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Abstract

Disabled people constitute a significant part of the global population, deserving1

of inclusive consideration and empathetic support. However, the current human-2

computer interaction based on keyboards may not meet the requirements of disabled3

people. The small size, ease of wearing, and low cost of inertial sensors make4

inertial sensor-based writing recognition a promising human-computer interaction5

option for disabled people. However, accurate recognition relies on massive inertial6

signal samples, which are hard to collect for the Chinese context due to the vast7

number of characters. Therefore, we design a Chinese inertial generative adversarial8

network (CI-GAN) containing Chinese glyph encoding (CGE), forced optimal9

transport (FOT), and semantic relevance alignment (SRA) to acquire unlimited high-10

quality training samples. Unlike existing vectorization focusing on the meaning of11

Chinese characters, CGE represents the shape and stroke features, providing glyph12

guidance for GAN to generate writing signals. FOT constrains feature consistency13

between generated and real signals through the designed forced feature matching14

mechanism, meanwhile addressing GANs’ mode collapse and mixing issues by15

introducing Wasserstein distance. SRA captures the semantic relevance between16

various Chinese glyphs and injects this information into the GAN to establish17

batch-level constraints and set higher standards of generated signal quality. By18

utilizing the massive training samples provided by CI-GAN, the performance of19

six widely used classifiers is improved from 6.7% to 98.4%, indicating that CI-20

GAN constructs a flexible and efficient data platform for Chinese inertial writing21

recognition. Furthermore, we release the first Chinese writing recognition dataset22

based on inertial sensors in GitHub.23

1 Introduction24

One of the most significant obstacles for disabled individuals in their daily lives is the lack of efficient25

human-computer interaction (HCI) methods [1]. Traditional keyboard-based HCI systems often fail26

to meet the specific needs of disabled users, particularly those who are visually impaired or have lost27

their fingers, which underscores the urgent need for developing technologies that cater to the unique28

requirements of disabled individuals [2]. Providing tailored HCI solutions not only enhances their29

quality of life and independence but also facilitates their integration into society, enabling greater30

participation in education, employment, and social activities. Such technological advancements hold31

profound significance, creating a more inclusive and equitable society.32

As efficient motion-sensing components, inertial sensors can play a crucial role in recognizing writing33

movements. Inertial sensors can measure the acceleration and angular velocity of moving objects,34

making it possible to convert written characters into digital text [3, 4, 5, 6]. Due to their small size,35

ease of integration, low power consumption, and low cost, inertial sensors are widely used in electronic36

devices such as smartphones, smartwatches, and fitness bands [7, 8, 9, 10], making them particularly37
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suitable for disabled users. Inertial sensors can be integrated into wearable devices, providing a more38

accessible and user-friendly means for disabled individuals to interact with computers and other digital39

devices. By capturing the subtle movements of a user’s hand or other body parts, inertial sensors can40

translate these motions into written text, enabling effective communication and interaction without41

the need for a traditional keyboard. In addition, unlike optical or acoustic sensors, inertial sensors are42

highly resistant to external factors such as lighting conditions, physical obstructions, or environmental43

noise, which showcases their unique robustness in motion capture [11, 12, 13, 14, 15]. Consequently,44

inertial sensors provide a medium for Chinese character writing recognition that aligns with natural45

writing habits and can be seamlessly integrated into the writing process. With the widespread adoption46

of smart devices, the technology of Chinese character writing recognition based on inertial sensors47

may redefine the Chinese character input in the digital age, offering disabled people a comfortable48

human-computer interaction methods.49

However, the major challenge in achieving accurate Chinese writing recognition using inertial sensors50

is obtaining large-scale, diverse inertial writing data samples. For any recognition model aimed51

at accurately analyzing the complex strokes and structures of Chinese characters, it is crucial to52

train the model with extensive, diverse writing samples [16]. Considering that the collection and53

processing of Chinese writing samples are laborious and require high data quality and diversity, this54

task becomes exceedingly challenging and increasingly difficult as the number of characters increases.55

Therefore, generating realistic Chinese writing signals based on inertial sensors has become a central56

technological challenge in recognizing Chinese writing.57

To acquire high-quality, diverse samples of inertial Chinese writing, we applied GAN for IMU writing58

signal generation for the first time and proposed CI-GAN, which can generate unlimited inertial writing59

signals for an input Chinese character, thereby providing rich training samples for Chinese writing60

recognition classifiers. CI-GAN provides a more intuitive and natural human-computer interaction61

method for the Chinese context and advances the application of smart devices with Chinese input.62

The main contributions of this paper are summarized as follows.63

• Considering traditional Chinese character embedding methods that only focus on the meaning64

of characters, we propose a Chinese glyph encoding (CGE), which represents the shape65

and structure of Chinese characters. CGE not only injects glyph and writing semantics into66

the generation of inertial signals but also provides new tools for studying the evolution and67

development of hieroglyphs.68

• We propose a forced optimal transport (FOT) loss for GAN, which not only avoids mode69

collapse and mode mixing during signal generation but also ensures feature consistency be-70

tween the generated and real signals through a designed forced feature matching mechanism,71

thereby enhancing the authenticity of the generated signals.72

• To inject batch-level character semantic correlations into GAN and establish macro con-73

straints, we propose a semantic relevance alignment (SRA), which aligns the relevance74

between generated signals and corresponding Chinese glyphs, thereby ensuring that the75

motion characteristics of the generated signal conform to the Chinese character structure.76

• Utilizing the training samples provided by CI-GAN, we increase the Chinese writing recog-77

nition performance of six widely used classifiers from 6.7% to 98.4%. Furthermore, we78

provide the application scenarios and strategies of 6 classifiers in writing recognition ac-79

cording to their performance metrics. For the sake of sharing, we release the first Chinese80

writing recognition dataset based on inertial sensors in GitHub.81

2 Related Work82

The technology for recognizing Chinese handwriting movements has the potential to bridge the gap83

between traditional writing and digital input, providing disabled individuals with a natural way of84

writing and greatly enhancing their ability to participate in digital communication, education, and85

employment. It also offers a new human-computer interaction avenue for normal people. Hence,86

Chinese handwriting movement recognition has garnered significant attention in recent years, leading87

to numerous related research achievements. Ren et al. utilized the Leap Motion device to propose88

an RNN-based method for recognizing Chinese characters written in the air [17]. The Leap Motion89

sensor, consisting of two infrared emitters and two cameras, can accurately capture the motion of90

hands in three-dimensional (3D) space [18]. However, the Leap Motion device is sensitive to lighting91
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conditions, and either too strong or too weak light can interfere with the transmission and reception92

of infrared rays, affecting the recognition effect [19]. Additionally, the detection space of the Leap93

Motion device is an inverted quadrangular pyramid, limiting its field of view. Movements outside94

this range cannot be captured. Most importantly, the Leap Motion device is expensive and requires a95

connection to a computer or VR headset to function, severely limiting its application prospects [20].96

As wireless networks become more prevalent, Wi-Fi signals are gradually being applied to motion97

capture [21, 22]. Since Wi-Fi signals can penetrate objects and are unaffected by lighting conditions,98

they have a broader application scope than optical motion capture systems [23, 24]. Guo et al. used99

the channel state information (CSI), extracted from Wi-Fi signals reflected by hand movements,100

to recognize 26 air-written English letters [25]. However, while Wi-Fi signals do not have visual101

range limitations and can penetrate obstacles, they are easily disturbed by other signals on the same102

unlicensed band, severely affecting system performance. Moreover, the sampling frequency and103

resolution of Wi-Fi signals are very limited, making it difficult to capture detailed information during104

the writing process and, thus, hard to recognize air-written Chinese characters accurately [26, 27].105

Despite the advantages of low cost, wearability, and low power consumption offered by inertial106

sensors, there is currently a lack of large-scale, high-quality public datasets, causing few studies to use107

inertial sensors for 3D Chinese handwriting recognition [28, 29, 30, 31]. To collect data, Zhang et al.108

employed 12 volunteers, each of whom was asked to write the assigned Chinese characters on paper109

30 times [32]. The inertial measurement unit (IMU) built into smartwatches was used to collect the110

motion signals of the volunteers while writing, ultimately achieving a recognition accuracy of 90.2%111

for 200 Chinese characters. However, this study aims to identify the signals of normal individuals112

writing on paper, which is not applicable to people with disabilities. Moreover, this method can113

only realize desktop-based 2D writing recognition, which reduces the comfort and flexibility of the114

writing process, inherently limiting the application scenarios of Chinese handwriting recognition.115

Additionally, this method cannot effectively recognize massive Chinese characters due to the physical116

and mental limitations of volunteers for data collection. Considering the vast number of Chinese117

characters, providing large-scale, high-quality writing signal samples for each character is nearly118

impossible, which has become the most significant bottleneck limiting the development of Chinese119

handwriting recognition technology based on inertial sensors. Therefore, designing a model for120

generating Chinese handwriting signals provides researchers with an endless supply of signal samples121

and a flexible, convenient experimental data platform, accelerating the development and testing of122

new algorithms and supporting the research and application of Chinese handwriting recognition.123

3 Method124

To generate inertial writing signals for Chinese characters, we propose the Chinese inertial generative125

adversarial network (CI-GAN), as shown in Fig. 1. For an input Chinese character, its one-hot126

encoding is transformed into glyph encoding using our designed glyph encoding dictionary, which127

stores the glyph shapes and stroke features of different Chinese characters. Thus, the obtained Chinese128

glyph encoding contains rich writing features of the input character. This glyph encoding, along129

with a random noise vector, is fed into a GAN, generating the synthetic IMU signal for the character,130

where glyph encoding provides glyph and stroke features of the input character, while the random131

noise introduces randomness to the virtual signal generation, ensuring the diversity and variability of132

the generated signals. To ensure that the GAN learns the IMU signal patterns for each character, we133

designed a forced optimal transport (FOT) loss, which not only mitigates the issues of mode collapse134

and mode mixing typically observed in GAN frameworks but also forces the generated IMU signals135

to closely resemble the actual handwriting signals in terms of semantic features, fluctuation trends,136

and kinematic properties. Moreover, a semantic relevance alignment (SRA) is proposed to provide137

batch-level macro constraints for GAN, thereby keeping the correlation between generated signals138

consistent with the correlation between Chinese character glyphs. Equipped with CGE, FOT and139

SRA, CI-GAN can provide unlimited high-quality training samples for Chinese character writing140

recognition, thereby enhancing the accuracy and robustness of various classifiers.141

3.1 Chinese Glyph Encoding142

In one-hot encoding, each Chinese character is represented by a high-dimensional sparse vector143

(where only one element is 1, and all others are 0), which results in all characters being equidistant144

in the vector space, thereby losing the abundant semantic information contained in the characters.145
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Figure 1: Flowchart of Chinese inertial generative adversarial network. The Chinese character ”数”
is input into the model, and its one-hot encoding is converted into glyph encoding (green cubes),
which is then input into GAN together with random noise (blue cubes of different colors).

Therefore, one-hot encoding fails to inject rich information into GAN. Although there are some146

commonly used Chinese character embeddings, these embeddings store meaning information of147

the characters, not glyph information (i.e., shape, structure and writing strokes). For example, the148

characters ”天” (sky) and ”夫” (husband) are quite similar in writing motions, but their meanings149

are significantly different. To this end, we propose a Chinese glyph encoding (CGE), which encodes150

Chinese characters based on their glyph shapes and writing actions.151

Considering that the inertial sensor signals capture the writing motion of Chinese characters, the152

motion signal exactly contains glyph information, which encourages simultaneous learning signal153

generation and Chinese glyph encoding under the supervision of real signals. Therefore, we create a154

learnable weight matrix W after the one-hot input layer to capture the glyph information. When a155

Chinese character is input into CI-GAN in one-hot encoding, it first passes through this weight matrix.156

Since only one element in the one-hot encoding is 1, and the rest are 0, multiplying one-hot encoding157

by the weight matrix W means obtaining one row of the matrix W . Hence, each row of W can be158

seen as an encoding of a Chinese character, and this matrix can serve as a glyph encoding dictionary159

of Chinese characters. However, an unguided Chinese encoding dictionary often struggles to capture160

the differences in glyph shapes among different characters, assigning similar glyph encodings to161

characters with distinct glyphs. To address this, we propose a glyph encoding regularization (GER),162

which enhances the orthogonality of all character encoding vectors and increases their information163

entropy to store as many glyph features of the characters as possible, thereby avoiding triviality like164

one-hot encoding. Specifically, we use the α-order Rényi entropy to measure the information content165

of the glyph encoding dictionary W , calculated as follows:166

Sα(W ) =
1

1− α
log2(tr(G̃

α)),where G̃ij =
1

N

Gij√
Gii ·Gjj

, Gij =
〈
W (i),W (j)

〉
. (1)

where, N represents the number of Chinese characters, which corresponds to the number of rows in167

the weight (encoding) matrix W . G is the Gram matrix of W , where Gij equal to the inner product168

of the i-th and j-th rows of W , and G̃ is the trace-normalized G, i.e., tr(G̃) = 1. In similar problems,169

α is generally set to 2 for optimal results. Sα(W ) measures the information content of the glyph170

encoding matrix W . A larger Sα(W ) indicates more information encoded in W , meaning the glyph171

encodings are more informative. Meanwhile, as Sα(W ) increases, all elements in the Gram matrix172

G are forced to decrease, indicating that different encoding vectors have stronger orthogonality. It173
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is evident that the improvement of Sα(W ) simultaneously enhances the information content and174

the orthogonality among the encodings. In light of this, the glyph encoding regularization Rencode is175

constructed as Rencode =
1

Sα(W ) . As Rencode decreases during training, Sα(W ) gradually increases,176

meaning the glyph encoding dictionary stores more information while enhancing the orthogonality177

among all Chinese glyph encodings, effectively representing the differences in glyph shapes among178

all characters. Thus, this glyph encoding can inject sufficient glyph information into GAN, ensuring179

that the generated signals maintain consistency with the target character’s glyph.180

3.2 Forced Optimal Transport181

Ensuring the authenticity of virtual signals poses the greatest challenge when generating diverse182

signals, especially in following physical laws and simulating the potential dynamical characteristics183

of actual motions. To this end, we propose the forced feature matching (FFM), which ensures that the184

generated signal feature closely matches the real signal feature and the corresponding glyph encoding.185

Specifically, we use a pre-trained variational autoencoder to extract the real signal feature hT and186

generated signal feature hG. Then, the consistency of hT , hG, and the corresponding glyph encoding187

e is constrained by LFFM .188

LFFM = 1− 〈hG, hT 〉+ 〈hG, e〉+ 〈e, hT 〉
‖hG‖ ‖hT ‖+ ‖hG‖ ‖e‖+ ‖e‖ ‖hT ‖

. (2)

Another critical challenge lies in the mode collapse and mode mixing issue inherent to GAN archi-189

tectures. Mode collapse limits the diversity of generated signal samples, causing GAN to generate190

signals only for a few Chinese characters, regardless of the diversity of input. On the other hand, mode191

mixing problems cause the generated signal to contain blend characteristics of multiple modes, which192

is unrealistic and unrecognizable. To address these issues, we introduce the optimal transport to GAN,193

which utilizes the Wasserstein distance as a loss function. Traditional GANs use the Jensen-Shannon194

divergence as the loss metric, which becomes ineffective when the distributions of real and generated195

data have little overlap, leading to mode collapse. The Wasserstein distance provides a more effective196

gradient even when the distributions are disjoint or significantly different, thereby preventing mode197

collapse. Furthermore, unlike the Jensen-Shannon divergence, the Wasserstein distance exhibits198

insensitivity to the balance between the training of the generator and discriminator, thereby alleviating199

mode mixing (We provide a rigorous mathematical proof in Appendix C). Combing OT and FFM200

constraints, we can obtain the forced optimal transport loss LFOT = W (PT ,PG) + λ · LFFM ,201

where W (PT ,PG) is the optimal transport loss, representing the Wasserstein distance between the202

distributions of real and generated signals, enhancing the stability and diversity of the samples. λ203

is a weighting coefficient for the forced feature matching loss LFFM . As LFFM decreases during204

training, the generated signals increasingly approximate the characteristics of real signals.205

3.3 Semantic Relevance Alignment206

Figure 2: Diagram of semantic relevance align-
ment.

As motion records of Chinese writing, the se-207

mantic relationships between generated signals208

should align with the relationships between Chi-209

nese character glyphs. To ensure the gener-210

ated inertial signals accurately reflect the char-211

acter relationships between Chinese character212

glyphs, we propose semantic relevance align-213

ment (SRA), which ensures consistency between214

the glyph encoding relationships and the signal215

feature relationships, thereby providing batch-216

level macro guidance for GANs and enhancing217

the quality of the generated signals. For each218

batch of input Chinese characters, we compute219

the pairwise cosine similarities of their Chinese220

glyph encodings to form an encoding similarity221

matrix Me . Simultaneously, the pairwise cosine222

similarities of generated signal features (extracted by the pre-trained VAE) are computed to form a223

feature similarity matrix Mh. Then, the loss of semantic relevance alignment LSRA = ‖Mh −Me‖22224

is established to minimize the difference between the two matrices, thereby ensuring that the semantic225

relationships in the input character glyphs are accurately contained in the generated signals.226
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4 Experiments and Results227

4.1 Data Collection and Experimental Setup228

Table 1: The built-in IMU specifications of some
smartphones. Note that since the IMUs in some
types of iPhones are customized by the manufac-
turer, the model and price are not disclosed.

Dataset Smartphone Release Time IMU Unit price

Training
iPhone 13 pro Sep. 2021 Undisclosed /
HUAWEI P40 Mar. 2020 LSM6DSM $0.30

HUAWEI P40 Pro Apr. 2020 LSM6DSO $0.33

Testing

iPhone 14 Sep. 2022 Undisclosed /
iPhone 15 Sep. 2023 Undisclosed /
VIVO T2x May. 2022 LSM6DSO $0.33

OPPO Reno 6 May. 2021 ICM-40607 $0.28
Realme GT Mar. 2021 BMI160 $0.21
Redmi K40 Mar. 2021 ICM-40607 $0.28

We invited nine volunteers, each using their229

smartphone’s built-in inertial sensors to record230

handwriting movements. The nine smartphones231

and their corresponding sensor models are listed232

in Table 1. Each volunteer held their phone ac-233

cording to their personal habit and wrote 500234

Chinese characters in the air (sourced from the235

”Commonly Used Chinese Characters List” pub-236

lished by the National Language Working Com-237

mittee and the Ministry of Education), writing238

each character only once. In total, we obtained239

4500 samples of Chinese handwriting signals.240

We randomly selected 1500 samples from three241

volunteers as the training set, while the remaining 3000 samples from six volunteers were used as242

the test set without participating in any training. All experiments are implemented by Pytorch 1.12.1243

with an Nvidia RTX 2080TI GPU and Intel(R) Xeon(R) W-2133 CPU.244

4.2 Signal Generation Visualization245

To visually demonstrate the signal generation effect of CI-GAN, we visualized the real and generated246

inertial sensor signals of the handwriting movements for the Chinese characters ”科” and ”学”,247

respectively. In these figures, the blue curves represent the three-axis acceleration signals, and the248

yellow curves represent the three-axis gyroscope signals. It can be observed that the generated signals249

closely follow the overall fluctuation trends of the real signals, indicating that CI-GAN effectively250

preserves the handwriting movement information of the real signals. To further verify the consistency

“科”

“学”

Figure 3: The visualization results of the 6-axis signals recorded by the inertial sensor for different
Chinese character writing movements and the corresponding generated signals. The left side is the
original inertial sensor signal, the middle is the corresponding generated signal, and the right side is
the reconstructed writing trajectory.

251
of the movement characteristics between the generated and real signals, we employed a classical252

inertial navigation method [33] to convert both the real and generated signals into corresponding253
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Real Signal Generated Signal Generated Signal

Generated Signal Generated Signal Generated Signal

Figure 4: Visualization of the real IMU signal for writing ”王” and the virtual signals generated by
CI-GAN. The upper left corner is the real signal, and the remaining signals are virtual signals.

motion trajectories, as shown in the third column of Fig. 3. It is important to note that the purpose254

of reconstructing the motion trajectories is not to precisely reproduce every detail of the writing255

process but to compare the overall shape similarity between the trajectories derived from real and256

generated signals. The highly similar shapes between the trajectories indicate that the generated257

signals accurately capture the structural information of different Chinese characters and can effectively258

simulate the key movement features of the handwriting process, including stroke order, movement259

direction changes, and velocity variations. Additionally, the obvious differences in details between260

the real and generated signals demonstrate CI-GAN’s capability to generate diverse signals. Since the261

generated signals maintain the core movement and semantic features of the handwriting process, these262

differences do not impair the overall recognition of the characters but rather enhance the diversity of263

the training data.264

To demonstrate CI-GAN’s ability to generate unlimited high-quality signals, we generated five IMU265

handwriting signals for the same character ”王” and compared them with a real handwriting signal,266

as shown in Fig. 4. We chose this character because its strokes are distinctly separated, making it267

easier to compare the consistency of stroke features between the generated and real signals. It can268

be observed that the generated signals exhibit similar fluctuation patterns to the real signal in all269

three axes of acceleration and gyroscope measurements, verifying CI-GAN’s precision in capturing270

dynamic handwriting characteristics. Although the overall trends of the generated signals align with271

the real signal, the individual features show variations, demonstrating CI-GAN’s potential to produce272

large-scale, high-quality, and diverse IMU handwriting signal samples.273

4.3 Comparative Experiments274

Figure 5: The recognition accuracy of 6 classifiers
with varied training samples provided by CI-GAN.

Using the trained CI-GAN, we generated 30 vir-275

tual IMU handwriting signals for each character,276

resulting in a total of 16500 training samples.277

To evaluate the impact of the generated signals278

on handwriting recognition tasks, we trained six279

representative time-series classification models280

with these training samples: 1DCNN, LSTM,281

Transformer, SVM, XGBoost, and Random For-282

est (RF). We then tested the performance of these283

classifiers on the test set, as shown in Fig. 5.284

When the number of training samples is small (1500 real samples), the recognition accuracy of all285

classifiers is poor, with the highest accuracy being only 6.7%. As the generated training samples are286
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introduced, all classifiers’ recognition accuracy improves significantly, whereas deep learning ones287

such as 1DCNN, LSTM, and Transformer show the most notable improvement. When the number of288

training samples reaches 15000, the recognition accuracy of 1DCNN can reach 95.7%, improving from289

0.87% (without data augmentation). The Transformer captures long-range dependencies in time-series290

data through its self-attention mechanism, enabling it to understand complex movement patterns.291

However, its excellent recognition ability relies on large amounts of data, making its performance292

improvement the most significant as CI-GAN continuously generates training data, improving from293

1.7% to 98.4%. Compared to deep learning models, machine learning models also exhibit significant294

dependence on the amount of training data, highlighting the critical role of sufficient generated signals295

in handwriting recognition tasks. With the abundant training samples generated by CI-GAN, six296

classifiers achieve accurate recognition even for similar characters as shown in Appendix A.1.297

Table 2: Performance comparison of 6 classfiers.

Classifier 1DCNN LSTM Transformer RF XGBoost SVM

Runtime (s) 0.00743 0.13009 0.03439 0.01269 0.00154 0.00173
Memory (MB) 22.153 29.897 52.336 35.418 19.472 3.881

Accuracy 95.7% 93.9% 98.4% 83.5% 93.1% 74.6%

In summary, CI-GAN provides a data298

experimental platform for Chinese299

writing recognition, enabling various300

classifiers to utilize the generated sam-301

ples for training and improving their302

recognition accuracy. To help researchers select suitable classifiers for different application scenarios,303

we further tested the recognition speed and memory usage of different classifiers for a single input304

sample and summarized their recognition accuracy in Table 2. Among the three deep learning models,305

1DCNN has the fastest runtime and the smallest memory usage, with a recognition accuracy of 95.7%,306

slightly lower than the Transformer but sufficient for most practical applications. It is more suitable307

for integration into memory and computation resource-limited smart wearable devices such as phones,308

watches, and wristbands. In contrast, Transformer has the highest accuracy among the six classifiers309

and the highest memory usage, making it more suitable for PC-based applications. Compared to deep310

learning classifiers, traditional machine learning classifiers generally have lower accuracy, but with311

the support of abundant training samples generated by CI-GAN, the XGBoost model still achieves a312

recognition accuracy of 93.1%, very close to deep learning classifiers. More importantly, XGBoost,313

as a tree model, has strong interpretability, allowing users to intuitively observe which features signifi-314

cantly impact the model’s decision-making process, which is a strength that deep learning models lack.315

Additionally, XGBoost’s runtime and memory usage are better than the three deep learning classifiers,316

making it outstanding in scenarios requiring a balance between model performance, interpretability,317

and resource efficiency. For example, XGBoost can be integrated into stationery and educational tools318

to analyze students’ handwriting habits and provide personalized feedback suggestions. Similarly,319

in the healthcare field, XGBoost can be used to analyze patients’ writing characteristics, assisting320

doctors in evaluating treatment effects or predicting disease risks. Its high interpretability can provide321

an auxiliary reference for medical decisions and treatment plans, increasing patients’ trust in the322

treatment.323

4.4 Ablation Study324

Table 3: Performance comparison of six classifiers trained
on samples generated by different ablation models.

Ablation model 1DCNN LSTM Transformer RF XGBoost SVM

No augmentation 0.87% 2.6% 1.7% 4.9% 1.2% 6.7%
w/o all (Base GAN) 18.5% 14.8% 15.7% 12.4% 20.5% 8.4%

w/ OT 26.4% 28.6% 27.3% 21.0% 30.9% 20.9%
w/ FOT 39.9% 38.0% 35.3% 31.9% 46.8% 27.3%
w/ CGE 54.6% 51.2% 47.9% 38.6% 57.5% 34.1%

w/ FOT+CGE 80.7% 80.5% 80.9% 57.2% 70.4% 59.5%

w/ FOT+CGE+SRA
(CI-GAN)

95.7% 93.9% 98.4% 83.5% 93.1% 74.6%

Systematic ablation experiments are325

conducted to evaluate the contribu-326

tions of the CGE, FOT, and SRA mod-327

ules in CI-GAN. We generated writing328

samples using the ablated models and329

trained the six classifiers on these sam-330

ples. The results are summarized in331

Table 3. When no generated data is332

used (No augmentation), the recogni-333

tion accuracy of all classifiers is very334

poor. Employing the Base GAN to335

generate training samples brings slight improvement but still underperforms, underscoring the critical336

importance and necessity of data augmentation for accurate recognition. This also indicates that337

utilizing GAN to improve classifier performance is a challenging task. Introducing CGE, FOT, and338

SRA individually into the GAN significantly improves its performance, with the introduction of339

CGE bringing the most noticeable improvement. This demonstrates that incorporating Chinese glyph340

encoding into the generative model is crucial for accurately generating writing signals. When CGE,341

FOT, and SRA are simultaneously integrated into the GAN (i.e., CI-GAN), the performance of all six342

classifiers is improved to above 70%, with four classifiers achieving recognition accuracies exceeding343
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90%. Notably, the Transformer classifier achieves an impressive accuracy of 98.4%. Furthermore,344

statistical significance analysis is performed to validate the reliability of these results, as shown in345

Appendix A.2.346

4.5 Visualization Analysis of Chinese Glyph Encoding347
















Figure 6: The t-SNE visualization of Chinese glyph encodings.

To demonstrate the effectiveness348

of the Chinese glyph encoding in349

capturing the glyph features of350

Chinese characters, we conducted351

a visualization analysis using t-352

SNE, which reduced the dimen-353

sionality of the glyph encodings of354

500 Chinese characters and visu-355

alized the results in a 2D space,356

as shown in Fig. 6, where each357

point represents a Chinese charac-358

ter. For the convenience of obser-359

vation, we selected 6 local visual-360

ization regions from left to right361

and zoomed in on them at the bot-362

tom. It can be observed that charac-363

ters with similar strokes and struc-364

ture (e.g., ”办-为”, ”目-且”, ”人-365

入-八”) are close to each other. Ad-366

ditionally, the figure shows several367

clusters where characters within368

the same cluster share similar radi-369

cals, structures, or strokes, indicat-370

ing that CGE effectively captures371

the similarities and differences in372

the glyph features of Chinese char-373

acters. By incorporating CGE into374

the generative model, CI-GAN can produce writing signals that accurately reflect the structure and375

stroke features of Chinese characters, ensuring the generated signals closely align with real writing376

movements. This encoding is not only crucial for guiding GANs in generating writing signals but also377

potentially provides new tools and perspectives for studying the evolution of Chinese hieroglyphs.378

5 Conclusion379

This paper introduces GAN to generate inertial sensor signals and proposes CI-GAN for Chinese380

writing data augmentation, which consists of CGE, FOT, and SRA. The CGE module constructs381

an encoding of the stroke and structure for Chinese characters, providing glyph information for382

GAN to generate writing signals. FOT overcomes the mode collapse and mode mixing problems383

of traditional GANs and ensures the authenticity of the generated samples through a forced feature384

matching mechanism. The SRA module aligns the semantic relationships between the generated385

signals and the corresponding Chinese characters, thereby imposing a batch-level constraint on386

GAN. Utilizing the large-scale, high-quality synthetic IMU writing signals provided by CI-GAN, the387

recognition accuracy of six widely used classifiers for Chinese writing recognition was improved388

from 6.7% to 98.4%, which demonstrates that CI-GAN has the potential to become a flexible and389

efficient data generation platform in the field of Chinese writing recognition. This research provides390

a novel human-computer interaction, especially for disabled people. Its limitations and impact are391

discussed in Appendix B.1 and B.2. In the future, we plan to extend CI-GAN to generate signals from392

other modalities of sensors, constructing a multimodal human-computer interaction system tailored393

for disabled individuals, which can adapt to the diverse needs of users with different disabilities.394

Through continuous collaboration with healthcare professionals and the disabled community, we will395

refine and optimize these multimodal systems to ensure they deliver the highest functionality and396

user satisfaction. Ultimately, this research aims to foster a society where digital accessibility is a397

fundamental right, ensuring that all individuals, regardless of physical abilities, can engage fully and398

independently with the digital world.399
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Appendix / Supplemental Material501

A Additional Experimental Results502

A.1 Performance of Classifiers on Similar Characters503
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Figure 7: Confusion matrices of different classifiers for recognition results of Chinese characters with
similar glyphs.
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With the abundant training samples generated by CI-GAN, the handwriting recognition performance504

of all six classifiers significantly improved. To further verify the recognition performance of different505

classifiers on characters with similar strokes and glyphs, we selected four groups of characters with sim-506

ilar handwriting movements from the test set (”八人入大天太”, ”办为方力万历”, ”过达这边近还”,507

and ”认议计许话识”) and presented the recognition results of the six classifiers in confusion matrices,508

as shown in Fig. 7. It can be observed that the values on the diagonal of all confusion matrices are509

significantly higher than the non-diagonal values, indicating high recognition accuracy for these510

similar handwriting characters with the help of samples generated by CI-GAN. However, some511

characters are still misrecognized. For instance, the characters ”八”, ”人”, and ”入” have extremely512

similar structures and writing movements, posing challenges even when massive training samples are513

provided. Moreover, continuous and non-standard writing can also cause recognition obstacles. For514

instance, although the characters ”过” and ”达” have different strokes in static form, they are very515

similar in dynamic handwriting. Despite these challenges, the synthetic IMU handwriting samples516

generated by CI-GAN significantly enhance the classifiers’ ability to recognize characters with similar517

glyph structures and handwriting movements, highlighting the value and significance of the proposed518

CI-GAN method. By providing diverse and high-quality training samples, CI-GAN improves hand-519

writing recognition classifiers’ performance and generalization ability, making it a valuable tool for520

advancing Chinese handwriting recognition technology.521

A.2 Statistical Significance Analysis522

The CI-GAN model demonstrates significant performance improvements across multiple classifiers,523

as shown in Table 4. The Transformer classifier, for instance, achieves a mean accuracy of 98.4%,524

compared to 15.7% with the traditional GAN and 1.7% without data augmentation. This highlights525

CI-GAN’s ability to generate realistic and diverse training samples that enhance handwriting recogni-526

tion. Moreover, CI-GAN consistently improves accuracy and stability for all classifiers tested. The527

1DCNN’s accuracy increases to 95.7% from 18.5% with the traditional GAN and 0.87% without528

augmentation. Similarly, other models, including LSTM, RandomForest, XGBoost, and SVM, show529

substantial gains, underscoring CI-GAN’s effectiveness across diverse machine-learning contexts.530

In addition, the narrow 95% confidence intervals, such as [98.2822%, 98.5178%] for the Trans-531

former, validate the statistical significance and reliability of these results. This confirms CI-GAN’s532

potential to consistently enhance classifier performance. In conclusion, CI-GAN represents a major533

advancement in Chinese handwriting recognition by generating high-quality, diverse inertial signals.534

This significantly boosts the accuracy and reliability of various classifiers, demonstrating CI-GAN’s535

transformative potential in the field.

Table 4: Performance of different classifiers with CI-GAN generated data

Ablation Classifier Mean Accuracy Standard Deviation 95% Confidence Interval

No data
augmentation

1DCNN 0.87% 0.11% [0.8018%, 0.9382%]
LSTM 2.61% 0.20% [2.4761%, 2.7239%]

Transformer 1.70% 0.13% [1.6194%, 1.7806%]
RandomForest 4.89% 0.09% [4.8439%, 4.9556%]

XGBoost 1.20% 0.15% [1.1071%, 1.2929%]
SVM 6.65% 0.10% [6.5881%, 6.7119%]

Traditional
GAN

1DCNN 18.5% 0.16% [18.4008%, 18.5992%]
LSTM 14.8% 0.37% [14.5707%, 15.0293%]

Transformer 15.7% 0.15% [15.6071%, 15.7929%]
RandomForest 12.4% 0.17% [12.2948%, 12.5052%]

XGBoost 20.5% 0.23% [20.3573%, 20.6427%]
SVM 8.40% 0.34% [8.1893%, 8.6107%]

CI-GAN

1DCNN 95.7% 0.24% [95.5513%, 95.8487%]
LSTM 93.9% 0.53% [93.5713%, 94.2287%]

Transformer 98.4% 0.19% [98.2822%, 98.5178%]
RandomForest 83.5% 0.35% [83.2831%, 83.7169%]

XGBoost 93.1% 0.46% [92.8148%, 93.3852%]
SVM 74.6% 0.38% [74.3644%, 74.8356%]

536
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B Discussion537

B.1 Societal Impact538

CI-GAN model significantly improves the accuracy of Chinese writing recognition and offers an539

alternative means of human-computer interaction that can overcome the limitations of traditional540

keyboard-based methods, which are often inaccessible to those who are blind or lose their fingers. By541

providing a more accessible and user-friendly way to interact with digital devices, inertial sensors542

can facilitate effective communication, enhance the participation of disabled people in education and543

employment, and promote greater independence. Moreover, by addressing the unique needs of this544

population, such technological advancements reflect a commitment to inclusivity and social justice,545

ensuring that everyone, regardless of their physical abilities, has the opportunity to fully participate546

in and contribute to society.547

Furthermore, by releasing the world’s first Chinese handwriting recognition dataset based on inertial548

sensors, this research provides valuable data resources for both academia and industry, facilitating549

further studies and advancements. Additionally, the technology offers an intuitive and efficient550

learning tool for Chinese language learners, aiding in preserving and disseminating Chinese cultural551

heritage and strengthening the global influence of Chinese characters. In summary, the CI-GAN552

technology achieves not only significant breakthroughs in algorithmic research but also demonstrates553

extensive practical potential and substantial societal value, thereby being adopted by educational554

aid device manufacturers. This study provides a solid foundation for future academic research,555

technological development, and industrial applications, driving technological progress and societal556

development.557

B.2 Limitation558

While the CI-GAN model demonstrates significant advancements in Chinese handwriting generation559

and recognition, some practical limitations could impact its performance in real-world applications.560

For instance, non-standard or cursive handwriting may pose challenges for accurate signal generation561

and recognition. Additionally, environmental factors such as external movements or vibrations when562

using handheld devices could affect the inertial sensor data quality, leading to variations in recognition563

accuracy. Future work could focus on developing more robust algorithms that account for these real-564

world variations and improving the model’s adaptability to diverse handwriting styles and conditions.565

These enhancements would ensure that the CI-GAN technology remains effective across a broader566

range of practical scenarios.567

C Theory Assumption and Proof568

To generate large-scale and high-quality handwriting signals, we introduce optimal transport theory569

into the generative adversarial network to alleviate mode collapse and mixing issues. We provide570

a detailed explanation and present a rigorous mathematical proof to show the advantages of this571

operation.572

In traditional conditional GANs, the generator G and the discriminator D are trained by minimizing573

the loss function Ltradition:574

Ltradition = min
G

max
D

Ex∼pdata
[logD(x)] + Ez∼pz [log(1−D(G(z)))],

where pdata is the real data distribution, and pz is the distribution of the generator’s input noise. This575

loss function essentially minimizes the Jensen-Shannon Divergence (JSD) between the real data576

distribution pdata and the generated data distribution pg:577

JSD(pdata‖pg) =
1

2
KL(pdata‖M) +

1

2
KL(pg‖M),

where M = 1
2 (pdata + pg) and KL denotes the Kullback-Leibler divergence. However, JSD has a578

notable drawback: when the real and generated data distributions do not overlap, the JSD becomes579

zero, causing the gradients to vanish. This leads to mode collapse, where the generator produces a580

limited variety of samples.581
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In optimal transport theory, the Wasserstein distance is utilized to measure the minimum cost of582

transforming one probability distribution into another. Given two probability distributions µ and ν on583

a metric space X , the Wasserstein distance W is:584

W (µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ [d(x, y)],

where Π(µ, ν) is the set of all joint distributions whose marginals are µ and ν, and d(x, y) is a distance585

metric on X . Therefore, we introduce the Wasserstein distance in optimal transport theory as new586

loss function LOT , whose objective is to minimize the Wasserstein distance between the generated587

distribution pg and the real distribution pdata. The LOT is defined as:588

LOT = min
G

max
D∈D

Ex∼pdata
[D(x)]− Ez∼pz [D(G(z))]

where D is the set of 1-Lipschitz functions. This Lipschitz constraint can be enforced through weight589

clipping or gradient penalty. In LOT , the discriminator D is constrained to be 1-Lipschitz:590

|D(x1)−D(x2)| ≤ |x1 − x2|.

This constraint ensures that the discriminator provides meaningful gradients even when pg and pdata591

do not overlap. Using the Kantorovich-Rubinstein duality, we can express the Wasserstein distance592

as:593

W (pdata, pg) = sup
‖f‖L≤1

Ex∼pdata
[f(x)]− Ex∼pg [f(x)].

Since f is Lipschitz continuous, it ensures that the gradients ∇f(x) are bounded and do not vanish.594

Hence, during the optimization process, the generator receives consistent and informative gradient595

updates that guide it to produce more realistic and diverse samples. The gradient of the loss function596

LOT with respect to the generator’s parameters θ is:597

∇θEz∼pz [D(Gθ(z))] = Ez∼pz [∇θD(Gθ(z))].

This gradient does not vanish even if pg and pdata have disjoint supports, thanks to the 1-Lipschitz598

property of D. As a result, the generator G can still receive valuable gradient information to adjust its599

parameters and gradually make pg approximate pdata even if pg and pdata do not overlap, effectively600

addressing mode collapse and mode mixing issues. Overall, after introducing optimal transport theory,601

we overcome the gradient vanishing problem inherent in traditional GANs, effectively mitigating602

mode collapse and mode mixing. LOT maintains the existence and relevance of gradients during603

training, enabling the generator to continuously improve and produce more diverse and realistic604

handwriting samples.605
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NeurIPS Paper Checklist606

1. Claims607

Question: Do the main claims made in the abstract and introduction accurately reflect the608

paper’s contributions and scope?609

Answer: [Yes]610

Justification: We have specifically summarized the main contributions of this article in the611

introduction.612

Guidelines:613

• The answer NA means that the abstract and introduction do not include the claims made614

in the paper.615

• The abstract and/or introduction should clearly state the claims made, including the616

contributions made in the paper and important assumptions and limitations. A No or617

NA answer to this question will not be perceived well by the reviewers.618

• The claims made should match theoretical and experimental results, and reflect how619

much the results can be expected to generalize to other settings.620

• It is fine to include aspirational goals as motivation as long as it is clear that these goals621

are not attained by the paper.622

2. Limitations623

Question: Does the paper discuss the limitations of the work performed by the authors?624

Answer: [Yes] As shown in Appendix B.2.625

Justification: Non-standard or cursive handwriting may pose challenges for accurate signal626

generation and recognition.627

Guidelines:628

• The answer NA means that the paper has no limitation while the answer No means that629

the paper has limitations, but those are not discussed in the paper.630

• The authors are encouraged to create a separate ”Limitations” section in their paper.631

• The paper should point out any strong assumptions and how robust the results are to632

violations of these assumptions (e.g., independence assumptions, noiseless settings,633

model well-specification, asymptotic approximations only holding locally). The authors634

should reflect on how these assumptions might be violated in practice and what the635

implications would be.636

• The authors should reflect on the scope of the claims made, e.g., if the approach was637

only tested on a few datasets or with a few runs. In general, empirical results often638

depend on implicit assumptions, which should be articulated.639

• The authors should reflect on the factors that influence the performance of the approach.640

For example, a facial recognition algorithm may perform poorly when image resolution641

is low or images are taken in low lighting. Or a speech-to-text system might not be642

used reliably to provide closed captions for online lectures because it fails to handle643

technical jargon.644

• The authors should discuss the computational efficiency of the proposed algorithms645

and how they scale with dataset size.646

• If applicable, the authors should discuss possible limitations of their approach to address647

problems of privacy and fairness.648

• While the authors might fear that complete honesty about limitations might be used by649

reviewers as grounds for rejection, a worse outcome might be that reviewers discover650

limitations that aren’t acknowledged in the paper. The authors should use their best651

judgment and recognize that individual actions in favor of transparency play an impor-652

tant role in developing norms that preserve the integrity of the community. Reviewers653

will be specifically instructed to not penalize honesty concerning limitations.654

3. Theory Assumptions and Proofs655

Question: For each theoretical result, does the paper provide the full set of assumptions and656

a complete (and correct) proof?657
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Answer: [Yes] As shown in Appendix C.658

Justification: We provide a detailed explanation and present rigorous mathematical proof of659

utilizing optimal transport to alleviate mode collapse and mixing issues of GAN.660

Guidelines:661

• The answer NA means that the paper does not include theoretical results.662

• All the theorems, formulas, and proofs in the paper should be numbered and cross-663

referenced.664

• All assumptions should be clearly stated or referenced in the statement of any theorems.665

• The proofs can either appear in the main paper or the supplemental material, but if666

they appear in the supplemental material, the authors are encouraged to provide a short667

proof sketch to provide intuition.668

• Inversely, any informal proof provided in the core of the paper should be complemented669

by formal proofs provided in appendix or supplemental material.670

• Theorems and Lemmas that the proof relies upon should be properly referenced.671

4. Experimental Result Reproducibility672

Question: Does the paper fully disclose all the information needed to reproduce the main ex-673

perimental results of the paper to the extent that it affects the main claims and/or conclusions674

of the paper (regardless of whether the code and data are provided or not)?675

Answer: [Yes] We have made every effort to disclose all experimental details, including676

CPU model, GPU model, PyTorch framework version, built-in IMU specifications of 9677

experimental smartphones, and even the gender of volunteers.678

Justification: The paper provides comprehensive details on the data collection process,679

data splits, hyperparameters, training procedures, and statistical analyses, ensuring that all680

necessary information is disclosed to fully reproduce the main experimental results and681

validate the claims and conclusions.682

Guidelines:683

• The answer NA means that the paper does not include experiments.684

• If the paper includes experiments, a No answer to this question will not be perceived well685

by the reviewers: Making the paper reproducible is important, regardless of whether686

the code and data are provided or not.687

• If the contribution is a dataset and/or model, the authors should describe the steps taken688

to make their results reproducible or verifiable.689

• Depending on the contribution, reproducibility can be accomplished in various ways.690

For example, if the contribution is a novel architecture, describing the architecture fully691

might suffice, or if the contribution is a specific model and empirical evaluation, it may692

be necessary to either make it possible for others to replicate the model with the same693

dataset, or provide access to the model. In general. releasing code and data is often694

one good way to accomplish this, but reproducibility can also be provided via detailed695

instructions for how to replicate the results, access to a hosted model (e.g., in the case696

of a large language model), releasing of a model checkpoint, or other means that are697

appropriate to the research performed.698

• While NeurIPS does not require releasing code, the conference does require all submis-699

sions to provide some reasonable avenue for reproducibility, which may depend on the700

nature of the contribution. For example701

(a) If the contribution is primarily a new algorithm, the paper should make it clear how702

to reproduce that algorithm.703

(b) If the contribution is primarily a new model architecture, the paper should describe704

the architecture clearly and fully.705

(c) If the contribution is a new model (e.g., a large language model), then there should706

either be a way to access this model for reproducing the results or a way to reproduce707

the model (e.g., with an open-source dataset or instructions for how to construct708

the dataset).709

(d) We recognize that reproducibility may be tricky in some cases, in which case authors710

are welcome to describe the particular way they provide for reproducibility. In the711
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case of closed-source models, it may be that access to the model is limited in some712

way (e.g., to registered users), but it should be possible for other researchers to have713

some path to reproducing or verifying the results.714

5. Open access to data and code715

Question: Does the paper provide open access to the data and code, with sufficient instruc-716

tions to faithfully reproduce the main experimental results, as described in supplemental717

material?718

Answer: [Yes] We released the world’s first Chinese handwriting recognition dataset based719

on inertial sensors.720

Justification: We submitted the training set (due to system limitations on attachment size) in721

the Supplementary Materials for review, and the full dataset can be found on GitHub. (We722

confirm to license the use of this data set to all AI researchers around the world.)723

Guidelines:724

• The answer NA means that paper does not include experiments requiring code.725

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/726

public/guides/CodeSubmissionPolicy) for more details.727

• While we encourage the release of code and data, we understand that this might not be728

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not729

including code, unless this is central to the contribution (e.g., for a new open-source730

benchmark).731

• The instructions should contain the exact command and environment needed to run to732

reproduce the results. See the NeurIPS code and data submission guidelines (https:733

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.734

• The authors should provide instructions on data access and preparation, including how735

to access the raw data, preprocessed data, intermediate data, and generated data, etc.736

• The authors should provide scripts to reproduce all experimental results for the new737

proposed method and baselines. If only a subset of experiments are reproducible, they738
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GAN to advance the field of Chinese handwriting recognition through high-quality, diverse764

signal generation.765

Guidelines:766

• The answer NA means that the paper does not include experiments.767

• The authors should answer ”Yes” if the results are accompanied by error bars, confidence768

intervals, or statistical significance tests, at least for the experiments that support the769

main claims of the paper.770

• The factors of variability that the error bars are capturing should be clearly stated (for771

example, train/test split, initialization, random drawing of some parameter, or overall772

run with given experimental conditions).773

• The method for calculating the error bars should be explained (closed form formula,774

call to a library function, bootstrap, etc.)775

• The assumptions made should be given (e.g., Normally distributed errors).776

• It should be clear whether the error bar is the standard deviation or the standard error777

of the mean.778

• It is OK to report 1-sigma error bars, but one should state it. The authors should779

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis780

of Normality of errors is not verified.781

• For asymmetric distributions, the authors should be careful not to show in tables or782

figures symmetric error bars that would yield results that are out of range (e.g. negative783

error rates).784

• If error bars are reported in tables or plots, The authors should explain in the text how785

they were calculated and reference the corresponding figures or tables in the text.786

8. Experiments Compute Resources787

Question: For each experiment, does the paper provide sufficient information on the computer788

resources (type of compute workers, memory, time of execution) needed to reproduce the789

experiments?790

Answer: [Yes] As shown in Table 2.791

Justification: The paper specifies the type of compute resources used, including the Nvidia792

RTX 2080TI GPU and Intel Xeon W-2133 CPU, and provides details on memory usage and793

execution time, ensuring sufficient information is available to reproduce the experiments.794

Guidelines:795

• The answer NA means that the paper does not include experiments.796

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,797

or cloud provider, including relevant memory and storage.798

• The paper should provide the amount of compute required for each of the individual799

experimental runs as well as estimate the total compute.800

• The paper should disclose whether the full research project required more compute801

than the experiments reported in the paper (e.g., preliminary or failed experiments that802

didn’t make it into the paper).803

9. Code Of Ethics804

Question: Does the research conducted in the paper conform, in every respect, with the805

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?806

Answer: [Yes]807

Justification: The research adheres to the NeurIPS Code of Ethics in all respects, ensuring808

ethical considerations are met in data collection, experimentation, and reporting of results.809

Guidelines:810

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.811

• If the authors answer No, they should explain the special circumstances that require a812

deviation from the Code of Ethics.813

20

https://neurips.cc/public/EthicsGuidelines
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• Including this information in the supplemental material is fine, but if the main contribu-918
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