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Abstract

Neural networks (NNs) are often leveraged to represent structural similarities of po-1

tential outcomes (POs) of different treatment groups to obtain better finite-sample2

estimates of treatment effects. However, despite their wide use, existing works3

handcraft treatment-specific (sub)network architectures for representing various4

POs, which limit their applicability and generalizability. To remedy these issues,5

we develop a framework called Transformers as Treatment Effect Estimators6

(TransTEE) where attention layers govern interactions among treatments and co-7

variates to exploit structural similarities of POs for confounding control. Using this8

framework, through extensive experiments, we show that TransTEE can: (1) serve9

as a general-purpose treatment effect estimator which significantly outperforms10

competitive baselines on a variety of challenging TEE problems (e.g., discrete,11

continuous, structured, or dosage-associated treatments.) and is applicable both12

when covariates are tabular and when they consist of structural data (e.g., texts,13

graphs); (2) yield multiple advantages: compatibility with propensity score mod-14

eling, parameter efficiency, robustness to continuous treatment value distribution15

shifts, interpretability in covariate adjustment, and real-world utility in debugging16

pre-trained language models.17

1 Introduction18

Recently, feed-forward neural networks have been adapted for modeling causal relationships and19

estimating treatment effects [34, 53, 40, 68, 8, 51, 43, 12], in part due to their flexibility in modeling20

nonlinear functions [28] and high-dimensional input [34]. Among them, the specialized NN’s21

architecture plays a key role in learning representations for counterfactual inference [2, 12] such that22

treatment variables and covariates are well distinguished [53]. Despite these encouraging results,23

several key challenges make it difficult to adopt these methods as standard tools for treatment effect24

estimation. We argue that most current works based on subnetworks do not sufficiently exploit the25

structural similarities of potential outcomes for heterogeneous TEE1 and accounting for them needs26

complicated regularizations, reparametrization or multi-task architectures that are problem-specific27

[12]. Practically, their treatment-specific designs suffer several key weaknesses, including parameter28

inefficiency (Table 1), brittleness under different scenarios, such as when treatments or dosages shift29

slightly from the training distribution (Figure 4). We discuss these problems in detail in Sections 5.1.30

To overcome the above challenges and motivated by the observation that model structure plays31

a crucial role in TEE [2, 12], we provide compelling evidence that transformers can outperform32

multilayer perceptrons and offer a promising alternative approach when leveraging deep learning to33

estimate treatment effects. Our work bulds on the Transformer architecture [60] which has emerged34

as an architecture of choice for diverse domains, including natural language processing [60], image35

recognition [17], and multimodal processing [57].36

1For example, E[Y (1) − Y (0)|X] is often of a much simpler form to estimate than either E[Y (1)|X] or
E[Y (0)|X], due to inherent similarities between Y (1) and Y (0).
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Table 1: Comparison of existing works and TransTEE in terms of parameter complexity. n is the
number of treatments. BT , BD are the number of branches for approximating continuous treatment
and dosage. Treatment interaction means explicitly modeling collective effects of multiple treatments.
TransTEE is general for all the factors.

METHODS DISCRETE TREATMENT CONTINUOUS TREATMENT TREATMENT INTERACTION DOSAGE

TARNET [53] O(n)
PERFECT MATCH [52] O(n) O(2T )

DRAGONNET [54] O(n)
DRNET [51] O(n) O(TBD)
SCIGAN [8] O(n) O(TBD)
VCNET [43] O(1) O(1)
NCORE [44] O(n) O(BT ) O(n)

FLEXTENET [12] O(n)
OURS O(1) O(1) O(1) O(1)
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Figure 1: A motivating example with a cor-
responding causal graph. Prev denotes previ-
ous infection condition and BP denotes blood
pressure. TransTEE adjusts an appropriate co-
variate set {Prev,BP} with attention which
is visualized via a heatmap.

In this paper, we investigate the following question:37

can Transformers be similarly effective for treatment38

effect estimation in problems of practical interest?39

Throughout, we adopt the notation of the Rubin-40

Neyman potential outcomes framework [47] and fo-41

cus on conditional average treatment effect (CATE)42

estimation. In particular, we develop TransTEE, a43

method that builds upon the attention mechanisms44

and achieves state-of-the-art on a wide range of TEE45

tasks. Note that Transformer is originally designed46

for sequence modeling, to utilize its power in TEE,47

three key design choices are proposed. First, treat-48

ment and covariate embedding layer is used to repre-49

sent covariate and treatment variables separately via50

learnable embeddings. This design is parameter-efficient in comparison to related works and we show51

that it appears to perform better under some practically-motivated treatment shifts.52

In summary, we make the following contributions:53

• We propose TransTEE to explore the design space of TEE, showing that Transformers, equipped54

with the proposed design choices, can be effective and versatile treatment effect estimators under the55

Rubin-Neyman potential outcomes framework. TransTEE is empirically verified to be (i) a general56

framework applicable for a wide range of neural TEE settings; (ii) compatible with propensity57

score modeling; (ii) parameter-efficient; (ii) robust under treatment shifts; (iv) interpretable in58

covariate adjustment; (v) deliverable for real-world utility beyond semi-synthetic settings.59

• Experiments on six benchmarks with four types of treatments are conducted under various scenarios60

to verify the effectiveness of TransTEE and propensity score regularized adversarial training in61

estimating treatment effects. We show that TransTEE produces covariate adjustment interpretation62

and significant performance gains given discrete, continuous or structured treatments on popular63

benchmarks including IHDP, News, TCGA. An empirical study on pre-trained language models is64

conducted to show the real-world utility of TransTEE that implies potential applications.65

2 Related Work66

Neural Treatment Effect Estimation. There are many recent works on adapting neural networks67

to learn counterfactual representations for treatment effect estimation [34, 53, 40, 68, 8, 51, 43, 12].68

To mitigate the imbalance of covariate representations across treatment groups, various approaches69

are proposed including optimizing distributional divergence (e.g. IPM including MMD, Wasserstein70

distance), entropy balancing [69] (converges to JSD between groups), counterfactual variance [71].71

3 Problem Statement and Assumptions72

Treatment Effect Estimation. We consider a setting in which we are given N observed samples73

(xi, ti, si, yi)Ni=1, each containing N pre-treatment covariates {xi ∈ Rp}Ni=1. The treatment variable74

ti in this work has various support, e.g., {0, 1} for binary treatment settings, R for continuous75
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Figure 2: A schematic comparison of TransTEE and recent works including DragonNet[54],
FlexTENet[12], DRNet[51] and VCNet[43]. TransTEE handles all the scenarios without handcrafting
treatment-specific architectures and any additional parameter overhead.

treatment settings, and graphs/words for structured treatment settings. For each sample, the potential76

outcome (µ-model) µ(x, t) or µ(x, t, s) is the response of the i-th sample to a treatment t, where in77

some cases each treatment will be associated with a dosage sti ∈ R. The propensity score (π-model)78

is the conditional probability of treatment assignment given the observed covariates π(T = t|X = x).79

The above two models can be parameterized as µθ and πϕ, respectively. The task is to estimate the80

Average Dose Response Function (ADRF): µ(x, t) = E[Y |X = x, do(T = t)] [55], which includes81

special cases in discrete treatment scenarios that can also be estimated as the average treatment effect82

(ATE): ATE = E[µ(x, 1)− µ(x, 0)] and its individual version ITE.83

Assumption 3.1. (Ignorability/Unconfoundedness) implies no hidden confounders such that Y (T =84

t) |= T |X . In the binary treatment case, Y (0), Y (1) |= T |X .85

Assumption 3.2. (Positivity/Overlap) The treatment assignment is non-deterministic such that, i.e.86

0 < π(t|x) < 1,∀x ∈ X , t ∈ T87

4 TransTEE: Transformers as Treatment Effect Estimators88

Preliminary. The main module in TransTEE is the attention layer [60]: given d-dimensional query,89

key, and value matrices Q ∈ Rd×dk ,K ∈ Rd×dk , V ∈ Rd×dv , attention mechanism computes the90

outputs as H(Q,K, V ) = softmax(QKT

√
dk

)V . In practice, multi-head attention is preferable to jointly91

attend to the information from different representation subspaces at different positions.92

HM (Q,K, V ) = Concat(head1, ..., headh)WO,where headi = H(QWQ
i ,KWK

i , V WV
i ),

where WQ
i ∈ Rd×dk ,WV

i ∈ Rd×dk ,WV
i ∈ Rd×dv and WO ∈ Rhdv×d are learnable matrices.93

4.1 Covariate and Treatment Embedding Layers94

Treatment Embedding Layer. As illustrated in Figure 2 and Table. 1, as treatments are often of much95

lower dimension compared to covariates, to avoid missing the impacts of treatments, previous works96

(e.g., DragonNet [54], FlexTENet [12], DRNet [51]) assign covariates from different treatment groups97

to different branches, which is highly parameter inefficient. Besides, We analyze in Proposition 298

(Appendix D) that, for continuous treatments/dosages, the performance is affected by both number99

of branches and the value interval of treatment. However, almost all previous works on continuous100

treatment/dosage assume the treatment or dosage is in a fixed value interval e.g., [0, 1] and Figure 4101

shows that prevalent works fail when tested under shifts of treatments. These two observations102

motivate us to use two learnable linear layers to project scalar treatments and dosages to d-dimension103

vectors separately:104

Mt = Linear(t),Ms = Linear(s),

where Mt ∈ Rd. Ms ∈ Rd exists just when each treatment has a dosage parameter, otherwise only105

treatment embedding is needed. When multiple (n) treatments act simultaneously, the projected106

matrix will be Mt ∈ Rd×n,Ms ∈ Rd×n and when facing structural treatments (languages, graphs),107

the treatment embedding will be projected by language models and graph neural networks respectively.108

By using the treatment embeddings, TransTEE is shown to be (i) robust under treatment shifts, and109

(ii) parameter-efficient.110

Covariates Embedding Layer. Different from previous works that embed all covariates by one111

fully connected layer, where the differences between covariate tend to be lost, and is hard to study112
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the function of an individual covariate in a sample. TransTEE learns different embeddings for each113

covariate, namely Mx = Linear(x), and Mx ∈ Rd×p, where p is the number of covariate. Covariates114

embedding enables us to study the effect of individual covariate on the outcome.115

4.2 Covariate and Treatment Self-Attention116

For covariates, prevalent methods represent covariates as a whole feature using MLPs, where pair-117

wise covariate interactions are lost when adjusting covariates. Therefore, we cannot study the effect118

of each covariate on the estimated result. In contrast, TransTEE processes each covariate embedding119

independently and model their interactions by self-attention layers. Namely,120

M̂ l
x = HM (M l−1

x ,M l−1
x ,M l−1

x ) +M l−1
x ,M l

x = MLP(BN(M̂ l
x)) + M̂ l

x.

where M l
x is the output of l layer and BN is the BatchNorm layer. Simultaneously, the treatments121

and dosages embeddings are concatenated and projected to the latent dimension by a linear layer,122

which generates a new embedding Mst ∈ Rd. Then self-attention is applied123

M l
st = HM (M l−1

st ,M l−1
st ,M l−1

st ) +M l−1
st ,M l

st = MLP(BN(M̂ l
st)) + M̂ l

st.

The self-attention layer for treatments enables treatment interactions, an important desideratum for S-124

and T-learners. Namely, TransTEE can model the scenario where multiple treatments are applied125

and attains strong practical utility, e.g., multiple prescriptions in healthcare or different financial126

measures in economics. This is an effective remedy for existing methods which are limited to settings127

where various treatments are not used simultaneously.128

4.3 Treatment-Covariate Cross-Attention129

One of the fundamental challenges of causal meta-learners is to model treatment-covariate interactions.130

TransTEE realizes such a goal by a cross-attention module, treating Mst as query and Mx as both131

key and value132

M̂ l = HM (M l−1
st ,M l−1

x ,M l−1
x ) +M l−1,

M l = MLP(M̂ l) + M̂ l,

ŷ = MLP(Pooling(ML)),

where ML is the output of the last cross-attention layer and M0 = ML
st. The above interactions133

are particularly important for adjusting proper covariate or confounder sets for estimating treatment134

effects [59], which empirically yields suitable covariate adjustment principles (the Disjunctive Cause135

Criteria) [14, 59] about pre-treatment covariates and confounders as intuitively illustrated in Figure136

1 and corroborated in our experiments.137

Denote ŷ := µθ(x, t) and the training objective is the mean square error (MSE) of the outcome138

regression is139

Lθ(x, y, t) =
n∑

i=1

(yi − µθ(xi, ti))
2
. (1)

In summary, thanks to the designs described above for modeling treatments and covariates, when140

combined with strong modeling capacity of Transformers, TransTEE can be extended to high-141

dimensional data easily and effectively on tabular, graph, textual data. The generalizability of the142

TransTEE also allows new applications like auditing language models beyond semi-synthetic settings143

as shown in the next section. We include an illustration of the TransTEE workflow using a concrete144

example in Appendix B.145

5 Experimental Results146

We elaborate basic experimental settings, results, analysis and empirical studies in this section.147

See Appendix E for full details of all experimental settings and detailed definition of metrics. See148

Appendix F for many more results and remarks.149

5.1 Case Study and Numerical Results150

Case study on treatment distribution shifts We start by conducting a case study on treatment151

distribution shifts (Figure 4), and exploring an extrapolation setting in which the treatment may152
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Table 2: Experimental results comparing NN based methods on the IHDP datasets, where ——
means the model is not suitable for continuous treatments. We report the results based on 100 repeats,
and numbers after ± are the estimated standard deviation of the average value. For the vanilla setting
with binary treatment, we report the mean absolute difference between the estimated and true ATE.
For Extrapolation (h = 2), models are trained with t ∈ [0.1, 2.0] and tested in t ∈ [0, 2.0]. For
Extrapolation (h = 5), models are trained with t ∈ [0.25, 5.0] and tested in t ∈ [0, 5].

METHODS VANILLA (BINARY) VANILLA (h = 1) EXTRAPOLATION (h = 2) VANILLA (h = 5) EXTRAPOLATION (h = 5)

TARNET 0.3670 ± 0.61112 2.0152 ± 1.07449 12.967 ± 1.78108 5.6752 ± 0.53161 31.523 ± 1.5013
DRNET 0.3543 ± 0.60622 2.1549 ± 1.04483 11.071 ± 0.99384 3.2779 ± 0.42797 31.524 ± 1.50264

FLEXTENET 0.2700 ± 0.10000 —— —— —— ——
VCNET 0.2098 ± 0.18236 0.7800 ± 0.61483 NAN NAN NAN

TRANSTEE 0.0983 ± 0.15384 0.1151 ± 0.10289 0.2745 ± 0.14976 0.1621 ± 0.14443 0.2066 ± 0.23258
TRANSTEE+MLE 0.1721 ± 0.40061 0.0877 ± 0.03352 0.2685 ± 0.17552 0.2079 ± 0.17637 0.1476 ± 0.07123
TRANSTEE+TR 0.1913 ± 0.29953 0.0781 ± 0.03243 0.2393 ± 0.08154 0.1143 ± 0.03224 0.0947 ± 0.0824

TRANSTEE+PTR 0.2193 ± 0.34667 0.0762 ± 0.07915 0.2352 ± 0.17095 0.1363 ± 0.08036 0.1363 ± 0.08035

subsequently be administered at values never seen before during training. Surprisingly, we find that153

while standard results rely constraining the values of treatments [43] and dosages [51] to a specific154

range, our methods perform surprisingly well when extrapolating beyond these ranges as assessed on155

several empirical benchmarks. By comparison, many other methods appear comparatively brittle on156

these same settings. See Appendix D for detailed discussion and analysis.157

Case study of propensity modeling. TransTEE is conceptually simple and effective. However,158

when the sample size is small, it becomes important to account for selection bias [2]. However,159

most existing regularizations can only be used when the treatments are discrete [7, 37, 18]. Thus we160

propose two regularization variants for continuous treatment/dosages, which are termed Treatment161

Regularization (TR, LTR
ϕ (x, t) =

∑n
i=1

(
ti − πϕ(t̂i|xi)

)2
) and its probabilistic version Probabilistic162

Treatment Regularization (PTR, LPTR
ϕ =

∑n
i=1

[
(ti−πϕ(µ|xi))2

2πϕ(σ2|xi) + 1
2 log πϕ(σ

2|xi)
]
) respectively.163

The overall model is trained in a adversarial pattern, namely minθ maxϕ Lθ(x, y, t) − Lϕ(x, t).164

Specifically, a propensity score model πϕ(t|x) parameterized by an MLP is learned by minimizing165

Lϕ(x, t), and then the outcome estimators µθ (x, t) is trained by minθ Lθ(x, y, t) − Lϕ(x, t). To166

overcome selection biases over representation space, the bilevel optimization enforces effective167

treatment effect estimation while modeling the discriminative propensity features to partial out parts168

of covariates that cause the treatment but not the outcome and dispose of nuisance variations of169

covariates [36].170

Continuous dosage. In Table 3, we compare TransTEE against baselines on the TCGA (D) dataset171

with default treatment selection bias 2.0 and dosage selection bias 2.0. As the number of treatments172

increases, TransTEE and its variants (with regularization term) consistently outperform the baselines173

by a large margin on both training and test data. TransTEE’s effectiveness is also shown in Appendix174

Figure 6, where the estimated ADRF curve of each treatment considering continuous dosages is175

plotted. Compared to baselines, TransTEE attains better results over all treatments. Stronger selection176

bias in the observed data makes estimation more difficult because it becomes less likely to see177

certain treatments or particular covariates. Considering different dosage and treatment selection bias,178

Appendix Figure 5 shows that as biases increase, TransTEE consistently performs the best.179

Structured treatments. We compared the performance of TransTEE to baselines on the training180

and test set of both SW and TCGA datasets with varying degrees of treatment selection bias. The181

numerical results are shown in Appendix Table 9. The performance gain between GNN and Zero182

indicates that taking into account of graph information significantly improves estimation. The results183

suggest that, overall, the performance of TransTEE is the best due to the strong modeling capability184

and advanced model structure for processing high-dimensional treatments. SIN is the best model185

among these baselines.186

6 Concluding Remarks187

In this work, we show that transformers can be effective and versatile treatment effect estimators.188

Extensive experiments well verify the effectiveness and utility of TransTEE, which also imply that a189

more challenging and unified evaluation alternatives of TEE with domain experts are needed.190
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A Extended Related Work429

Neural Treatment Effect Estimation. There are many recent works on adapting neural networks430

to learn counterfactual representations for treatment effect estimation [34, 53, 40, 68, 8, 51, 43, 12].431

To mitigate the imbalance of covariate representations across treatment groups, various approaches432

are proposed including optimizing distributional divergence (e.g. IPM including MMD, Wasserstein433

distance), entropy balancing [69] (converges to JSD between groups), counterfactual variance [71].434

However, their domain-specific designs make them limited to different treatments as shown in Table435

1: methods like VCNet [43] use a hand-crafted way to map a real-value treatment to an n-dimension436

vector with a constant mapping function, which is hard to converge under shifts of treatments (Table 4437

in Appendix); models like TARNet [53] need an accurate estimation of the value interval of treatments.438

Moreover, previous estimators embed covariates to only one representation space by fully connected439

layers, tending to lose their connection and interactions [53, 35]. And it is non-trivial to adapt to the440

wider settings given existing ad hoc designs on network architectures. For example, the case with n441

treatments and m associated dosage requires n×m branches for methods like DRNet [51], which442

put a rigid requirement on the extrapolation capacity and infeasible given observational data.443

Transformers and Attention Mechanisms Transformers [60] have demonstrated exemplary per-444

formance on a broad range of language tasks and their variants have been successfully adapted to445

representation learning over images [16], programming languages [10], and graphs [67] partly due446

to their flexibility and expressiveness. Their wide utility has motivated a line of work for general-447

purpose neural architectures [33, 32] that can be trained to perform tasks across various modalities448

like images, point clouds, audios and videos. But causal inference is fundamentally different from449

the above models’ focus, i.e. supervised learning. And one of our goals is to explore the generaliz-450

ability of attention-based models for TEE across domains with high-dimensional inputs, an important451

desideratum in causal representation learning [50].452

Transformer for TEE. Currently, there are some attempts to use the embedding technique and453

attention mechanism for TEE Tasks [24, 66]. CETransformer [24] uses the embedding technique,454

but they only trivially learn covariate embeddings but not treatment embedding, while the latter is455

shown more important for TEE tasks. ANU [66] utilizes attention mechanisms to map the original456

covariate space X into a latent space Z in a single model, which is more similar to ours. We detail457

the difference between TransTEE and ANU [66] on both model designs and performance as follows:458

(i) The model structure is different. ANU performs cross-attention between zx, and zt, and no459

self-attention is applied. However, TransTEE performs self-attention on zx, zt respectively and460

then cross-attention is performed between zx, zt. When facing high-dimensional data, such as texts,461

images, and graphs, without multiple self-attention layers on zx, zt separately, the representations462

will be weak. That is why in machine translation, object detection, and segmentation tasks, the463

representations of images/texts will be firstly processed by multiple self-attention layers and then464

perform cross-attention with queries. We will verify this point in the following experiments. (ii) ANU465

cannot be applied to multi-treatment settings, which have been extensively studied recently [36, 8, 44].466

The comparison experiments are in Section F.5.467

Propensity Score. Most related works fundamentally rely on strongly ignorable conditions. Still468

even under ignorability, treatments may be selectively assigned according to propensities that depend469

on the covariates. To overcome the impact of such confounding, many statistical methods [5] like470

covariate adjustment [5], matching [49, 1], stratification [20], reweighting [27], g-computation [30],471

have been proposed. More recent approaches include propensity dropout [4], and multi-task Gaussian472

process [3]. Explicitly modeling the propensity score, which reflects the underlying policy for473

assigning treatments to subjects, has also shown to be effective in reasoning about the unobserved474

counterfactual outcomes and accounting for confounding. Based upon it, double robust estimators475

and targeted regularization are proposed to guarantee the consistency of estimated treatment effects476

under misspecification of either the outcome or propensity score model [38, 21]. There are also477

works using adversarial training for balanced representations [7, 37, 18]. However, most traditional478

approaches are restricted to binary treatments and the capacity of NNs for such problems have not479

been fully leveraged.480

Domain Adaptation There are some close connections between causal inference and domain481

adaptation, in particular, out-of-distribution robustness. Intuitively, traditional domain adversarial482

training learns representations that are indistinguishable by the domain classifier by minimizing the483

worst-domain empirical error [22, 72, 63, 70]. The algorithmic insights can be handily translated to484

the TEE domain [53, 35, 19]. Here we also have the desideratum that covariate representations should485
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be balanced such that the selection bias is minimized and the effect is maximally determined by the486

treatment. Algorithmically, when the treatment is continuous, we connect our method to continuously487

indexed domain adaptation [62]. Our formulation and algorithm also serve to build connections to488

a diverse set of statistical thinking on causal inference and domain adaptation, of which much can489

be gained by mutual exchange of ideas [35]. Explicitly modeling the propensity score also seeks to490

connect causal inference with transfer learning to inspire domain adaptation methodology and holds491

the potential to handle a wider range of problems like hidden stratification in domain generalization,492

which we leave for future work.493

B An Illustrative Example494

𝐗 Embedding

𝑥1 𝑥2 𝑥𝑝…

…

× 𝐿

…

𝐓 Embedding

𝑡1 𝑡𝑛…

𝐃 Embedding

𝑑1 𝑑𝑛…

…

Linear

…

× 𝐿

…

Key Value Query

𝑀𝑥 𝑀𝑠𝑡

𝑀𝑥
𝐿 𝑀𝑠𝑡

𝐿

Pooling & Linear

× 𝐿

Self-Attention Self-Attention

Cross-Attention

Figure 3: An Illustrative Example about the work-
flow of TransTEE.

To better understand the workflow with the495

above designs, we present a simple illustration496

here. Consider a use case in medicine effect497

estimation, where x contains p patient infor-498

mation, e.g., Age, Sex, Blood Pressure (BP),499

and Previous infection condition (Prev) with500

a corresponding causal graph (Figure 1). n501

medicines (treatments) are applied simultane-502

ously and each medicine has a corresponding503

dosage. As shown in Figure 3, each covariate,504

treatment, and dosage will first be embedded to505

d-dimension representation by a specific learn-506

able embedding layer. Each treatment embed-507

ding will be concatenated with its dosage embed-508

ding and the concatenated feature will be pro-509

jected by a linear layer to produce d dimensional510

vectors. Self-attention modules optimizes these511

embeddings by aggregating contextual informa-512

tion. Specifically, attribute Prev is more related to age than sex, hence the attention weight of Prev513

feature to age feature is larger and the update of Prev feature will be more dependent on the age514

feature. Similarly, the interaction of multi-medicines is also attained by the self-attention module.515

The last Cross-attention module enables treatment-covariate interactions, which is shown in Figure516

2 that, each medicine will assign a higher weight to relevant covariates especially confounders (BP)517

than irrelevant ones. Finally, we pool the resulted embedding and use one linear layer to predict the518

outcome.519

C Details and Discussions about Propensity Score Modelling520

We first discuss the fundamental differences and common goals between our algorithm and traditional521

ones: as a general approach to causal inference, TransTEE can be directly harnessed with traditional522

methods that estimate propensity scores by including hand-crafted features of covariates [30] to523

reduce biases through covariate adjustment [5], matching [49, 1], stratification [20], reweighting [27],524

g-computation [30], sub-classification [46], covariate adjustment [5], targeted regularization [58] or525

conditional density estimation [43] that create quasi-randomized experiments [13]. It is because the526

general framework provides an advantage to using an off-the-shelf propensity score regularizer for527

balancing covariate representations. Similar to the goal of traditional methods like inverse probability528

weighting and propensity score matching [5], which seeks to weigh a single observation to mimic the529

randomization effects with respect to the covariate from different treatment groups of interest.530

Unlike previous works that use hand-crafted features or directly model the conditional density via531

maximum likelihood training, which is prone to high variance when handling high-dimensional, struc-532

tured treatments [56] and can be problematic when we want to estimate a plausible propensity score533

from the generative model [41] (see the degraded performance of MLE in Table 2), TransTEE learns534

a propensity score network πϕ(t|x) via minimax bilevel optimization. The motivations for adversar-535

ial training between µθ(x, t) and πϕ(t|x) are three-fold: (i) it enforces the independence between536

treatment and covariate representations as shown in Proposition 1, which serves as algorithmic537

randomization in replace of costly randomized controlled trials [48] for overcoming selection bias538
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Table 3: Performance of individualized treatment-dose response estimation on the TCGA (D)
dataset with different numbers of treatments. We report AMSE and standard deviation over 30 repeats.
The selection bias on treatment and dosage are both set to be 2.0.

METHODS
#TREATMENT=1 #TREATMENT=2 #TREATMENT=3

IN-SAMPLE OUT-SAMPLE IN-SAMPLE OUT-SAMPLE IN-SAMPLE OUT-SAMPLE

SCIGAN 5.6966 ± 0.0000 5.6546 ± 0.0000 2.0924 ± 0.0000 2.3067 ± 0.0000 4.3183 ± 0.0000 4.6231 ± 0.0000
TARNET(D) 0.7888 ± 0.0609 0.7908 ± 0.0606 1.4207 ± 0.0784 1.4206 ± 0.0777 3.1982 ± 0.5847 3.1920 ± 0.5746
DRNET(D) 0.8034 ± 0.0469 0.8052 ± 0.0466 1.3739 ± 0.0858 1.3738 ± 0.0853 2.8632 ± 0.4227 2.8558 ± 0.4143
VCNET(D) 0.1566 ± 0.0303 0.1579 ± 0.0301 0.2919 ± 0.0743 0.2918 ± 0.0737 0.6459 ± 0.1387 0.6493 ± 0.1397
TRANSTEE 0.0573 ± 0.0361 0.0585 ± 0.0358 0.0550 ± 0.0137 0.0556 ± 0.0129 0.2803 ± 0.0658 0.2768 ± 0.0639

TRANSTEE + TR 0.0495 ± 0.0176 0.0509 ± 0.0180 0.0663 ± 0.0268 0.0671 ± 0.0268 0.2618 ± 0.0737 0.2577 ± 0.0726
TRANSTEE + PTR 0.0343 ± 0.0096 0.0355 ± 0.0094 0.0679 ± 0.0252 0.0686 ± 0.0252 0.2645 ± 0.0702 0.2597 ± 0.0675

[13, 30]; (ii) it explicitly models propensity πϕ(t|x) to refine treatment representations and pro-539

mote covariate adjustment [36]; and (iii) taking an adversarial domain adaptation perspective, the540

methodology is effective for learning invariant representations and further regularizes µθ(x, t) to be541

invariant to nuisance factors and may perform better empirically on some classes of distribution shifts542

[22, 53, 72, 35, 62].543

Based on the above discussion, when treatments are discrete, one might consider directly applying544

heuristic methods like adversarial domain adaptation (see [22, 72] for algorithmic development545

guidelines). We note the heuristic nature of domain-adversarial methods (see [65] for clear failure546

cases), and a debunking of the common claim that [6] guarantees the robustness of such methods.547

Here, we focus on continuous TEE, a more general and challenging scenario, where we want to548

estimate ADRF, and propose two variants of Lϕ as an adversary for the outcome regression objective549

Lθ in Eq. 1 accordingly. The process is shown in Eq. 2 below:550

min
θ

max
ϕ

Lθ(x, y, t)− Lϕ(x, t). (2)

We refer to the above minimax game for algorithmic randomization in replace of costly randomized551

controlled trials. Such an algorithmic randomization based on neural representations using propensity552

score creates subgroups of different treated units as if they had been randomly assigned to differ-553

ent treatments such that conditional independence T |= X | π(T |X) is enforced across strata and554

continuation, which approximates a random block experiment to the observed covariates [30].555

Below we introduce two variants of Lϕ(x, t):556

Treatment Regularization (TR) is a standard MSE over the treatment space given the predicted557

treatment t̂i and the ground truth ti558

LTR
ϕ (x, t) =

n∑
i=1

(
ti − πϕ(t̂i|xi)

)2
. (3)

TR is explicitly matching the mean of the propensity score to that of the treatment. In an ideal559

case, the π(t|x) should be uniformly distributed given different x. However, the above treatment560

regularization procedure only provides matching for the mean of the propensity score, which can be561

prone to bad equilibriums and treatment misalignment [62]. Thus, we introduce the distribution of t562

and model the uncertainty rather than predicting a scalar t:563

Probabilistic Treatment Regularization (PTR) is a probabilistic version of TR which models the564

mean µ (with a slight abuse of notation) and variance σ2 of estimated treatment t̂i565

LPTR
ϕ =

n∑
i=1

[
(ti − πϕ(µ|xi))2

2πϕ(σ2|xi)
+

1

2
log πϕ(σ

2|xi)

]
. (4)

The PTR matches the whole distribution, i.e. both the mean and variance, of the propensity score to566

that of the treatment, which can be preferable in certain cases.567

Equilibrium of the Minimax Game. We analyze that TR and PTR can align the first and second568

moment of continuous treatments at equilibrium respectively, and thus promote the independence569

between treatment t and covariate x. To be clear, we denote µθ(x, t) := wy ◦ (Φx(x),Φt(t)) and570

πϕ(t|x) := wt ◦ Φx(x), which decompose the predictions into featurizers Φt : T → ZT ,Φx : X →571
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ZX and predictors wy : ZX × ZT → Y, wt : ZX → T . For example, Φx(x) and Φt(t) can be the572

linear embedding layer and attention modules in our implementation. The propensity is computed on573

Φx(x), an intermediate feature representation of x. Similarly, µθ(x, t) is computed from Φt(t) and574

Φx(x). For the ease of our analysis below, we assume the predictors wt, wx are fixed.575

Proposition 1. (The optimum of propensity score model) In the equilibrium of the game, assuming
the outcome prediction model is fixed, then the optimum of TR is achieved when E[Φt(t)|Φx(x)] =
E[Φt(t)],∀ Φx(x) via matching the mean of propensity score π(Φt(t)|Φx(x)) and the marginal
distribution p(Φx(x)) and the optimum discriminator of PTR is achieved via matching both the
mean and variance such that E[Φt(t)|Φx(x)] = E[Φt(t)],V[Φt(t)|Φx(x)] = V[Φt(t)], ∀ Φx(x).

Proof. The proof concerns the analysis of the Equilibrium of the Minimax Game. It is a special576

case of [62] when there are only two players, i.e. µθ and πϕ. We represent treatments explicitly and577

interpret the connections with combating selection biases. Given the outcome regression model µθ578

fixed, the optimal propensity score model π∗ is579

π∗ = argmin
π

Lϕ(Φx(x),Φt(t))

= argmin
π

E(Φx(x),Φt(t))∼p(Φx(x),Φt(t))

(
Φt(t)− πθ

(
Φt(t̂)|x

))2
= argmin

π
EΦx(x)∼p(Φx(x))EΦt(t)∼p(Φt(t)|Φx(x))

(
Φt(t)− πθ

(
Φt(t̂)|x

))2
.

(5)

The inner minimum is achieved at π∗
θ

(
Φt(t̂)|x

)
= EΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)] given the following580

quadratic form:581

E(Φx(x),Φt(t))∼p(Φx(x),Φt(t))

(
Φt(t)− πθ

(
Φt(t̂)|Φx(x)

))2
=

EΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)
2]− 2πθ

(
Φt(t̂)|x

)
EΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)] + πθ

(
Φt(t̂)|x

)2
.

(6)

We assume the above optimum condition of the propensity score model always holds with respect to582

the outcome regression model during training, then the minimax game in Eq. 2 can be converted to583

maximizing the inner loop:584

max
ϕ

−Lϕ(x,Φt(t)) = Lϕ∗(Φx(x),Φt(t))

= E(Φx(x),Φt(t))∼p(Φx(x),Φt(t))

(
Φt(t)− EΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)]

)2
= EΦx(x)∼p(Φx(x))EΦt(t)∼p(Φt(t)|Φx(x))∼p(Φx(x),Φt(t))

(
Φt(t)− EΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)]

)2
= EΦx(x)∼p(Φx(x))VΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)] = EΦx(x)V[Φt(t)|Φx(x)].

(7)
Next we show the difference between Eq. 7 and the variance of the treatment V[Φt(t)]:585

EΦx(x)∼p(Φx(x))VΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)]− V[Φt(t)]

=EΦx(x)∼p(Φx(x))[E[Φt(t)
2|Φx(x)]− E[Φt(t)|Φx(x)]2]− (E[Φt(t)

2]− E[Φt(t)]
2)

=E[Φt(t)]
2 − EΦx(x)[E[Φt(t)|Φx(x)]2] = EΦx(x)[E[Φt(t)|Φx(x)]]2 − EΦx(x)[E[Φt(t)|Φx(x)]2]

≤EΦx(x)[E[Φt(t)|Φx(x)]2]− EΦx(x)[E[Φt(t)|Φx(x)]2] = 0
(8)

where the last inequality is by Jensen’s inequality and the convexity of Φt(t)
2. The optimum is586

achieved when E[Φt(t)|Φx(x)] is constant w.r.t Φx(x) and so E[Φt(t)|Φx(x)] = E[Φt(t)], ∀Φx(x).587

The proof process for PTR is similar but includes the derivation of variance matching.588

π∗ = argmin
π

Lϕ(Φx(x),Φt(t))

= argmin
π

E(Φx(x),Φt(t))∼p(Φx(x),Φt(t))

(
(E[Φt(t)|Φx(x)]− Φt(t))

2

2V[Φt(t)|Φx(x)]
+

logV[Φt(t)|Φx(x)]
2

)
= argmin

π
EΦx(x)EΦt(t)

(
(E[Φt(t)|Φx(x)]− Φt(t))

2

2V[Φt(t)|Φx(x)]
+

logV[Φt(t)|Φx(x)]
2

)
,

(9)
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where EΦx(x) and EΦt(t) denote EΦx(x)∼p(Φx(x)) and EΦt(t)∼p(Φt(t)|Φx(x)) respectively for brevity.589

The first term can be reduce to a constant given the definition of variance:590

EΦx(x)∼p(Φx(x))EΦt(t)∼p(Φt(t)|Φx(x))

(
(E[Φt(t)|x]− Φt(t))

2

2V[Φt(t)|x]

)
= EΦx(x)∼p(Φx(x))

(
V[Φt(t)|x]
2V[Φt(t)|x]

)
=

1

2
.

(10)

The second term can be upper bounded by using Jensen’s inequality:591

EΦx(x)∼p(Φx(x))EΦt(t)∼p(Φt(t)|Φx(x))

(
logV[Φt(t)|x]

2

)
≤ 1

2
log
(
EΦx(x)∼p(Φx(x))[V[Φt(t)|Φx(x)]]

)
≤ 1

2
log (V[Φt(t)]) .

(11)

Combining Eq. 10 and Eq. 11, the optimum 1
2 + 1

2 log (V[Φt(t)]) is achieved when E[Φt(t)|Φx(x)],592

V[Φt(t)|Φx(x)] is constant w.r.t Φx(x) and so E[Φt(t)|Φx(x)] = E[Φt(t)],V[Φt(t)|Φx(x)] =593

V[Φt(t)], ∀Φx(x) according to the equality conditions of the first and second inequality in Eq.594

11, respectively.595

D Analysis of the Failure Cases over Treatment Distribution Shifts596

As shown in Figure 4 (a,c), with the shifts of the treatment interval, the estimation performance of597

DRNet and TARNet decline significantly. VCNet achieves ∞ estimation error when h = 5 partly598

because its hand-craft projection matrix can only process values near [0, 1]. Another problem brought599

by this assumption is the extrapolation dilemma, which can be seen in Figure 4(b). When training on600

t ∈ [0, 1.75], these discrete approximation methods cannot transfer to new distribution t ∈ (1.75, 2.0].601

These unseen treatments are rounded down to the nearest neighbors t′ in T and be seemed the same602

as t′. We conduct ablation about the treatment embedding as in Table 4 in Appendix. Such a simple603

fix (VCNet+Embeddings) removes the demand on a fixed interval constraint to treatments and attains604

superior performance on both interpolation and extrapolation settings. The result clearly shows the605

pitfalls of hand-crafted feature mapping for TEE. We highlight that it is neglected by most existing606

works [51, 43, 54, 24]. Extrapolation is still a challenging open problem. We can see that no existing607

work does well when training and test treatment intervals have big gaps. However, the empirical608

evidence validates the improved effectiveness of TransTEE that uses learnable embeddings to map609

continuous treatments to hidden representations.610

Below we show the assumption that the value of treatments or dosages are in a fixed interval [l, h] is611

sub-optimal and thus these methods get poor extrapolation results. For simplicity, we only consider612

a data sample has only one continuous treatment t and the result is similar for continuous dosage.613

614

Proposition 2. Given a data sample (x, t, y), where x ∈ Rd, t ∈ [l, h], y ∈ R. Assume µ is615
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a L-Lipschitz function over (x, t) ∈ Rd+1, namely |µ(u) − µ(v)| ≤ L∥u − v∥. Partitioning
[l, h] uniformly into δ sub-interval, and then get T =

[
l + h−l

δ ∗ 0, l + h−l
δ ∗ 1, ..., l + h−l

δ ∗ δ
]
.

Previous studies most rounding down a treatment t to its nearest value in T (either l+
⌊

tδ
h−l

⌋
h−l
δ or

l+
⌈

tδ
h−l

⌉
h−l
δ ) and use |T | branches to approximate the entire continuum [l, h]. The approximation

error can be bounded by

max

{
µ

(
x,

⌊
tδ

h− l

⌋
h− l

δ

)
− µ(x, t), µ

(
x,

⌈
tδ

h− l

⌉
h− l

δ

)
− µ(x, t)

}
≤ max

{
L

(∣∣∣∣⌊ tδ

h− l

⌋
h− l

δ
− t

∣∣∣∣) , L

(∣∣∣∣⌈ tδ

h− l

⌉
h− l

δ
− t

∣∣∣∣)}
≤ L

h− l

δ

(12)

616

The bound is affected by both the number of branches δ and treatment interval [l, h]. However, as617

far as we know, most previous works ignore the impacts of the treatment interval [l, h] and adopt618

a simple but much stronger assumption that treatments are all in the interval [0, 1] [43] or a fixed619

interval [51]. These observations well manifest the motivation of our general framework for TEE620

without the need for treatment-specific architectural designs.621

Table 4: Experimental results comparing NN-based methods on simulated datasets. Numbers
reported are AMSE of test data based on 100 repeats, and numbers after ± are the estimated standard
deviation of the average value. For Extrapolation (h = 2), models are trained with t ∈ [0, 1.75]
and tested in t ∈ [0, 2]. For Extrapolation (h = 5), models are trained with t ∈ [0, 4] and tested in
t ∈ [0, 5]

METHODS VANILLA VANILLA (h = 5) EXTRAPOLATION (h = 2) EXTRAPOLATION (h = 5)

TARNET [53] 0.045 ± 0.0009 0.3864 ± 0.04335 0.0984 ± 0.02315 0.3647 ± 0.03626
DRNET [51] 0.042 ± 0.0009 0.3871 ± 0.03851 0.0885 ± 0.00094 0.3647 ± 0.03625
VCNET[43] 0.018 ± 0.0010 NAN 0.0669 ± 0.05227 NAN

VCNET+EMBEDDINGS 0.013 ± 0.00465 0.0167 ± 0.01150 0.0118 ± 0.00482 0.0178 ± 0.00887

E Additional Experimental Setups622

E.1 Experimental Settings623

Datasets. Since the true counterfactual outcome (or ADRF) are rarely available for real-world data,624

we use synthetic or semi-synthetic data for empirical evaluation. for continuous treatments, we use625

one synthetic dataset and two semi-synthetic datasets: the IHDP and News datasets. For treatment626

with continuous dosages, we obtain covariates from a real dataset TCGA [9] and generate treatments,627

where each treatment is accompanied by a dosage. The resulting dataset is named TCGA (D).628

Following [36], datasets for structured treatments include Small-World (SW), which contains 1, 000629

uniformly sampled covariates and 200 randomly generated Watts–Strogatz small-world graphs [64]630

as treatments, and TCGA (S), which uses 9, 659 gene expression measurements of cancer patients [9]631

for covariates and 10, 000 sampled molecules from the QM9 dataset [45] as treatments. For the study632

on language models, we use The Enriched Equity Evaluation Corpus (EEEC) dataset [19].633

Baselines. Baselines for continuous and binary treatments include TARnet [53], Dragonnet [54],634

DRNet [51], FlexTENet [12], and VCNet [43]. SCIGAN [8] is chosen as the baseline for continuous635

dosages. Besides, we revise DRNet [51], TARNet [53], and VCNet [43] to DRNet (D), TARNet (D),636

VCNet (D), respectively, which enable multiple treatments and dosages. Specifically, DRNet (D)637

has T main flows, each corresponding to a treatment and is divided into BD branches for continuous638

dosage. Baselines for structured treatments include Zero [36], GNN [36], GraphITE [25], and639

SIN [36]. To compare the performance of different frameworks fairly, all of the models regress on640

the outcome with empirical samples without any regularization. For MLE training of the propensity641

score model, the objective is the negative log-likelihood: Lϕ := − 1
n

∑n
i=1 log πϕ(ti|xi).642
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(a) h = 1 in training and testing.
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(c) h = 5 in training and testing.

Figure 4: Estimated ADRF on the synthetic dataset, where treatments are sampled from an interval
[l, h], where l = 0.

Evaluation Metric. For continuous and binary treatments, we use the average mean squared error643

on the test set. For structured treatments, following [36], we rank all treatments by their propensity644

π(t|x) in a descending order. Top K treatments are selected and the treatment effect of each treatment645

pair is evaluated by unweighted/weighted expected Precision in Estimation of Heterogeneous Effect646

(PEHE) [36], where the WPEHE@K accounts for the fact that treatment pairs that are less likely to647

have higher estimation errors should be given less importance. For multiple treatments and dosages,648

AMSE is calculated over all dosage and treatment pairs, resulting in AMSED.649

All the assets (i.e., datasets and the codes for baselines) we use include a MIT license containing a650

copyright notice and this permission notice shall be included in all copies or substantial portions of651

the software. We conduct all the experiments on a machine with i7-8700K CPU, 32G RAM, and four652

Nvidia GeForce RTX2080Ti (10GB) GPU cards.653

E.2 Detail Evaluation Metrics.654

AMSET =
1

N

N∑
i=1

∫
T

[
f̂(xi, t)− f(xi, t)

]
π(t)dt (13)

655

UPEHE@K =
1

N

N∑
i=1

[
1

C2
K

∑
t,t′

[
f̂(xi, t, t

′)− f(xn, t, t
′)
]2 ]

WPEHE@K =
1

N

N∑
i=1

[
1

C2
K

∑
t,t′

[
f̂(xi, t, t

′)− f(xi, t, t
′)
]2

p(t|x)p(t′|x)
]
,

(14)

656

AMSED =
1

NT

N∑
i=1

T∑
t=1

∫
D

[
f̂(xi, t, s)− f(xn, t, s)

]
π(s)dt (15)

E.3 Network Structure and Parameter Setting657

Table. 5 and Table. 6 show the detail of TransTEE architecture and hyper-parameters. For all the658

synthetic and semi-synthetic datasets, we tune parameters based on 20 additional runs. In each659

run, we simulate data, randomly split it into training and testing, and use AMSE on testing data for660

evaluation. For fair comparisons, in all experiments, the model size of TransTEE is less than or661

similar to baselines.662
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Table 5: Architecture details of TransTEE, where p is the number of covariates.

Module Covariates Treatment

Embedding Layer [Linear] [Linear]
Output Size Bsz × p×#Emb bsz × 1×# Emb

Self-Attention

 Multi-head Att
BatchNorm

Linear
BatchNorm

×#Layers

 Multi-head Att
BatchNorm

Linear
BatchNorm

×#Layers

Output Size Bsz × p×#Emb Bsz × 1×#Emb

Cross-Attention

 Multi-head Att
BatchNorm

Linear
BatchNorm

×#Layers

Output Size Bsz × 1×#Emb
Projection Layer [Linear]

Output Size Bsz × 1

Table 6: Hyper-parameters on different datasets. Bsz indicates the batch size, # Emb indicates the
embedding dimension, Lr. S indicates the scheduler of the learning rate (Cos is the cosine annealing
Learning rate).

Dataset Bsz # Emb # Layers # Heads Lr Lr. S

Simu 500 10 1 2 0.01 Cos
IHDP 128 10 1 2 0.0005 Cos
News 256 10 1 2 0.01 Cos
SW 500 16 1 2 0.01 None

TCGA 1000 48 3 4 0.01 None

E.4 Simulation details.663

Synthetic Dataset [43]. The synthetic dataset contains 500 training points and 200 testing points.664

Data is generated as follows: xj ∼ Unif[0, 1], where xj is the j-th dimension of x ∈ R6, and665

t̃|x =
10 sin (max(x1, x2, x3)) + max(x3, x4, x5)

3

1 + (x1 + x5)2
+ sin(0.5x3) (1 + exp(x4 − 0.5x3))+

x2
3 + 2 sin(x4) + 2x5 − 6.5 +N (0, 0.25)

y|x, t = cos(2π(t− 0.5))

(
t2 +

4max(x1, x6)
3

1 + 2x2
3

)
+N (0, 0.25)

where t = (1 + exp(−t̃))−1.666

for treatment in [0, h], we revised it to t = (1 + exp−t̃)−1 ∗ h,667

IHDP [26] is a semi-synthetic dataset containing 25 covariates, 747 observations and binary treat-
ments. For treatments in [0, 1], we follow VCNet [43] and generate treatments and responses by:

t̃|x =
2x1

1 + x2
+

2max(x3, x5, x6)

0.2 + min(x3, x5, x6)
+ 2 tanh

(
5

∑
i∈Sdis,2

(xi − c2)

|Sdis,2|
− 4 +N (0, 0.25)

)

y|x, t = sin(3πt)

1.2− t

(
tanh

(
5

∑
i∈Sdis,1

(xi − c1)

|Sdis,1|

)
+

exp(0.2(x1 − x6))

0.5 + 5min(x2, x3, x5)

)
+N (0, 0.25),

where t = (1 + exp(−t̃))−1, Scon = {1, 2, 3, 5, 6} is the index set of continuous features,
Sdis,1 = {4, 7, 8, 9, 10, 11, 12, 13, 14, 15}, Sdis,2 = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25} and

Sdis,1

⋃
Sdis,2 = [25] − Scon. Here c1 = E

[∑
i∈Sdis,1

xi

|Sdis,1|

]
,c2 = E

[∑
i∈Sdis,2

xi

|Sdis,2|

]
. To allow
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(b) Performance with different treatment selection bias.

Figure 5: Performance of five methods on TCGA (D) dataset with varying bias levels.

comparison on various treatment intervals t ∈ [0, h], treatments and responses are generated by:

t = (1 + exp(−t̃))−1 ∗ h

y|x, t = sin(3πt/h)

1.2− t/h

(
tanh

(
5

∑
i∈Sdis,1

(xi − c1)

|Sdis,1|

)
+

exp(0.2(x1 − x6))

0.5 + 5min(x2, x3, x5)

)
+N (0, 0.25),

where the orange part is the only different compared to the generalization of vanilla IHDP dataset668

(h = 1). Note that Sdis,1 only impacts outcome that serves to be noisy covariates; Sdis,2 contains pre-669

treatment covariates that only impact treatments, which also serves to be instrumental variables. This670

allows us to observe the improvement using TransTEE when noisy covariates exist. Following [26]671

covariates are standardized with mean 0 and standard deviation 1.672

News. The News dataset consists of 3000 randomly sampled news items from the NY Times
corpus [42] and was originally introduced as a benchmark in the binary treatment setting. We
generate the treatment and outcome in a similar way as [43] but with a dynamic range or treatment
intervals [0, h]. We first generate v′1, v

′
2, v

′
3 ∼ N (0, 1) and then set vi = v′i/∥v′i∥2; i ∈ {1, 2, 3}.

Given x, we generate t from Beta
(
2,
∣∣∣ v⊤

3 x

2v⊤
2 x

∣∣∣) ∗ h.And we generate the outcome by

y′|x, t = exp

(
v⊤2 x

v⊤3 x
− 0.3

)
y|x, t = 2(max(−2,min(2, y′)) + 20v⊤1 x) ∗

(
4(t− 0.5)2 + sin

(π
2
t
))

+N (0, 0.5)

TCGA (D) [8] We obtain covariates x from a real dataset The Cancer Genomic Atlas (TCGA) and673

consider 3 treatments, where each treatment is accompanied by one dosage and a set of parameters,674

vt1, v
t
2, v

t
3. For each run, we randomly sample a vector, ut

i ∼ N (0, 1) and then set vti = ut
i/∥ut

i∥675

where ∥ · ∥ is Euclidean norm. The shape of the response curve for each treatment, ft(x, s) is676

given in Table 7. We add ϵ ∼ N (0, 0.2) noise to the outcomes. Interventions are assigned by677

sampling a dosage, dt, for each treatment from a beta distribution, dt|x ∼ Beta(α, βt). α ≥ 1678

controls the dosage selection bias (α = 1 gives the uniform distribution). βt = α−1
s∗t

+ 2 − α,679

where s∗t is the optimal dosage2 for treatment t. We then assign a treatment according to tf |x ∼680

Categorical(Softmax(κf(x, st))) where increasing κ increases selection bias, and κ = 0 leads to681

random assignments. The factual intervention is given by (tf , stf ). Unless otherwise specified, we682

set κ = 2 and α = 2.683

For structural treatments, we first define the Baseline effect [8]. For each run of the experiment, we
randomly sample a vector u0 ∼ Unif[0, 1], and set v0 = u0/∥uo∥, where ∥ · ∥ is the Euclidean norm.
The baseline effect is defined as

µ0(x) = v⊤0 x

2For symmetry, if s∗t = 0, we sample s∗t from 1−Beta(α, βt) where βt is set as though s∗t = 1.
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(a) Estimated ADRF for t1.
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(b) Estimated ADRF for t2.
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(c) Estimated ADRF for t3.

Figure 6: Estimated ADRF on the test set from a typical run of DRNet (D), TARNet (D), VCNet
(D), and SCIGAN. All of these methods are well optimized. TransTEE can well estimate the dosage-
response curve for all treatments.

Table 7: Dose response curves used to generate semi-synthetic outcomes for patient features x.
In the experiments, we set C = 10. vt1, v

t
2, v

t
3 are the parameters associated with each treatment t.

Treatment Dose-Response Optimal dosage

1 f1(x, s) = C
(
(v11)

⊤x+ 12(v13)
⊤xs− 12(v13)

⊤xs2
)

s∗1 =
(v1

2)
⊤x

2(v1
3)

⊤x

2 f2(x, s) = C
(
(v21)

⊤x+ sin
(
π(

v2⊤
2 x

v2⊤
3 x

s)
))

s∗2 =
(v2

3)
⊤x

2(v2
2)

⊤x

3 f3(x, s) = C
(
(v31)

⊤x+ 12s(s− b)2,where b = 0.75
(v3

2)
⊤x

(v3
3)

⊤x

)
b
3 if b ≥ 0.75 else 1

Small-World [36]. 20-dimensional multivariate covariates are uniformly sampled according to
xi ∼ Unif[−1, 1]. There are 1, 000 units in in-sample dataset, and 500 in the out-sample one. Graph
interventions For each graph intervention, a number of nodes between 10 and 120 are uniformly
sampled, the number of neighbors for each node is between 3 and 8, and the probability of rewiring
each edge is between 0.1 and 1. Watts–Strogatz small-world graphs are repeatedly generated until
a connected one is get. Each vertex has one feature, i.e. its degree centrality. A graph’s node
connectivity is denoted as ν(G) and its average shortest path length as ℓ(G). Similar for the baseline
effect, two randomly sampled vectors vν , vℓ are generated. Then, given an assigned graph treatment
G and a covariate vector x, the outcome is generated by

y = 100µ0(x) + 0.2ν(G)2 · v⊤ν x+ ℓ(G) · ν⊤ℓ x+ ϵ, ϵ ∼ N (0, 1)

TCGA (S) [36] We use 9, 659 gene expression measurements of cancer patients for covariates. The
in-sample and datasets consist of 5, 000 units and the out-sample one of 4, 659 units, respectively.
Each unit is a covariate vector x ∈ R4000 and these units are split randomly into in- and out-sample
datasets in each run randomly. For each covariate vector x, its 8-dimensional PCA components
xPCA ∈ R8 is computed. Graph interventions We randomly sample 10, 000 molecules from the
Quantum Machine 9 (QM9) dataset [45] (with 133k molecules in total) in each run. We create a
relational graph, where each node corresponds to an atom and consists of 78 atom features. We label
each edge corresponding to the chemical bond types, e.g., single, double, triple, and aromatic bonds.
We collect 8 molecule properties mu, alpha, homo, lumo, gap, r2, zpve, u0 in a vector z ∈ R8,
which is denoted as the the assigned molecule treatment. Finally, we generate outcomes by

y = 10µ0(x) + 0.01z⊤xPCA + ϵ, ϵ ∼ N (0, 1)

Enriched Equity Evaluation Corpus (EEEC) [19] consists of 33, 738 English sentences and the684

label of each sentence is the mood state it conveys. The task is also known as Profile of Mood States685

(POMS). Each sentence in the dataset is created using one of 42 templates, with placeholders for a686

person’s name and the emotion, e.g., “<Person> made me feel <emotional state word>.”. A list687

of common names that are tagged as male or female, and as African-American or European will be688
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(a) Ablation study of PTR.
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Figure 7: Ablation study of the balanced weight for treatment regularization on the IHDP dataset.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Covariates

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

W
ei

gh
t

(a) TransTEE.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Covariates

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

W
ei

gh
t

(b) TransTEE+TR.
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(c) TransTEE+PTR

Figure 8: The distribution of learned weights for the cross-attention module on the IHDP dataset of
different models.

used to fill the placeholder (<Person>). One of four possible mood states: Anger, Sadness, Fear and689

Joy is used to fill the emotion placeholder. Hence, EEEC has two kinds of counterfactual examples,690

which are Gender and Race. For the Gender case, it changes the name and the Gender pronouns in691

the example and switches them, such that for the original example: "It was totally unexpected, but692

Roger made me feel pessimistic." it will have the counterfactual example:“It was totally unexpected,693

but Amanda made me feel pessimistic.” For the Race concept, it creates counterfactuals such that694

for the original example “Josh made me feel uneasiness for the first time ever in my life.”, the695

counterfactual example is: “Darnell made me feel uneasiness for the first time ever in my life.”.696

For each counterfactual example, the person’s name is taken at random from the pre-existing list697

corresponding to its type.698

F Additional Experimental Results699

F.1 Additional Numerical Results and Ablation Studies700

Choice of the balancing weight for treatment regularization. To understand the effect of propensity701

score modeling, we conduct an ablation study on the balancing weights of both TR and PTR. Figure 7702

presents the results of the experiments on the IHDP dataset. The main observation is that both703

TR and PTR with a proper regularization strength consistently improve estimation compared to704

TransTEE without regularization. The best performers are achieved when λ is 0.5 for both two705

methods, which shows that the best balancing parameter (0.5 on our experiments.) for these two706

regularization terms should be searched carefully. Besides, training both the treatment predictor and707

the feature encoder simultaneously in a zero-sum game is difficult and sometimes unstable (shown in708

Figure 7 right)709

Robustness to noisy covariates. We manipulate Sdis,1, Sdis,2 to generate datasets with different710

noisy covariates, e.g., when the number of covariates that only influence the outcome is 6,711

Sdis,1 = {4}, and Sdis,2 = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25},712
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Figure 9: Estimated ADRF on test set from a typical run of TarNet [53], DRNet [51], VCNet [43]
and ours on IHDP dataset. All of these methods are well optimized. (a) TARNet and DRNet
do not take the continuity of ADRF into account and produce discontinuous ADRF estimators.
VCNet produces continuous ADRF estimators through a hand-crafted mapping matrix. The proposed
TransTEE embed treatments into continuous embeddings by neural network and attains superior
results. (b,d) When training with 0.1 ≤ t ≤ 2.0 and 0.25 ≤ t ≤ 5.0. TARNet and DRNet cannot
extrapolate to distributions with 0 < t ≤ 2.0 and 0 ≤ t ≤ 5.0. (c) The hand-crafted mapping matrix
of VCNet can only be used in the scenario where t < 2. Otherwise, VCNet cannot converge and
incur an infinite loss. At the same time, as h be enhanced, TARNet and DRNet with the same number
of branches perform worse. TransTEE needs not to know h in advance and extrapolates well.
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(a) Outcome regression error.
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(b) Treatment regression error.
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(c) MSE in the test set.

Figure 10: Training dynamics of TransTEE on IHDP dataset with various regularization terms,
where the total training iteration is 1, 500 and (c) is evaluated on the test set per 50 training iterations.

when the number of covariates that influence the outcome is 24, Sdis,1 =713

{4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, }, and Sdis,2 = {25}. Fig-714

ure Figure 14(b) shows that, as the number of covariates that only influence the outcome increases,715

both TARNet and DRNet become better estimators, however, VCNet performs worse and even716

inferior to TARNet and DRNet when the number is large than 16. In contrast, the estimation error717

incurred by the proposed TransTEE is always low and superior to baselines by a large margin.718

Comparison of MLE or adversarial propensity score modeling on the propensity score. Seeing719

results in Table 2, additionally combine TransTEE with maximum likelihood training of π(t|x) does720

provide some performance gains. However, an adversarially trained π-model can be significantly721

better, especially for extrapolation settings. The results well manifest the effectiveness of TR and722

PTR on reducing selection bias and improving estimation performance. In fact, approaches like723

TMLE are not robust if the initial estimator is poor [54].724

Training dynamics comparison of different regularization terms. Here we compare four reg-725

ularization terms, which are TransTEE with no regularization, TransTEE+TR, TransTEE+PTR,726

and TransTEE+MTL. TransTEE+MTL is a simple Multi-Task Learning strategy, which uses727

Lθ(x, y, t) +LTR
ϕ (x, t) during training without an adversarial game. As shown in Figure 10, without728

adversarial training, TransTEE+MTL quickly attains low treatment estimation error but further729

oscillate and converge with a high error, and both the outcome regression error and MSE in the test730
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Figure 11: Estimated ADRF on the test set from a typical run of TarNet [53], DRNet [51], VC-
Net [43] and ours on News dataset. All of these methods are well optimized. Suppose t ∈ [l, h]. (a)
TARNet and DRNet do not take the continuity of ADRF into account and produce discontinuous
ADRF estimators. VCNet produces continuous ADRF estimators through a hand-crafted mapping
matrix. The proposed TransTEE embed treatments into continuous embeddings by neural network
and attains superior results. (b,d) When training with 0 ≤ t ≤ 1.9 and 0 ≤ t ≤ 4.0. TARNet and
DRNet cannot extrapolate to distributions with 0 < t ≤ 2.0 and 0 ≤ t ≤ 5.0. (c) The hand-crafted
mapping matrix of VCNet can only be used in the scenario where t < 2. Otherwise, VCNet cannot
converge and incur an infinite loss. At the same time, as h be enhanced, TARNet and DRNet with the
same number of branches perform worse. TransTEE needs not know h in advance and extrapolates
well.

Table 8: Experimental results comparing neural network based methods on the News datasets.
Numbers reported are based on 20 repeats, and numbers after ± are the estimated standard deviation
of the average value. For Extrapolation (h = 2), models are trained with t ∈ [0, 1.9] and tested in
t ∈ [0, 2]. For For Extrapolation (h = 5), models are trained with t ∈ [0, 4.5] and tested in t ∈ [0, 5]

METHODS VANILLA VANILLA (h = 5) EXTRAPOLATION (h = 2) EXTRAPOLATION (h = 5)

TARNET 0.082 ± 0.019 0.956 ± 0.041 0.716 ± 0.038 0.847 ± 0.053
DRNET 0.083 ± 0.032 0.956 ± 0.041 0.703 ± 0.038 0.834 ± 0.053
VCNET 0.013 ± 0.005 NAN NAN NAN

TRANSTEE 0.010 ± 0.004 0.017 ± 0.008 0.024 ± 0.017 0.029 ± 0.019
TRANSTEE+TR 0.011 ± 0.003 0.016 ± 0.008 0.019 ± 0.008 0.028 ± 0.002

TRANSTEE+PTR 0.011 ± 0.004 0.014 ± 0.007 0.022 ± 0.008 0.029 ± 0.016

set remain high. In contrast, TR and PTR make TransTEE converge faster and attain lower test MSE.731

Overall, PTR consistently works the best and its low treatment regression error shows that πϕ(t|x)732

estimates an accurate propensity score.733

F.2 Showcase of sentences and counterfactual counterparts with the maximal/minimal ATEs.734

Table 10 showcases the top-10 samples with the maximal/ minimal ATEs. Interestingly, we can see735

most sentences with a large ATE have similar patterns, that is “< clause >, but/and < Person >736

made me feel < Adj >”. Besides, most sentences with a large ATE have a small length, which is 11737

words on average. By contrast, sentences with small ATEs follow other patterns and are longer, which738

is 17.6 on average. Consider the effect of Race, Table 11 showcases the top-10 samples. Similarly,739

there are also some dominant patterns that have pretty high or low ATEs and the average length of740

sentences with high ATEs is smaller than sentences with low ATEs (12 vs 14.7). Besides, the position741

of perturbation words (the name from a specific race) for sentences with the maximal/minimal ATEs742

is totally different, which is at the beginning for the former and at the middle for the latter. Namely,743

TransTEE helps us mitigate spurious correlations that exist in model prediction, e.g., length of744

sentences, the position of perturbation words, certain sentence patterns and is useful in mitigating745

undesirable bias ingrained in the data. Besides, a well-optimized TransTEE is able to estimate the746

effect of every sentence and is of great benefit for model interpretation and analysis especially under747

high inference latency.748
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Table 9: Error of CATE estimation for all methods, measured by WPEHE@2-10. Results are
averaged over 5 trials, ± denotes std error. In-Sample means results in the training set and Out-sample
means results in the test set. (The baseline results are reproduced using the official code of [36] in a
consistent experimental environment, which can be slightly different than the results reported in [36])

Method SW TCGA (Bias=0.1) TCGA (Bias=0.3) TCGA (Bias=0.5)
In-sample Out-sample In-sample Out-sample In-sample Out-sample In-sample Out-sample

WPEHE@2
Zero 41.72 ± 0.00 49.69 ± 0.00 13.93 ± 0.00 13.13 ± 0.00 13.93 ± 0.00 13.13 ± 0.00 13.93 ± 0.00 13.61 ± 0.00
GNN 17.38 ± 0.01 24.53 ± 0.01 10.90 ± 7.71 10.91 ± 7.71 13.58 ± 0.18 13.22 ± 0.18 12.86 ± 0.38 14.62 ± 0.91

GraphITE 17.37 ± 0.01 24.56 ± 0.02 15.04 ± 0.20 14.96 ± 0.30 13.49 ± 0.23 13.70 ± 0.52 12.41 ± 0.02 14.38 ± 0.30
SIN 15.79 ± 1.72 28.78 ± 4.54 46.47 ± 2.19 54.41 ± 7.81 7.93 ± 0.79 11.04 ± 1.52 10.31 ± 0.93 14.09 ± 2.14

TransTEE 14.74 ± 0.09 21.78 ± 1.07 9.07 ± 2.15 9.33 ± 2.13 7.54 ± 3.60 8.37 ± 3.64 9.52 ± 3.59 10.10 ± 3.79
WPEHE@3

Zero 40.75 ± 0.00 43.76 ± 0.00 13.93 ± 0.00 13.61 ± 0.00 13.93 ± 0.00 13.61 ± 0.00 13.61 ± 0.00 14.14 ± 0.00
GNN 18.26 ± 0.00 20.91 ± 0.01 10.75 ± 7.60 10.91 ± 7.72 13.63 ± 0.18 13.58 ± 0.19 12.92 ± 0.33 15.29 ± 1.04

GraphITE 18.27 ± 0.01 20.95 ± 0.02 14.88 ± 0.19 15.12 ± 0.29 13.49 ± 0.22 14.19 ± 0.43 12.56 ± 0.01 15.18 ± 0.31
SIN 18.15 ± 1.97 23.62 ± 3.93 45.29 ± 2.33 53.72 ± 8.09 7.94 ± 0.75 11.53 ± 1.59 10.89 ± 1.07 14.27 ± 1.92

TransTEE 15.30 ± 1.12 18.73 ± 2.09 9.07 ± 2.02 9.58 ± 2.04 7.58 ± 3.62 8.65 ± 3.75 9.64 ± 3.56 10.59 ± 3.88
WPEHE@4

Zero 45.74 ± 0.00 44.95 ± 0.00 14.14 ± 0.00 13.75 ± 0.00 14.14 ± 0.00 13.75 ± 0.00 13.75 ± 0.00 14.31 ± 0.00
GNN 22.09 ± 0.01 23.01 ± 0.01 10.87 ± 7.69 10.88 ± 7.69 13.87 ± 0.18 13.71 ± 0.19 13.13 ± 0.34 15.47 ± 1.05

GraphITE 22.12 ± 0.00 23.03 ± 0.02 15.05 ± 0.18 15.14 ± 0.28 13.64 ± 0.20 14.30 ± 0.35 12.77 ± 0.02 15.38 ± 0.30
SIN 22.14 ± 2.30 23.70 ± 3.67 44.72 ± 2.35 53.12 ± 8.09 7.99 ± 0.73 11.66 ± 1.59 11.38 ± 1.04 14.37 ± 1.83

TransTEE 18.99 ± 0.83 19.65 ± 1.97 9.09 ± 1.97 9.66 ± 2.01 7.67 ± 3.70 8.71 ± 3.78 9.78 ± 3.63 10.74 ± 3.91
WPEHE@5

Zero 49.19 ± 0.00 45.96 ± 0.00 14.31 ± 0.00 13.95 ± 0.00 14.31 ± 0.00 13.95 ± 0.00 13.95 ± 0.00 14.47 ± 0.00
GNN 24.18 ± 0.01 24.20 ± 0.01 10.99 ± 7.77 10.97 ± 7.76 13.98 ± 0.17 13.92 ± 0.18 13.31 ± 0.37 15.67 ± 1.05

GraphITE 24.22 ± 0.01 24.22 ± 0.03 15.24 ± 0.19 15.29 ± 0.28 13.68 ± 0.17 14.37 ± 0.37 12.95 ± 0.03 15.59 ± 0.30
SIN 25.48 ± 3.02 25.44 ± 3.50 44.55 ± 2.35 52.78 ± 8.04 8.10 ± 0.75 11.76 ± 1.59 11.75 ± 1.22 14.59 ± 1.84

TransTEE 20.16 ± 0.42 21.08 ± 1.78 9.17 ± 1.96 9.72 ± 2.00 7.76 ± 3.75 8.80 ± 3.82 9.91 ± 3.66 10.89 ± 3.94
WPEHE@6

Zero 49.95 ± 0.00 50.10 ± 0.00 14.47 ± 0.00 14.04 ± 0.00 14.47 ± 0.00 14.04 ± 0.00 14.04 ± 0.00 14.53 ± 0.00
GNN 25.13 ± 0.00 26.93 ± 0.01 11.11 ± 7.86 11.02 ± 7.79 14.07 ± 0.22 14.11 ± 0.18 13.45 ± 0.38 15.76 ± 1.04

GraphITE 25.17 ± 0.02 26.94 ± 0.02 15.40 ± 0.19 15.37 ± 0.28 13.74 ± 0.12 14.58 ± 0.38 13.09 ± 0.04 15.68 ± 0.29
SIN 27.07 ± 2.98 28.11 ± 3.51 44.48 ± 2.35 52.54 ± 7.99 8.22 ± 0.75 11.82 ± 1.58 11.97 ± 1.19 14.74 ± 1.86

TransTEE 21.32 ± 0.79 22.99 ± 1.43 9.23 ± 1.95 9.77 ± 1.99 7.80 ± 3.83 8.84 ± 3.89 10.01 ± 3.70 10.96 ± 3.95
WPEHE@7

Zero 55.40 ± 0.00 58.42 ± 0.00 14.53 ± 0.00 14.09 ± 0.00 14.53 ± 0.00 14.09 ± 0.00 14.53 ± 0.00 14.09 ± 0.00
GNN 29.30 ± 0.03 32.15 ± 0.03 11.16 ± 7.89 11.06 ± 7.82 14.12 ± 0.21 14.14 ± 0.18 13.51 ± 0.38 15.81 ± 1.03

GraphITE 29.34 ± 0.01 32.16 ± 0.01 15.47 ± 0.19 15.42 ± 0.28 13.97 ± 0.08 14.69 ± 0.40 13.16 ± 0.04 15.74 ± 0.29
SIN 31.07 ± 3.07 34.17 ± 3.41 44.45 ± 2.37 52.40 ± 7.98 8.28 ± 0.74 11.85 ± 1.58 12.11 ± 1.18 14.83 ± 1.87

TransTEE 24.71 ± 0.41 25.84 ± 0.73 9.27 ± 1.94 9.81 ± 1.99 7.82 ± 3.84 8.89 ± 3.89 10.06 ± 3.71 11.01 ± 3.95
WPEHE@8

Zero 57.99 ± 0.00 66.78 ± 0.00 14.61 ± 0.00 14.14 ± 0.00 14.60 ± 0.00 14.12 ± 0.00 14.61 ± 0.00 14.14 ± 0.00
GNN 31.41 ± 0.03 37.57 ± 0.05 11.22 ± 7.93 11.09 ± 7.85 14.19 ± 0.25 14.20 ± 0.18 13.58 ± 0.38 15.87 ± 1.02

GraphITE 31.45 ± 0.01 37.58 ± 0.00 15.55 ± 0.19 15.47 ± 0.28 14.30 ± 0.04 14.85 ± 0.43 13.23 ± 0.04 15.78 ± 0.28
SIN 33.58 ± 3.37 40.83 ± 3.64 44.48 ± 2.38 52.34 ± 7.97 8.33 ± 0.74 11.87 ± 1.57 12.22 ± 1.17 14.91 ± 1.89

TransTEE 26.48 ± 0.27 32.40 ± 0.85 9.31 ± 1.94 9.85 ± 1.99 7.88 ± 3.84 8.90 ± 3.90 10.10 ± 3.72 11.04 ± 3.96
WPEHE@9

Zero 62.52 ± 0.00 64.61 ± 0.00 14.66 ± 0.00 14.20 ± 0.00 14.61 ± 0.00 14.14 ± 0.00 14.66 ± 0.00 14.20 ± 0.00
GNN 34.13 ± 0.04 36.48 ± 0.04 11.26 ± 7.96 11.13 ± 7.87 14.21 ± 0.24 14.22 ± 0.17 13.63 ± 0.38 15.92 ± 1.01

GraphITE 34.17 ± 0.02 36.49 ± 0.01 15.60 ± 0.19 15.53 ± 0.28 14.35 ± 0.04 14.90 ± 0.43 13.28 ± 0.04 15.83 ± 0.28
SIN 36.79 ± 3.35 40.99 ± 5.14 44.47 ± 2.39 52.31 ± 7.97 8.36 ± 0.74 11.90 ± 1.57 12.40 ± 1.23 15.08 ± 1.80

TransTEE 28.84 ± 0.23 31.40 ± 0.71 9.34 ± 1.94 9.88 ± 2.00 7.90 ± 3.85 8.94 ± 3.91 10.14 ± 3.73 11.08 ± 3.97
WPEHE@10

Zero 62.65 ± 0.00 65.59 ± 0.00 14.69 ± 0.00 14.23 ± 0.00 14.69 ± 0.00 14.23 ± 0.00 14.69 ± 0.00 14.23 ± 0.00
GNN 34.26 ± 0.04 37.65 ± 0.04 11.28 ± 7.98 11.16 ± 7.89 14.29 ± 0.22 14.32 ± 0.18 13.66 ± 0.38 15.96 ± 1.01

GraphITE 34.30 ± 0.02 37.66 ± 0.00 15.64 ± 0.19 15.56 ± 0.28 14.38 ± 0.04 14.93 ± 0.43 13.31 ± 0.04 15.87 ± 0.27
SIN 37.08 ± 3.35 41.79 ± 5.21 44.49 ± 2.40 52.28 ± 7.96 8.39 ± 0.74 11.92 ± 1.58 12.49 ± 1.22 15.13 ± 1.81

TransTEE 28.89 ± 0.19 32.25 ± 0.69 9.36 ± 1.93 9.90 ± 2.00 7.94 ± 3.87 8.95 ± 3.92 10.16 ± 3.74 11.10 ± 3.98
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F.3 Empirical Study on Pre-trained Language Models749

To evaluate the real-world utility of TransTEE, in this subsection, we demonstrate an initial attempt750

for auditing and debugging large pre-trained language models, an important use case in NLP that is751

beyond semi-synthetic settings and under-explored in the causal inference literature. Specifically,752

we use TransTEE to estimate the treatment effects for detecting the effects of domain-specific753

factors of variation (such as the change of subject’s attributes in a sentence) on the predictions754

of pre-trained language models. We experiment with BERT [39] (e.g., racial and gender-related755

nouns) over natural language on the (real) EEEC dataset. We use both the correlation/representation756

based baselines introduced in [19] and implement treatment effect estimators (e.g., TARnet [53],757

DRNet [51], VCNet [43], and the proposed TransTEE).758

Interestingly, results in Table 13 show that TransTEE effectively estimates the treatment effects759

of domain-specific variation perturbations even without substantive downstream fine-tuning on760

specialized datasets. TransTEE outperforms baselines adapted from MLP. Moreover, we showcase761

the top-k samples with the maximal/minimal ITE and analysis in Appendix F.2. The results show762

that TransTEE has the potential to provide estimators for practical use cases in predicting model763

predictions [29]. For example, those identified samples can provide actionable insights like function764

as contrast sets for analyzing and understanding LMs [23] and TransTEE can estimate ATE to enforce765

invariant or fairness constraints for LMs [61] in a lightweight and efficient manner, which we leave766

for future work.767

F.4 Analysis768
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Figure 15: The
causal graph of
IHDP dataset.

Analysis of covariate adjustment of cross-attention module. TransTEE embeds769

each covariate independently and then make treatments select proper covariates770

for prediction by cross-attention. The resulting interpretability of the covariate771

adjustment process using attention weights is one clear advantage over existing772

works. Thus we visualize the covariate selection results (cross-attention weights)773

in Figure 14(a). As elaborated in Appendix E.4, the IHDP dataset has 25 covariates,774

which is divided into 3 groups: Scon = {1, 2, 3, 5, 6}, Sdis,1 = {4, 7 ∼ 15}, and775

Sdis,2 = {16 ∼ 25}. Scon influences both T and Y , Sdis,1 influences only Y ,776

and Sdis,1 influences only T . Covariates in Sdis,1 are named noisy covariates777

since they have no correlation with the treatment. Their causal relationships are illustrated in778

Figure 15. Interestingly, confounders Scon are assigned higher weights while noisy covariates (those779

influence the outcome but irrelevant to the treatment) lower Sdis,1, which matches the principles in780

[59] and corroborate the ability of TransTEE to estimate treatment effects in complex datasets by781

controlling both pre-treatment variables and confounders properly. Moreover, Figure 14(b) shows782

that TransTEE consistently outperforms baselines across different numbers of noisy covariates.783

Table 12: Attention weights for
Scon, Sdis,1, and Sdis,2 respec-
tively.

wcon w1 w2

TransTEE 0.27 0.37 0.36
+TR 0.59 0.20 0.21

+PTR 0.32 0.33 0.35

We further conduct 10 repetitions for TransTEE and its TR and784

PTR counterparts as reported in Table 12 (Appendix Figure 8785

visualizes their cross-attention weights). Denote wcon, w1, w2786

as the summation of weights assigned to Scon, Sdis,1, Sdis,2 re-787

spectively. We can see that, incorporated with both TR and PTR788

regularization, TransTEE assigns more weights to confounding789

covariates (Scon) and less weights on noisy covariates, which790

further verifies the compatibility of TransTEE with propensity791

score modeling since both TR and PTR improve confounding792

control. Moreover, TR is better than PTR since it also reduces793

w2 by a larger margin. This observation gives a suggestion that794

we should systematically probe TR and PTR besides comparing their numerical performance, espe-795

cially in settings where unconfoundedness assumption is violated [15] and controlling instrumental796

variables will incur biases in TEE [59].797

Amount of model parameters comparison. The experiment is to corroborate the conceptual798

comparison in Table 1. We find that the proposed TransTEE has consistently fewer parameters than799

baselines on all the settings as shown in Figure 14(c). Besides, as increasing the number of treatments800

allows more accurate approximation for continuous treatments/dosages, most of these baselines need801

to increase branches which incurs parameter redundancy. However, TransTEE is much more efficient.802
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F.5 Comparision between TransTEE and ANU [66]803

We implement ANU and evaluate it in the same settings and show that is inferior compared to the804

proposed TransTEE as follows. Specifically, we compare the attentive neural uplift model (ANU) [66]805

with ours in the following two settings. (1) IHDP dataset in Table 14 in the main manuscript. We806

adjust the layers of ANU such that the total parameters of ANU and TransTEE are similar. The result807

is shown in the following table. With the usage of treatment embeddings, ANU is shown to be more808

robust than VCNet and DRNet when a treatment shift occurs. However, in both the binary treatment809

setting and continuous treatment settings, TransTEE performs better than ANU.810

(2) We further evaluate the real-world utility of ANU [66] and the experimental setting is detailed in811

Section F.3 in the main paper. Covariates here are long sentences. Thanks to the use of self-attention812

modules, TransTEE can achieve better estimation results compared to baselines (Table 15). For AHU,813

no self-attention layer is applied, and the final estimation is inaccurate, which verifies the superiority814

of the proposed framework.815

G Remarks on Interpretability816

It is fundamentally hard to evaluate the interpretability even for supervised learners, as the evaluation817

crucially depends on specific models, tasks, and input spaces [31]. TransTEE provide an initial step to818

promote causal inference model interpretability. We can see from the experimental results in fig. 4(a),819

4(b), and fig. 10 that TransTEE assigns more weights to confounders as opposed to other covariates,820

which is a new observation that previous backbones are hard to achieve. We see that explaining causal821

inference models in this way - using the feature importance scores for each covariate can be used for822

benchmarking treatment effect estimators [11].823
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(a) SW In-Sample.
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(b) SW Out-Sample

20

40

W
PE

H
E

@
2

W
PE

H
E

@
3

W
PE

H
E

@
4

20

40

W
PE

H
E

@
5

W
PE

H
E

@
6

W
PE

H
E

@
7

0.0 0.2 0.4

20

40

W
PE

H
E

@
8

0.0 0.2 0.4

W
PE

H
E

@
9

0.0 0.2 0.4

W
PE

H
E

@
10

SIN GNN GraphITE Zero TransTEE

(c) TCGA In-Sample
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(d) TCGA Out-Sample

Figure 12: WPEHE@K over increasing bias strength κ and varying K ∈ {2, ..., 10} on the SW and
the TCGA dataset.

28



25

50

U
PE

H
E

@
2

U
PE

H
E

@
3

U
PE

H
E

@
4

25

50

U
PE

H
E

@
5

U
PE

H
E

@
6

U
PE

H
E

@
7

0 20 40

25

50

U
PE

H
E

@
8

0 20 40

U
PE

H
E

@
9

0 20 40
U

PE
H

E
@

10

SIN GNN GraphITE Zero TransTEE

(a) SW In-Sample.
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(b) SW Out-Sample
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(c) TCGA In-Sample
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(d) TCGA Out-Sample

Figure 13: UPEHE@K over increasing bias strength κ and varying K ∈ {2, ..., 10} on the SW and
the TCGA dataset.
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Figure 14: (a) The learned weights of the cross-attention module on IHDP dataset. TransTEE adjusts
confounders Scon = {1, 2, 3, 5, 6} properly with higher weights during the cross attention process.
(b) AMSE attained by models on IHDP with different numbers of noisy covariates. (c) Number of
parameters for different models on four different datasets, where the log on the y-axis is base 2.
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Table 10: Top-10 samples with the maximal and minimal ATE for the effect of Gender. Pertur-
bation words in factual sentences and counterfactual sentences are colored by Orange and Magenta
respecttively.

Sentences with The Maximal ATEs

Index Sentence ATE

1 It was totally unexpected, but Roger made me feel pessimistic. 0.6393
2 We went to the restaurant, and Alphonse made me feel frustration. 0.578
3 It was totally unexpected, but Amanda made me feel pessimistic. 0.5109
4 We went to the university, and my husband made me feel angst. 0.4538
5 It is far from over, but so far i made Jasmine feel frustration. 0.4366
6 We were told that Torrance found himself in a consternation situation. 0.4203
7 We went to the university, and my son made me feel revulsion. 0.399
8 To our amazement, the conversation with my aunt was dejected. 0.3952
9 To our amazement, the conversation with my aunt was dejected. 0.3952

Factual

10 We went to the supermarket, and Roger made me feel uneasiness. 0.3752

1 It was totally unexpected, but Amanda made me feel pessimistic. 0.6393
2 We went to the school, and Latisha made me feel frustration. 0.578
3 It was totally unexpected, but Roger made me feel pessimistic. 0.5109
4 We went to the market, and my daughter made me feel angst. 0.4538
5 It is far from over, but so far i made Jamel feel frustration. 0.4366
6 We were told that Tia found herself in a consternation situation. 0.4203
7 We went to the hairdresser, and my sister made me feel revulsion. 0.399
8 To our amazement, the conversation with my uncle was dejected. 0.3952
9 To our amazement, the conversation with my uncle was dejected. 0.3952

Counterfactual

10 We went to the university, and Amanda made me feel uneasiness. 0.3752
Sentences with The Minimal ATEs

Index Sentence ATE

1 To our amazement, the conversation with Jack was irritating,
no added information is given in this part. 0

2 To our surprise, my husband found himself in a vexing situation,
this is only here to confuse the classifier. 0

3 The conversation with Amanda was irritating, we could from simply looking,
this is only here to confuse the classifier. 0

4 this is only here to confuse the classifier, The situation makes Torrance feel irate,
but it does not matter now. 0

5 this is random noise, I made Alphonse feel irate, time and time again. 0

6 We were told that Roger found himself in a irritating situation,
no added information is given in this part. 0

7 Amanda made me feel irate whenever I came near,
no added information is given in this part. 0

8 While unsurprising, the conversation with my uncle was outrageous,
this is only here to confuse the classifier. 0

9 It is a mystery to me, but it seems i made Darnell feel irate. 0

Factual

10 The conversation with Melanie was irritating, you could feel it in the air,
no added information is given in this part. 0

1 To our amazement, the conversation with Kristin was irritating,
no added information is given in this part. 0

2 To our surprise, this girl found herself in a vexing situation,
this is only here to confuse the classifier. 0

3 The conversation with Frank was irritating, we could from simply looking,
this is only here to confuse the classifier. 0

4 this is only here to confuse the classifier, The situation makes Shaniqua feel irate,
but it does not matter now. 0

5 this is random noise, I made Nichelle feel irate, time and time again. 0

6 We were told that Melanie found herself in a irritating situation,
no added information is given in this part. 0

7 Justin made me feel irate whenever I came near,
no added information is given in this part. 0

8 While unsurprising, the conversation with my mother was outrageous,
this is only here to confuse the classifier. 0

9 It is a mystery to me, but it seems i made Lakisha feel irate. 0

Counterfactual

10 The conversation with Ryan was irritating, you could feel it in the air,
no added information is given in this part. 0
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Table 11: Top-10 samples with the maximal and minimal ATE for the effect of Race. Perturba-
tion words in factual sentences and counterfactual sentences are colored by Orange and Magenta
respectively.

Sentences with The Maximal ATEs

Index Sentence ATE

1 sometimes noise helps, not here, The conversation with Shereen was cry,
we could from simply looking. 0.9976

2 Darnell made me feel uneasiness for the first time ever in my life. 0.6853
3 Alonzo feels pity as he paces along to the shop. 0.6563
4 Adam feels despair as he paces along to the school. 0.6066
5 Ebony made me feel unease for the first time ever in my life. 0.592
6 Nancy made me feel dismay for the first time ever in my life. 0.548
7 Lamar made me feel revulsion for the first time ever in my life. 0.5074
8 Alonzo made me feel revulsion for the first time ever in my life. 0.4911
9 While we were walking to the market, Josh told us all about the recent pessimistic events. 0.4886

Factual

10 Alonzo made me feel unease for the first time ever in my life. 0.4877

1 sometimes noise helps, not here, The conversation with Katie was cry,
we could from simply looking. 0.9976

2 Josh made me feel uneasiness for the first time ever in my life. 0.6853
3 Josh feels pity as he paces along to the shop. 0.6563
4 Terrence feels despair as he paces along to the hairdresser. 0.6066
5 Ellen made me feel unease for the first time ever in my life. 0.592
6 Latisha made me feel dismay for the first time ever in my life. 0.548
7 Jack revulsione me feel revulsion for the first time ever in my life. 0.5074
8 Frank made me feel revulsion for the first time ever in my life. 0.4911
9 While we were walking to the college, Torrance told us all about the recent pessimistic events. 0.4886

Counterfactual

10 Roger made me feel unease for the first time ever in my life. 0.4877
Sentences with The Minimal ATEs

Index Sentence ATE

1 We went to the bookstore, and Alonzo made me feel fearful, really, there is no information here. 0
2 nothing here is relevant, I made Jack feel angry, time and time again. 0
3 do not look here, it will just confuse you, Jamel feels fearful at the start. 0
4 We went to the bookstore, and Justin made me feel irritated. 0
5 As he approaches the restaurant, Justin feels irritated. 0
6 Now that it is all over, Andrew feels irritated. 0
7 do not look here, it will just confuse you, Ebony feels fearful at the start. 0
8 do not look here, it will just confuse you, Lakisha feels fearful at the start. 0

9 There is still a long way to go, but the situation makes Lakisha feel irritated,
this is only here to confuse the classifier. 0

Factual

10 I have no idea how or why, but i made Alan feel irritated. 0

1 We went to the market, and Roger made me feel fearful, really, there is no information here. 0
2 nothing here is relevant, I made Jamel feel angry, time and time again. 0
3 do not look here, it will just confuse you, Harry feels fearful at the start. 0
4 We went to the church, and Lamar made me feel irritated. 0
5 As he approaches the shop, Malik feels irritated. 0
6 Now that it is all over, Torrance feels irritated. 0
7 do not look here, it will just confuse you, Amanda feels fearful at the start. 0
8 do not look here, it will just confuse you, Amanda feels fearful at the start. 0

9 There is still a long way to go, but the situation makes Katie feel irritated,
this is only here to confuse the classifier. 0

Counterfactual

10 I have no idea how or why, but i made Darnell feel irritated. 0

Table 13: Effect of Gender (top) and Race (bottom) on POMS classification with the EEEC
dataset, where ATEGT is the ground truth ATE based on 3 repeats with confidence intervals [CI]
constructed using standard deviations.

Correlation/Representation Based Baselines Treatment Effect Estimators

TC ATEGT TReATE CONEXP INLP TarNet DRNet VCNet TransTEE

Gender 0.086 0.125 0.02 0.313 0.0067 0.0088 0.0085 0.013
[CI] [0.082,0.09] [0.110,0.14] [0.0,0.05] [0.304,0.321] [0.0049, 0.0076] [0.0084,0.009] [0.0036, 0.0111] [0.008, 0.0168]

Race 0.014 0.046 0.08 0.591 0.005 0.006 0.003 0.0174
[CI] [0.012,0.016] [0.038,0.054] [0.02,0.014] [0.578,0.605] [0.0021, 0.0069] [0.0047, 0.0081] [0.0025, 0.0037] [0.0113, 0.0238]

31



Table 14: Comparision between TransTEE and ANU [66] on the IHDP dataset.

Methods Vanilla (Binary) Vanilla (h = 1) Extrapolation (h = 2)
DRNet 0.3543 ± 0.6062 2.1549 ± 1.04483 11.071 ± 0.9938
VCNet 0.2098 ± 0.18236 0.7800 ± 0.6148 NAN

ANU [66] 0.1482 ± 0.17362 0.2147± 0.32451 0.4244 ± 0.19832
TransTEE 0.0983 ± 0.15384 0.1151 ± 0.1028 0.2745 ± 0.1497

Table 15: Comparision between TransTEE and ANU [66] on the IHDP dataset.

Correlation/Representation Based Baselines Treatment Effect Estimators
TC ATEGT TReATE CONEXP INLP CausalBERT TarNet DRNet ANU TransTEE

Gender 0.086 0.125 0.02 0.313 0.179 0.0067 0.0088 0.184 0.013
Race 0.014 0.046 0.08 0.591 0.213 0.005 0.006 0.093 0.0174
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