41.89 (2.02) 43.29 (3.69) 40.70 (2.98) 31.72 (3.24) 39.36 (1.45)

AmbigTriviaQA

SUBSETRAND 54.71 (2.26) 70.97 (2.57) 60.57 (0.81) 67.82 (4.14) 63.19 (3.06) 73.52 (3.94)

SUBSETENT 58.83 (1.42) 74.98 (2.09) 62.17 (0.81) 67.16 (4.14) 64.95 (1.17) 76.03 (0.86)

FULL-SET 58.10 (0.66) 71.25 (1.53) 66.67 (0.66) 76.38 (0.53) 68.33 (0.82) 76.82 (0.91)

APAFIXED 62.97 (0.63) 75.50 (0.62) 70.70 (1.16) 83.48 (0.59) 70.83 (1.43) 80.99 (1.67)

APAGEN 59.27 (1.07) 75.74 (1.52) 67.73 (1.11) 82.14 (1.76) 69.25 (1.59) 79.57 (1.74)

AmbigWebQuestions

SUBSETRAND 38.69 (1.83) 73.84 (1.67) 45.16 (2.03) 71.74 (1.75) 44.31 (3.51) 72.99 (2.36)

SUBSETENT 42.39 (1.36) 75.86 (0.94) 50.93 (5.43) 71.11 (4.74) 48.70 (1.19) 77.43 (1.34)

FULL-SET 40.46 (4.04) 73.84 (1.67) 41.83 (1.95) 74.72 (0.40) 47.20 (1.59) 75.27 (0.75)

APAFIXED 49.15 (2.57) 77.07 (1.67) 54.02 (2.17) 81.07 (1.26) 53.69 (0.97) 79.22 (0.35)

APAGEN 47.26 (1.01) 76.64 (0.50) 51.41 (0.92) 79.54 (0.24) 52.96 (3.46) 78.46 (2.00)

AmbigFreebaseQA

SUBSETRAND 63.59 (2.53) 77.70 (1.93) 70.60 (1.27) 75.93 (4.66) 70.40 (7.06) 78.29 (5.35)

SUBSETENT 72.18 (0.87) 83.89 (1.10) 72.94 (2.97) 77.17 (4.66) 73.38 (0.89) 81.93 (0.25)

FULL-SET 69.97 (1.33) 80.34 (1.19) 76.98 (2.62) 84.67 (3.08) 76.56 (1.13) 83.00 (0.69)

APAFIXED 73.37 (0.40) 84.19 (0.45) 80.84 (0.69) 90.12 (0.27) 79.92 (2.82) 88.03 (1.51)

APAGEN 73.18 (0.74) 84.90 (0.40) 80.27 (1.32) 89.22 (0.96) 79.80 (2.14) 87.61 (2.82)

Table 18: Average and standard deviation (in parentheses) of the trained methods over three different random seeds.
The best method is highlighted in bold and the second-best method is underlined.
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