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Abstract

The ratio of two probability densities, called a density-ratio, is a vital quantity
in machine learning. In particular, a relative density-ratio, which is a bounded
extension of the density-ratio, has received much attention due to its stability and
has been used in various applications such as outlier detection and dataset compari-
son. Existing methods for (relative) density-ratio estimation (DRE) require many
instances from both densities. However, sufficient instances are often unavailable
in practice. In this paper, we propose a meta-learning method for relative DRE,
which estimates the relative density-ratio from a few instances by using knowledge
in related datasets. Specifically, given two datasets that consist of a few instances,
our model extracts the datasets’ information by using neural networks and uses it to
obtain instance embeddings appropriate for the relative DRE. We model the relative
density-ratio by a linear model on the embedded space, whose global optimum
solution can be obtained as a closed-form solution. The closed-form solution
enables fast and effective adaptation to a few instances, and its differentiability
enables us to train our model such that the expected test error for relative DRE
can be explicitly minimized after adapting to a few instances. We empirically
demonstrate the effectiveness of the proposed method by using three problems:
relative DRE, dataset comparison, and outlier detection.

1 Introduction

The ratio of two probability densities, called a density-ratio, has been used in various applications
such as outlier detection [14, 1], dataset comparison [49], covariate shift adaptation [42], change point
detection [30], positive and unlabeled (PU) learning [19, 18], density estimation [46], and generative
adversarial networks [47]. Thus, density-ratio estimation (DRE) is attracting a lot of attention. A
naive approach to DRE is to estimate each density and then take the ratio. However, this approach
does not work well since density estimation is a hard problem [48]. Therefore, direct DRE without
going through density estimation has been extensively studied [44, 17, 35, 13].

Although direct DRE is useful, its fundamental weakness is that the density-ratio is unbounded, i.e., it
can take infinity, which causes stability issues [29]. To cope with this problem, a relative density-ratio
has been proposed, which is a smoothed and bounded extension of the density-ratio [49]. In the above
applications, the density-ratio can be replaced with the relative density-ratio, and relative DRE has
shown excellent performance [49, 30, 6, 37, 47].

Existing methods for (relative) DRE require many instances from both densities. However, sufficient
instances are often unavailable for various reasons. For example, it is difficult to instantly collect
many instances from new data sources such as new users or new systems. Collecting instances is
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expensive in some applications such as clinical trials or crash tests, where DRE can be used for
dataset comparison to investigate the effect of drugs/car conditions. In such cases, existing methods
cannot work well.
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Figure 1: Our problem formulation. In a train-
ing phase, our model is trained with source
datasets. In a test phase, the learned model
estimates relative density-ratio rα(x) =

pA(x)
αpA(x)+(1−α)pB(x) , (0 ≤ α < 1) with tar-
get datasets A and B that are generated from
densities pA(x) and pB(x), respectively.

In this paper, we propose a meta-learning method for
relative DRE. To estimate the relative density-ratio
from a few instances in target datasets, the proposed
method uses instances in different but related datasets,
called source datasets. When these datasets are re-
lated, we can transfer useful knowledge from source
datasets to target ones [31]. Figure 1 shows our prob-
lem formulation.

We model the relative density-ratio by using neural
networks that enable us to perform accurate DRE
thanks to their high expressive capabilities. Since
each dataset has a different property, incorporating
it to the model is essential. To achieve this, given
two datasets that consist of a few instances, called
support instances, our model first calculates a latent
vector representation of each dataset. This vector
is calculated by using permutation-invariant neural
networks that can take a set of instances as input [50].
Since the vector is obtained from a set of instances
in the dataset, it contains information of the dataset.
With the two latent vectors of datasets, each instance is non-linearly mapped to an embedding space
that is suitable for relative DRE on the datasets. Using the embedded instances, we perform relative
DRE, where the relative density-ratio is represented by a linear model on the embedded space. With
the squared loss, the global optimal solution of the linear model can be obtained as a closed-form
solution, which enables us to perform more stable and faster adaptation to support instances than
numerical solutions.

The neural networks of our model are trained by minimizing the expected test squared error of relative
DRE after adapting to support instances that is calculated using instances in the source datasets.
Since the closed-form solution of the linear model is differentiable, this training can be performed by
gradient-based methods such as ADAM [20]. Since all parameters of our model are shared across
all datasets, which enables knowledge to be shared between all datasets, the learned model can be
applied to unseen target datasets. This training explicitly improves the relative DRE performance for
test instances after estimating the relative density-ratio using support instances. Thus, the learned
model can accurately estimate the relative density-ratio from a few instances.

Our main contributions are as follows: (1) To the best of knowledge, our work is the first attempt
at meta-learning for (relative) DRE. (2) We propose a model that performs accurate relative DRE
from a few instances by effectively adapting both embeddings and linear model to the instances. (3)
We empirically demonstrate the effectiveness of the proposed method with three popular problems:
relative DRE, dataset comparison, and outlier detection.

2 Related Work

Many methods for direct DRE have been proposed such as classifier-based methods [4, 33], Kull-
back–Leibler importance estimation [43], kernel mean matching [13], and unconstrained least-squares
importance fitting (uLSIF) [17]. Although these methods are useful, they can suffer from the un-
bounded nature of the density-ratio. That is, an instance that is in the low density region of the
denominator density may have an extremely large value of ratio, and DRE can be dominated by such
points, which causes robustness and stability issues [29]. This problem is particular serious when
using flexible density-ratio models such as neural networks because they try to fit on extremely large
density-ratio values [18]. To cope with the unboundedness, the relative uLSIF (RuLSIF) uses the
relative density-ratio to uLSIF [49]. Since RuLSIF can obtain the optimal parameters as a closed-form
solution, it is computationally efficient and stable and performs well in various applications when
sufficient instances are available [49, 30, 6, 37, 47]. Since fast and effective adaptation to support in-
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stances is essential in meta-learning as explained in the end of this section, we incorporate RuLSIF in
our framework. Although neural network-based DRE methods have been recently proposed [18, 35],
they cannot perform well when training instances are quite small due to overfitting. Although the
proposed method uses neural networks for the instance embeddings, it can accurately perform relative
DRE from a few instances by learning how to perform few-shot relative DRE with related datasets.

DRE is used for transfer learning or covariate shift adaptation [40, 42, 45, 22, 7]. To transfer
knowledge in a training dataset to a test dataset, these methods estimate the density-ratio between
training and test densities that is used for weighting labeled training instances. These methods use
only two datasets to estimate the density-ratio. In contrast, the proposed method uses multiple datasets
to accumulate transferable knowledge and uses it for the relative DRE on two new datasets, which
can be used in various applications including covariate shift adaptation as described in Section 1.

Meta-learning methods have been recently attracting a lot of attention [8, 41, 9, 34, 3, 16]. These
methods train a model such that it generalizes well after adapting to support instances using multiple
datasets. In this framework, fast adaptation to support instances is essential since the result of
the adaptation is required to train the model in each iteration of training [3, 34]. Encoder-decoder
methods such as neural processes [9, 10] perform quick adaptation by forwarding support instances
to neural networks. However, they have difficulty working well for any dataset since the adaptation is
approximated by only the neural networks. Gradient-based methods such as model-agnostic meta-
learning (MAML) [8] adapt to support instances by using an iterative gradient descent method and
are widely used. These methods require higher-order derivatives and to retain all optimization path of
the iterative adaptation to backpropagate through the path, which imposes considerable computational
and memory burdens [3]. Thus, they must keep the iteration number small and it prevents effective
adaptation. In contrast, the proposed method quickly and effectively adapt to support instances by
solving a convex optimization problem, where the global optimum solution can be quickly obtained
as a closed-form solution. Although few methods adapt to support instances by solving convex
optimization problems for fast and effective adaptation [3, 26], they consider classification tasks. To
the best of our knowledge, no meta-learning methods have been designed for DRE, and thus, existing
meta-learning methods cannot be applied to our problems.

3 Preliminary

We briefly explain a relative density-ratio. Suppose that instances {xn}Nn=1 are drawn from a
distribution with density pnu(x) and instances {x′n}N

′

n=1 are drawn from another distribution with
density pde(x). Density ratio r(x) is defined by r(x) := pnu(x)

pde(x)
. Here, “nu” and “de” indicate the

numerator and the denominator. The aim of DRE is to directly estimate r(x) from both instances
{xn}Nn=1 and {x′n}N

′

n=1. However, r(x) is unbounded and thus can take extremely large values when
the denominator pde(x) takes a small value. This causes robustness and stability issues [29]. To deal
with this problem, a relative density-ratio has been proposed [49]. For 0 ≤ α < 1, relative density-
ratio rα(x) is define by rα(x) := pnu(x)

αpnu(x)+(1−α)pde(x) . Relative density-ratio rα(x) is bounded since
rα(x) ≤ 1

α for any x. rα(x) is always smoother than r(x). rα(x) can replace r(x) and is used for
various applications [49, 30, 6, 37, 47]. When α = 0, rα(x) is reduced to density-ratio r(x). Thus,
the relative density-ratio can be regarded as a smoothed and bounded extension of the density-ratio.

4 Proposed Method

4.1 Problem Formulation

Let Xd = {xdn}Ndn=1 be a d-th dataset and xdn ∈ RM be the M -dimensional feature vector of
n-th instance in the d-th dataset. Instances {xdn}Ndn=1 are drawn from a distribution with density
pd. We assume that feature dimension M is the same across all datasets, but each distribution
can differ. Suppose that D datasets X := {Xd}Dd=1 are given at the training phase. Our goal is
to estimate a relative density-ratio rα(x) from two target datasets that consist of a few instances,
Sdnu = {xdnun}

Ndnu
n=1 and Sdde

= {xdden}
Ndde
n=1 , where dnu and dde are not included in {1. . . . , D},

that are given at the test phase.
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4.2 Model

In this subsection, we use notations Snu and Sde instead of Sdnu and Sdde , respectively for simplicity.
Similarly, we use pnu and pde instead of pdnu and pdde , respectively. We explain our model that
estimates the relative density-ratio from S = Snu ∪ Sde, called support instances. First, our model
calculates a latent representation of each dataset using permutation-invariant neural networks [50]:

znu := g

(
1

|Snu|
∑

x∈Snu

f(x)

)
∈ RK , zde := g

(
1

|Sde|
∑

x∈Sde

f(x)

)
∈ RK , (1)

where f and g are any feed-forward neural network. Since summation is permutation-invariant, the
neural network in Eq. (1) outputs the same vector even though the order of instances in each dataset
varies. Thus, the neural network in Eq. (1) is well defined as functions for set inputs. Since latent
vector z is calculated from the set of instances in a dataset, z contains information of the empirical
distribution of instances in the dataset. The proposed method can use any other permutation-invariant
function such as summation [50] and set transformer [25] to obtain latent vectors of datasets.

The proposed method models the relative density-ratio by the following neural network,

r̂α(x;S) := w>h([x, znu, zde]), (2)

where [·, ·, ·] is a concatenation of vectors, h : RM+2K → RT>0 is a feed-forward neural network,
and w ∈ RT≥0 is linear weights. The non-negativeness of both the outputs of h and w ensures the
non-negativeness of the estimated relative density-ratio. h([x, znu, zde]) represents the embedding
of instance x. Since h([x, znu, zde]) depends on both znu and zde, the embeddings reflect the
characteristics of two datasets. Such embeddings are learned by using source datasets X so that they
lead to accurate DRE given the target datasets, which will be described in the subsection 4.3.

Linear weights w are determined so that the following expected squared error between true relative
density-ratio rα(x) and estimated relative density-ratio r̂α(x;S), Jα, is minimized:

Jα(w) :=
1

2
Eqα(x)

[
(rα(x)− r̂α(x;S))

2
]

=
α

2
Epnu(x)

[
r̂α(x;S)2

]
+

1− α
2

Epde(x)
[
r̂α(x;S)2

]
− Epnu(x) [r̂α(x;S)] + Const., (3)

where E is expectation, qα(x) := αpnu(x) + (1− α)pde(x), and Const is a constant term that does
not depend on our model. By approximating the expectation with support instances S and excluding
the non-negative constraints for w, we obtained the following optimization problem:

w̃ := arg min
w∈RT

[
1

2
w>Kw − k>w +

λ

2
w>w

]
, (4)

where k = 1
|Snu|

∑
x∈Snu h([x, znu, zde]) and K = α

|Snu|
∑

x∈Snu h([x, znu, zde])h([x, znu, zde])
>+

1−α
|Sde|

∑
x∈Sde

h([x, znu, zde])h([x, znu, zde])
>. In Eq. (4), the third term of r.h.s. is the `2-regularizer

to prevent over-fitting, and λ > 0 is a positive real number. The global optimum solution for Eq. (4)
can be obtained as the following closed-form solution:

w̃ = (K + λI)
−1

k, (5)

where I is the T dimensional identity matrix. This closed-form solution can be efficiently obtained
when T is not large. Note that (K + λI)−1 exists since λ > 0 makes (K + λI) positive-definite.
Some learned weights w̃ can be negative. To compensate for this, following previous studies [17],
the solution is modified as ŵ = max(0, w̃), where max operator is applied for each element of w̃.
The closed-form solution enables fast and effective adaptation to support instances S. By using the
learned weights, the relative density-ratio estimated with support instances S can be obtained as

r̂∗α(x;S) := ŵ>h([x, znu, zde]). (6)

4.3 Training

We explain the training procedure for our model. In this subsection, symbols S = Snu ∪ Sde are
used as support instances in source datasets. In our model, the parameters to be estimated, Θ, are
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Algorithm 1 Training procedure of our model.

Require: Source datasets X , support instance size NS , query instance size NQ, relative parameter α
Ensure: Parameters of our model Θ

1: repeat
2: Sample two datasets d and d′ from {1, . . . , D} with replacement
3: Select support instances Snu and Sde with size NS from Xd and Xd′ , respectively
4: Select query instances Qnu and Qde with size NQ from Xd and Xd′ , respectively
5: Calculate linear weights w̃ with the support instances by Eq. (5) to obtain Eq. (6)
6: Calculate the loss J̃α(Q;S) in Eq. (8) with the query instances
7: Update parameters with the gradients of the loss J̃α(Q;S)
8: until End condition is satisfied;

neural network parameters f , g, h, and regularizer parameter λ. We estimate these parameters by
minimizing the expected test squared error of relative DRE given support instances, where support
instances S = Snu ∪ Sde and test instances Q = Qnu ∪Qde, called query instances, are randomly
generated from source datasets X:

Ed,d′∼{1,...,D}
[
E(Snu,Sde),(Qnu,Qde)∼Xd×Xd′

[
J̃α(Q;S)

]]
, (7)

where (U, V ) ∼ Xd×Xd′ denotes that instances U and V are selected fromXd andXd′ , respectively,
and J̃α(Q;S) is the approximation of expected squared error Jα with query instances Q,

J̃α(Q;S) =
α

2|Qnu|
∑

x∈Qnu

r̂∗α(x;S)2 +
1− α
2|Qde|

∑
x∈Qde

r̂∗α(x;S)2 − 1

|Qnu|
∑

x∈Qnu

r̂∗α(x;S). (8)

The pseudocode for our training procedure is illustrated in Algorithm 1. For each iteration, we
randomly select two datasets with replacement (Line 2). From the datasets, we randomly select
support instances S = Snu ∪ Sde and query instances Q = Qnu ∪ Qde (Lines 3–4). We then
calculate the relative density-ratio with the support instances (Line 5). Using the estimated relative
density-ratio, we calculate loss J̃α(Q;S) with the query instances (Line 6). Lastly, the parameters
of our model are updated with the gradient of the loss (Line 7). This training procedure trains the
parameters of our model so as to explicitly improve the relative DRE performance after estimating
the relative density-ratio with a few instances. Thus, the learned model makes accurate DRE from
target support instances. Since the close-form solution for adaptation in Eq. (5) is differentiable
w.r.t. the model parameters, this training can be performed by using gradient-based methods such
as ADAM [20] . Although we use the squared error for the objective function of query instances
in Eq. (8), our framework can use any differentiable loss function for query instances, such as
KullbackLeibler divergence [43] since we do not require closed-form solutions for query instances.
A more intuitive explanation of the proposed method is described in the supplemental material.

5 Experiments

In this section, we demonstrate the effectiveness of the proposed method with three problems: relative
DRE, dataset comparison, and inlier-based outlier detection. All experiments were conducted on a
Linux server with an Intel Xeon CPU and a NVIDIA GeForce GTX 1080 GPU.

5.1 Proposed Method Settings

For all problems, a three(two)-layered feed-forward neural network was used for f (g) in Eq. (1). For
f , the number of output and hidden nodes was 100, and ReLU activation was used. For h in Eq. (2),
a three-layered feed-forward neural network with 100 hidden nodes with ReLU activation and 100
output nodes (T = 100) with the Softplus function was used. Hyperparameters were determined
based on the empirical squared error for relative DRE on validation data. The dimension of latent
vectors z was chosen from {4, 8, 16, 32, 64, 128, 256}. Relative parameter α was set to 0.5, which is
a value recommended in a previous study [49]. We used the Adam optimizer [20] with a learning
rate of 0.001. The mini-batch size was set to 256 (i.e., NQ = 128 for numerator and denominator
instances). In training with source datasets, support instances are included in query instances as
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Figure 2: Illustrating examples of relative density-ratio estimation when 10 support instances are
used in each target dataset. Horizontal and vertical axes represent x and relative density-ratio values,
respectively. Blue line denotes true relative density-ratio. Orange, green, and red lines represent
estimated relative density-ratios by Ours, RuLSIF, and RuLSIF-FT, respectively.

in [9, 10]. The squared error on validation data was used for early stopping to avoid over-fitting,
where the maximum number of training iterations was 10,000. This setup was used for all neural
network-based methods in subsequent subsections. We implemented all methods by PyTorch [32].

5.2 Relative Density-ratio Estimation

We evaluate the relative DRE performance of the proposed method. We evaluated the squared error
in Eq. (3) with α = 0.5 on test instances ignoring the constant term that does not depend on models.

Data We used one synthetic data and two real-word benchmark data (Mnist-r1 and Isolet2), which
have been commonly used in transfer or multi-task learning studies [11, 27, 23]. In the synthetic data,
each dataset Xd was generated from a one-dimensional Gaussian distribution N (µd, σ

2
d). Dataset-

specific mean µd and standard deviation σd were uniform randomly selected from [−1.5, 1.5] and
[0.1, 2], respectively. Each dataset consists of 300 instances that are generated from each distribution.
We created 600 source, 3 validation, 20 target datasets and evaluated the mean test squared error of
all target dataset pairs when the number of target support instances was NS = 10. Mnist-r, which
was derived from MNIST, consists of images. Mnist-r has six tasks, where each task is created by
rotating the images in multiples of 15 degrees: 0, 15, 30, 45, 60, and 75. Each task has 1000 images,
which are represented by 256-dimensional vectors, of 10 classes (digits). Isolet consists of letters
spoken by 150 speakers, and speakers are grouped into five groups (tasks) by speaking similarity.
Each instance is represented as a 617-dimensional vector. The number of classes (letters) is 26. For
both benchmark data, we treat each class of each task as a dataset, and thus, Mnist-r and Isolet have
60 and 130 datasets, respectively. We randomly chose one task and then chose 10 target datasets from
the task. From the remaining datasets, we randomly chose 10 validation sets and used the remaining
as source datasets. We created 10 different splits of source/validation/target datasets and evaluated
the mean test squared error of all target dataset pairs.

Comparison methods We compared the proposed method with RuLSIF [49] and RuLSIF-FT.
RuLSIF trains a kernel model with only target support instances for relative DRE. We used the
Gaussian kernel and Gaussian width was set to the median distance between support instances, which
is a useful heuristic (median trick) [39]. Since neural network-based models performed poorly in our
experiments due to small instances, we used the kernel model as in the original paper. RuLSIF-FT
uses a neural network for modeling the relative density-ratio. RuLSIF-FT pretrains the model using
source datasets and fine-tunes the weights of the last layer with target support instances. Note that the
pretrained model in RuLSIF-FT cannot estimate the relative density-ratio for target datasets without
fine-tuning. We used the same network architecture as the proposed method, i.e., the four-layered
feed-forward neural network. For RuLSIF and RuLSIF-FT, regularization parameter λ was chosen
from {0.0001, 0.001, 0.01, 0.1, 1}, and the best test results were reported.

Results Figure 2 shows five illustrating examples of relative DRE in the synthetic data. The
proposed method was able to accurately estimate the relative density-ratio from small target support
instances. The mean test squared errors without the constant term of Ours, RuLSIF, and RuLSIF-FT
were -0.613, -0.559, and -0.551, respectively (lower is better). Table 1 shows the mean test squared

1 https://github.com/ghif/mtae 2 http://archive.ics.uci.edu/ml/datasets/ISOLET
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Table 1: Results for relative DRE: Av-
erage test squared errors ignoring the
constant term with different target sup-
port instance sizes. Boldface denotes
the best and comparable methods ac-
cording to the paired t-test (p = 0.05).

RuLSIF
Data NS Ours RuLSIF -FT
Mnist 1 -0.671 -0.543 -0.503
-r 2 -0.748 -0.581 -0.513

3 -0.772 -0.600 -0.518
4 -0.784 -0.597 -0.520
5 -0.793 -0.578 -0.520

Avg. -0.754 -0.580 -0.515
Isolet 1 -0.873 -0.656 -0.508

2 -0.893 -0.676 -0.512
3 -0.900 -0.693 -0.514
4 -0.903 -0.695 -0.514
5 -0.905 -0.683 -0.515

Avg. -0.895 -0.681 -0.513

Table 2: Results for dataset comparison: Average test AUCs
[%] with different target support instance sizes. Boldface
denotes the best and comparable methods according to the
paired t-test (p = 0.05).

RuLSIF D3RE
Data NS Ours RuLSIF uLSIF D3RE MMD -FT -FT
Mnist 1 83.53 47.86 55.01 64.88 45.14 69.43 63.83
-r 2 93.00 84.46 78.09 73.26 85.09 78.28 68.29

3 93.86 87.83 78.81 75.30 89.18 85.66 67.96
4 96.49 93.90 83.51 80.19 93.08 87.31 71.79
5 97.54 98.23 90.66 82.96 98.01 86.09 78.62

Avg. 92.88 82.46 77.22 75.32 82.10 81.36 70.10
Isolet 1 96.28 50.18 59.38 81.48 48.11 79.50 81.50

2 98.32 94.28 89.70 88.20 94.57 81.62 87.76
3 99.23 97.22 94.27 89.69 97.79 85.93 88.39
4 99.37 99.01 96.54 91.80 98.96 83.57 91.12
5 99.60 99.61 96.77 93.86 99.43 83.19 92.74

Avg. 98.56 88.07 87.33 89.00 87.77 82.76 88.30

Table 3: Ablation study for relative DRE. Average
test squared errors without the constant term over
different target support instance sizes.

No No NoSadapt
Data Ours Latent Sadapt -FT
Mnist-r -0.754 -0.739 -0.724 -0.663
Isolet -0.895 -0.888 -0.856 -0.723
Avg. -0.825 -0.814 -0.790 -0.693

Table 4: Ablation study for dataset comparison.
Average test AUCs [%] over different target sup-
port instance sizes.

No No NoSadapt
Data Ours Latent Sadapt -FT
Mnist-r 92.88 91.66 88.46 89.92
Isolet 98.56 98.31 94.73 87.49
Avg. 95.72 94.99 91.60 88.71

errors ignoring the constant term with different target support instance sizes in Mnist-r and Isolet. The
proposed method clearly outperformed RuLSIF and RuLSIF-FT. Since RuLSIF does not use source
datasets, it performed worse than the proposed method. Although RuLSIF-FT uses source datasets,
it did not work well since it does not have mechanisms for few-shot relative DRE. In contrast, the
proposed method trains the model so that it explicitly improves test relative DRE performance after
adapting to a few instances, and thus, it worked well.

Table 3 shows the results of an ablation study of the proposed method. NoLatent is our model without
latent vectors for datasets z. NoSadapt is our model without adapting to support instances with the
closed-form solution ŵ in Eq. (5). NoSadapt learns dataset-invariant linear weights w, and uses
only latent vectors of target datasets z to estimate the relative density-ratio for the datasets. Thus,
NoSadapt can be categorized into encode-decoder meta-learning methods. NoSadapt-FT finetunes
the liner weights w in the model learned by NoSadapt with target support instances. Note that our
model without both latent vectors and adapting to support instances cannot perform relative DRE for
target datasets because it cannot take any information of target datasets. The details of these models
are explained in the supplemental material. Although all methods performed better than RuLSIF and
RuLSIF-FT, the proposed method outperformed the others. This result indicates that considering
both latent vectors and adaptation to support instances is useful in our framework.

5.3 Dataset Comparison

We evaluate the proposed method with a dataset comparison problem. The aim of this problem is
to determine if two datasets that consist of a few instances come from the same distribution. The
proposed method outputs the score of whether two datasets come from the same distribution by
calculating relative Pearson (PE) divergence [49], which is calculated using the relative density-ratio.

Data We used Mnist-r and Isolet described in the previous subsection. We regard two datasets as
coming from the same distribution if they are from the same class of the same task. We used all
target dataset pairs for evaluation. Since the numbers of the same and different pairs in the target
datasets are imbalanced (10 same and 90 different pairs), we used the area under ROC curve (AUC)
as an evaluation metric because it can property evaluate the performance in imbalanced classification
problems [2].
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Comparison methods We compared the proposed method with six methods: RuLSIF, uLSIF [17],
deep direct DRE (D3RE) [18], maximum mean discrepancy (MMD) [12], RuLSIF-FT, and D3RE-
FT. uLSIF is a DRE method, which is equivalent to RuLSIF with α = 0. For RuLSIF, uLSIF,
and RuLSIF-FT, the setting is the same as those of subsection 5.2. D3RE is a recently proposed
neural network-based DRE method. We used the LSIF-based loss function and the same network
architectures as the proposed method, i.e., the four-layered feed-forward neural network. D3RE-FT
pretrains the model with source datasets and fine-tunes the weights of the last layer with target
support instances. For D3RE and D3RE-FT, hyperparameter C was chosen from {0.1, 0.5, 1, 10},
and the best test results were reported. MMD is a non-parametric distribution discrepancy metric,
which is widely used since it can compare distributions without density estimation. We used the
Gaussian kernel and Gaussian width was determined by the median trick. For the proposed method,
RuLSIF, and RuLSIF-FT, relative PE divergence was used for the distribution discrepancy metric. For
uLSIF, D3RE, and D3RE-FT, PE divergence was used. Although the proposed method, RuLSIF-FT,
and D3RE-FT use source datasets for training, the others do not. Note that no methods use any
information of similarity/dissimilarity of two datasets during training.

Results Table 2 shows the mean test AUCs with different target support instance sizes. The
proposed method showed the best/comparable results for all cases. RuLSIF performed better than
uLSIF since relative DRE is more stable than DRE with a few instances. D3RE performed worse than
the proposed method since target support instances were too small to train its neural network. When
support instance size was small, the proposed method outperformed the others by a large margin.
This is because it is difficult for RuLSIF, uLSIF, D3RE, and MMD to compare two datasets from only
a few target instances. In contrast, the proposed method was able to accurately compare two datasets
from a few instances because it learns to perform accurate relative DRE with a few instances. Since
RuLSIF-FT and D3RE-FT were not trained for few-shot DRE, they did not perform well. Table 4
shows the results of the ablation study. Similar to the results in subsection 5.2, the proposed method
performed better than the others by considering both latent vectors and adapting to support instances.

5.4 Inlier-based Outlier Detection

We evaluate the proposed method with an inlier-based outlier detection problem. This problem is
to find outlier instances in an unlabeled dataset based on another dataset that consists of normal
instances. By defining the density-ratio where the numerator and denominator densities are normal
and unlabeled densities, respectively, we can see that the density-ratio values for outliers are close to
zero since outliers are in a region where normal (unlabeled) density is low (high). Thus, we can use
the negative density-ratio value as outlier scores [1, 14]. Similarly, the relative density-ratio values of
outliers are close to zero, and thus, we can also use them as outlier scores [49]. In this problem, each
dataset consists of normal and unlabeled instances Xd = Xnor

d ∪Xun
d . Along with this, we use a

slightly modified sampling procedure of Algorithm 1. Specifically, for each iteration, we sample one
dataset from the source datasets and create support and query instances from the dataset. The details
of the algorithm are described in the supplemental material. We assume that the number of target
normal support instances Nnor

S is small since labeling cost is often high in practice such as normal
behavior-based outlier systems for new users [24].

Data We used three real-world benchmark data: IoT3, Landmine4, and School5. These benchmark
data are commonly used in outlier detection studies [23, 15]. IoT is real network traffic data, which
are gathered from nine IoT devices (datasets) infected by malware. Landmine consists of 29 datasets,
and each instance is extracted from a radar image that captures a region of a minefield. School
contains the examination scores of students from 139 schools (datasets). We picked schools with 100
or more students, ending up with 74 datasets. The average outlier rates in a dataset of IoT, Landmine,
and School are 0.05, 0.06, and 0.15, respectively. The details of the benchmark data are described in
the supplemental material. For IoT, we randomly chose one target, one validation, and seven source
datasets. For Landmine, we randomly chose 3 target, 3 validation, and 23 source datasets. For School,
we randomly chose 10 target, 10 validation, and 54 source datasets. For each source/validation
dataset in IoT, Landmine, and School, we chose 200, 200, and 50 instances, respectively, as normal
and the remaining as unlabeled instances. For each target dataset, we used all instances except for

3 https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT 4

http://people.ee.duke.edu/ lcarin/LandmineData.zip 5 http://multilevel.ioe.ac.uk/intro/datasets.html
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Table 5: Results for inlier-based outlier detection: Average test AUCs [%] with different target normal
support instance sizes Nnor

S . Boldface denotes the best and comparable methods according to the
paired t-test (p = 0.05). Second column denotes the number of target normal support instances Nnor

S .

AE SD RulSIF D3RE
Data Ours RuLSIF uLSIF D3RE AE SD LOF IF AE-S SD-S -FT -FT -FT -FT
IoT 1 97.28 95.75 95.87 85.20 93.09 91.90 93.30 41.32 43.59 40.12 66.05 55.50 93.15 84.51

2 97.81 93.96 94.09 87.48 92.41 92.20 93.29 45.84 43.60 34.63 75.21 67.65 88.53 89.57
3 96.39 94.64 95.38 84.33 89.48 90.86 93.34 40.79 43.61 36.57 76.88 72.82 89.38 88.97
4 97.05 94.46 93.43 81.74 90.75 89.76 92.82 42.66 43.60 40.26 80.53 67.27 89.01 89.45
5 96.17 94.43 95.29 81.49 89.01 87.49 92.87 40.14 43.65 38.67 80.25 73.56 88.96 89.12

Avg. 96.94 94.65 94.81 84.05 90.95 90.44 93.12 42.15 43.61 38.05 75.78 67.36 89.80 88.33
Land 1 68.70 53.69 53.84 49.54 52.91 52.60 45.09 55.80 52.79 50.36 55.49 53.95 60.86 52.15
mine 2 64.92 55.56 55.21 52.54 50.39 53.00 45.17 56.08 52.79 51.16 52.08 52.35 62.55 55.15

3 63.66 54.74 54.41 51.84 49.50 49.16 45.17 56.90 52.80 50.97 55.43 53.67 61.36 53.34
4 66.24 54.94 53.98 52.21 49.65 51.74 45.12 55.73 52.80 50.08 55.40 52.40 62.04 51.90
5 63.05 55.46 53.42 53.32 50.88 51.08 45.19 56.35 52.79 50.08 54.43 54.34 62.62 54.46

Avg. 65.31 54.88 54.17 51.89 50.67 51.52 45.15 56.17 52.80 50.53 54.37 53.34 61.89 53.40
Sch 1 62.98 55.00 54.99 53.05 56.27 54.63 53.94 57.44 58.32 56.36 59.07 56.26 56.26 52.46
ool 2 62.18 56.34 54.81 53.79 57.20 56.24 53.73 57.11 58.27 56.64 59.27 58.53 56.02 53.47

3 64.30 56.69 55.93 54.81 57.54 56.71 54.26 57.10 58.28 56.51 59.51 57.25 55.36 54.28
4 63.70 58.15 57.42 54.78 58.46 57.63 54.10 57.09 58.25 56.15 59.70 55.66 55.60 55.61
5 64.61 57.76 57.71 54.89 58.54 57.01 54.12 56.92 58.24 56.75 59.33 56.84 56.11 56.02

Avg. 63.55 56.79 56.17 54.26 57.60 56.45 54.03 57.13 58.27 56.48 59.38 56.91 55.87 54.37

target normal support instances as unlabeled instances (test instances). For each benchmark data, we
randomly created 10 different splits of target/validation/source datasets and evaluated the mean test
AUC on the target datasets.

Comparison methods We compare the proposed method with 13 outlier detection methods: RuL-
SIF, uLSIF [14], D3RE, local outlier factor (LOF) [5], isolation forest (IF) [28], autoencoder (AE)
[38], deep support vector description (SD) [36], AE-S, SD-S, fine-tuning methods for AE and SD
(AE-FT and SD-FT), RuLSIF-FT, and D3RE-FT. LOF and IF use only target unlabeled instances to
find outliers. AE and SD use target normal instances for training. AE-S and SD-S use source normal
instances for training. AE-FT and SD-FT fine-tune models trained by AE-S and SD-S with target
normal instances, respectively. Note that although AE and SD-based methods can use unlabeled
instances as well as normal instances for training, they performed worse than them trained with only
normal instances. Thus, we used only normal instances for training. RuLSIF, uLSIF, and D3RE use
target normal and unlabeled instances. RuLSIF-FT and D3RE-FT use source normal and unlabeled
instances as well as target normal and unlabeled instances. Note that no methods use any information
of outliers for training. The details of the implementation such as neural network architectures and
hyperparameter candidates are described in the supplemental material.

Table 6: Ablation study for outlier detection.
Average test AUCs [%] over different target
normal support instance sizes.

No No NoSadapt
Data Ours Latent Sadapt -FT
IoT 96.94 97.63 95.17 94.44
Landmine 65.31 63.08 68.83 65.83
School 63.55 63.40 60.04 62.21
Avg. 75.27 74.70 74.49 74.16

Results Table 5 shows the mean test AUCs with dif-
ferent target normal support instance sizes. The pro-
posed method showed the best/comparable results for
all cases. Density-ratio methods such as RuLSIF and
uLSIF tended to show better results than the other com-
parison methods by using information from both target
normal and unlabeled instances. The proposed method
was able to further improve performance than RuL-
SIF and uLSIF by incorporating the mechanism for
few-shot relative DRE. Table 6 shows the results of an
ablation study. The best method can vary across benchmark data since each benchmark data has
different properties. For example, in IoT, all datasets are relatively similar, which is validated by the
fact that test AUCs are high [23]. Thus, the dataset-invariant embedding function h in NoLatent is
sufficient for adaptation. Nevertheless, the proposed method (Ours) showed the best average AUCs
over all benchmark data. In the supplemental material, we additionally showed that the proposed
method outperformed the PU learning method [21].

5.5 Dependency of Relative Parameter α

We investigated the dependency of relative parameter α > 0 in the proposed method. Relative
parameter α determines the upper bound of relative density-ratio value since rα(x) ≤ 1

α for any
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Table 7: Investigation of dependency of relative parameter α in the proposed method. Values in
relative DRE represent average test squared errors ignoring constant terms over different target
support instance sizes and all benchmark data. Values in dataset comparison and outlier detection
represent average test AUCs [%] over different target support instance sizes and all benchmark data.

Ours Ours Ours RuLSIF RuLSIF RuLSIF
Problem α=0.1 α=0.5 α=0.9 α=0.1 α=0.5 α=0.9
relative DRE -2.80 -0.83 -0.53 -0.64 -0.63 -0.48
dataset comparison 92.81 95.72 95.03 85.51 85.27 86.34
outlier detection 74.77 75.27 74.98 68.47 68.77 68.69

Table 8: Computation time in seconds for each method on dataset comparison. Ours (train) and
RuLSIF-FT (train) represent training time with source datasets for Ours and RuLSIF-FT, respectively.
Ours (test), RuLSIF-FT (test), RuLSIF, uLSIF, and MMD represent test time for 100 target dataset
comparisons.

Ours (train) Ours (test) RuLSIF uLSIF MMD RuLSIF-FT (train) RuLSIF-FT (test)
137.93 0.32 0.38 0.34 0.12 50.32 0.24

x. Table 7 shows results with α = 0.1, 0.5, and 0.9 for all three problems. The proposed method
consistently outperformed RuLSIF over different α values. This result suggests that the proposed
method is relatively robust against the relative parameter value. Note that, in relative DRE, comparison
between different α values is meaningless since the scale of the evaluation metrics is different. Besides,
various additional results such as investigation of the dependency of the dimensions of latent vectors
are described in the supplemental material.

5.6 Computation Cost

We investigated the computation time of the proposed method. Table 8 shows the computation time
of each method for dataset comparison with Mnist-r. We used a computer with a 2.20GHz CPU. The
support instance size in each target dataset was set to five. We omitted D3RE since it requires to train
the neural network for each target dataset comparison, which is quite time-consuming compared to
the others. Although the proposed method took time for training with source datasets, it was able to
compare datasets with relative DRE as fast as other methods.

6 Limitations

The proposed method uses multiple source datasets to improve relative DRE performance on target
datasets. However, when source and target datasets are significantly different, there is a risk of
degrading the performance on the target datasets. This phenomenon is called “negative transfer”,
and is a common challenge in general transfer/meta-learning methods. Developing methods to
automatically remove negative effects of such datasets is one of the important research directions.

7 Conclusion

In this paper, we proposed a meta-learning method for relative DRE. We empirically showed that the
proposed method outperformed various existing methods in three problems: relative DRE, dataset
comparison, and outlier detection. As future work, we plan to incorporate other DRE models such
as telescopic DRE [35] in our framework. We describe a potential negative social impact of our
work. The proposed method needs to access datasets obtained from multiple sources like almost all
meta-learning methods. When each dataset is provided from different owners, sensitive information
in the dataset risks being stolen and abused by malicious people. To evade this risk, we encourage
research for developing meta-learning methods without accessing raw datasets.
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