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Abstract
Recent work has highlighted the complex influ-
ence training hyperparameters, e.g., the number
of training epochs, can have on the prunability of
machine learning models. Perhaps surprisingly, a
systematic approach to predict precisely how ad-
justing a specific hyperparameter will affect prun-
ability remains elusive. To address this gap, we
introduce a phenomenological model grounded
in the statistical mechanics of learning. Our ap-
proach uses temperature-like and load-like param-
eters to model the impact of neural network (NN)
training hyperparameters on pruning performance.
A key empirical result we identify is a sharp tran-
sition phenomenon: depending on the value of a
load-like parameter in the pruned model, increas-
ing the value of a temperature-like parameter in
the pre-pruned model may either enhance or im-
pair subsequent pruning performance. Based on
this transition, we build a three-regime model by
taxonomizing the global structure of the pruned
NN loss landscape. Our model reveals that the
dichotomous effect of high temperature is asso-
ciated with transitions between distinct types of
global structures in the post-pruned model. Based
on our results, we present three case-studies: 1)
determining whether to increase or decrease a hy-
perparameter for improved pruning; 2) selecting
the best model to prune from a family of models;
and 3) tuning the hyperparameter of the Sharp-
ness Aware Minimization method for better prun-
ing performance.

1. Introduction
A recently-popular approach to compressing large neural
networks (NNs) is to perform pruning, i.e., to remove unnec-
essary weights from a trained model. The resulting “sparser”
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NNs often have improved memory and inference efficien-
cies, compared to the original “denser” NNs.

A common approach to pruning (Lecun et al., 1989; Han
et al., 2015; Molchanov et al., 2017) involves adopting a
three-stage train-prune-retrain pipeline: 1) train a large or
over-parameterized dense model to some sort of conver-
gence; 2) prune the dense model to obtain a sparse model;
and then 3) retrain the sparse model to recover its perfor-
mance. A considerable amount of work has focused on
improving the sub-network performance in the (second)
pruning stage (Blalock et al., 2020) and the (third) retrain-
ing stage (Renda et al., 2020; Le & Hua, 2021). However,
there remains little guidance for the (first) stage of dense
model training, i.e., how to improve the prunability of the
original large model (Rosenfeld et al., 2021). Recent work
has shown that tuning optimization-related hyperparameters,
such as the number of training epochs (Li et al., 2020; Liu
et al., 2021; Shen et al., 2022) and the batch size (Barsbey
et al., 2021), can potentially benefit specific pruning meth-
ods. Despite these findings, a principled approach to predict
when and how adjusting a given hyperparameter during
the stage of dense model training will impact subsequent
pruning performance remains to be developed.

In this paper, we develop a simple operational model for NN
pruning, focusing on the optimal selection of hyperparam-
eters, such as the number of training epochs, in the (first)
training stage. Our model is inspired by recent work in the
statistical mechanics of learning (Yang et al., 2021; Martin
& Mahoney, 2017; 2021b). In the statistical mechanics ap-
proach to learning, multiple qualitatively different “phases”
of behavior can arise in black-box Deep NNs. This concept
is explicitly illustrated by the Very Simple Deep Learning
(VSDL) model, proposed in Martin & Mahoney (2017).
Within the VSDL model, these phases and the sharp transi-
tions between them can be identified on a two-dimensional
“phase” diagram, where the x and y axes represent load-like
and temperature-like parameters, respectively. Load-like
parameters characterize the relationship between the quan-
tity and/or quality of data, relative to model size. This was
represented as label noise in training data by Martin & Ma-
honey (2017) and as width scaling by Yang et al. (2021).
Temperature-like parameters, on the other hand, charac-
terize the magnitude of noise introduced during stochastic
training. This can be represented in terms of common hyper-
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Figure 1. The three regimes of pruning obtained by varying temperature-like parameters (in the dense pre-pruned model) and load-like
parameters (in the sparse post-pruned model): loss landscape connectivity metrics such as LMC identify Regime I versus Regime II; and
loss landscape similarity metrics of outputs between models in well-connected regimes then identify Regimes II-A and II-B. The regimes
are thus Regime I (poorly-connected loss landscapes); Regime II-A (well-connected but relatively dissimilar model outputs); and Regime
II-B (well-connected and relatively similar outputs). For a given load goal (density of the pruned model), we focus on the favorable
transitions from Regime I to Regime II-A (obtained by increasing the temperature) and from Regime II-A to Regime II-B (obtained by
decreasing the temperature), as indicated by the arrows.

parameters for training, including the number of epochs and
batch size in Martin & Mahoney (2017); Yang et al. (2021).
Using the notions of load-like and temperature-like parame-
ters, Yang et al. (2021) provided a comprehensive taxonomy
of NN loss landscapes, employing easily computed metrics
to identify, predict, and distinguish qualitatively different
phases of model training.

Our three-regime VSDL model for pruning. We con-
struct a novel model for NN pruning that is based on the
VSDL model. In our model, the load-like parameter is rep-
resented as a distinct hyperparameter used in the pruning
process, namely the density of the pruned models; and the
temperature-like parameter is represented as common hy-
perparameters for the dense model training (e.g., training
epochs, batch size), similar to Martin & Mahoney (2017);
Yang et al. (2021).

Our empirical results validate the effectiveness of the pro-
posed model, demonstrating that adjusting the load and
temperature parameters can lead to relatively-sharp tran-
sitions in model performance and that making decisions
based on this leads to improved test error for pruned models.
Moreover, our work confirms the metrics previously used
to develop the taxonomy of loss landscapes (Yang et al.,
2021), showcasing their applicability to the very different
problem of model pruning. Ultimately, our results con-
tribute to the more efficient, metric-informed selection of
temperature-like hyperparameters (depending on the load),
offering practical approaches for applying VSDL models.

In more detail, we consider two metrics to measure NN
loss landscapes, namely the linear mode connectivity

(LMC) (Garipov et al., 2018; Draxler et al., 2018; Fran-
kle et al., 2020) and the centered kernel alignment (CKA)
similarity (Kornblith et al., 2019). LMC quantifies how well
different local minima are connected to each other in the
loss landscape, and thus it captures the connectivity between
trained models. CKA similarity, on the other hand, is used to
capture the similarity between the outputs of models. Yang
et al. (2021) used these two metrics to measure the global
structure of loss landscapes. Here, we apply these insights
to the model pruning problem. As indicated in Figure 1, our
results empirically produce a three-regime taxonomy based
on the similarity and connectivity of pruned models’ loss
landscape, effectively diagnosing and explaining the prun-
ing performance as load-like and temperature-like control
parameters are varied.

Our main contributions are as follows:

• We construct a VSDL model to study the different
types of model training in order to improve pruning
performance. Our model is taxonomized into three
regimes based on the connectivity and similarity of
the pruned model loss landscape. This is graphically
represented in Figure 1.

• Our three-regime model effectively identifies and pre-
dicts a dichotomous phenomenon: depending on the
value of the target load parameter and the measured
values of the LMC and CKA, one can obtain im-
proved pruned models either by increasing or decreas-
ing the temperature parameter. Our three-regime model
demonstrates that the phenomenon is well correlated
with the transition among the three regimes, as shown
in Figure 1b.

2



A Three-regime Model of Network Pruning

• Our new insights on three-regime pruning lead to new
practical approaches to improving pruning, which we
present as three case-studies: 1) given initial load and
temperature hyperparameters, we can predict the cor-
rect direction to adjust the temperature in order to
achieve optimal pruning performance; 2) for a given
target model load, we can design a new model selection
method based on connectivity and similarity that can
predict the optimal temperature parameter without the
need for an exhaustive grid search; and 3) we find that
training models with the Sharpness Aware Minimiza-
tion (SAM) method results in improved pruning when
the temperature-like parameter of SAM is optimally
tuned using our three-regime model.

Our code is open-sourced.1 We provide a comprehensive
overview of related work as well as provide further discus-
sion of two aspects of our approach that differ from how
Yang et al. (2021) applied the VSDL model in Appendix A.

2. Background and Setup
In this section, we provide background and a basic setup for
our main results.

2.1. Load and temperature

Load and temperature parameters enter naturally when
considering the statistical mechanics approach to learning
and generalization, both historically (Seung et al., 1992;
Watkin et al., 1993; Haussler et al., 1996; Engel & den
Broeck, 2001), where they enter directly, as well as more
recently (Martin & Mahoney, 2017; 2021b), where they
enter indirectly via other control parameters.

Informally, a load-like parameter, which we will denote
generically by L, refers to some quantity related to the
quantity/quality of the data, relative to the size of the model.
Here, we mainly study the models after pruning, and we
vary the model density Ldensity to change the load. In this
case, decreasing Ldensity corresponds to having more data,
relative to the model size. We also study alternative load
parameters, e.g., model width scaling Lwidth or depth Ldepth
of the pruned model, given a fixed model density.

Similarly, a temperature-like parameter, which we will de-
note generically by T , refers to some quantity related to
the empirical noise/stochasticity introduced in the learning
process. We mainly adjust the temperature by varying the
number Tepoch of training epochs (in the first stage of the
train-prune-retrain pipeline) or the batch size Tbatch. The
neighborhood size ρ, a hyperparameter in SAM (that indi-
cates the magnitude of the adversarial perturbations over
the model parameters before each gradient update of SGD

1https://github.com/YefanZhou/ThreeRegimePruning

optimizer), can also be viewed as a temperature-like param-
eter (as we show in Section 4.3). In practice, an increase in
temperature corresponds to fewer training epochs, smaller
batch size, and larger neighborhood size.

2.2. Preliminaries

Consider a NN f(x; Θ) : Rdin → Rdout with input x
and parameters Θ ∈ Rm. We train the NN using mini-
batch SGD, with batch size Tbatch, and total number of
epochs Tepoch. For randomly initialized parameters, Θ0,
SGD randomness, ξ, the process of training with specific
temperature-like parameters is denoted by Train (Θ0, ξ, T ),
T = {Tepoch, Tbatch, ...}. We mainly study NNs in classifica-
tion tasks, using errortrain(Θ) and errortest(Θ) to represent
the error on the training and test sets, respectively.

2.3. Network pruning

We mainly investigate unstructured pruning, which removes
weights without considering model structure.

Model density. We define the model density, denoted as
Ldensity = |M|

m , as the fraction of the number of parameters
preserved to the total parameter count, where M ∈ {0, 1}N
is the binary pruning mask informing the position of remain-
ing weights. A pruned model is denoted as Θ⊙M, where ⊙
indicates the element-wise product. The process of pruning
a model with specific width/depth into a target density is
denoted by Prune(Θ, L), L = {Ldensity, Lwidth, Ldepth, ...}.

Pruning strategies. Magnitude pruning (MP) utilizes the
absolute value of each parameter as a measure of impor-
tance to determine the mask M. Unstructured MP retains
the top-Ldensity percent of important parameters, with two
variants based on the layer-wise distribution of density: 1)
UNIFORMMP, which prunes each layer uniformly, and 2)
GLOBALMP, which imposes a global threshold on param-
eter magnitudes of every layer for achieving the desired
global density target.

2.4. Loss landscape metrics

Recent work (Yang et al., 2021) proposed an extensive taxon-
omy of the loss landscape of realistic NNs, finding (among
other things) that LMC and CKA similarity can be used to
determine the phase in which a trained model lies. In this
study, we leverage these metrics to pinpoint the particular
regime within our three-regime model to which a pruned
NN belongs.

LMC. Frankle et al. (2020) shows that linear low-loss paths
can be found between two networks if they originate from
shared trained initialization, motivating us to take the linear
variant of the mode connectivity used in Yang et al. (2021).
Given two separate sets of weights Θ,Θ′, we parameterize
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(a) Test error (b) Normalized Test error (c) LMC (d) CKA Similarity

Figure 2. Partitioning the 2D model density (load) – training epoch (temperature) diagram into three regimes. Models are trained with
PreResNet-20 on CIFAR-10. The y-axis denotes a temperature-like parameter, indicated by a range of training epochs preceding the
pruning process, while the x-axis represents a load-like parameter, expressed through diverse model densities applied to the model. (a)
Final test error of the models after pruning and retraining. (b) Normalized test error is obtained by subtracting the optimal (lowest) test
error from each column of the diagram in (a). The black arrows indicate two favorable transitions to lower test error regimes given a fixed
model density. (c) LMC forms a sharper boundary that distinguishes Regime I from Regime II. (d) CKA shows a smooth transition that
categorizes Regimes II-A and II-B.

the linear path γ(t), t ∈ [0, 1] connecting them with γ(t) =
tΘ+ (1− t)Θ′. Then, the LMC is defined as

lmc (Θ,Θ′) =
1

2
(errortrain (Θ) + errortrain (Θ

′))

− errortrain (γ (t∗)) ,
(1)

where γ(t) = tΘ + (1 − t)Θ′ and t∗ maximizes t 7→∣∣ 1
2 (errortrain (Θ) + errortrain (Θ′))− errortrain (γ(t))

∣∣,
t ∈ [0, 1].

We consider two cases for LMC. If lmc(Θ,Θ′) ≈ 0,
then this implies a curve of low training error connect-
ing Θ,Θ′, rendering the loss landscape well-connected. If
lmc(Θ,Θ′) < 0, then this means that there is a “barrier” of
high training error between Θ and Θ′. In this case, we say
that the loss landscape is poorly connected (or that the LMC
is poor).2

CKA similarity. CKA similarity measures the represen-
tational similarity of two parameter configurations Θ, Θ′

in the output space, as measured by the centered kernel
alignment (CKA) metric. Following Yang et al. (2021),
we measure the distance between two models using their
predictions, instead of weights, to avoid having low sim-
ilarity resulting from different weights, even though the
predictive functions are similar. Let {x1, . . . ,xs} de-
note a set of s randomly sampled datapoints, and FΘ =[
f (x1; Θ) · · · f (xs; Θ)

]⊤ ∈ Rm×dout denote the
concatenation of the outputs of the network. In this case,
the CKA similarity between the two weights Θ and Θ′ is
given by

2One difference from Yang et al. (2021) is that we study the
“linear version” of mode connectivity (Frankle et al., 2020), which
provides faster computation and is easier for downstream tasks, as
discussed in Section 4. We also note that Yang et al. (2021) discuss
cases when the mode connectivity is larger than 0, which happens
rarely when we use the linear version of mode connectivity.

cka (Θ,Θ′) =
Cov (FΘ, FΘ′)√

Cov (FΘ, FΘ) Cov (FΘ′ , FΘ′)
, (2)

where Cov(X,Y ) = (m− 1)−2 tr
(
XX⊤HmY Y ⊤Hm

)
,

for X,Y ∈ Rs×d, and Hm = Im − m−111⊤ is a center-
ing matrix.

Note that measuring the LMC and the CKA similarity
defined above requires two distinct weights Θ and Θ′

trained on the same sparse architecture. To obtain the two
weights, we first prune a trained full dense model, and we
then retrain two copies of the pruned sparse model with
different SGD noise for α epochs. Formally, these two
weights are defined as Θ = Train

(
Θ⊙M, ξ1, Tepoch

)
and

Θ′ = Train
(
Θ⊙M, ξ2, Tepoch

)
, Tepoch = α.

3. Validity of the Three-regime Model
In this section, we report our empirical results, illustrating
the validity of the three-regime model we introduce.

3.1. Experimental setup

We generate thousands of pruned models by systematically
varying the load and temperature parameters. A variant of
residual networks with 20 layers (PreResNet-20) was trained
on CIFAR-10 with various temperature hyperparameters and
pruned to different load (density) levels.

We tune the following hyperparameters to vary the magni-
tude of load parameters and temperature parameters:

• Model density (Load): we consider the model pruned
to 9 densities: {5, 6, 7, 8, 10, 14, 20, 40, 80}%.

• Number of training epochs (Temperature): we consider
training to numbers of epochs that are multiples of 10
{10, 20, 30, ... , 160}. Training for a total of 160
epochs corresponds to no early stopping.

• Batch size (Temperature): we consider training the
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model with varying batch sizes {16, 21, 27, 32, 38, 44,
52, 64, 92, 128, 180, 256, 512} while keeping the same
amount of training iterations.

We study the UNIFORMMP as the basic pruning method.
More details on the experimental setup can be found in
Appendix B.1.

3.2. Regimes of loss landscape

We summarize the results in Figure 2. Each pixel within
the sub-figures represents a unique experimental configu-
ration, where a model is trained for a specific number of
epochs (y-axis) and then pruned to a particular density (x-
axis). Figure 2a displays the test error of each model after
pruning and retraining, while Figure 2b showcases the test
error normalized using a scheme applied to each model
density (column). This normalization process involves sub-
tracting the test error by the optimal early-stopped test error
for each density-related column. Additionally, Figure 2c
and 2d present the LMC and CKA of the pruned models,
respectively. The normalization scheme applied to Figure
2a results in Figure 2b, enabling the comparison of perfor-
mance differences across various regimes at each density
level. Notably, Figure 2b demonstrates that Regime II-A
typically surpasses Regime I in performance but falls short
when compared to Regime II-B.

We observe that the connectivity and similarity metrics can
be used to find the transitions observed across the model
density (load) – training epochs (temperature) phase space,
forming a three-regime classification that classifies the loss
landscape, as shown in Figure 1.

• LMC distinguishes models with poorly connected
loss landscape, which we categorize as Regime I.
The first transition is displayed in Figure 2c. The white
region represents the near-zero LMC, which implies a
flat curve in the loss landscape between two local min-
ima; and the dark blue region represents the negative
LMC, which implies a high loss barrier moving from
one local minimum to another. The transition in LMC
forms a curve separating Regime I from Regime II.

• CKA similarity further categorizes models with
well-connected loss landscapes into models with sim-
ilar/dissimilar outputs. In Figure 2d, CKA divides
the region where LMC is near-zero in Figure 2c into
Regime II-A and Regime II-B, the latter including mod-
els with more similarity.3 Regime I observes a much
smaller CKA similarity than the other two regimes,
which coincides with negative LMC. That the CKA
similarity diagram exhibits a smooth transition between

3The transition between Regime II-A and Regime II-B is much
smoother, and it need not be viewed as a finite-sized approximation
to a “phase transition,” in contrast to the much sharper transition
between Regime I from Regime II that LMC identifies.

regimes, rather than a sharp transition from a negative
value to zero, as is observed in LMC, is consistent with
results in Yang et al. (2021).

• To enumerate the three regimes:
– Regime I: Poorly connected loss landscape, less

similar output representations.
– Regime II-A: Well-connected loss landscape, less

similar output representations.
– Regime II-B: Well-connected loss landscape, rel-

atively large output similarity.

Based on the three-regime taxonomy, we assert the follow-
ing as the central claim of this work.

Main claim. Given a model, we can use the loss
landscape metrics to inform the optimal temperature
to apply in the training stage at each possible level
of its load (model density) after pruning.

To elaborate further, we mainly use the connectivity and
similarity of the loss landscape, measured by LMC and
CKA similarity respectively. Low-density models with poor
connectivity benefit from increased temperature, facilitating
a transition from Regime I to Regime II-A. Conversely,
high-density models with good connectivity benefit from
decreased temperature, enabling a transition from Regime
II-A to Regime II-B to improve similarity.

3.3. Corroborating results

We have additional results that modify the basic setup of
Section 3.2. These are described in more detail in Ap-
pendix B.2. In short, we have studied batch size as an al-
ternative temperature-like parameter, network architectures
(DenseNet-40, VGG-19), datasets (CIFAR-100, SVHN),
different pruning strategies (GLOBALMP), different opti-
mizers (Adam) and different task (machine translation). In
each case, we obtain results that are qualitatively similar to
the results described in Section 3.2, thereby corroborating
our main claim more generally.

4. Application of the Three-regime Model
In this section, we discuss several applications of our three-
regime model.

4.1. Determining how to adjust temperature parameters

Here, we develop a scheme to tune temperature parameters
based on the three-regime model. In particular, we are
interested in the following question:

Problem statement. Given a model trained with a particu-
lar temperature-like parameter and subsequently pruned to
a target level of load, can we determine how to adjust the
magnitude of temperature to improve performance?
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Table 1. The range of hyperparameters in the experiment setup: a dense model is trained with initial temperature T and subsequently
pruned to target level of load L.

Initial temperature to adjust Target level of load

Training Epochs (Tepoch) Batch Size (Tbatch) Density (Ldensity) Width Scalings (Lwidth)

160 128 Ldensity ⊆ {5, 7, 10, 14, 20, 40}% Lwidth ⊆ {0.5, 1, 2, 4, 6, 8}

Varying Ldensity Varying Lwidth

Tepoch × Ldensity Tbatch × Ldensity Tepoch × Lwidth Tbatch × Lwidth

5 7 10 14 20 40
Load 

 (Density (%))

0.6

0.4

0.2

0.0

LM
C Regime I: 

 higher temperature 
 improves performance

5 7 10 14 20 40
Load 

 (Density (%))

0.6

0.4

0.2

0.0

LM
C Regime I: 

 higher temperature 
 improves performance

0.5 1 2 4 6 8
Load 

 (Width Scalings)

0.6

0.4

0.2

0.0

LM
C Regime I: 

 higher temperature 
 improves performance

0.5 1 2 4 6 8
Load 

 (Width Scalings)

0.6

0.4

0.2

0.0

LM
C Regime I: 

 higher temperature 
 improves performance

160 140 120 100 80 60 40 20
Temperature 

(Training Epochs)

0.09

0.12

0.15

0.18

Te
st

 E
rr

or

128 92 52 44 38 27 16
Temperature 
 (Batch Size)

0.09

0.12

0.15

0.18

Te
st

 E
rr

or

160 140 120 100 80 60 40 20
Temperature 

 (Training Epochs)

0.08

0.14

0.20

0.26

Te
st

 E
rr

or

128 92 52 38 27 16
Temperature 
 (Batch Size)

0.08

0.14

0.20

0.26

Te
st

 E
rr

or

Density (%)
5 7 10 14 20 40

Width Scalings
0.5 1 2 4 6 8

Figure 3. Using LMC to determine the right direction to adjust the temperature: models with negative LMC are located in Regime I
(annotated by the black box), and their test error can be reduced by increasing temperature. Otherwise, models with close-to-zero LMC
benefit from decreasing temperature. Note that a smaller training epoch or a smaller batch size corresponds to a higher temperature.

Experiment details. As a concrete setup, we explore two
hyperparameters to represent the load-like parameter L of
the pruned models: model density Ldensity and width scal-
ing Lwidth. It is worth noting that the unstructured pruning
method cannot alter the model width; thus, to vary Lwidth
of the pruned model, we train multiple dense models with
varying widths and prune them to identical densities.

Additionally, we consider two hyperparameters to represent
the temperature-like parameter T to be adjusted in the first
stage of dense model training: training epoch Tepoch and
batch size Tbatch. The ranges for these values are specified
in Table 1. We use commonly used temperature values for
our experiments: for CIFAR-10, a batch size of 128 and
training epochs of 160 are commonly used. For instance,
see Table 1 in Frankle et al. (2020); Liu et al. (2021). Thus,
it is reasonable to assume that a practitioner might start
with these initial temperature values similar to our study.
We also note that when varying one specific parameter to
control load, other control parameters are kept constant.
For example, when varying Ldensity, Lwidth is fixed at 1, and
while varying Lwidth, Ldensity is fixed at 5%. This is also
applied when adjusting the temperature. The experiment

is conducted using PreResNet-20 on the CIFAR-10 dataset,
with the models being pruned using the UNIFORMMP.

Conventional wisdom. The conventional approach sug-
gests that dense models should be trained to completion
before being pruned (Lecun et al., 1989; Han et al., 2015).

Proposed method. We observe that the conventional wis-
dom of training to completion remains effective for pruned
models belonging to Regime II, but loses its effectiveness
for models in Regime I, where early stopping proves to be
more useful. Note that recent studies also show improved
pruning using early stopping (Li et al., 2020; Liu et al.,
2021; Shen et al., 2022), while our method here gives a
more comprehensive way to view this problem. Conse-
quently, we propose a temperature-tuning method outlined
in Algorithm 1. This algorithm determines whether training
to completion (smaller temperature) or doing early stopping
(larger temperature) is necessary to enhance the performance
of the pruned model. Our approach assesses the LMC of
the pruned models to identify whether they fall within the
regime where conventional wisdom is less effective. If the
current model belongs to Regime II (LMC ∈ [ϵ, 0]), then
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Algorithm 1 Temperature Tuning

Input: dense model initialization Θ0, initial temperature
T0 and increment ∆T , target load L, training procedure
Train (Section 2.2), pruning procedure Prune (Section
2.3), LMC threshold ϵ
Output: Tuned temperature T ′

Train with temperature: Θ = Train (Θ0, T )
Prune to target load: Θ⊙M = Prune (Θ, L)
Compute LMC on Θ⊙M via Equation (1)
if LMC < ϵ then

Regime I = true
T ′ = T0 + ∆T

else
Regime I = false
T ′ = T0

end if

conventional wisdom is effective, and we do not increase
the temperature. If the current model belongs to Regime I
(LMC < ϵ), conventional wisdom fails, and we increase the
temperature. We select a threshold value ϵ = −0.05, and
discuss the selection of the threshold in Appendix C.1.

Results. The results are presented in Figure 3. In this
figure, the label T × L signifies that the target model load
for pruning is L, and the initial temperature setting is T
(which is the temperature parameter that we need to adjust).
The four columns represent four distinct cases arising from
the use of two specific hyperparameters to characterize L
and two other hyperparameters to characterize T , namely
training epochs, batch size, density, and model width, as
detailed in Table 1.

On the first row of Figure 3, we showcase the LMC re-
sults evaluated on a pruned model that has been trained
with temperature T and pruned to load L. Our method (Al-
gorithm 1) then identifies the regime to which the pruned
model belongs and determines if increasing T is beneficial
for different L values. On the second row, we present the
test error resulting from increasing the temperature for all
load values, which is used to verify whether Algorithm 1
selects the appropriate L for increasing T by examining if
the test error decreases when T is increased.

From Figure 3, we see that Algorithm 1 effectively identifies
that multiple pruning settings in Table 1 necessitate adjust-
ments with higher temperatures. For instance, see the case
Tepoch × Ldensity. The LMC results in the first row indicate
that three out of six Ldensity, specifically {5, 7, 10}%, have
an LMC < ϵ (highlighted by the black box), signifying that
these settings (pruned models) belong to Regime I and re-
quire tuning with higher temperatures. Indeed, the test error
results in the second row demonstrate that increasing the
temperature on these settings can reduce the test error. On

Algorithm 2 Model Selection via LMC and test error

Input: a set of trained dense models {Θi}ni=1, and their
test errors {errortest(Θi)}ni=1, LMC threshold ϵ, training
procedure Train (Section 2.2), pruning procedure Prune
(Section 2.3), target load L, retraining epochs α
Output: dense model Θi∗ to prune

i∗ = argmini{errortest(Θi)}ni=1

Θi∗ ⊙M = Prune(Θi∗ , L)
Compute LMC on Θi∗ ⊙M via Equation (1)
if LMC < ϵ then
Θi ⊙Mi = Train(Prune(Θi, L), α) for i ∈ [1, n]
i∗ = argmini{errortest(Θi ⊙Mi)}ni=1

end if

the other hand, the remaining Ldensity {14, 20, 40}% benefit
from decreasing temperature. We can find similar results on
the other three columns, i.e., depending on the LMC value,
one can determine whether to increase temperature or not.
In Appendix C.2, we study the third load parameter, model
depth Ldepth, and we get consistent results.

By utilizing the loss landscape measure LMC, our method
efficiently determines the correct regime for hyperparameter
tuning. Thus, our method provides an efficient approach to
predict the more efficient direction of tuning hyperparame-
ters based on a single initial (T , L) pruning setting, thereby
eliminating the need for costly grid searches. In contrast
to the grid search, which typically necessitates at least two
dense model training runs with different hyperparameters,
our method accomplishes this with a single dense model
training run. Consequently, our method exhibits twice the
efficiency of the grid search approach. Furthermore, our
method works on a wide range of load-like parameters, mak-
ing it applicable to different target model sizes.

4.2. Selecting the best model without grid search

Here, we develop a model selection method based on the
three-regime model. In particular, we are interested in the
following question.

Problem statement. Given a set of models trained with di-
verse magnitudes of temperature-like parameters (training
epochs or batch sizes) and a target model density, which
model should we prune to obtain optimal pruning perfor-
mance?

Experiment details. We study PreResNet-20 on CIFAR-
10. We prune the model to 9 different model densities,
as detailed in Section 3.1. For each target model density,
we select a model to prune from two sets: 1) 16 different
training epochs ranging from 10 to 160 and a fixed batch
size; and 2) 13 different batch sizes ranging from 16 to 512
and a fixed training epoch.
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Conventional wisdom. The conventional approach (Lecun
et al., 1989; Han et al., 2015) to selecting a dense model to
prune is based on the test error of the trained dense model.

Proposed method. We find that the conventional wisdom is
effective when the pruned model belongs to Regime II while
it does not work when it belongs to Regime I. Therefore,
we propose an LMC-based model selection method (Algo-
rithm 2), which uses the LMC metric to detect the wrong
prediction made by conventional wisdom. Our approach
uses the LMC metric to evaluate whether the dense model
chosen by conventional means falls within the undesirable
regime. If the model belongs to Regime II (LMC ∈ [ϵ, 0]),
conventional wisdom is effective, and the selection process
concludes. Conversely, if the model falls under Regime
I (LMC < ϵ), conventional wisdom fails, and we evalu-
ate alternative candidate models. We set LMC threshold
ϵ = −0.05, same as in Section 4.1. We set the retrain-
ing epochs α = 2, which is much smaller than the 160
retraining epochs used by the grid search method. We also
consider the realistic case that the evaluation has no access
to test data and propose an LMC-and-CKA-based method
Algorithm 2.1, which only requires access to training data.

(a) Selecting the best model
from those trained with various
training epochs.

(b) Selecting the best model
from those trained with various
batch sizes.

Figure 4. Selecting temperature using the LMC-based method
(squares) leads to a smaller test error than selecting temperature
using the test error of the unpruned dense model (crosses). The
performance of LMC-based selection is close to the best test er-
ror found by grid search (dashed lines). (Left) Selecting the best
training epoch. (Right) Selecting the best batch size. Models that
perform significantly worse than grid search tend to have worse
LMC, shown by the dark color of markers.

Results. We compare three model selection approaches,
i.e., selecting by test error of dense model (conventional
wisdom), selecting jointly by LMC and test error (ours,
Algorithm 2), and best selections obtained by grid search
that conducts the full train-prune-retrain procedure for all
models in the set. The results of comparing the three model
selection methods are presented in Figure 4. The x axis
represents the model density, y axis represents the final test
error of the pruned models after full time of retraining. The
color of the markers represents the value of LMC measured

on the pruned models. Figure 4a shows the results of se-
lecting the best training epoch, while Figure 4b shows the
results of selecting the best batch size.

In both figures, we observe the following. 1) The baseline
method (select by test error of the dense model) demon-
strates distinct performance in different regimes: it performs
well in the large-density regime but poorly in the low-density
regime, which is precisely characterized by the LMC mea-
sure (clear color transition from yellow to dark blue). 2)
Our proposed LMC-based method achieves comparable per-
formance in terms of final test error compared to grid search
while significantly reducing the computational requirements.
This efficiency is attributed to utilizing the LMC measure
to determine whether the pruning configuration belongs to
a regime where the baseline approach is effective. Specifi-
cally, in the high-density regime ({14, 20, 40, 80}%), the
LMC measure informs us to adopt the baseline solution with-
out evaluating other candidates, thus avoiding unnecessary
computations. Conversely, in the low-density regime ({5, 6,
7, 8}%), we bypass the poor baseline solution identified by
a low LMC value and perform computations (retraining 2
epochs for each candidate) to identify superior models with
a high LMC value. The additional results of studying the
test data-free case using the LMC-and-CKA-based method
are provided in Appendix C.3.

4.3. Tuning the temperature of the SAM method

Here, we use the three-regime model to diagnose a dichoto-
mous effect of training dense models with the optimizer
SAM (Foret et al., 2021), and we propose a hyperparameter
tuning scheme to mitigate the negative effect.

Problem statement. Given a target model density, how can
we tune the hyperparameter of SAM optimizer to train the
dense model for optimal pruning performance?

As explained in Section 2.1, SAM can be considered a
high-temperature training method, with the neighborhood
size (ρ) serving as the hyperparameter controlling the
effective temperature. Previous research has demonstrated
that incorporating SAM as an optimizer during the initial
stage of training (Na et al., 2022) or utilizing SAM-inspired
parameter perturbation-based optimizers (Peste et al., 2023)
enhances pruning. In this study, we find that the SAM has a
dichotomous effect when applied to pruning, i.e., SAM can
either improve or damage pruning depending on the regime
to which the pruned model belongs. This phenomenon
can be explained by our proposed three-regime model.
Subsequently, we demonstrate that the negative impact of
SAM can be mitigated by adaptively tuning ρ using our
three-regime model.

Experiment details. We study the effect of SAM on dif-
ferent regimes and vary the regimes of pruned models by
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Figure 5. Comparing final pruning performance with dense model
training using SGD versus SAM in Regime I and Regime II.

varying temperature-like or load-like parameters. In the first
experiment, we vary the regimes between Regime I and II
by changing the temperature, i.e., models are trained with a
varying magnitude of temperature (batch size and training
epochs) and pruned to a fixed density of 7% using UNIFOR-
MMP. We set ρ = 0.6 for SAM. In the second experiment,
we vary the regimes between Regime I and II by changing
the load, i.e., models are pruned to varying model densities
and trained with a fixed magnitude of temperature. We also
show a simple CKA-based method that can adaptively tune
the ρ of SAM for optimal pruning performance.

Conventional wisdom. Using SAM for dense model train-
ing is consistently beneficial for pruning performance (Na
et al., 2022).

Proposed method. We find that the conventional wisdom is
effective (SAM improves pruning) when the pruned model
belongs to Regime I, while it damages pruning when the
model belongs to Regime II and uses a large temperature
(ρ), as this leads to an unfavorable transition from Regime
II-B to a worse Regime II-A. We propose a CKA-based
hyperparameter tuning method to adaptively tune the ρ of
SAM according to the CKA similarity. Specifically, for a
given model density, we assess the CKA similarity of the
pruned models, and we choose the ρ that yields the highest
CKA, thereby guiding the pruned models towards a more
optimal Regime II-B.

Results. The results of the first experiment are shown in
Figure 5. We show that when the SGD-based pruning set-

tings (blue lines) fall within Regime I (poor LMC and CKA),
SAM (orange lines) significantly reduces the test error, as
well as improving LMC and CKA. This aligns with the con-
ventional wisdom that SAM is effective in improving model
compressibility, as well as our three-regime model that a
large temperature is beneficial to pruning in Regime I. How-
ever, in Regime II (near-zero LMC and benign CKA), SAM
yields negligible improvements, which means conventional
wisdom loses its effectiveness in this regime.

The results of the second experiment are shown in Figure 6.
From Figure 6a, we find that the low-density models benefit
from using SAM with larger ρ, while high-density models
suffer from using larger ρ: for densities 5%, 7%, and 10%,
compared with ρ = 0 or ρ = 0.1, larger ρ (0.8) significantly
reduces the test error, while for densities 20%, 40%, and
80%, larger ρ makes the test error a bit worse. Figure 6b
demonstrates our CKA-based tuning method of selecting
the ρ under different model densities based on the CKA
values, and the red bar in Figure 6a shows that our approach
always achieves optimal test error in tuning the ρ.
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Figure 6. (a) Comparing the test error of small/large ρ hyperparam-
eter and proposed CKA-based hyperparameter tuning method. (b)
The proposed hyperparameter tuning method selects the ρ with the
highest CKA value annotated by the black star markers.

5. Conclusion
Based on recent work in the statistical mechanics of learn-
ing, we have proposed a three-regime model of network
pruning, which depends on temperature-like and load-like
parameters. We discover a dichotomous phenomenon that
arises when temperature-like and load-like parameters are
varied: a higher temperature (used during the dense model
training stage) results in good pruned model performance in
heavily pruned networks, while a lower temperature (used
during the dense model training stage) hurts final perfor-
mance for lightly pruned networks. We find that popular
metrics (such as the LMC and CKA similarity) closely track
the transitions between regimes, providing operational ways
of improving pruning. We anticipate the generalizability of
our results and the reproducibility of the multi-regime tax-
onomy of load and temperature on other model compression
techniques such as quantization and distillation.
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A. Related Work
A.1. Overview of related work

Statistical mechanics of learning. Earlier work from the statistical mechanics of learning makes explicit connections
between NN control parameters and load/temperature parameters, e.g., the temperature in the Boltzmann distribution (Seung
et al., 1992; Watkin et al., 1993; Haussler et al., 1996; Engel & den Broeck, 2001; Bahri et al., 2020); and more recent work
has argued that these should empirically affect the output of training (Martin & Mahoney, 2017). Based on this, Martin
& Mahoney (2017) argues for adjusting load and temperature in mitigating overfitting, encouraging the model to exhibit
Heavy-Tailed Self-Regularization (HT-SR), as its layer weight matrices develop stronger correlations over the course of
training (Martin & Mahoney, 2021b). The study of the correlation among HT-SR-related generalization metrics, model, task
and test performance has been used to identify Simpsons paradoxes in deep learning contests (Martin & Mahoney, 2021a),
which finds positive correlation between metrics when tasks are coupled and negative on certain task when performed
alone. Importantly, our more phenomenological approach statistical mechanics view of NN learning is different from the
commonly used (classical or more recent) works (Seung et al., 1992; Watkin et al., 1993; Haussler et al., 1996). However, it
is consistent with the theoretical foundations of Martin & Mahoney (2017; 2021b). Our results provide additional evidence,
complementing that of Martin et al. (2021); Yang et al. (2022), that this more phenomenological approach to the statistical
mechanics of learning can provide more principled basis for a practical theory of NN performance. Also, recently we see a
surge of interest in using statistical mechanics to analyze and improve learning, including Baity-Jesi et al. (2018) on the
glassy behavior of neural networks, Barbier et al. (2019) on optimal generalization error of generalized linear systems,
and Sorscher et al. (2022) on selecting easy versus hard samples used in training.

Load and temperature. The notation of load and temperature was introduced earlier in the statistical mechanics of
learning, e.g., the load in the Hopfield model of associative memory (Hopfield, 1982; Barra & Guerra, 2008; Barra et al.,
2012) and the temperature in the Boltzmann distribution (Seung et al., 1992) and lsing model (Brush, 1967). As the load and
temperature change, the learning system can change its performance and properties dramatically and qualitatively. Recent
work studies the load and temperature in modern deep NN training. Several works characterize the temperature as the
noise scale (or stochasticity) in the optimization process, specified as concrete hyperparameters that influence the training,
e.g., the early stopping epochs (Martin & Mahoney, 2017), batch sizes, and learning rate (McCandlish et al., 2018; Yang
et al., 2021). Martin & Mahoney (2017) characterizes the load-like parameter as the effective capacity of the model or
the ratio of the number of data points to a parameter characterizing the complexity of the model. This line of work also
shows that varying load and temperature can make the NN training display phase behavior. There is no prior work that
explicitly and systematically studies the load and temperature in the task of NN pruning and further observes and uses the
phase transition behavior. A few works have studied the effect of temperature-like parameters such as training epochs on
network pruning. Li et al. (2020) finds that larger models trained short of convergence outperform small models trained
to convergence. Although Li et al. (2020) gives a valuable heuristic on early stopping, the two hyperparameters training
epochs and model size may be intertwined, and therefore, it is unclear whether early stopping is actually needed to reach
the optimal pruning results. Shen et al. (2022) proposes a metric to indicate an early point to end the dense model training
and begin pruning-retraining, showing that the model pruned at early epochs outperforms the one drawn at the later epoch.
Liu et al. (2021) shows that when pruning happens during the early training phase with large learning rates, models can
easily recover performance via retraining. These studies provide evidence that varying temperature-like parameters in dense
model training have a significant effect on pruning performance. Via the VSDL model, our work provides a more explicit
framework for these tasks.

Loss landscape. The study of loss landscapes has received attention among the machine learning community in recent
years. Many of the important ideas have grounded in statistical mechanics and chemical physics (Brooks et al., 2001; Wales,
2003; Stillinger, 2015; Ballard et al., 2017). Recent work uses the loss landscape to analyze many modern techniques such
as large-batch training (Yao et al., 2020) and pruning (Frankle et al., 2020; Evci et al., 2019). Yang et al. (2021) gives a
systematic study on the local and global geometry properties of loss landscape in “load-temperature” framework. Their
empirical finding shows that the global loss landscape metrics such as mode connectivity (Garipov et al., 2018) and model
similarity (Kornblith et al., 2019) perform well in indicating the phase transition of model training, and the transition is
closely correlated with the generalization performance of trained models. Frankle et al. (2020) uses linear mode connectivity
to indicate the phase transition of drawing “lottery tickets” during dense model training. Both works show that the global
property of loss landscape is quite effective in explaining different phase transitions observed.
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A.2. Discussion on the difference between this work and Yang et al. (2021)

We discuss several aspects of our approach that differ from how Yang et al. (2021) applied the VSDL model.

First, the astute reader will have noticed that, since the pruning pipeline is

[Train-dense-model – Prune – Retrain-pruned-model],

there actually exists four variables of loads and temperatures that could potentially influence the pruning performance:
1) load of dense-model; 2) temperature of dense-model; 3) load of pruned-model; and 4) temperature of pruned-model.
Our main empirical finding is that, when one targets a given load of the pruned model, one should adjust the temperature
of the dense model based on the phase behavior of the global loss landscape of pruned models. That is, in this special
multiple-stage pipeline, where a large perturbation (pruning) is involved in the middle stage, changing the temperature in the
first stage will significantly influence (and can be used to control) the global structure in the final stage. Our modeling results
demonstrate that the “load-temperature” framework of the VSDL model can simplify and help solve a complex multi-stage
problem that is commonly seen in applications. Other possible examples of this include transfer learning, distillation,
quantization, etc.

Second, the astute reader may also wonder what is the role of Hessian information, given its importance in how Yang et al.
(2021) taxonomized loss landscapes. In Yang et al. (2021), Hessian information was used to identify the sharp transition
at the interpolation threshold. In our study of pruning, however, most of the pruned models are unable to interpolate the
training data. Compared with Figure 3 in Yang et al. (2021), we observed empirically that the Hessian eigenvalues are too
large to reach locally flat phases. That is, we found that using metrics from Yang et al. (2021) that were used to measure the
local structure of loss landscapes (such as Hessian trace or leading Hessian eigenvalues) is not as informative as the global
LMC and CKA metrics in the pruning setting, and it does not significantly help identify the different regimes for the pruning
problem.

Finally, we would like to emphasize the novelties of our work in comparison to Yang et al. (2021): 1) While Yang et al. (2021)
builds a theory-driven framework, our paper proposes practical machine learning algorithms, including hyperparameter
tuning and model selection, to address the specific challenges in pruning. 2) While Yang et al. (2021) primarily focuses on
taxonomizing various types of phase transitions, we leverage these phase transitions to design effective pruning algorithms
with direct implications for practical applications.

B. Additional Details for Three-regime Taxonomy
B.1. Implementation details

Datasets. For the image classification task, we consider CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and SVHN (Ser-
manet et al., 2011). CIFAR-10 comprises 50,000 training images and 10,000 testing images with 10 categories. CIFAR-100
comprises 50,000 training images and 10,000 testing images with 100 categories. SVHN comprises 73,257 training images
and 26,032 testing images with 10 categories. For the machine translation task, we consider WMT14 (Bojar et al., 2014)
German to English (DE-EN) dataset. We subsample 1.28M sentence pairs from the WMT14 training set for training and
report the BLEU score on the validation set.

Model architectures. For the image classification task, we use PreResNet-20 (Pre-Activation ResNet, (He et al., 2016)),
DenseNet-40 (Huang et al., 2017), and VGG-19 (Simonyan & Zisserman, 2014). Our implementation is based on Liu et al.
(2019). For the machine transition task, we use Transformer-base (Vaswani et al., 2017).

Training procedures. For full model training and pruned model retraining, we use SGD as the default optimizer. The
default hyperparameters include a momentum of 0.9, weight decay of 1e-4, and a training duration of 160 epochs. Learning
rate decay is applied with an initial learning rate of 0.1, which decreases by a factor of 10 at epochs 80 and 120. In the study
of varying training epochs as temperature, we fix batch size as 64. In the study of varying batch sizes as temperature, we
fix the training iterations as 62400. For each configuration, we train the dense model with three different random seeds
and retrain the pruned sparse model with three random seeds as well. We report the average test error and loss landscape
measures across these random seeds.

Pruning procedures. We implement the unstructured magnitude pruning methods, UNIFORMMP and GLOBALMP,
following Liu et al. (2019); Lee et al. (2021). For image classification models, we only prune weights in convolution layers,
as suggested by Liu et al. (2019), while keeping the last linear layer intact due to its relatively small number of parameters.
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Hyperparameters for different metrics. We implement the LMC and CKA similarity metrics based on Yang et al. (2021).
For LMC measurement, we use the entire training set, while for CKA similarity measurement, we draw 6,400 samples from
the training set.

B.2. Additional Supporting Results for Three-regime Taxonomy

Different temperature parameters. We corroborate our main claim by studying batch size as an alternative temperature
parameter, in addition to adjusting the number of training epochs. The results are shown in Figure 7. Comparing Figure 7
with Figure 2, we see that the three regimes are still present and the observation that high temperature improves pruning for
poorly-connected Regime I while hurts pruning for well-connected Regime II-B also holds. Therefore, our central claim
remains consistent even with the introduction of different temperature-like parameters.
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Figure 7. (Batch size as temperature). Partitioning the 2D diagram of model density – batch size into three regimes. Models are trained
with PreResNet-20 on CIFAR-10.

Different architectures. We extend the experiments with DenseNet-40 and VGG-19 on CIFAR-10 in Figure 8 and Figure
9. The experiment produces analogous results to Figure 2 and supports our main claim. We note that DenseNet-40 and
VGG-19 are larger architectures with more parameters (1M and 20M parameters) than the basic architecture PreResNet-20
(0.27M parameters), so we are able to prune it to a smaller density.
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Figure 8. (DenseNet-40). Partitioning the 2D model density – training epochs diagram into three regimes. Models are trained with
DenseNet-40 on CIFAR-10.
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Figure 9. (VGG-19). Partitioning the 2D model density – training epochs diagram into three regimes. Models are trained with VGG-19
on CIFAR-10.
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Different datasets. We extend the experiments with different datasets CIFAR-100 and SVHN in Figure 10 and Figure 11.
The experiment produces consistent results with Figure 2 and supports our main claim.
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Figure 10. (CIFAR-100). Partitioning the 2D diagram of model density—training epochs into three regimes. Models are trained with
PreResNet-20 on CIFAR-100.
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Figure 11. (SVHN). Partitioning the 2D diagram of model density—training epochs into three regimes. Models are trained with PreResNet-
20 on SVHN.

Different pruning strategy. We confirm the three-regime taxonomy still holds under a different pruning strategy, namely
performing GLOBALMP in place of UNIFORMMP, as shown in Figure 12. We maintain a similar experimental setup,
varying training epochs to adjust the temperature, and we produce the same set of 2D diagrams as Figure 2. Comparing
Figure 12 with Figure 2, we see that the three regimes are visibly present, and the higher temperature has a dichotomous
effect on test error depending on whether LMC is negative or not. Therefore, our central claim is robust to the choice of the
pruning method.
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Figure 12. (Global magnitude pruning). Partitioning the 2D model density—training epochs diagram into three regimes where we use
global magnitude pruning (GLOBALMP) instead of uniform magnitude pruning (UNIFORMMP). Models are trained with PreResNet-20
on CIFAR-10.

Different optimizer. We conducted ablation studies on SGD versus Adam with four different settings for network pruning:
1) dense model training with Adam, retrain with SGD, 2) dense model training with Adam, retrain with Adam, 3) dense
model training with SGD, retrain with SGD, 4) dense model training with SGD, retrain with Adam. All four settings focus
on heavily-pruned models (pruned to the density of 5%, 6%), and we expect to see that a large temperature potentially helps
improve the test error.
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In more detail, here is the experimental setup. We trained PreResNet-20 on CIFAR-10, using the Adam optimizer with
0.001 as the initial learning rate and the SGD optimizer with 0.1 as the initial learning rate. The weight decay is 1e-4 for
both. The setup of the learning rate decay schedule, model architecture, dataset, and pruning is the same as the setup in the
main paper. We grid-searched the initial learning rate of Adam using values from 0.1, 0.01, 0.001, 0.0001. We trained the
dense model with one random seed and fine-tuned each pruned model with three random seeds.

The results are presented in Figure 13. First, we noticed that reducing the training epochs (using a large temperature)
improves the test error for all four settings, which is consistent with our main claim. Additionally, we noticed that Adam-
based dense model training does not work as well as SGD, which is observed in the literature. Interestingly, retraining with
Adam significantly improves our result (see the green curves). Our interpretation is that Adam during the retraining works
by stabilizing the training with heavily-pruned bottleneck layers.
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Figure 13. (Adam optimizer for pruning.) Using a large temperature (reducing the training epochs) improves the test error of heavily
pruned models consistently when using Adam and/or SGD optimizers during pruning. Models are trained with PreResNet-20 on
CIFAR-10.

Different task. We show that our model extends to machine translation by performing an experiment on the WMT14 (Bojar
et al., 2014) German to English (DE-EN) dataset using the standard Transformer (Vaswani et al., 2017) model. We use the
Adam optimizer with an inverse square-root learning rate schedule and 4000 warm-up iterations for training and fine-tuning
the model. We subsample 1.28M sentence pairs from the WMT14 training set and report the validation BLEU score. The
Transformer-base model has 6 layers, 8 attention heads, and an embedding dimension of 512. We varied the temperature
over 10 training epochs and the load over 6 densities, ranging from 5% to 80%, using UNIFORMMP defined in the paper.
We trained the dense model with one random seed and retrain each pruned model with three random seeds.

The results are presented in Figure 14. They demonstrate the same dichotomous phenomenon that the large temperature
enhances the BLEU score in low densities, while smaller temperatures help high-density settings, which is consistent with
our main findings in image classification tasks.

C. Additional Details on Three-regime based Applications
C.1. Determining the LMC threshold value

In Section 4.1 and Section 4.2, we consistently use -0.05 as the LMC threshold value ϵ, which is used to distinguish
whether a pruned model belongs to Regime I or Regime II-B (see Figure 1b) in our proposed Algorithm 1 and Algorithm 2.
This threshold is empirically determined by our three-regime taxonomy results of different datasets and architectures in
Section 3.2. Among the three-regime results of multiple architectures and datasets, we consistently find that the transition
between Regime I and II-B is very sharp: Regime I, which is the darker region on the lower left, always has a much smaller
LMC than Regime II-B, the LMC changing quickly from close to zero to lower than -0.4 when the transition happens.
Therefore, -0.05 is a reasonable critical value and is sufficient to distinguish the two regimes. Furthermore, our proposed
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Figure 14. (Machine transition.) Larger temperature (fewer training epochs) enhances the BLEU score in low densities, while smaller
temperatures help high-density settings. Models are trained with Transformer-base on WMT14.

methods are robust to the choices of the threshold. Researchers who apply our algorithms in Section 4.1 and Section 4.2
also do not need to generate the three-regime taxonomy results again to determine the threshold value. In other words, they
can apply our prior observation in Section 3.2 and employ the threshold of -0.05 as a hyperparameter initialization for their
specific tasks.

Table 2. The range of hyperparameters considered in the experiment setup: a dense model is trained with initial temperature T and
subsequently pruned to target level of load L.

Initial temperature to adjust Target level of load

Training Epochs (Tepoch) Batch Size (Tbatch) Model Depth (Ldepth)

160 128 Ldepth ⊆ {20, 32, 44, 56, 80, 152}

C.2. Additional results on hyperparameter-tuning scheme

This subsection provides supplementary results to Section 4.1, demonstrating how to use the proposed temperature-tuning
scheme to predict if we should increase or decrease temperature given a specific pruning configuration with load and
temperature. We study model depth Tdepth as a load-like parameter.

Experiment details. We study PreResNet-20 with width scaling 1 on CIFAR-10 and prune the model to 5% of model
density with UNIFORMMP. We consider studying the varying temperature T and load L, as detailed in Table 2.

Results. Results are presented in Figure 15. From the LMC results on the first row, our scheme determines that all the
depths should be tuned with higher temperatures since they have LMC < ϵ (ϵ = -0.05, annotated by the black box). This
prediction is verified by the test error results on the second row, which shows that the test error can be reduced by increasing
the temperature. In contrast with the other two load-like parameters density and width scaling, one special finding here
is that increasing model depth does not help the configuration transit to Regime II (and thus all the cases studied can be
benefited from higher temperatures).
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Figure 15. Using LMC to determine whether to increase or decrease temperature: models with negative LMC are located in Regime I
(annotated by the black box), and their test error can be reduced by increasing temperature.

Algorithm 2.1 Model Selection via LMC and CKA

Input: a set of trained dense models {Θi}ni=1, and corresponding test errors {errortest(Θi)}ni=1, LMC threshold ϵ, training
procedure Train (Section 2.2), pruning procedure Prune (Section 2.3), target load L, retraining epochs α
Output: dense model Θi∗ to prune

i∗ = argmini{errortest(Θi)}ni=1

Θi∗ ⊙M = Prune(Θi∗ , L)
Compute LMC on Θi∗ ⊙M via Equation (1)
if LMC < ϵ then

Θi ⊙Mi = Train(Prune(Θi, L), α) for i ∈ [1, n]
i∗ = argmaxi{CKA(Θi ⊙Mi)}ni=1 via Equation (2)

end if

C.3. Additional details for model selections

In this subsection, we provide diagrams to describe the algorithms used in model selection tasks. Algorithm 2 shows the
proposed method of using LMC and test error for selection with access to test data. Algorithm 2.1 shows the proposed
method using LMC and CKA for selection without access to test data.

We provide the results of evaluating Algorithm 2.1. See Figure 16. In the high-density regime, this method shows comparable
performance as the grid search but uses fewer retraining epochs: this method takes 2 retraining epochs to determine that the
baseline selection performs well for this density, while the grid search takes 160 retraining epochs for each candidate in the
set. In the low-density regime, this method performs better than the baseline selections by using the LMC to avoid selecting
the bad model to prune.
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(a) Selecting the best model from those
trained with various training epochs.

(b) Selecting the best model from those
trained with various batch sizes.

Figure 16. Selecting temperature using LMC and CKA similarity (squares) leads to a smaller test error than selecting temperature using the
test error of the unpruned dense model (crosses). The retraining epochs of the proposed method α = 2. The performance of CKA-based
selection is close to the best test error found by grid search (dashed lines). (Left) Selecting the best training epoch. (Right) Selecting the
best batch size. Models that perform significantly worse than grid search tend to have worse LMC, shown by the dark color of markers.

C.4. SAM hyperparameter ρ range

SAM was originally a method proposed to improve generalization in Foret et al. (2021); here we use it to train dense models
to improve network pruning which is a different task. Thus, we would not expect our optimal ρ to be the same as the range
in Foret et al. (2021). Furthermore, in our experiments, the range of ρ that we sweep over indeed includes 0.01, 0.02, 0.05,
0.1, 0.2, 0.5, and we find that using the ρ slightly larger than the original range provides more improvement on pruning.
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