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Abstract
Decision processes in AI and operations research
often involve parametric optimization problems,
whose unknown parameters must be predicted
from correlated data. In such settings, the Predict-
Then-Optimize (PtO) paradigm trains paramet-
ric prediction models end-to-end with the subse-
quent optimization model. This paper extends
PtO to handle optimization of the nondifferen-
tiable Ordered Weighted Averaging (OWA) objec-
tives, known for their ability to ensure fair and ro-
bust solutions with respect to multiple objectives.
By proposing efficient differentiable approxima-
tions of OWA optimization, it provides a frame-
work for integrating fair optimization concepts
with parametric prediction under uncertainty.

1. Introduction
The Predict-Then-Optimize (PtO) framework [1] models
decision-making processes as optimization problems with
unspecified parameters c, which must be estimated by a
machine learning (ML) model, given correlated features z.
An estimation of c completes the problem’s specification,
whose solution defines a mapping:

x⋆(c) = argmax
x∈S

f(x, c) (1)

The goal is to learn a model ĉ = Mθ(z) from observable
features z, such that the objective value f(x⋆(ĉ), c) under
ground-truth parameters c is maximized on average. This
is common in many applications requiring decision-making
under uncertainty, like planning the fastest route through
a city with unknown traffic delays or predicting optimal
power generation schedules based on demand forecasts.

Optimization of multiple objectives is crucial in contexts
requiring a balance of competing goals, especially when
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fairness is essential in fields like energy systems [2], ur-
ban planning [3], and multi-objective portfolio optimization
[4], [5]. A common approach is using Ordered Weighted
Averaging (OWA) [6] to achieve Pareto-optimal solutions
that fairly balance each objective. However, optimizing an
OWA objective in PtO is challenging due to its nondiffer-
entiability, which prevents backpropagation through x⋆(c)
within machine learning models trained by gradient descent.
To our knowledge, no prior PtO models encounter a non-
differentiable objective, making this challenge novel.

2. Preliminaries
2.1. Fair OWA and its Optimization

The Ordered Weighted Average (OWA) operator [6] is used
in various decision-making fields to fairly aggregate mul-
tiple objective criteria [7]. Let y ∈ Rm be a vector of m
distinct criteria, and τ : Rm → Rm be the sorting map that
orders y in increasing order. For any w satisfying w ∈ Rm,∑

i wi = 1, and w ≥ 0, the OWA aggregation with weights
w is piecewise-linear in y [8]:

OWAw(y) = wT τ(y), (2)

This paper uses its concave version, Fair OWA [9], character-
ized by weights in descending order: w1 > . . . > wn > 0.

The following three properties of Fair OWA functions are
crucial for fairly optimizing multiple objectives: (1) Im-
partiality: Permutations of a utility vector are equivalent
solutions. (2) Equitability: Marginal transfers from a higher
value criterion to a lower one increase the OWA aggre-
gated value. (3) Monotonicity: OWAw(y) is an increasing
function of each element of y. This ensures that solutions
optimizing the OWA objectives are Pareto Efficient, mean-
ing no criterion can be improved without worsening another
[8]. Optimization of aggregation functions that possess
these properties leads to equitably efficient solutions, which
satisfy a rigorously defined notion of fairness [10].

2.2. Predict-Then-Optimize Learning

Our problem setting fits within the PtO framework. Gener-
ally, a parametric optimization problem (1) models an opti-
mal decision x⋆(c) with respect to unknown parameters c
drawn from a distribution c ∼ C. While the true value of c is
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unknown, correlated feature values z ∼ Z can be observed.
The goal is to learn a predictive model Mθ : Z → C from
features z to estimate problem parameters ĉ = Mθ(z), by
maximizing the empirical objective value of the resulting
solution under ground-truth parameters. That is,

argmax
θ

E(z,c)∼Ω f (x⋆(Mθ(z)), c) , (3)

where Ω represents the joint distribution between Z and C.

The above training goal is often achieved by maximizing
empirical Decision Quality as a loss function [1], defined:

LDQ(ĉ, c) = f (x⋆(ĉ), c) . (4)

Gradient descent training of (3) with LDQ requires a model
of gradient ∂LDQ

∂ĉ , either directly or through chain-rule com-
position ∂LDQ

∂ĉ = ∂x⋆(ĉ)
∂ĉ · ∂LDQ

∂x⋆ . When x⋆ is not differen-
tiable, as in OWA optimizations, smooth approximations
are required, such as those developed in the next section.

3. End-to-End Learning with Fair OWA
Optimization

This paper focuses on scenarios where the objective function
f is an ordered weighted average of m linear objective
functions, each parameterized by a row of a matrix C ∈
Rm×n so that f(x,C) = OWAw(Cx) and

x⋆(C) = argmax
x∈S

OWAw(Cx). (5)

Note that this methodology extends to cases where the OWA
objective is combined with additional smooth terms. For
simplicity, the exposition primarily focuses on the pure
OWA objective as shown in equation (5).

The goal is to learn a prediction model Ĉ = Mθ(z) that
maximizes decision quality through gradient descent on
problem (3), which requires obtaining its gradients w.r.t. Ĉ:

∂LDQ(Ĉ,C)

∂Ĉ
=

∂x⋆

∂Ĉ︸︷︷︸
J

· ∂OWAw(Cx⋆)

∂x⋆︸ ︷︷ ︸
g

, (6)

where x⋆ is evaluated at Ĉ. The main strategy involves
determining the OWA function’s gradient g and then com-
puting Jg by backpropagating g through x⋆.

While nondifferentiable, the class of OWA functions is sub-
differentiable, with subgradients as follows:

∂

∂y
OWAw(y) = w(σ−1) (7)

where σ are the sorting indices on y [11]. Based on
this formula, computing an overall subgradient g =
∂/∂x OWAw(Cx) is a routine application of the chain rule
(via automatic differentiation). We apply the differentiable
approximations proposed next to enable its backpropaga-
tion through OWA optimization. A schematic illustration

highlighting the forward and backward steps required for
this process is provided in Figure 1.

4. Differentiable Approximate OWA
Optimization

This section introduces two differentiable approximations
of the OWA optimization mapping (5). Section 4.1 adapts
a quadratic smoothing technique [12], [13] for a discontin-
uous linear programming model of OWA. Then, Section
4.2 presents an efficient alternative by employing OWA’s
Moreau envelope approximation. To the best of the au-
thor’s knowledge, this is the first instance of using objec-
tive smoothing via the Moreau envelope as an effective
technique for approximating nondifferentiable optimization
programs in end-to-end learning.

4.1. OWA LP with Quadratic Smoothing

In [8], it’s observed that the OWA optimization (5) can have
the following LP formulation when x ∈ S is linear:
x⋆(C) = argmaxx∈S,y,z z (8a)

s.t.: y = Cx (8b)
z ≤ wτ · y ∀τ ∈ Pm. (8c)

This LP problem is typically solvable with a simplex method.
However, its constraints (8c) grows factorially as m!, where
m is the number of criteria aggregated by OWA.

Our first approach to differentiable OWA optimization com-
bines this LP transformation with the smoothing technique
of [12], which forms differentiable approximations to linear
programs by adding a scaled Euclidean norm term ϵ|x|2 to
the objective function. This results in a continuous map-
ping x⋆(c) = argmaxAx≤b cTx + ϵ∥x∥2, a quadratic
program (QP) which can be differentiated implicitly via its
KKT conditions as in [14].

Smoothing by the scaled norm of joint variables x,y, z in
8a leads to a differentiable QP approximation, viable when
m is small. This optimization can be solved and differenti-
ated using techniques from [14] or a generic differentiable
optimization solver such as [15]:

x⋆(C) = argmax
x∈S,y,z

z + ϵ
(
∥x∥22 + ∥y∥22 + z2

)
(9a)

subject to: (8b), (8c). (9b)

While problem (8) does not fit the exact LP form due to
its parameterized constraints (8b), the need for quadratic
smoothing (9a) is illustrated experimentally in Section 5.1.
The main disadvantage of this method is poor scalability in
the number of criteria m, due to constraints (8c). Another
drawback is that the transformed QP is much harder to solve
than its original associated LP problems since quadratic
smoothing increases the difficulty of an OWA-equivalent
LP problem. These drawbacks motivate the next smoothing
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Figure 1: Predict-Then-Optimize for OWA Optimization.

method, which yields a tractable optimization problem by
replacing the OWA objective with a smooth approximation.

4.2. Moreau Envelope Smoothing

Instead of adding a quadratic term as in (9), we replace the
piecewise linear function OWAw in (5) with its Moreau
envelope, defined for a convex function f as:

fβ(x) = min
v

f(v) +
1

2β
∥v − x∥2. (10)

Compared to its underlying function f , the Moreau enve-
lope is 1

β smooth while sharing the same optima [16]. The
Moreau envelope-smoothed OWA optimization problem is

x⋆(C) = argmaxx∈S OWAβ
w(Cx). (11)

With its smooth objective function, problem (11) can be
solved by gradient-based optimization methods (see Section
5.1), and also differentiated for backpropagation.

Differentiation of (11) is nontrivial since its objective func-
tion lacks a closed form. We model its Jacobian by differen-
tiating the fixed-point conditions of a gradient-based solver.
To proceed, we first note from [11] that the gradient of the
Moreau envelope OWAβ

w is equal to a projection:

∂

∂x
OWAβ

w(x) = projC(w̃)

(
x

β

)
, (12)

where w̃ = −(wm, . . . , w1) and the permutahedron C(w̃)
is the convex hull of all permutations of w̃.

The following approach to differentiation of (11) requires
differentiation of the function (12). For this, we leverage
the differentiable permutahedral projection framework of
[17], which was originaly used to implement a soft sorting
model. This allows evaluation and differentiation of (12) in
O(m logm) time, via isotonic regression.

Letting U(x,C) = projS(x−α · ∂
∂xOWAβ

w(x,C)), a pro-
jected gradient descent step on (11) is xk+1 = U(xk,C).
Differentiating the fixed-point conditions of convergence
where xk = xk+1 = x⋆, and rearranging terms yields a
linear system for ∂x⋆

∂C :

I − ∂U(x⋆,C)

∂x⋆︸ ︷︷ ︸
Φ

 ∂x⋆

∂C
=

∂U(x⋆,C)

∂C︸ ︷︷ ︸
Ψ

(13)

The partial Jacobian matrices Φ and Ψ above can be found
given a differentiable implementation of U . This is achieved
by computing the inner gradient ∂

∂xOWAβ
w(x,C) via the

differentiable permutahedral projection (12), and solving
the outer projection mapping projS using a generic differ-
entiable solver such as cvxpy [15]. As such, applying U
at a precomputed solution x⋆(C) allows Φ and Ψ to be
extracted in PyTorch, in order to solve (13); this process is
efficiently implemented via the fold-opt library [18].

5. Experiments
This section extends the PtO framework to scenarios with
multiple uncertain objectives jointly learned and fairly opti-
mized through OWA aggregation. The Robust Markowitz
Portfolio Optimization evaluates the differentiable approxi-
mations from Section 4 against baseline methods.

The training goal is to maximize empirical decision quality
with respect to their Fair OWA aggregation:

LDQ(Ĉ,C) = OWAw

(
Cx⋆(Ĉ)

)
. (14)

Evaluations Each model is evaluated based on its ability
to train a model Ĉ = Mθ(z) to achieve high decision
quality (14) for the OWA-aggregated objective. Results are
reported using the regret metric of suboptimality, whose 0
corresponds to maximum decision quality:

regret(Ĉ,C) = OWA⋆
w (C)− OWAw

(
Cx⋆(Ĉ)

)
(15)

where OWA⋆
w (C) is the true optimal value of (5). This

experiment evaluates the proposed differentiable approxi-
mations (9) and (11), named OWA-QP and OWA-Moreau.
Two common baselines are compared against our meth-
ods: (1) Two-stage: This standard baseline for PtO (3) [1]
trains the prediction model Ĉ = Mθ(z) by minimizing
MSE LTS(Ĉ,C) = ∥Ĉ − C∥2 without considering the
downstream optimization model, used only at test time. (2)
Unweighted sum (UWS): This baseline (Sum-QP) uses an
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Figure 2: Percentage OWA regret (lower is better) on test set, on robust portfolio problem over 3,5,7 scenarios.

LP model: x⋆(C) = argmaxx∈S 1T (Cx) in end-to-end
training, with quadratic smoothing [12] in Section 5.1.

5.1. OWA Optimization Under Uncertainty: Robust
Markowitz Portfolio Problem

The classic Markowitz portfolio problem is concerned with
constructing an optimal investment portfolio, given future re-
turns c ∈ Rn on n assets, which are unknown and predicted
from exogenous data. An alternative risk-aware approach
considers robustness over scenarios. In [19], m future price
scenarios are represented by a matrix C ∈ Rm×n, where the
ith row contains per-asset prices for the ith scenario. Thus,
an optimal allocation is modeled as:

x⋆(C) = argmax
x∈∆n

OWAw(Cx). (16)

This experiment integrates robust portfolio optimization (16)
end-to-end with per-scenario price prediction Ĉ = Mθ(z).
This experiment’s setting is detailed in Appendix B.

Results. Figure 2 shows average percent regret in the
OWA objective over the test set (lower is better). The end-
to-end training Sum-QP outperforms Two-stage approach.
However, both OWA-QP and OWA-Moreau achieve substan-
tially higher decision quality. While OWA-QP performs
slightly better, it cannot scale past 5 scenarios, highlighting
the importance of the Moreau envelope smoothing. More
results on an alternate dataset can be found in Appendix B.

OWA-LP uses the OWA’s equivalent LP as a differentiable
optimization without smoothing. Grey bars show non-
smoothed OWA LP results implemented with implicit dif-
ferentiation in cvxpylayers [15]. This comparison high-
lights the accuracy improvement due to quadratic smoothing
in OWA-QP. The poor performance of OWA subgradient
training under non-smoothed OWA-LP demonstrates the
necessity of the proposed approximations in Section 4.

Runtimes of the smoothed models (9) and (11) are compared
in Figure 3. Moreau envelope smoothing keep runtimes low
as m increases, while the QP approximation suffers past
m = 5 and encounters memory overflow beyond m = 6.
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Figure 3: Average solving time of 2 smoothed OWA opti-
mization models, on Robust Portfolio Optimization, over
1000 input samples. Missing data points past 7 scenarios are
due to memory overflow as the QP model grows factorially.

6. Related Work
Modern approaches to the Predict-Then-Optimize setting,
formalized in Section 2.2, typically maximize decision qual-
ity as a loss function, enabled by backpropagation through
the mapping c → x⋆(c) defined by (1). When this mapping
is differentiable, backpropagation can be performed using
differentiable optimization libraries [14], [15], [18], [20].
Otherwise, effective training techniques are typically based
on forming continuous approximations of (1), whether by
smoothing the objective function [13], [21], [22], introduc-
ing random noise [23], [24], or estimation by finite dif-
ferencing [25]. This paper falls into that category, due to
nondifferentiability of the OWA objective, requiring approx-
imation of (1) by differentiable functions. An extended
review of related work is provided in Appendix A.

7. Conclusions
This work presents an efficient methodology for integrat-
ing Fair OWA optimization with predictive models. This
proposal shows the potential of OWA optimization in data-
driven decision-making, which has important applications in
areas such as risk management and fair resource allocation.

4



Differentiable Approximations of Fair OWA Optimization

References
[1] J. Mandi, J. Kotary, S. Berden, et al., “Decision-focused

learning: Foundations, state of the art, benchmark and fu-
ture opportunities,” Journal of Artificial Intelligence Re-
search, vol. TBA, TBA, 2024. DOI: 10.48550/arXiv.
2307.13565.

[2] T. Terlouw, T. AlSkaif, C. Bauer, and W. van Sark, “Multi-
objective optimization of energy arbitrage in community
energy storage systems using different battery technolo-
gies,” Applied Energy, vol. 239, pp. 356–372, 2019, ISSN:
0306-2619. DOI: https://doi.org/10.1016/
j.apenergy.2019.01.227. [Online]. Available:
https://www.sciencedirect.com/science/
article/pii/S0306261919302478.

[3] J. Salas and V. Yepes, “Enhancing sustainability and re-
silience through multi-level infrastructure planning,” In-
ternational Journal of Environmental Research and Pub-
lic Health, vol. 17, no. 3, p. 962, Feb. 4, 2020. DOI: 10.
3390/ijerph17030962.

[4] D. A. Iancu and N. Trichakis, “Fairness and efficiency in
multiportfolio optimization,” Operations Research, vol. 62,
no. 6, pp. 1285–1301, 2014. DOI: 10 . 1287 / opre .
2014 . 1310. [Online]. Available: https : / / doi .
org/10.1287/opre.2014.1310.

[5] Y. Chen and A. Zhou, “Multiobjective portfolio optimiza-
tion via pareto front evolution,” Complex and Intelligent
Systems, vol. 8, pp. 4301–4317, 2022. DOI: 10.1007/
s40747-022-00715-8. [Online]. Available: https:
//doi.org/10.1007/s40747-022-00715-8.

[6] R. R. Yager, “On ordered weighted averaging aggrega-
tion operators in multicriteria decisionmaking,” in Read-
ings in Fuzzy Sets for Intelligent Systems, D. Dubois, H.
Prade, and R. R. Yager, Eds., Morgan Kaufmann, 1993,
pp. 80–87, ISBN: 978-1-4832-1450-4. DOI: https://
doi . org / 10 . 1016 / B978 - 1 - 4832 - 1450 -
4.50011- 0. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/
B9781483214504500110.

[7] R. R. Yager and J. Kacprzyk, The Ordered Weighted Aver-
aging Operators: Theory and Applications. Springer Pub-
lishing Company, Incorporated, 2012, ISBN: 1461378060.
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A. Extended Related Work
Recent literature has been developed around constrained optimization models that are trained end-to-end with machine
learning models [26]. In the Predict-Then-Optimize setting, a machine learning model predicts the unknown coefficients of
an optimization problem. Then, backpropagation through the optimal solution of the resulting problem allows for end-to-end
training of its objective value, under ground-truth coefficients, as a loss function. The primary challenge is backpropagation
through the optimization model, for which a variety of alternative techniques have been proposed. Differentiation through
constrained argmin problems in the context of machine learning was discussed as early as [27], who proposed first to
implicitly differentiate the argmin of a smooth, unconstrained convex function by its first-order optimality conditions, defined
when the gradient of the objective function equals zero. This technique is then extended to find approximate derivatives for
constrained problems, by applying it to their unconstrained log-barrier approximations. Subsequent approaches applied
implicit differentiation to the KKT optimality conditions of constrained problems directly [13], [28], but only on special
problem classes such as Quadratic Programs. [29] extend the method of [28], by modeling second-order derivatives of the
optimization for training with gradient boosting methods. [30] uses the differentiable quadratic programming solver of
[28] to approximately differentiate general convex programs through quadratic surrogate problems. Other problem-specific
approaches to analytical differentiation models include ones for sorting and ranking [17], linear programming [22], and
convex cone programming [20].

The first general-purpose differentiable optimization solver was proposed in [15], which leverages the fact that any convex
program can be converted to a convex cone program [31]. The equivalent cone program is subsequently solved and
differentiated following [20], which implicitly differentiates a zero-residual condition representing optimality [32]. A
differentiable solver library cvxpy is based on this approach, which converts convex programs to convex cone programs by
way of their graph implementations as described in [33].

A related line of work concerns end-to-end learning with discrete optimization problems, which includes linear programs,
mixed-integer programs, and constraint programs. These problem classes often define discontinuous mappings with respect
to their input parameters, making their true gradients unhelpful as descent directions in optimization. Accurate end-to-end
training can be achieved by smoothing the optimization mappings, to produce approximations that yield more useful
gradients. A common approach is to augment the objective function with smooth regularizing terms such as Euclidean norm
or entropy functions [12], [22], [34]. Others show that similar effects can be produced by applying random noise to the
objective [23], [24], or through finite difference approximations [25], [35]. This enables end-to-end learning with discrete
structures such as constrained ranking policies [36], shortest paths in graphs [37], and various decision models [12].

B. Portfolio Optimization Experiment
The classic Markowitz portfolio problem is concerned with constructing an optimal investment portfolio, given future returns
c ∈ Rn on n assets, which are unknown and predicted from exogenous data. A common formulation maximizes future
returns subject to a risk limit, modeled as a quadratic covariance constraint. Define the set of valid fractional allocations
∆n = {x ∈ Rn : 1Tx = 1,x ≥ 0}, then :

x⋆(c) = argmax
x∈∆n

cTx s.t.: xTΣx ≤ δ. (17)

where Σ ∈ Rn×n are the price covariances over n assets. The optimal portfolio allocation (17) as a function of future
returns c ∈ Rn is differentiable using known methods [15], and is commonly used in evaluation of Predict-Then-Optimize
methods [1].

Settings. Historical prices of n = 50 assets are obtained from the Nasdaq online database [38] years 2015-2019, and
N = 5000 baseline asset price samples ci are generated by adding Gaussian random noise to randomly drawn price vectors.
Price scenarios are simulated as a matrix of multiplicative factors uniformly drawn as U(0.5, 1.5)m×n, whose rows are
multiplied elementwise with ci to obtain Ci ∈ Rm×n. While future asset prices can be predicted on the basis of various
exogenous data including past prices or sentiment analysis, this experiment generates feature vectors zi using a randomly
generated nonlinear feature mapping. The experiment is replicated in three settings which assume m = 3, 5, and 7 scenarios.

Two sets of stocks were selected to generate two different datasets based on their average returns across observations. The
first set consists of assets from the index with average returns within the 25th to 50th quantile range, while the second set
includes assets from the 75th quantile.
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Table 1: Hyperparameters

Hyperparameter Min Max Final Value

OWA-LP Two-Stage Sum-QP OWA-QP OWA-Moreau Sur-QP

learning rate 1e−3 1e−1 1e−2 5e−3 1e−2 1e−2 1e−2 1e−2

smoothing parameter ϵ 0.1 1.0 N/A N/A 1.0 1.0 N/A 1.0
smoothing parameter β0 0.005 10.0 N/A N/A N/A N/A 0.05 N/A

MSE loss weight λ 0.1 0.5 0.4 N/A 0.3 0.4 0.1 0.3
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Figure 4: Percentage OWA regret (lower is better) on test set, on robust portfolio problem over 3,5,7 scenarios.

The predictive model Mθ is a feedforward neural network with three shared hidden layers followed by one separated hidden
layer for each species that is trained using Adam Optimizer and with a batch size of 64. The size of each shared layer is
halved, and the output dimension of the separated layer is equal to the number of assets. Hyperparameters were selected as
the best-performing on average among those listed in Table 1). Results for each hyperparameter setting are averaged over
five random seeds. In the OWA-Moreau model, the forward pass is executed using projected gradient descent for 300, 500,
and 750 iterations, respectively, for scenarios with 3, 5, and 7 inputs. The update step size is set to γ = 0.02.

At test time, Mθ is evaluated over a test set for the distribution (z,C) ∈ Ω, by passing its predictions to a projected
subgradient solver of (16).

B.1. Additional Results

Figure 4 and 2 display models’ performance on datasets generated from assets with average returns in the 75th quantile
and within the 25th-50th percentiles, respectively. The y-axis represents the percentage of regret based on optimal OWA
values. A consistent trend is observed in both datasets: end-to-end approaches tend to outperform two-stage approaches.
Additionally, our proposed frameworks (OWA-QP and OWA-Moreau) perform better than Sum-QP, with improvements
ranging from 5-30%. OWA-QP performs better when the number of scenarios is small but struggles to scale beyond 6
scenarios.

B.2. Effect of adding MSE loss

Figure 5 illustrates the impact of combining the Mean Squared Error loss LMSE in a weighted combination with the decision
quality loss LDQ. With the exception of OWA-LP, which exhibited instability, and Two-Stage, already trained with MSE
Loss, the addition of MSE resulted in slight enhancements to the regret performance.

B.3. Solution Methods

The OWA portfolio optimization problem (16) is solved at test time, for each compared method, by projected subgradient
descent using OWA subgradients (7) and an efficient projection onto the unit simplex ∆ as in [39]:
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Figure 5: Effect of MSE Loss on differentiable optimization models. From left to right: 3, 5, 7 scenarios

xk+1 = proj∆

(
xk − α

∂

∂x
OWAw(Cx)

)
(18)

For the Moreau-envelope smoothed OWA optimization (11) proposed for end-to-end training, the main difference is that its
objective function is differentiable (with gradients (12)), which allows solution by a more efficient Frank-Wolfe method
[16], whose inner optimization over ∆ reduces to the simple argmax function which returns a binary vector with unit value
in the highest vector position and 0 elsewhere, which can be computed in linear time:

xk+1 =
k

k + 2
xk +

2

k + 2
argmax

(
∂

∂x
OWAw(Cxk)

)
(19)
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