
Unsupervised Event Outlier Detection in Continuous
Time

Somjit Nath
McGill University, Mila
somjitnath@gmail.com

Yik Chau Lui
Borealis AI

yikchau.y.lui@borealisai.com

Siqi Liu
Borealis AI

siqi.x.liu@borealisai.com

Abstract

Event sequence data record the occurrences of events in continuous time. Event
sequence forecasting based on temporal point processes (TPPs) has been exten-
sively studied, but outlier or anomaly detection, especially without any supervision
from humans, is still underexplored. In this work, we develop, to the best our
knowledge, the first unsupervised outlier detection approach to detecting abnormal
events. Our novel unsupervised outlier detection framework is based on ideas from
generative adversarial networks (GANs) and reinforcement learning (RL). We train
a “generator” that corrects outliers in the data with a “discriminator” that learns
to discriminate the corrected data from the real data, which may contain outliers.
A key insight is that if the generator made a mistake in the correction, it would
generate anomalies that are different from the anomalies in the real data, so it
serves as data augmentation for the discriminator learning. Different from typical
GAN-based outlier detection approaches, our method employs the generator to
detect outliers in an online manner. The experimental results show that our method
can detect event outliers more accurately than the state-of-the-art approaches.

1 Introduction

Event sequence data are records of the occurrences of different events in continuous time, e.g., natural
disasters in a country, or user actions when using an app. They can be represented as individual
points on a timeline, with the location of the points indicating the time of the event occurrences. For
event sequence data, forecasting and latent structure inference have been the focuses of most previous
research. Methods based on Gaussian processes (e.g., [25, 16, 17, 5, 14]), Hawkes processes (e.g.,
[39, 11, 34, 29, 9]), and more recently deep neural networks (e.g., [6, 19, 33, 24, 38, 41, 35]), have
been widely proposed and evaluated.

In contrast to forecasting, sometimes the event occurrences themselves can be unexpected, i.e. outliers.
Liu & Hauskrecht [15] proposed a semi-supervised method, assuming access to clean data to train a
model, to detect these outliers. Although their assumption is common in the literature, unsupervised
methods without this assumption would have more practical value, since it is usually hard to get clean
data without checking and preprocessing.

Inspired by Generative Adversarial Networks (GANs) [7], we propose to solve this problem by
modelling a “generator” that tries to find and remove outliers and a “discriminator” that tries to
distinguish the “corrected” data from the real data that can be either normal or abnormal. The key
insight is that a generator can either correctly remove the outliers in the real data or incorrectly remove
real points in the data. If the former is the case, it will be very difficult for the discriminator to separate
the “corrected” data from the normal samples in the real data, which, by definition, constitute the
majority of the data. Meanwhile, if the latter is the case, it will be relatively easy for the discriminator
to separate. This intrinsic contrast between these two cases will be the source of feedback for both the
generators and the discriminators to learn. Once learned, the “generators” can be used in an online

NeurIPS 2024 Workshop: Self-Supervised Learning - Theory and Practice



manner to detect outliers in unseen event sequences. The discriminator can be trained by standard
stochastic gradient descent algorithms. However, gradient descent-based optimization cannot be used
for the generator because our case is non-differentiable. There are various ways for handling the
non-differentiability, such as Gumbel-softmax [8], cooperative learning [18, 10] and policy gradient
methods [31, 23, 27]. We chose the latter approach in this paper, due to its flexibility.

2 Unsupervised Event Outlier Detection

Sequence with Outliers

Dataset

Outlier Detection

Input Sequence Generated Sequence

E
nc

od
er

Encoder Outputs

R
L 

A
ge

nt

A
ct

io
ns [0,0,1,0,0,0]

0=No action
1=Remove

Real Sequence

Generated Sequence

D
is

cr
im

in
at

or

0=Generated

1=Real

Discriminator

Clean Sequence

Figure 1: GAN + RL framework for unsupervised event outlier detection in continuous time.

2.1 Problem Formulation

An event sequence is defined as S = {tn : tn ∈ T }Nn=1 where tn is the time of the occurrence of
event n, N is the total number of events, and T denotes the entire time domain. We assume access to
a dataset D = {Si}Ii=1, consisting of I event sequences, where some sequences might be corrupted
in the form of the addition of abnormal points. Given an event point at tn in an event sequence S, the
goal is to identify whether the event is an outlier or not, so the output would be a label, yn ∈ {0, 1},
assigned to each event point.

In order to detect outliers in an unsupervised and online manner, we develop GAN-based approaches
to train outlier detectors without any supervision. More specifically, we model a generator that
produces “corrected" sequences given input sequences from the potentially corrupted data and a
discriminator that distinguishes between the “real” and “corrected” sequences.

We sample sequences from the potentially corrupted data as “real” sequences. Since by definition,
outliers are supposed to be relatively rare compared to normal data, we can reasonably assume
that the majority of the sampled sequences are normal, and if the generator performed an incorrect
“correction” on the data, e.g., removing a normal point instead of an outlier point from the sequence,
then it would be possible for the discriminator to distinguish it from the sampled sequences. In the
following sections, we describe our framework in detail. The final algorithm is in Appendix B.

2.2 Encoder

We use an encoder to summarize the information in the past for each sequence, as the occurrence
of a new event can be influenced by the events that occurred before it. Since the event times are
continuous and irregular, we use an architecture, the continuous-time LSTMs (cLSTM) [19],
designed especially for continuous-time event sequences. We can directly use the cLSTM outputs as
inputs to the generator. Still, since we wish to detect and remove outliers, information about every
point in the past can be crucial for determining the action, so we apply the attention mechanism [4]
followed by layer normalization [2] to the latent outputs from the cLSTM with a causal mask to
ensure that there is no information leak from the future. Therefore the learned outlier detector can
be applied online. This entire architecture, consisting of the cLSTM and attention layer, forms the
encoder as shown in Figure 1.

2



2.3 Generator

For our problem, each generator is modelled as a Reinforcement Learning (RL) agent that tries to
identify and remove outliers in continuous-time event sequences. Each sequence Si, before being fed
into the RL agent, is first passed through an encoder as we described in the previous section. The
final encodings are treated by the RL agent as sequential states of the environment, whose goal is to
identify and remove outlier points from the input sequence. Each sequence is treated as an episode,
in which the agent makes decisions about making changes to the sequence. To achieve this, we use
policy gradient methods, which are effective for parameterizing the optimal policy and exhibit good
performance in these types of tasks [36]. For our paper, we use the clip version of Proximal Policy
Optimization (PPO) algorithm [27].

The RL agent tries to identify and remove outlier points in the sequence. For each point tn in the
sequence, the RL agent takes an action (an ∈ {0, 1}): either to keep tn (an = 0) or to remove it
(an = 1). The RL agent thus learns a policy π that defines the probability of a point being an
outlier, and if the action sampled from the policy is 1, the point is removed from the sequence. The
generated sequence consists of all the points untouched by the RL agent. In this way, by hopefully
keeping only the normal points, it generates a new sequence, which is fed into a discriminator to
evaluate how “real” it is. The discriminator outputs a reward after the sequence is completed.

2.4 Discriminator

The goal of the discriminator is to distinguish between the generated sequences, Sg
j , obtained from

the RL agent, and the real sequences, Si, sampled from the dataset D. As mentioned earlier, since the
proportion of corrupted sequences in the dataset should be low, the majority of the samples are clean
sequences. The discriminator tries to determine whether a given sequence is “real” or “generated”
using a non-linear classifier. To prevent the discriminator from dominating over the RL agent, we also
add spectral normalization [22] to each layer of the classifier model. The discriminator has the exact
same architecture as the generator except without self-attention and layer normalization. However,
no weights are shared between them.

3 Experiments

In the experiments, we study, despite only having access to unlabeled and potentially corrupted data,
whether GAN-RL can still learn outlier detectors without supervision and beat the state-of-the-art
approach originally designed for semi-supervised settings (Section 3.1). We also add interesting
ablation studies and provide explanation of our model and algorithm choices in Appendix E.

Datasets To assess the performance, we use four datasets: two synthetic datasets and two real-world
datasets. The synthetic datasets were generated by defining intensity functions for clean data. These
intensity functions correspond to either an inhomogeneous Poisson process or a Hawkes process.
For real-world datasets, we include the followings: MIMIC, used in prior work in event sequence
modelling [6, 19], records the admission times of patients in an Intensive Care Unit over a period of 7
years. Taxi [30], used in [35], tracks taxi pick-up and drop-off events in the New York City.

For all the datasets, we also define a parameter β, controlling the percentage of clean sequences in the
dataset. If β is 0.7, it means that 70% of the sequences are clean. For all our experiments, we use a β
of 0.8 unless otherwise mentioned. Outliers are generated by sampling from a Poisson process with a
constant intensity function. The specific intensity functions (Appendix C.1) and outlier generation
mechanism (Appendix C.2) can be found in the Appendix.

Baseline As unsupervised event outlier detection without access to clean data has not been previously
explored, we adapt the state-of-the-art approach for semi-supervised event outlier detection, PPOD,
as our main baseline [15], which has demonstrated strong performance when clean data is available.
It also leverages the cLSTM architecture but is trained with a negative log-likelihood loss [19] to
generate the intensity functions used for scoring points and intervals in the sequences for outliers. As
additional baselines, we also include RND, which generates random outlier scores, and LEN, which
is based on the inter-event time interval length, from the same paper.

3



0 2000 4000 6000 8000 10000
Episodes

0.4

0.5

0.6

AU
RO

C

0 2000 4000 6000 8000 10000
Episodes

2

1

Re
wa

rd

0 2000 4000 6000 8000 10000
Episodes

0.6

0.8

Di
sc

rim
in

at
or

 L
os

s

0 2000 4000 6000 8000 10000
Episodes

0.4

0.6

p
d
(S

i)

0 2000 4000 6000 8000 10000
Episodes

6

8

10
Ne

ga
tiv

e 
Lo

g 
Lik

el
ih

oo
d

0 2000 4000 6000 8000 10000
Episodes

0.4

0.6

p
d
(S

g j
)

Hawkes

GAN-RL PPOD

(a) Hawkes

0 2000 4000 6000 8000 10000
Episodes

0.25

0.50

0.75

AU
RO

C

0 2000 4000 6000 8000 10000
Episodes

1.0

0.8

0.6

Re
wa

rd

0 2000 4000 6000 8000 10000
Episodes

0.5

0.6

0.7

Di
sc

rim
in

at
or

 L
os

s

0 2000 4000 6000 8000 10000
Episodes

0.4

0.5

0.6

p
d
(S

i)

0 2000 4000 6000 8000 10000
Episodes

20

0

20

Ne
ga

tiv
e 

Lo
g 

Lik
el

ih
oo

d

0 2000 4000 6000 8000 10000
Episodes

0.3

0.4

0.5

0.6

p
d
(S

g j
)

Taxi

GAN-RL PPOD

(b) Taxi

Figure 2: Training performance of our algorithm on a synthetic and real dataset. We include two more
in Appendix D. The curves are plotted across 10 independent runs. The shaded regions represent the
standard errors.

3.1 Performance of GAN-RL

In Figure 2, we present a comprehensive analysis of our RL agents’ performance over a series of
10,000 episodes, each representing a complete sequence. For the synthetic datasets, these sequences
are chosen randomly from a pool of 1000 generated sequences for training. Meanwhile, for Taxi, we
sample from the same training data splits as used in previous work. To gauge the effectiveness of
our method against the baseline method, we employ AUROC (Area Under the Receiver Operating
Characteristic Curve) scores, computed based on the ground-truth labels not accessible by any of
the methods during training. This metric provides valuable insights into the RL agents’ ability to
distinguish outliers from the norm. Over 10 independent runs, our results consistently demonstrate that
our RL agents excel at outlier detection when compared to the baseline method. Another interesting
observation worth mentioning is the probability that the real sequence is classified correctly and the
probability that the generated is classified as real seems to be around 0.5 which suggests that the RL
agent has done a great job in generating real-looking data by removing outliers.

3.2 Results on Test Data

We also highlight test performance across all the datasets across 10 seeds in Table 1. These are
computed over 100 test sequences unseen during training. For the real-world datasets, we simply
use the test split in the dataset, and for the synthetic datasets, we generate new sequences using
seeds different from the ones used in training. These results demonstrate that the improvement
in the performance of GAN-RL is applicable to unseen testing data as well, and demonstrates the
generalizability of the proposed method.

Table 1: Evaluation on test sets.
Dataset RND LEN PPOD GAN-RL

Poisson 0.510± 0.029 0.470± 0.023 0.55± 0.02 0.631± 0.03

Hawkes 0.503± 0.032 0.481± 0.031 0.512± 0.01 0.610± 0.03

MIMIC 0.495± 0.014 0.337± 0.024 0.583± 0.02 0.778± 0.12

Taxi 0.503± 0.007 0.587± 0.005 0.548± 0.01 0.647± 0.03

4 Conclusion

In this work, we developed a novel unsupervised event outlier detection framework based on ideas
from GANs and RL. RL-based generators are learned to correct outliers in the unlabeled dataset
through GAN-based training and then applied to unseen sequences to detect event outliers online. We
evaluated our method on both synthetic and real-world datasets with simulated outliers. Compared
with the state-of-the-art semi-supervised approaches, our method shows similar or better detection
accuracy in all the experiments.

4



References
[1] Samet Akcay, Amir Atapour-Abarghouei, and Toby P. Breckon. GANomaly: Semi-supervised

anomaly detection via adversarial training. In C. V. Jawahar, Hongdong Li, Greg Mori, and
Konrad Schindler (eds.), Computer Vision – ACCV 2018, Lecture Notes in Computer Science,
pp. 622–637, Cham, 2019. Springer International Publishing. ISBN 978-3-030-20893-6. doi:
10.1007/978-3-030-20893-6_39.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.
[3] E. Bacry, M. Bompaire, S. Gaïffas, and S. Poulsen. tick: a Python library for statistical learning,

with a particular emphasis on time-dependent modeling. ArXiv e-prints, July 2017.
[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by

Jointly Learning to Align and Translate, May 2016.
[5] Hongyi Ding, Mohammad Khan, Issei Sato, and Masashi Sugiyama. Bayesian nonparamet-

ric Poisson-process allocation for time-sequence modeling. In International Conference on
Artificial Intelligence and Statistics, pp. 1108–1116, 2018.

[6] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. Recurrent marked temporal point processes: Embedding event history to vector. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1555–1564. ACM, 2016.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pp. 2672–2680, 2014.

[8] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[9] Minyoung Kim. Markov modulated Gaussian Cox processes for semi-stationary intensity
modeling of events data. In International Conference on Machine Learning, pp. 2640–2648,
July 2018.

[10] Sylvain Lamprier, Thomas Scialom, Antoine Chaffin, Vincent Claveau, Ewa Kijak, Jacopo
Staiano, and Benjamin Piwowarski. Generative cooperative networks for natural language
generation. In International Conference on Machine Learning, pp. 11891–11905. PMLR, 2022.

[11] Young Lee, Kar Wai Lim, and Cheng Soon Ong. Hawkes processes with stochastic excitations.
In International Conference on Machine Learning, pp. 79–88, 2016.

[12] Dan Li, Dacheng Chen, Lei Shi, Baihong Jin, Jonathan Goh, and See-Kiong Ng. MAD-
GAN: Multivariate anomaly detection for time series data with generative adversarial networks.
arXiv:1901.04997 [cs, stat], January 2019.

[13] Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point
processes via reinforcement learning. In Advances in Neural Information Processing Systems,
pp. 10781–10791, 2018.

[14] Siqi Liu and Milos Hauskrecht. Nonparametric regressive point processes based on conditional
Gaussian processes. In Advances in Neural Information Processing Systems, pp. 1062–1072,
2019.

[15] Siqi Liu and Milos Hauskrecht. Event outlier detection in continuous time. In International
Conference on Machine Learning, pp. 6793–6803. PMLR, July 2021.

[16] Chris Lloyd, Tom Gunter, Michael Osborne, and Stephen Roberts. Variational inference for
Gaussian process modulated Poisson processes. In International Conference on Machine
Learning, pp. 1814–1822, 2015.

[17] Chris Lloyd, Tom Gunter, Michael Osborne, Stephen Roberts, and Tom Nickson. Latent point
process allocation. In Artificial Intelligence and Statistics, pp. 389–397, May 2016.

[18] Sidi Lu, Lantao Yu, Siyuan Feng, Yaoming Zhu, and Weinan Zhang. Cot: Cooperative training
for generative modeling of discrete data. In International Conference on Machine Learning, pp.
4164–4172. PMLR, 2019.

[19] Hongyuan Mei and Jason M. Eisner. The neural Hawkes process: A neurally self-modulating
multivariate point process. In Advances in Neural Information Processing Systems, pp. 6757–
6767, 2017.

5



[20] Hongyuan Mei, Guanghui Qin, and Jason Eisner. Imputing missing events in continuous-time
event streams. In International Conference on Machine Learning, pp. 4475–4485. PMLR, May
2019.

[21] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
actually converge? In International conference on machine learning, pp. 3481–3490. PMLR,
2018.

[22] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks, 2018.

[23] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. CoRR, abs/1602.01783, 2016. URL http://arxiv.org/abs/1602.01783.

[24] Takahiro Omi, Naonori Ueda, and Kazuyuki Aihara. Fully neural network based model for
general temporal point processes. In Advances in Neural Information Processing Systems, pp.
2120–2129, 2019.

[25] Vinayak Rao and Yee W. Teh. Gaussian process modulated renewal processes. In Advances in
Neural Information Processing Systems, pp. 2474–2482, 2011.

[26] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery. In Marc Niethammer, Martin Styner, Stephen Aylward, Hongtu Zhu, Ipek Oguz,
Pew-Thian Yap, and Dinggang Shen (eds.), Information Processing in Medical Imaging, Lecture
Notes in Computer Science, pp. 146–157, Cham, 2017. Springer International Publishing. ISBN
978-3-319-59050-9. doi: 10.1007/978-3-319-59050-9_12.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/
abs/1707.06347.

[28] Oleksandr Shchur, Ali Caner Turkmen, Tim Januschowski, Jan Gasthaus, and Stephan Günne-
mann. Detecting anomalous event sequences with temporal point processes. In Advances in
Neural Information Processing Systems, volume 34, pp. 13419–13431, 2021.

[29] Yichen Wang, Bo Xie, Nan Du, and Le Song. Isotonic Hawkes processes. In International
Conference on Machine Learning, pp. 2226–2234, 2016.

[30] C Whong. Foiling nyc’s taxi trip data, 2014. URL https://chriswhong.com/open-data/
foil_nyc_taxi/.

[31] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist re-
inforcement learning. Mach. Learn., 8(3–4):229–256, may 1992. ISSN 0885-6125. doi:
10.1007/BF00992696. URL https://doi.org/10.1007/BF00992696.

[32] Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasser-
stein learning of deep generative point process models. In Advances in Neural Information
Processing Systems, pp. 3247–3257, 2017.

[33] Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen M. Chu. Modeling the
intensity function of point process via recurrent neural networks. In AAAI, pp. 1597–1603,
2017.

[34] Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning Granger causality for Hawkes
processes. In International Conference on Machine Learning, pp. 1717–1726, 2016.

[35] Siqiao Xue, Xiaoming Shi, James Zhang, and Hongyuan Mei. HYPRO: A hybridly normalized
probabilistic model for long-horizon prediction of event sequences. Advances in Neural
Information Processing Systems, 35:34641–34650, 2022.

[36] Jinsung Yoon, Sercan O. Arik, and Tomas Pfister. Data valuation using reinforcement learning,
2019.

[37] Ping Zhang, Rishabh Iyer, Ashish Tendulkar, Gaurav Aggarwal, and Abir De. Learning to
select exogenous events for marked temporal point process. In Advances in Neural Information
Processing Systems, volume 34, pp. 347–361. Curran Associates, Inc., 2021.

[38] Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive Hawkes process.
In Proceedings of the 37th International Conference on Machine Learning, pp. 11183–11193.
PMLR, November 2020.

6

http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://chriswhong.com/open-data/foil_nyc_taxi/
https://chriswhong.com/open-data/foil_nyc_taxi/
https://doi.org/10.1007/BF00992696


[39] Ke Zhou, Hongyuan Zha, and Le Song. Learning triggering kernels for multi-dimensional
Hawkes processes. In International Conference on Machine Learning, pp. 1301–1309, 2013.

[40] Shixiang Zhu, Henry Shaowu Yuchi, Minghe Zhang, and Yao Xie. Sequential Adversarial
Anomaly Detection for One-Class Event Data, April 2023.

[41] Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes
process. In International Conference on Machine Learning, pp. 11692–11702. PMLR, Novem-
ber 2020.

A Related Work

Generative model based outlier detection Although outlier detection methods using deep genera-
tive models are not new (e.g., [1, 26, 12, 40]), none of them detect abnormal occurrences and absence
of events, and almost all of them take a semi-supervised approach, assuming availability of training
data consisting of samples from a single class (usually normal data but sometimes abnormal data).
Note that some authors [26, 12] just use a different terminology. In contrast, our method detects event
outliers in continuous time and does it in a completely unsupervised setting, where the training event
sequences contain both normal and abnormal occurrences and absence of events. Once trained, the
models can be used for detecting outliers online on unseen data.

Deep generative models for event sequences Most deep learning models for event sequence
data are based on combining deep architectures (such as RNNs [6, 19] and attention-based [38, 41]
with TPPs, and learned by maximizing the likelihood. Different from these models, Xiao et al. [32]
developed a Wasserstein distance for TPPs and a Wasserstein GAN to generate samples from the
learned TPP. Li et al. [13] propose to use reinforcement learning to learn a generative model utilizing
inverse reinforcement learning to learn the reward from the training data. Our work is also inspired
by ideas from GANs and reinforcement learning, but our goal is outlier detection instead of sequence
generation, which results in different model architectures and algorithms for learning and inference.

Outlier detection for event sequences Liu & Hauskrecht [15] aim to detect event outliers as in
our work, but their approach requires training a point process model to learn the distribution of the
data, which, in theory, would require the training data to be clean without any outliers. In contrast,
our method does not require clean data and can learn directly on polluted data in a completely
unsupervised fashion. Zhang et al. [37] develop a greedy algorithm to separate exogenous events
from an event sequence, which can be considered as a special case of unexpected event occurrences.
Similarly Mei et al. [20] propose a particle-smoothing algorithm for imputing missing events in event
sequences. These methods focus on offline data processing and analysis, while our work focuses on
unsupervised learning of models for online outlier detection. Zhu et al. [40] propose a GAN-based
approach to detecting anomalous sequences assuming the availability of only anomalous data, while
we focus on detecting anomalous occurrences and absence of events assuming the unlabeled data
contain both normal and abnormal events. Similarly [28] propose a new statistic for goodness-of-fit
testing and detecting anomalous event sequences instead of events.

B Algorithm Details

Algorithm 1 describes how the generator and discriminator are trained and what the inputs and
outputs of the models look like. One additional thing to note is that, while each sequence is treated as
an episode for the RL agent, the generator is trained only when an episode has been completed i.e.
we always wait for the sequence to get completed before updating the generator. The same is true
for the discriminator because it would need complete sequences as inputs anyway. Another crucial
thing to keep in mind is that although this entire network can be trained end-to-end, we opt for an
iterative training regime in the spirit of alternating gradient descent in the GAN literature [21]. The
difference is that our generator is trained by PPO instead of gradient descent. That means for the
first few episodes only the discriminator is trained, and then only the generator, and so on. This is
to ensure that the training dynamics are sufficiently smooth and that both the discriminator and the
generator can learn gradually. In Section B.1, we also illustrate the entire model architecture and
provide intuition on the training dynamics with more details on the training framework.

7



Algorithm 1 GAN-RL

Require: Unlabeled Event Sequences D = {Si}Ii=1, Generator (θg), Discriminator (θd), Up-
date Frequency F , Number of Episodes K

1: for k = 0 . . .K − 1 do
2: Sample Sj = {tn}

Nj

n=1 ∼ D
3: {ϕj

n}
Nj

n=1 = Encoderθg (Sj)
4: for n = 1 . . . Nj do
5: an ← πθg (ϕ

j
n)

6: rn = 0
7: end for
8: Sg

j = generate(Sj , {an}
Nj

n=1) ▷ remove points
9: if k mod F < F/2 then

10: Sample Si ∼ D and compute pθd(Si) and pθd(S
g
j )

11: Update θd using Cross Entropy Loss
12: else
13: Compute rNj

= pθd(S
g
j )

14: Update θg using RL Loss
15: end if
16: end for

B.1 Training Dynamics

Model Architecture

Training Framework

Input Sequence

Actions

Samples from ‘real’ dataGenerated Output

Rewards Discriminator 
Score

Discriminator 
Score

Cross 
Entropy 
Loss

Cross 
Entropy 
Loss

RL Loss

Input Sequence

cL
S

TM

La
ye

r N
or

m
al

iz
at

io
n

A
ct

or
C

rit
ic

Actions

Values

Input Sequence

cL
S

TM

Generator Discriminator

A
tte

nt
io

n

M
LP Discriminator 

Score

Figure 3: Model Architectures and Training Framework

In Figure 3, we illustrate the individual model architectures for both the generator and discriminator.
Both the generator and the discriminator encode sequences with separate cLSTMs. The generator
additionally has a causal attention layer, followed by layer normalization. These encodings are then
fed to the actor and critic which output actions and the value functions respectively. The discriminator
architecture is much simpler, and the cLSTM outputs are just fed to a neural network to output the
scores for each of the individual sequences.

Figure 3 also describes the training framework and how the RL and Discriminator interact with each
other. The RL agent generates new sequences from inputs by taking actions. The discriminator score

8



is fed as the reward to the input sequence. The discrimination score is the probability that the input
sequence is a ’real’ sequence, so the RL agent should try to improve this score, hence this score is an
ideal candidate to be chosen as the reward. The discriminator is trained by its separate cross-entropy
loss.

At the core of the training methodology for this framework lies the concept of leveraging a single
scalar reward function for each sequential dataset. During discriminator training, a generated sequence
has a target label 0 and a real sequence 1. In parallel, the RL agent takes on a distinct objective:
to enhance the quality of the generated sequences, striving to render them as devoid of outliers as
possible, thereby aligning them closely with the characteristics of clean sequences. The incentive
guiding the RL agent’s actions is grounded in the discriminator’s output for classifying sequences as
0. This output is repurposed as a reward signal that propels the RL agent to optimize its approach.
This interplay between the RL agent and the discriminator creates a dynamic wherein the generated
sequences evolve to closely mimic the clean sequences, blurring the boundaries between the two
gradually.

C Datasets

C.1 Intensities for Synthetic Datasets

The synthetic datasets are each characterized by their own intensity functions. For simulating these
Point Processes, we use Tick [3]. The details are as follows:

• Poisson: The intensity function, λ(t) = 1 + sin(2t).

• Hawkes: we use a kernel with a sum of U exponential decays with intensities α =
[0.01, 0.02, 0.01] and decays β = [1.0, 3.0, 7.0]. The intensity function is defined as:

λ(t) =

U∑
u=1

αuβu exp (−βut) 1t>0

C.2 Outlier Simulation

We use a Poisson process with a constant intensity function (α) to generate outliers, and then we
merge them with the clean sequence to create a corrupted sequence. The value of the intensity
function is defined based on the type of dataset being used.

As a rule of thumb, we choose α such that the number of outliers in a sequence is around 20− 30%
of the average clean sequence length. The exact values for every dataset are in Table 3.

D Additional Training Curves on Poisson and MIMIC

0 2000 4000 6000 8000 10000
Episodes

0.4

0.6

AU
RO

C

0 2000 4000 6000 8000 10000
Episodes

3

2

1

Re
wa

rd

0 2000 4000 6000 8000 10000
Episodes

0.6

0.8

Di
sc

rim
in

at
or

 L
os

s

0 2000 4000 6000 8000 10000
Episodes

0.4

0.6

p
d
(S

i)

0 2000 4000 6000 8000 10000
Episodes

6

8

Ne
ga

tiv
e 

Lo
g 

Lik
el

ih
oo

d

0 2000 4000 6000 8000 10000
Episodes

0.4

0.6

p
d
(S

g j
)

Poisson

GAN-RL PPOD

(a) Poisson

0 2000 4000 6000 8000 10000
Episodes

0.25

0.50

0.75

AU
RO

C

0 2000 4000 6000 8000 10000
Episodes

10

5

Re
wa

rd

0 2000 4000 6000 8000 10000
Episodes

0.625

0.650

0.675

Di
sc

rim
in

at
or

 L
os

s

0 2000 4000 6000 8000 10000
Episodes

0.500

0.525

0.550

p
d
(S

i)

0 2000 4000 6000 8000 10000
Episodes

2.5

0.0

2.5

5.0

Ne
ga

tiv
e 

Lo
g 

Lik
el

ih
oo

d

0 2000 4000 6000 8000 10000
Episodes

0.475

0.500

0.525

p
d
(S

g j
)

MIMIC

GAN-RL PPOD

(b) MIMIC

Figure 4: Training performance of our algorithm on one synthetic and real dataset. The curves are
plotted across 10 independent runs. The shaded regions represent the standard errors.

9



E Ablation Studies

E.1 Sensitivity to the Amount of Corruption in the Data

The unsupervised nature of the problem setting necessitates the presence of some normal sequences
(or sequence segments if we split complete sequences into shorter segments) in the dataset, and this
usually should not be an issue as the majority of the data should be clean by definition of outliers.
However, if that is not the case we expect GAN-RL to fail because the discriminator would perceive
noisy sequences as real. To study the effect of the “cleanness” of the datasets, we plot in Figure 5
the average performance on 100 test sequences. The X-axis is the parameter β and increasing β
means fewer corrupted sequences. As β increases, we notice an improvement in the performance of
GAN-RL as the discriminator gets more real sequences and is able to distinguish them better from
generated data. However, when β = 0.0, we notice that GAN-RL gets an AUROC of around 0.5
suggesting it is purely random. These results demonstrate how much we can relax the assumption of
most of the data being clean. From Fig. 5, we see GAN-RL can perform well even with 60% of clean
data across all the datasets.

0.0 0.2 0.4 0.6 0.8 0.9 0.95
Levels of Corruption in the Data (beta)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

AU
RO

C

Poisson
GAN-RL
PPOD

0.0 0.2 0.4 0.6 0.8 0.9 0.95
Levels of Corruption in the Data (beta)

0.45

0.50

0.55

0.60

0.65

0.70

AU
RO

C

Hawkes
GAN-RL
PPOD

0.0 0.2 0.4 0.6 0.8 0.9 0.95
Levels of Corruption in the Data (beta)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
RO

C

MIMIC
GAN-RL
PPOD

0.0 0.2 0.4 0.6 0.8 0.9 0.95
Levels of Corruption in the Data (beta)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

AU
RO

C

Taxi
GAN-RL
PPOD

Figure 5: Sensitivity to corruption in the data.

E.2 Importance of Attention

Table 2: Comparison of asymptotic training performance with and without attention.
Dataset GAN-RL w/o Attention GAN-RL PPOD PPOD with Attention

Poisson 0.542 ± 0.02 0.651 ± 0.03 0.506 ± 0.01 0.503 ± 0.03

Hawkes 0.522 ± 0.01 0.654 ± 0.02 0.515 ± 0.04 0.523 ± 0.08

MIMIC 0.592 ± 0.05 0.601 ± 0.08 0.593 ± 0.06 0.582 ± 0.04

Taxi 0.795 ± 0.01 0.832 ± 0.02 0.690 ± 0.01 0.710 ± 0.01

The addition of the attention layer was really crucial to the good performance of GAN-RL. We believe
this is because the generator needs to be able to focus on particular time points in the past before being
able to make decisions on outliers and this is where adding attention can help. We run an ablation
study where we remove the attention layer from the encoder and plot the training performance across

10



the last 10% episodes. We do notice a drop in performance of GAN-RLwithout attention in Table 2.
It is interesting to note that, although removing attention results in worse performance of GAN-RL
in general, the amount of decrease can vary from datasets to datasets. Importantly, even without
attention, GAN-RLcan still outperform the baseline across all datasets, especially on Taxi, suggesting
there are merits to our overall framework. Meanwhile, just adding an attention layer on top of cLSTM
to the baseline does not improve performance much, if at all.

E.3 Utility of GANs

(a) Poisson (b) Hawkes

Figure 6: Comparison of GAN-RL with a static reward function that operates on the Wasserstein
Distance between the generated and real sequences.These results are across 10 independent runs.

We look at a simple RL agent that takes actions to generate clean sequences. Instead of using a
Discriminator to evaluate the quality of the generated sequence, here, we use the Wasserstein distance
between the real and generated sequence as a reward signal. So, essentially, we have a non-learnable
reward signal. Figure 6 portrays GAN-RL along with new variation without the discriminator. From
the difference in AUROC during training, we can conclude that having a learnable discriminator is
very crucial to our method. This further justifies our decision to introduce a GAN based framework
for outlier detection.

E.4 Learning End-to-End

(a) Poisson (b) Hawkes

Figure 7: Comparison of GAN-RL with a variant of GAN-RL that uses a separately trained encoder
cLSTM that is trained on the Negative Log Likelihood loss similar to PPOD. These results across 10
independent runs.

For the second ablation, we try to evaluate if we lose any performance by training the encoder directly
with the generator or discriminator losses. In Figure 7, we show a variation of GAN-RL with a
separate encoder that is trained exactly like the PPOD baseline. Our method is applied on top of it,
and hence the method is not end-to-end. When we try to compare it with our method, we see that
we do not give up much performance when compared with the method that has a separately trained
encoder.

11



F Hyper-Parameter Sensitivity

50 100 500 1000 2000
Update Frequency

0.59

0.60

0.61

0.62

0.63

0.64

0.65
AU

RO
C

Hawkes
GAN-RL

(a) Update Frequency

0.01 0.001 0.0001 1e-05
Learning Rate of Discriminator

0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62

AU
RO

C

Hawkes
GAN-RL

(b) Discriminator Learning Rate

0.01 0.001 0.0001 1e-05 1e-06
Learning Rate of Discriminator

0.40

0.45

0.50

0.55

0.60

AU
RO

C

Hawkes
GAN-RL

(c) Generator Learning Rate

Figure 8: Sensitivity curves across 10 runs for Hawkes dataset.

In this section, we evaluate the sensitivity to the key hyper-parameters of our method. We believe
there are three key hyper-parameters that dictate the learning dynamics. The first is the update
frequency which is the number of episodes after which the generator or the discriminator training is
switched. This is highlighted in Fig 8 (a), where we see relatively good performance across different
values, suggesting our algorithm is quite robust to this hyper-parameter.

Additionally, the learning rate of the generator and the discriminator also influence the training
dynamics and these are shown in Fig 8 (a) a& (b). Here, we notice a very similar trend. Higher
values of the learning rate of both the generator and discriminator are quite bad, and we believe
this is because of the inter-dependency of the generator and discriminator. For higher values, the
discrimiantor for example can take bigger gradient steps in the wrong direction thus messing up the
reward structure for the RL agent and this can lead to bad performance overall.

12



G Hyperparameters

For all the experiments, the hyper-parameters were tuned on final AUROC scores on the training set.

Table 3: Hyperparameters for all the experiments

Dataset Generator Discriminator

Maximum Time
Length=10
Poisson: α=0.5
Hawkes: α=0.5
MIMIC: α=0.1
Taxi: α=0.3
Seeds:
Training:
[100, ..., 109]
Testing: [1000]

cLSTM hidden size=64
Self Attention Layer
Layer Normalization
learning rate for encoder = 0.001

Actor Arch:
Linear(64, 64),
Tanh(),
Linear(64, 64),
Tanh(),
Linear(64, 2),
Softmax()

Critic Arch:
Linear(64, 64),
Tanh(),
Linear(64, 64),
Tanh(),
Linear(64, 2),

update policy every 10 sequences
update policy for 10 epochs in one
update
clip parameter for PPO, ϵ = 0.2
c1 = 0.5, c2 = 0.01
discount factor = 0.99
learning rate for actor network =
0.00001
learning rate for critic network
= 0.00001

cLSTM hidden size=64
learning rate for encoder = 0.001

Arch:
Linear(64, 64)
Tanh(),
Linear(64, 1)
Linear Layers have
Spectral Normalization

update discriminator every
50 sequences
learning rate for discriminator =
0.001
Number of Episodes=10000
Update Frequency=1000

13


	Introduction
	Unsupervised Event Outlier Detection
	Problem Formulation
	Encoder
	Generator
	Discriminator

	Experiments
	Performance of GAN-RL
	Results on Test Data

	Conclusion
	Related Work
	Algorithm Details
	Training Dynamics

	Datasets
	Intensities for Synthetic Datasets
	Outlier Simulation

	Additional Training Curves on Poisson and MIMIC
	Ablation Studies
	Sensitivity to the Amount of Corruption in the Data
	Importance of Attention
	Utility of GANs
	Learning End-to-End

	Hyper-Parameter Sensitivity
	Hyperparameters

