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Abstract
In Distributed optimization and Learning, and even more in the modern framework of fed-

erated learning, communication, which is slow and costly, is critical. We introduce LoCoDL, a
communication-efficient algorithm that leverages the two popular and effective techniques of Local
training, which reduces the communication frequency, and Compression, in which short bitstreams
are sent instead of full-dimensional vectors of floats. LoCoDL works with a large class of unbiased
compressors that includes widely-used sparsification and quantization methods. LoCoDL prov-
ably benefits from local training and compression and enjoys a doubly-accelerated communication
complexity, with respect to the condition number of the functions and the model dimension, in the
general heterogenous regime with strongly convex functions. This is confirmed in practice, with
LoCoDL outperforming existing algorithms.

1. Introduction

Distributed computations are now pervasive in all areas of science. Notably, Federated Learning
(FL) involves training machine learning models in a distributed, collaborative way [5, 26, 27, 34].
The key idea is to exploit information stored on distant devices, such as mobile phones or hos-
pital workstations. Challenges in FL include data privacy, robustness to adversarial attacks, and,
critically, communication efficiency [24, 28, 48]. Unlike centralized settings, FL clients perform
computations locally and communicate with a distant server, often over slow, costly, and unreliable
networks, creating a bottleneck for large-scale deployment.

To reduce communication burden, two strategies have emerged: 1) Local Training (LT), which
reduces communication frequency by performing multiple computation steps between rounds; and
2) Communication Compression (CC), where compressed information is sent instead of full-
dimensional vectors. We review LT and CC literature in Section A.

We propose a new randomized algorithm, LoCoDL, integrating LT and unbiased CC for com-
munication efficient FL and distributed optimization. This variance-reduced algorithm [13, 16, 20]
converges to an exact solution and benefits from both strategies, achieving a doubly accelerated
communication complexity with improved dependence on the condition number and model dimen-
sion.
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1.1. Problem and Motivation

We study distributed optimization problems of the form

minx∈Rd
1
n

∑n
i=1 fi(x) + g(x), (1)

where d ≥ 1 is the model dimension, and fi : Rd → R and g : Rd → R are smooth. We consider
a server-client model with n clients computing in parallel and communicating with a server. The
function fi is owned by client i. Problem (1) models empirical risk minimization, important in
machine learning [44, 45], and minimizing a sum of functions is common in various fields. Our
goal is to solve Problem (1) communication-efficiently in a heterogeneous setting where fi and g
can be arbitrarily different.

We focus on the strongly convex setting, assuming:

Assumption 1 (strongly convex functions) The functions fi and g are L-smooth and µ-strongly
convex, for some 0 < µ ≤ L. The unique solution of Problem (1) is denoted by x⋆, with condition
number κ := L/µ.

Problem (1) minimizes the average of n functions (fi+g), computed via ∇(fi+g) = ∇fi+∇g.
We illustrate the significance of the additional function g through four viewpoints, noting that we
can handle g = 0 as discussed in Section 3.1.
• Regularization. The function g can act as a regularizer, such as g = µ

2∥ · ∥2 for small µ > 0,
making the problem µ-strongly convex.
• Shared Dataset. The function g can represent the cost of a common dataset known to all clients.
• Server-Aided Training. The function g can model the cost of a core dataset known only to the
server, as explored in several works. However, we focus on the heterogeneous setting where g and
fi are not necessarily similar.
• New Mathematical and Algorithmic Principle. This concept led to the construction of LoCoDL,
detailed in Section 2.1.

In LoCoDL, clients make all gradient calls, computing ∇fi and ∇g. A variation where the server
makes calls to ∇g is provided in Appendix.

1.2. A General Class of Unbiased Random Compressors

We define the set U(ω) of random compression operators C : Rd → Rd that are unbiased, satisfying
E[C(x)] = x, and for every x ∈ Rd,

E
[
∥C(x)− x∥2

]
≤ ω ∥x∥2 . (2)

Given a collection (Ci)i = 1n of compression operators in U(ω), we introduce the constant
ωav ≥ 0 to characterize their joint variance, satisfying

E
[∥∥ 1

n

∑n
i=1

(
Ci(xi)− xi

)∥∥2] ≤ ωav
n

∑
i = 1n ∥xi∥2 . (3)

This inequality holds with ωav = ω due to the convexity of the squared norm. The convergence
rate depends on ωav, typically smaller than ω. If the compressors Ci are mutually independent, then
(3) holds with ωav = ω

n .
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1.3. Challenge and Contributions

This work addresses the question: Can we combine LT and CC with compressors from the generic
class U(ω) to achieve a doubly-accelerated communication complexity?

We answer affirmatively. LoCoDL utilizes the same probabilistic LT mechanism as Scaffnew and
incorporates CC with compressors in U(ω), ensuring linear convergence under Assumption 1 with-
out additional requirements. By optimizing communication probability and variance ω, we achieve
double acceleration. Consequently, LoCoDL matches the theoretical complexity of Compressed-
Scaffnew while supporting a broader range of compressors than its cumbersome permutation-based
counterpart. Notably, with compressors that enable sparsification and quantization, LoCoDL out-
performs existing algorithms, as demonstrated in Section B. While ADIANA offers better theoretical
complexity for n > d (see Table 1), it underperforms compared to LoCoDL in practice. Thus,
LoCoDL establishes new standards for communication efficiency.

2. Proposed Algorithm LoCoDL

2.1. Principle: Double Lifting of the Problem to a Consensus Problem

In LoCoDL, every client stores and updates two local model estimates. They will all converge to the
same solution x⋆ of (1). This construction comes from two ideas.

Local steps with local models. In algorithms making use of LT, such as FedAvg, Scaffold and
Scaffnew, the clients store and update local model estimates xi. When communication occurs, an
estimate of their average is formed by the server and broadcast to all clients. They all resume their
computations with this new model estimate.

Compressing the difference between two estimates. To implement CC, a powerful idea is
to compress not the vectors themselves, but difference vectors that converge to zero. This way,
the algorithm is variance-reduced; that is, the compression error vanishes at convergence. The
technique of compressing the difference between a gradient vector and a control variate is at the
core of algorithms such as DIANA and EF21. Here, we want to compress differences between model
estimates, not gradient estimates. That is, we want Client i to compress the difference between
xi and another model estimate that converges to the solution x⋆ as well. We see the need of an
additional model estimate that plays the role of an anchor for compression. This is the variable y
common to all clients in LoCoDL, which compress xi − y and send these compressed differences to
the server.

Combining the two ideas. Accordingly, an equivalent reformulation of (1) is the consensus
problem with n+ 1 variables

minx1,...,xn,y
1
n

∑n
i=1 fi(xi) + g(y) s.t. x1 = · · · = xn = y.

The primal–dual optimality conditions are x1 = · · · = xn = y, 0 = ∇fi(xi) − ui ∀i ∈ [n],
0 = ∇g(y)−v, and 0 = u1+ · · ·+un+nv (dual feasibility), for some dual variables u1, . . . , un, v
introduced in LoCoDL, that always satisfy the dual feasibility condition.

2.2. Description of LoCoDL

LoCoDL is a randomized primal–dual algorithm, shown as Algorithm 1. At every iteration, for every
i ∈ [n] in parallel, Client i first constructs a prediction x̂ti of its updated local model estimate, using
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Algorithm 1 LoCoDL
1: input: stepsizes γ > 0, χ > 0, ρ > 0; probability p ∈ (0, 1]; variance factor ω ≥ 0; local initial

estimates x01, . . . , x
0
n ∈ Rd, initial estimate y0 ∈ Rd, initial control variates u01, . . . , u

0
n ∈ Rd

and v0 ∈ Rd such that 1
n

∑n
i=1 u

0
i + v0 = 0.

2: for t = 0, 1, . . . do
3: for i = 1, . . . , n, at clients in parallel, do
4: x̂ti := xti − γ∇fi(x

t
i) + γuti

5: ŷt := yt − γ∇g(yt) + γvt // the clients store and update identical copies of yt, vt, ŷt

6: flip a coin θt ∈ {0, 1} with Prob(θt = 1) = p
7: if θt = 1 then
8: dti := Ct

i

(
x̂ti − ŷt

)
9: send dti to the server

10: at server: aggregate d̄t := 1
2n

∑n
j=1 d

t
j and broadcast d̄t to all clients

11: xt+1
i := (1− ρ)x̂ti + ρ(ŷt + d̄t)

12: ut+1
i := uti +

pχ
γ(1+2ω)

(
d̄t − dti

)
13: yt+1 := ŷt + ρd̄t

14: vt+1 := vt + pχ
γ(1+2ω) d̄

t

15: else
16: xt+1

i := x̂ti, y
t+1 = ŷt, ut+1

i := uti, v
t+1 := vt

17: end if
18: end for
19: end for

a GD step with respect to fi corrected by the dual variable uti. It also constructs a prediction ŷt of
the updated model estimate, using a GD step with respect to g corrected by the dual variable vt.
Since g is known by all clients, they all maintain and update identical copies of the variables y and
v. If there is no communication, which is the case with probability 1 − p, xi and y are updated
with these predicted estimates, and the dual variables ui and v are unchanged. If communication
occurs, which is the case with probability p, the clients compress the differences x̂ti − ŷt and send
these compressed vectors to the server, which forms d̄t equal to one half of their average. Then
the variables xi are updated using a convex combination of the local predicted estimates x̂ti and
the global but noisy estimate ŷt + d̄t. y is updated similarly. Finally, the dual variables are updated
using the compressed differences minus their weighted average, so that the dual feasibility condition
remains satisfied. The model estimates xti, x̂

t
i, y

t, ŷt all converge to x⋆, so that their differences,
as well as the compressed differences as a consequence of (2), converge to zero. This is the key
property that makes the algorithm variance-reduced. We consider the following assumption.

Assumption 2 (class of compressors) In LoCoDL the compressors Ct
i are all in U(ω) for some

ω ≥ 0. Moreover, for every i ∈ [n], i′ ∈ [n], t ≥ 0, t′ ≥ 0, Ct
i and Ct′

i′ are independent if t ̸= t′

(Ct
i and Ct

i′ at the same iteration t need not be independent). We define ωav ≥ 0 such that for every
t ≥ 0, the collection (Ct

i )
n
i=1 satisfies (3).

Remark 3 (partial participation) LoCoDL allows for a form of partial participation if we set
ρ = 1. Indeed, in that case, at steps 11 and 13 of the algorithm, all local variables xi as well as the
common variable y are overwritten by the same up-to-date model ŷt+ d̄t. So, it does not matter that

4



LOCODL: COMMUNICATION-EFFICIENT DISTRIBUTED LEARNING WITH LOCAL TRAINING AND COMPRESSION

for a non-participating client i with dti = 0, the x̂t
′
i were not computed for the t′ ≤ t since its last

participation, as they are not used in the process. However, a non-participating client should still
update its local copy of y at every iteration. This can be done when ∇g is much cheaper to compute
that ∇fi, as is the case with g = µ

2∥ · ∥2. A non-participating client can be completely idle for a
certain period of time, but when it resumes participating, it should receive the last estimates of x, y
and v from the server as it lost synchronization.

3. Convergence and Complexity of LoCoDL

Theorem 4 (linear convergence of LoCoDL) Suppose that Assumptions 1 and 2 hold. In LoCoDL,
suppose that 0 < γ < 2

L , 2ρ− ρ2(1+ωav)−χ ≥ 0. For every t ≥ 0, define the Lyapunov function

Ψt := 1
γ

(∑n
i=1

∥∥xti − x⋆
∥∥2 + n

∥∥yt − x⋆
∥∥2)+ γ(1+2ω)

p2χ

(∑n
i=1

∥∥uti − u⋆i
∥∥2 + n

∥∥vt − v⋆
∥∥2) ,

(4)
where v⋆ := ∇g(x⋆) and u⋆i := ∇fi(x

⋆). Then LoCoDL converges linearly: for every t ≥ 0,

E
[
Ψt
]
≤ τ tΨ0, where τ := max

(
(1− γµ)2, (1− γL)2, 1− p2χ

1+2ω

)
< 1. (5)

In addition, for every i ∈ [n], (xti)t∈N and (yt)t∈N converge to x⋆, (uti)t∈N converges to u⋆i , and
(vt)t∈N converges to v⋆, almost surely.

We place ourselves in the conditions of Theorem 4. We observe that in (5), the larger χ, the
better, so given ρ we should set χ = 2ρ− ρ2(1 + ωav). Then, choosing ρ to maximize χ yields

χ = ρ = 1
1+ωav

. (6)

We now study the complexity of LoCoDL with χ and ρ chosen as in (6) and γ = Θ( 1L). We
remark that LoCoDL has the same rate τ ♯ := max(1 − γµ, γL − 1)2 as mere distributed gradient
descent, as long as p−1, ω and ωav are small enough to have 1 − p2χ

1+2ω ≤ τ ♯. This is remarkable:
communicating with a low frequency and compressed vectors does not harm convergence at all,
until some threshold.

The iteration complexity of LoCoDL to reach ϵ-accuracy, i.e. E
[
Ψt
]
≤ ϵΨ0, is

O
((

κ+ (1+ωav)(1+ω)
p2

)
log ϵ−1

)
. (7)

By choosing

p = min

(√
(1+ωav)(1+ω)

κ , 1

)
, (8)

the iteration complexity becomes O
((

κ+ω(1+ωav)
)
log ϵ−1

)
and the communication complexity

in number of communication rounds is p times the iteration complexity, that is

O
((√

κ(1 + ωav)(1 + ω) + ω(1 + ωav)
)
log ϵ−1

)
.

If the compressors are mutually independent, ωav = ω
n and the communication complexity can be

equivalently written as

O
(((

1 +
√
ω + ω√

n

)√
κ+ ω

(
1 + ω

n

))
log ϵ−1

)
,
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as shown in Table 2.
Let us consider the example of independent rand-k compressors, for some k ∈ [d]. We have

ω = d
k −1. Therefore, the communication complexity in numbers of reals is k times the complexity

in number of rounds; that is, O
(((√

kd+ d√
n

)√
κ+ d

(
1 + d

kn

))
log ϵ−1

)
. We can now choose

k to minimize this complexity: with k = ⌈ d
n⌉, it becomes O

(((√
d+ d√

n

)√
κ+ d

)
log ϵ−1

)
, as

shown in Table 1. Let us state this result:

Corollary 5 In the conditions of Theorem 4, suppose in addition that the compressors Ct
i are

independent rand-k compressors with k = ⌈ d
n⌉. Suppose that γ = Θ( 1L), χ = ρ = n

n−1+d/k , and

p = min

(√
dk(n−1)+d2

nk2κ
, 1

)
. (9)

Then the uplink communication complexity in number of reals of LoCoDL is

O
((√

d
√
κ+ d

√
κ√
n
+ d
)
log ϵ−1

)
. (10)

This is the same complexity as CompressedScaffnew [9]. However, it is obtained with simple
independent compressors, which is much more practical than the permutation-based compressors
with shared randomness of CompressedScaffnew. Moreover, this complexity can be obtained with
other types of compressors, and further reduced, when reasoning in number of bits and not only
reals, by making use of quantization [1], as we illustrate by experiments in the next section.

We can distinguish 2 regimes:
1. In the “large d small n” regime, i.e. n = O(d), the communication complexity of LoCoDL in

(10) becomes O
((

d
√
κ√
n
+ d
)
log ϵ−1

)
. This is the state of the art, as reported in Table 1.

2. In the “large n small d” regime, i.e. n = Ω(d), the communication complexity of LoCoDL

in (10) becomes O
((√

d
√
κ+ d

)
log ϵ−1

)
. If n is even larger with n = Ω(d2), ADIANA achieves

the even better complexity O
(
(
√
κ+ d) log ϵ−1

)
.

Yet, in the experiments we ran with different datasets and values of d, n, κ, LoCoDL outperforms
the other algorithms, including ADIANA, in all cases.

3.1. The Case g = 0

We have assumed the presence of a function g in Problem (1), whose gradient is called by all clients.
In this section, we show that we can handle the case where such a function is not available. So, let
us assume that we want to minimize 1

n

∑n
i=1 fi, with the functions fi satisfying Assumption 1.

We now define the functions f̃i := fi − µ
4 ∥·∥

2 and g̃ := µ
4 ∥·∥

2. They are all L̃-smooth and µ̃-
strongly convex, with L̃ := L − µ

2 and µ̃ := µ
2 . Moreover, it is equivalent to minimize 1

n

∑n
i=1 fi

or 1
n

∑n
i=1 f̃i + g̃. We can then apply LoCoDL to the latter problem. At Step 5, we simply have

yt−γ∇g̃(yt) = (1− γµ
2 )yt. The rate in (5) applies with L and µ replaced by L̃ and µ̃, respectively.

Since κ ≤ κ̃ := L̃
µ̃ ≤ 2κ, the asymptotic complexities derived above also apply to this setting. Thus,

the presence of g in Problem (1) is not restrictive at all, as the only property of g that matters is that
it has the same amount of strong convexity as the fis.
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[8] L. Condat and P. Richtárik. RandProx: Primal-dual optimization algorithms with randomized
proximal updates. In Proc. of International Conference on Learning Representations (ICLR),
2023.
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[10] L. Condat, K. Li, and P. Richtárik. EF-BV: A unified theory of error feedback and variance
reduction mechanisms for biased and unbiased compression in distributed optimization. In
Proc. of Conf. Neural Information Processing Systems (NeurIPS), 2022.
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pression for distributed deep learning. In Proc. of the conference Mathematical and Scientific
Machine Learning (MSML), PMLR 190, 2022.
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Appendix A. State of the Art

We review the latest developments on communication-efficient algorithms for distributed learning,
making use of LT, CC, or both. Before that, we note that we should distinguish uplink, or clients-to-
server, from downlink, or server-to-clients, communication. Uplink is usually slower than downlink
communication, since uploading different messages in parallel to the server is slower than broad-
casting the same message to an arbitrary number of clients. This can be due to cache memory
and aggregation speed constraints of the server, as well as asymmetry of the service provider’s
systems or protocols used on the internet or cell phone network. In this work, we focus on the
uplink communication complexity, which is the bottleneck in practice. Indeed, the goal is to ex-
ploit parallelism to obtain better performance when n increases. Precisely, with LoCoDL, the uplink
communication complexity decreases from O

(
d
√
κ log ϵ−1

)
when n is small to O

(√
d
√
κ log ϵ−1

)
when n is large, where the condition number κ is defined in Assumption 1, see Corollary 5. Many
works have considered bidirectional compression, which consists in compressing the messages sent
both ways [7, 14, 18, 30, 37, 38, 46] but to the best of our knowledge, this has no impact on the
downlink complexity, which cannot be reduced further than O

(
d
√
κ log ϵ−1

)
, just because there

is no parallelism to exploit in this direction. Thus, we focus our analysis on theoretical and algo-
rithmic techniques to reduce the uplink communication complexity, which we call communication
complexity in short, and we ignore downlink communication.

Communication Compression (CC) consists in applying some lossy scheme that compresses
vectors into messages of small bit size, which are communicated. For instance, the well-known
rand-k compressor selects k coordinates of the vector uniformly at random, for some k ∈ [d] :=
{1, . . . , d}. k can be as small as 1, in which case the compression factor is d, which can be huge.
Some compressors, such as rand-k, are unbiased, whereas others are biased; we refer to Albasyoni
et al. [1], Beznosikov et al. [4], Condat et al. [10], Horváth et al. [22] for several examples and a
discussion of their properties. The introduction of DIANA by Mishchenko et al. [35] was a major
milestone, as this algorithm converges linearly with the large class of unbiased compressors defined
in Section 1.2 and also considered in LoCoDL. The communication complexity O

(
dκ log ϵ−1

)
of

the basic Gradient Descent (GD) algorithm is reduced with DIANA to O
(
(κ + d) log ϵ−1

)
when n

is large, see Table 1. DIANA was later extended in several ways [7, 13, 23]. An accelerated version
of DIANA called ADIANA based on Nesterov Accelerated GD has been proposed [29] and further
analyzed in He et al. [21]; it has the state-of-the-art theoretical complexity.

Algorithms converging linearly with biased compressors have also been proposed, such as EF21
[10, 12, 40], but the acceleration potential is less understood than with unbiased compressors. Algo-
rithms with CC such as MARINA [15] and DASHA [47] have been proposed for nonconvex optimiza-
tion, but their analysis requires a different approach and there is a gap in the achievable performance:
their complexity depends on ωκ√

n
instead of ωκ

n with DIANA, where ω characterizes the compression
error variance, see (2). Therefore, we focus on the convex setting and leave the nonconvex study for
future work.

Local Training (LT) is a simple but remarkably efficient idea: the clients perform multiple
Gradient Descent (GD) steps, instead of only one, between successive communication rounds. The
intuition behind is that this leads to the communication of richer information, so that the number
of communication rounds to reach a given accuracy is reduced. We refer to Mishchenko et al. [36]
for a comprehensive review of LT-based algorithms, which include the popular FedAvg and Scaffold
algorithms of McMahan et al. [34] and Karimireddy et al. [25], respectively. Mishchenko et al.
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Table 1: (Uplink) communication complexity in number of reals to reach ϵ-accuracy for linearly-
converging algorithms allowing for CC, with an optimal choice of unbiased compressors.
We provide the leading asymptotic factor and ignore log factors such as log ϵ−1. The state
of the art is highlighted in green.

Algorithm complexity in # reals case n=O(d)

DIANA (1 + d
n)κ+ d d

nκ+ d
EF21 dκ dκ

5GCS-CC
(√

d+ d√
n

)√
κ+ d d√

n

√
κ+ d

ADIANA
(
1 + d√

n

)√
κ+ d d√

n

√
κ+ d

CompressedScaffnew
(√

d+ d√
n

)√
κ+ d d√

n

√
κ+ d

FedCOMGATE dκ dκ

LoCoDL
(√

d+ d√
n

)√
κ+ d d√

n

√
κ+ d

[36] made a breakthrough by proposing Scaffnew, the first LT-based variance-reduced algorithm
that not only converges linearly to the exact solution in the strongly convex setting, but does so with
accelerated communication complexity O(d

√
κ log ϵ−1). In Scaffnew, communication can occur

randomly after every iteration, but occurs only with a small probability p. Thus, there are in average
p−1 local steps between successive communication rounds. The optimal dependency on

√
κ [43]

is obtained with p = 1/
√
κ. LoCoDL has the same probabilistic LT mechanism as Scaffnew but

does not revert to it when compression is disabled, because of the additional function g and tracking
variables y and v. A different approach to LT was developed by Sadiev et al. [41] with the APDA-
Inexact algorithm, and generalized to handle partial participation by Grudzień et al. [17] with the
5GCS algorithm: in both algorithms, the local GD steps form an inner loop in order to compute a
proximity operator inexactly.

Combining LT and CC while retaining their benefits is very challenging. In our strongly
convex and heterogeneous setting, the methods Qsparse-local-SGD [2] and FedPAQ [39] do not
converge linearly. FedCOMGATE features LT + CC and converges linearly [19], but its complexity
O(dκ log ϵ−1) does not show any acceleration. We can mention that random reshuffling, a technique
that can be seen as a type of LT, has been combined with CC in Malinovsky and Richtárik [32],
Sadiev et al. [42]. Recently, Condat et al. [9] managed to design a specific compression technique
compatible with the LT mechanism of Scaffnew, leading to CompressedScaffnew, the first LT +
CC algorithm exhibiting a doubly-accelerated complexity, namely O

((√
d
√
κ+ d

√
κ√
n
+d
)
log ϵ−1

)
,

as reported in Table 1. However, CompressedScaffnew uses a specific linear compression scheme
that requires shared randomness; that is, all clients have to agree on a random permutation of the
columns of the global compression pattern. No other compressor can be used, which notably rules
out any type of quantization.
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Table 2: Communication complexity in number of communication rounds to reach ϵ-accuracy for
linearly-converging algorithms allowing for CC with independent compressors in U(ω)
for any ω ≥ 0. Since the compressors are independent, ωav = ω

n . We provide the leading
asymptotic factor and ignore log factors such as log ϵ−1. The state of the art is highlighted
in green.

Algorithm Com. complexity in # rounds case ω = O(n) case ω = Θ(n)

DIANA (1 + ω
n )κ+ ω κ+ ω κ+ ω

EF21 (1 + ω)κ (1 + ω)κ (1 + ω)κ

5GCS-CC
(
1+

√
ω+ ω√

n

)√
κ+ ω (1+

√
ω)

√
κ+ ω (1+

√
ω)

√
κ+ ω

ADIANA1
(
1+ ω3/4

n1/4 +
ω√
n

)√
κ+ ω

(
1+ ω3/4

n1/4

)√
κ+ ω (1+

√
ω)

√
κ+ ω

ADIANA2
(
1 + ω√

n

)√
κ+ ω

(
1 + ω√

n

)√
κ+ ω (1+

√
ω)

√
κ+ ω

lower bound2
(
1 + ω√

n

)√
κ+ ω

(
1 + ω√

n

)√
κ+ ω (1+

√
ω)

√
κ+ ω

LoCoDL
(
1+

√
ω+ ω√

n

)√
κ+ ω(1+ ω

n ) (1+
√
ω)

√
κ+ ω (1+

√
ω)

√
κ+ ω

1This is the complexity derived in the original paper Li et al. [29].
2This is the complexity derived by a refined analysis in the preprint He et al. [21], where a matching lower

bound is also derived.

Appendix B. Experiments

We evaluate the performance of our proposed method LoCoDL and compare it with several other
methods that also allow for CC and converge linearly to x⋆. We also include GradSkip [33] and
Scaffold [34] in our comparisons. We focus on a regularized logistic regression problem, which has
the form (1) with

fi(x) =
1

m

m∑
s=1

log
(
1+exp

(
−bi,sa

⊤
i,sx
))

+
µ

2
∥x∥2 (11)

and g = µ
2∥x∥

2, where n is the number of clients, m is the number of data points per client,
ai,s ∈ Rd and bi,s ∈ {−1,+1} are the data samples, and µ is the regularization parameter, set so
that κ = 104. For all algorithms other than LoCoDL, for which there is no function g, the functions
fi in (11) have a twice higher µ, so that the problem remains the same.

We considered several datasets from the LibSVM library [6] (3-clause BSD license). We show
the results with the ‘a5a’ dataset in Figure 1 and with other datasets in the Appendix. We prepared
each dataset by first shuffling it, then distributing it equally among the n clients (since m in (11) is
an integer, the remaining datapoints were discarded). We used four different compression operators
in the class U(ω), for some ω ≥ 0:

• rand-k for some k ∈ [d], which communicates 32k+k⌈log2(d)⌉ bits. Indeed, the k randomly
chosen values are sent in the standard 32-bits IEEE floating-point format, and their locations are
encoded with k⌈log2(d)⌉ additional bits. We have ω = d

k − 1.
• Natural Compression [22], a form of quantization in which floats are encoded into 9 bits

instead of 32 bits. We have ω = 1
8 .
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Figure 1: Comparison of several algorithms with several compressors on logistic regression with
the ‘a5a’ dataset from the LibSVM, which has d = 122 and 6,414 data points. We chose
different values of n to illustrate the two regimes n < d and n > d, as discussed at the
end of Section 3.

• A combination of rand-k and Natural Compression, in which the k chosen values are en-
coded into 9 bits, which yields a total of 9k + k⌈log2(d)⌉ bits. We have ω = 9d

8k − 1.
• The l1-selection compressor, defined as C(x) = sign(xj)∥x∥1ej , where j is chosen randomly

in [d], with the probability of choosing j′ ∈ [d] equal to |xj′ |/∥x∥1, and ej is the j-th standard unit
basis vector in Rd. sign(xj)∥x∥1 is sent as a 32-bits float and the location of j is indicated with
⌈log2(d)⌉, so that this compressor communicates 32 + ⌈log2(d)⌉ bits. Like with rand-1, we have
ω = d− 1.

The compressors at different clients are independent, so that ωav = ω
n in (3).

We can see that LoCoDL, when combined with rand-k and Natural Compression, converges
faster than all other algorithms, with respect to the total number of communicated bits per client. We
chose two different numbers n of clients, one with n < d and another one with n > 2d, since the
compressor of CompressedScaffnew is different in the two cases n < 2d and n > 2d [9]. LoCoDL
outperforms CompressedScaffnew in both cases. As expected, all methods exhibit faster conver-
gence with larger n. Remarkably, ADIANA, which has the best theoretical complexity for large
n, improves upon DIANA but is not competitive with the LT-based methods CompressedScaffnew,
5GCS-CC, and LoCoDL. This illustrates the power of doubly-accelerated methods based on a suc-
cessful combination of LT and CC. In this class, our new proposed LoCoDL algorithm shines. For
all algorithms, we used the theoretical parameter values given in their available convergence results
(Corollary 5 for LoCoDL). We tried to tune the parameter values, such as k in rand-k and the
(average) number of local steps per round, but this only gave minor improvements. For instance,
ADIANA in Figure 1 was a bit faster with the best value of k = 20 than with k = 30. Increasing the
learning rate γ led to inconsistent results, with sometimes divergence.
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Appendix C. Conclusion

We have proposed LoCoDL, which combines a probabilistic Local Training mechanism similar to
the one of Scaffnew and Communication Compression with a large class of unbiased compressors.
This successful combination makes LoCoDL highly communication-efficient, with a doubly acceler-
ated complexity with respect to the model dimension d and the condition number of the functions. In
practice, LoCoDL outperforms other algorithms, including ADIANA, which has an even better com-
plexity in theory obtained from Nesterov acceleration and not Local Training. This again shows the
relevance of the popular mechanism of Local Training, which has been widely adopted in Federated
Learning. A venue for future work is to implement bidirectional compression [30, 38]. We will
also investigate extensions of our method with calls to stochastic gradient estimates, with or with-
out variance reduction, as well as partial participation. These two features have been proposed for
Scaffnew in Malinovsky et al. [31] and Condat et al. [11], but they are challenging to combine with
generic compression.

Appendix D. Proof of Theorem 4

We define the Euclidean space X := Rd and the product space X := X n+1 endowed with the
weighted inner product

⟨x,x′⟩X :=
n∑

i=1

⟨xi, x′i⟩+ n⟨y, y′⟩, ∀x = (x1, . . . , xn, y),x
′ = (x′1, . . . , x

′
n, y

′). (12)

We define the copy operator 1 : x ∈ X 7→ (x, . . . , x, x) ∈ X and the linear operator

S : x ∈ X 7→ 1x̄, with x̄ =
1

2n

(
n∑

i=1

xi + ny

)
. (13)

S is the orthogonal projector in X onto the consensus line {x ∈ X : x1 = · · · = xn = y}. We
also define the linear operator

W := Id−S : x = (x1, . . . , xn, y) ∈ X 7→ (x1−x̄, . . . , xn−x̄, y−x̄), with x̄ =
1

2n

(
n∑

i=1

xi + ny

)
,

(14)
where Id denotes the identity. W is the orthogonal projector in X onto the hyperplane {x ∈ X :
x1+· · ·+xn+ny = 0}, which is orthogonal to the consensus line. As such, it is self-adjoint, positive
semidefinite, its eigenvalues are (1, . . . , 1, 0), its kernel is the consensus line, and its spectral norm
is 1. Also, W 2 = W . Note that we can write W in terms of the differences di = xi − y and
d̄ = 1

2n

∑n
i=1 di:

W : x = (x1, . . . , xn, y) 7→
(
d1 − d̄, . . . , dn − d̄,−d̄

)
. (15)

Since for every x = (x1, . . . , xn, y), Wx = 0 := (0, . . . , 0, 0) if and only if x1 = · · · = xn =
y, we can reformulate the problem (1) as

min
x=(x1,...,xn,y)∈X

f(x) s.t. Wx = 0, (16)
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where f(x) :=
∑n

i=1 fi(xi) + ng(y). Note that in X , f is L-smooth and µ-strongly convex, and
∇f(x) =

(
∇f1(x1), . . .∇fn(xn),∇g(y)

)
.

Let t ≥ 0. We also introduce vector notations for the variables of the algorithm: xt :=
(xt1, . . . , x

t
n, y

t), x̂t := (x̂t1, . . . , x̂
t
n, ŷ

t), ut := (ut1, . . . , u
t
n, v

t), u⋆ := (u⋆1, . . . , u
⋆
n, v

⋆), wt :=
xt − γ∇f(xt), w⋆ := x⋆ − γ∇f(x⋆), where x⋆ := 1x⋆ is the unique solution to (16). We also
define x̄t := 1

2n

(∑n
i=1 x̂

t
i + nŷt

)
and λ := pχ

γ(1+2ω) .
Then we can write the iteration of LoCoDL as

x̂t := xt − γ∇f(xt) + γut = wt + γut

flip a coin θt ∈ {0, 1} with Prob(θt = 1) = p
if θt = 1
dt :=

(
Ct
1(x̂

t
1 − ŷt), . . . , Ct

n(x̂
t
n − ŷt), 0

)
d̄t := 1

2n

∑n
j=1 d

t
j

xt+1 := (1− ρ)x̂t + ρ1(ŷt + d̄t)
ut+1 := ut + λ

(
1d̄t − dt

)
= ut − λWdt

else
xt+1 := x̂t

ut+1 := ut

end if

(17)

We denote by F t the σ-algebra generated by the collection of X -valued random variables
x0,u0, . . . ,xt,ut.

Since we suppose that Su0 = 0 and we have SWdt′ = 0 in the update of u, we have Sut′ = 0
for every t′ ≥ 0.

If θt = 1, we have∥∥ut+1 − u⋆
∥∥2
X =

∥∥ut − u⋆
∥∥2
X + λ2

∥∥Wdt
∥∥2
X − 2λ⟨ut − u⋆,Wdt⟩X

=
∥∥ut − u⋆

∥∥2
X + λ2

∥∥dt
∥∥2
X − λ2

∥∥Sdt
∥∥2
X − 2λ⟨ut − u⋆,dt⟩X ,

because Sut = Su⋆ = 0, so that ⟨ut − u⋆, Sdt⟩X = 0.
The variance inequality (2) satisfied by the compressors Ct

i is equivalent to E
[∥∥Ct

i (x)
∥∥2] ≤

(1 + ω) ∥x∥2, so that

E
[∥∥dt

∥∥2
X | F t, θt = 1

]
≤ (1 + ω)

∥∥x̂t − 1ŷt
∥∥2
X .

Also,
E
[
dt | F t, θt = 1

]
= x̂t − 1ŷt.

Thus,

E
[∥∥ut+1 − u⋆

∥∥2
X | F t

]
= (1− p)

∥∥ut − u⋆
∥∥2
X + pE

[∥∥ut+1 − u⋆
∥∥2
X | F t, θt = 1

]
≤
∥∥ut − u⋆

∥∥2
X + pλ2(1 + ω)

∥∥x̂t − 1ŷt
∥∥2
X − pλ2E

[∥∥Sdt
∥∥2
X | F t, θt = 1

]
− 2pλ⟨ut − u⋆, x̂t − 1ŷt⟩X

=
∥∥ut − u⋆

∥∥2
X + pλ2(1 + ω)

∥∥x̂t − 1ŷt
∥∥2
X − pλ2E

[∥∥Sdt
∥∥2
X | F t, θt = 1

]
− 2pλ⟨ut − u⋆, x̂t⟩X .
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Moreover, E
[∥∥Sdt

∥∥2
X | F t, θt = 1

]
≥
∥∥E[Sdt | F t, θt = 1

]∥∥2
X =

∥∥Sx̂t − 1ŷt
∥∥2
X and

∥∥x̂t − 1ŷt
∥∥2
X =∥∥Sx̂t − 1ŷt

∥∥2
X +

∥∥W x̂t
∥∥2
X , so that

E
[∥∥ut+1 − u⋆

∥∥2
X | F t

]
≤
∥∥ut − u⋆

∥∥2
X + pλ2(1 + ω)

∥∥x̂t − 1ŷt
∥∥2
X − pλ2

∥∥Sx̂t − 1ŷt
∥∥2

− 2pλ⟨ut − u⋆, x̂t⟩X
=
∥∥ut − u⋆

∥∥2
X + pλ2ω

∥∥x̂t − 1ŷt
∥∥2
X + pλ2

∥∥W x̂t
∥∥2 − 2pλ⟨ut − u⋆, x̂t⟩X .

From the Peter–Paul inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 for any a and b, we have

∥∥x̂t − 1ŷt
∥∥2
X =

n∑
i=1

∥∥x̂ti − ŷt
∥∥2 = n∑

i=1

∥∥(x̂ti − x̄t)− (ŷt − x̄t)
∥∥2

≤
n∑

i=1

(
2
∥∥x̂ti − x̄t)

∥∥2 + 2
∥∥ŷt − x̄t

∥∥2)
= 2

(
n∑

i=1

∥∥x̂ti − x̄t)
∥∥2 + n

∥∥ŷt − x̄t
∥∥2)

= 2
∥∥x̂t − 1x̄t

∥∥2
X = 2

∥∥W x̂t
∥∥2
X . (18)

Hence,

E
[∥∥ut+1 − u⋆

∥∥2
X | F t

]
≤
∥∥ut − u⋆

∥∥2
X + pλ2(1 + 2ω)

∥∥W x̂t
∥∥2
X − 2pλ⟨ut − u⋆, x̂t⟩X .

On the other hand,

E
[∥∥xt+1 − x⋆

∥∥2
X | F t, θ = 1

]
= (1− ρ)2

∥∥x̂t − x⋆
∥∥2
X + ρ2E

[∥∥1(ŷt + d̄t)− x⋆
∥∥2
X | F t, θ = 1

]
+ 2ρ(1− ρ)

〈
x̂t − x⋆,1

(
ŷt + E

[
d̄t | F t, θ = 1

] )
− x⋆

〉
X .

We have E
[
d̄t | F t, θ = 1

]
= 1

2n

∑n
i=1 x̂

t
i − 1

2 ŷ
t = x̄t − ŷt, so that

1
(
ŷt + E

[
d̄t | F t, θ = 1

])
= 1x̄t = Sx̂t.

In addition, 〈
x̂t − x⋆, Sx̂t − x⋆

〉
X =

〈
x̂t − x⋆, S(x̂t − x⋆)

〉
X =

∥∥S(x̂t − x⋆)
∥∥2
X .

Moreover,

E
[∥∥1(ŷt + d̄t)− x⋆

∥∥2
X | F t, θ = 1

]
=
∥∥1(ŷt + E

[
d̄t | F t, θ = 1

])
− x⋆

∥∥2
X

+ E
[∥∥1(d̄t − E

[
d̄t | F t, θ = 1

])∥∥2
X | F t, θ = 1

]
=
∥∥Sx̂t − x⋆

∥∥2
X

+ 2nE
[∥∥d̄t − E

[
d̄t | F t, θ = 1

]∥∥2 | F t, θ = 1
]
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and, using (3),

E
[∥∥d̄t − E

[
d̄t | F t, θ = 1

]∥∥2 | F t, θ = 1
]
≤ ωav

4n

n∑
i=1

∥∥x̂ti − ŷt
∥∥2

≤ ωav

2n

∥∥W x̂t
∥∥2
X ,

where the second inequality follows from (18). Hence,

E
[∥∥xt+1 − x⋆

∥∥2
X | F t, θ = 1

]
≤ (1− ρ)2

∥∥x̂t − x⋆
∥∥2
X + ρ2

∥∥Sx̂t − x⋆
∥∥2
X + ρ2ωav

∥∥W x̂t
∥∥2
X

+ 2ρ(1− ρ)
∥∥S(x̂t − x⋆)

∥∥2
X

= (1− ρ)2
∥∥x̂t − x⋆

∥∥2
X + ρ2ωav

∥∥W x̂t
∥∥2
X

+ (2ρ− ρ2)
∥∥S(x̂t − x⋆)

∥∥2
X

= (1− ρ)2
∥∥x̂t − x⋆

∥∥2
X + ρ2ωav

∥∥W x̂t
∥∥2
X

+ (2ρ− ρ2)
(∥∥x̂t − x⋆

∥∥2
X −

∥∥W x̂t
∥∥2
X

)
=
∥∥x̂t − x⋆

∥∥2
X −

(
2ρ− ρ2 − ρ2ωav

) ∥∥W x̂t
∥∥2
X

and

E
[∥∥xt+1 − x⋆

∥∥2
X | F t

]
= (1− p)

∥∥x̂t − x⋆
∥∥2
X + pE

[∥∥xt+1 − x⋆
∥∥2
X | F t, θt = 1

]
≤
∥∥x̂t − x⋆

∥∥2
X − p

(
2ρ− ρ2(1 + ωav)

) ∥∥W x̂t
∥∥2
X .

Furthermore,∥∥x̂t − x⋆
∥∥2
X =

∥∥wt −w⋆
∥∥2
X + γ2

∥∥ut − u⋆
∥∥2
X + 2γ⟨wt −w⋆,ut − u⋆⟩X

=
∥∥wt −w⋆

∥∥2
X − γ2

∥∥ut − u⋆
∥∥2
X + 2γ⟨x̂t − x⋆,ut − u⋆⟩X

=
∥∥wt −w⋆

∥∥2
X − γ2

∥∥ut − u⋆
∥∥2
X + 2γ⟨x̂t,ut − u⋆⟩X ,

which yields

E
[∥∥xt+1 − x⋆

∥∥2
X | F t

]
≤
∥∥wt −w⋆

∥∥2
X − γ2

∥∥ut − u⋆
∥∥2
X + 2γ⟨x̂t,ut − u⋆⟩X

− p
(
2ρ− ρ2(1 + ωav)

) ∥∥W x̂t
∥∥2
X .

Hence, with λ = pχ
γ(1+2ω) ,

1

γ
E
[∥∥xt+1 − x⋆

∥∥2
X | F t

]
+

γ(1 + 2ω)

p2χ
E
[∥∥ut+1 − u⋆

∥∥2
X | F t

]
≤ 1

γ

∥∥wt −w⋆
∥∥2
X − γ

∥∥ut − u⋆
∥∥2
X + 2⟨x̂t,ut − u⋆⟩X − p

γ

(
2ρ− ρ2(1 + ωav)

) ∥∥W x̂t
∥∥2
X

+
γ(1 + 2ω)

p2χ

∥∥ut − u⋆
∥∥2
X +

pχ

γ

∥∥W x̂t
∥∥2
X − 2⟨ut − u⋆, x̂t⟩X

=
1

γ

∥∥wt −w⋆
∥∥2
X +

γ(1 + 2ω)

p2χ

(
1− p2χ

1 + 2ω

)∥∥ut − u⋆
∥∥2
X

− p

γ

(
2ρ− ρ2(1 + ωav)− χ

) ∥∥W x̂t
∥∥2
X .
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Therefore, assuming that 2ρ− ρ2(1 + ωav)− χ ≥ 0,

E
[
Ψt+1 | F t

]
≤ 1

γ

∥∥wt −w⋆
∥∥2
X +

(
1− p2χ

1 + 2ω

)
γ(1 + 2ω)

p2χ

∥∥ut − u⋆
∥∥2
X .

According to Condat and Richtárik [8, Lemma 1],∥∥wt −w⋆
∥∥2
X =

∥∥(Id− γ∇f)xt − (Id− γ∇f)x⋆
∥∥2
X

≤ max(1− γµ, γL− 1)2
∥∥xt − x⋆

∥∥2
X .

Hence,

E
[
Ψt+1 | F t

]
≤ max

(
(1− γµ)2, (1− γL)2, 1− p2χ

1 + 2ω

)
Ψt. (19)

Using the tower rule, we can unroll the recursion in (19) to obtain the unconditional expectation of
Ψt+1.

Using classical results on supermartingale convergence [3, Proposition A.4.5], it follows from
(19) that Ψt → 0 almost surely. Almost sure convergence of xt and ut follows.

Appendix E. Additional Experiments

The results for the experiments in Section B with the ‘diabetes’ dataset from the LibSVM library
[6] are shown in Figure 2. The results with the ‘w1a’ and ‘australian’ datasets, for the same logistic
regression problem with κ = 104, are shown in Figures 3 and 4.

Consistent with our previous findings, LoCoDL outperforms the other algorithms in terms of
communication efficiency.
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Figure 2: Comparison of several algorithms with several compressors on logistic regression with
the ‘diabetes’ dataset from the LibSVM, which has d = 8 and 768 data points. We chose
different values of n to illustrate the three regimes n < d, n > d, n > d2, as discussed at
the end of Section 3.
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(c) n = 225

Figure 3: Comparison of several algorithms with various compressors on logistic regression with
the ‘australian’ dataset from the LibSVM, which has d = 14 and 690 data points. We
chose different values of n to illustrate the three regimes: n < d, n > d, n > d2, as
discussed at the end of Section 3.
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Figure 4: Comparison of several algorithms with various compressors on logistic regression with
the ‘w1a’ dataset from the LibSVM, which has d = 300 and 2,477 data points. We chose
different values of n to illustrate the two regimes, n < d and n > d, as discussed at the
end of Section 3.
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