
SPRINT: Scalable Semantic Policy Pre-
Training via Language Instruction Relabeling

Jesse Zhang∗1, Karl Pertsch∗1,
Jiahui Zhang1, Taewook Nam2, Sung Ju Hwang2, Xiang Ren1, Joseph J. Lim2

1University of Southern California, 2KAIST

Abstract:
We propose SPRINT, a scalable offline policy pre-training approach based on nat-
ural language instructions. SPRINT pre-trains an agent’s policy to execute a di-
verse set of semantically meaningful skills that it can leverage to learn new tasks
faster. Prior work on offline pre-training required tedious manual definition of
pre-training tasks or learned semantically meaningless skills via random goal-
reaching. Instead, our approach SPRINT (Scalable Pre-training via Relabeling
Language INsTructions) leverages natural language instruction labels on offline
agent experience, collected at scale (e.g., via crowd-sourcing), to define a rich
set of tasks with minimal human effort. Furthermore, by using natural language
to define tasks, SPRINT can use pre-trained large language models to automati-
cally expand the initial task set. As a result, we can learn an extensive collection
of new skills during pre-training by relabeling and aggregating task instructions,
even across multiple training trajectories. Experiments using a realistic house-
hold simulator show that agents pre-trained with SPRINT learn new long-horizon
household tasks substantially faster than with previous pre-training approaches.

1 Introduction

When humans learn a new task, e.g., how to cook a new dish, we rely on a large repertoire of
previously learned skills, like “chopping vegetables” or “boiling pasta”, that make learning more
efficient. Improving learning efficiency is crucial for practical deployment of artificial agents; thus,
many works in reinforcement learning (RL) aim to equip agents with a similar set of skills. To au-
tonomously acquire such skills, recent works optimize for diverse agent behaviors [1, 2, 3], imitate
short action sequences [4, 5], or reach randomly sampled goal states [6] from pre-collected expe-
rience. However, such objectives may result in the agent learning skills that are not semantically
plausible in practice, e.g., “placing a knife in the microwave” or “half-closing the microwave door.”
To focus pre-training on plausible skills, one could instead manually curate a set of pre-training
tasks for the policy, but this requires tedious reward function design and does not scale well beyond
a few dozen tasks [7]. Yet, defining a large set of pre-training tasks is crucial: only a policy with a
wide range of skills can accelerate learning on many downstream tasks. How can we define a large
set of meaningful pre-training tasks in a scalable manner?

In this paper, we propose to leverage natural language instructions to define a large number of
semantically meaningful tasks for policy pre-training. Natural language has recently been used to
allow humans to effectively interact with agents [8] or to generate long-horizon plans [9]. In the
context of defining pre-training tasks, using natural language has two important benefits: (1) lan-
guage is a natural and expressive interface for humans to specify tasks (in contrast to, e.g., numerical
reward functions) as it is the primary way to communicate tasks in our everyday lives. Thus, even
non-experts can define tasks easily via language instructions. (2) By specifying pre-training tasks via
natural language, we can leverage the knowledge captured in large language models to automatically
generate more tasks through instruction relabeling.

To combine both benefits we introduce SPRINT (Scalable Pre-training via Relabeling Language
INsTructions), a scalable pre-training approach that equips policies with a repertoire of seman-

∗Denotes equal contribution. Correspondence to jessez@usc.edu, pertsch@usc.edu.

CoRL 2022 Workshop on Language and Robot Learning, Auckland, New Zealand

mailto:jessez@usc.edu
mailto:pertsch@usc.edu

“Put bread on table”

τ1

“Get mug from the fridge”

τ2

Agent Experience w/ Language Instructions

“Make coffee”

τ3

Target Task

Finetune

Human Instruction
Annotator

Policy

“Make breakfast”
“Pick up bread” “Place bread in the microwave”

“Put mug in coffee machine”“Get mug from shelf”

“Pick up bread and put it on the table”

LLM 
Relabeling

Relabeled Language Instructions

Cross-
Trajectory
Chaining

Cross-Trajectory Chained Instructions

2

3

1

Pre-train w/ 
language instructions

4

Figure 1: We propose SPRINT, a scalable approach for policy pre-training with semantic skills. We
assume access to an offline dataset of agent experience with natural language instruction labels of
the performed skills, e.g., provided by human annotators (1). We use the instructions to pre-train a
semantic skill policy via instruction-conditioned offline RL. To increase pre-training task diversity,
we automatically generate new instructions via (2) language-model-based instruction relabeling,
and (3) cross-trajectory skill chaining. We demonstrate that an agent pre-trained with SPRINT can
leverage the diverse set of learned semantic skills to finetune efficiently on unseen target tasks (4).

tically meaningful skills (see Figure 1 for an illustration). SPRINT has three core components:
(1) language-conditioned offline RL, (2) LLM-based skill aggregation and (3) cross-trajectory skill
chaining. SPRINT assumes access to an offline dataset of state-action trajectories, each of which
performs one or more skills. We assume that the data has corresponding natural language instruction
labels for the performed skills, such as “place mug in coffee machine” or “press brew button”. Such
labels can be crowd-sourced from non-expert human annotators at scale. We use these annotations
as task instructions and train a policy with language-conditioned offline RL to solve them. Crucially,
SPRINT uses two techniques to expand this initial task set: firstly, we use a pre-trained large lan-
guage model to relabel the language instructions, thereby creating new tasks. For example, the tasks
“place mug in coffee machine” and “press brew button” can be combined into a new task: “make
coffee.” Secondly, we chain behaviors across multiple trajectories from the training data; starting
with a skill like “pick up bread” from one trajectory and ending with “place bread on table” from
another. This allows the policy to learn semantic skills completely unseen in the training data.

SPRINT trains a policy on the combined set of task instructions, thereby equipping the agent with a
policy that can execute a wide range of semantically meaningful skills. Our experiments demonstrate
that this allows for substantially more sample-efficient learning and better zero-shot execution of
new downstream tasks like “prepare breakfast” than prior pre-training approaches.

In summary, our contributions are threefold: (1) we propose SPRINT, which leverages natural lan-
guage instructions for scalable policy pre-training via instruction-conditioned offline RL, (2) we
expand the set of pre-training tasks via LLM-based skill relabeling and cross-trajectory chaining,
(3) we demonstrate that SPRINT enables agents to more efficiently learn long-horizon household
tasks in the ALFRED simulator [10] than prior pre-training approaches.

2 Related Work

Language in RL. There is a long-standing interest in leveraging natural language during behav-
ior learning, e.g., to structure agent’s internal representations [11], to learn to interact with text-
based games [12, 13], or guide long-horizon task learning via recipe-like plans [14, 15]. The recent

2

τ1
τ2

D

τ1DL

“Place mug in 
coffee machine”

“Press start 
button”

τ2
“Place mug in 

shelf”
“Clean mug 

in sink”

Hindsight Language

Annotation1

zA

“Place mug in 
coffee machine”

“Press start 
button”

zB

LLM 
Relabeling

̂z
“Make coffee”

Language Model 
Skill Aggregation2

τ1
“Place mug in 

coffee machine”
“Press start 

button”

τ2
“Place mug in 

shelf”
“Clean mug 

in sink”

̂z
“Clean mug in sink. Place mug 

in coffee machine.”

Cross-Trajectory 
Skill Chaining3

Figure 2: Overview of our approach SPRINT. Left: Hindsight annotation of agent experience
with language instructions is a scalable approach for defining pre-training tasks. We pre-train via
instruction-conditioned offline RL with a sparse goal-reaching reward (Section 3.1). Middle: We
expand the set of pre-training tasks by aggregating language instructions with an LLM and adding
the relabeled trajectories back into the pre-training dataset (Section 3.2). Right: We perform cross-
trajectory chaining of skills to enable pre-training of skills that are unseen in the offline agent expe-
rience (Section 3.3).

progress in training large, general-purpose language models has enabled approaches that directly
generate and execute such plans solely from a high-level task description [16, 9, 17]. Others have
shown how language in combination with vision inputs can be used to learn state representations [18]
or reward functions [19]. Finally, there is a rich body of work that explores using language as an
intuitive agent interface for humans: given a free-form natural language command they aim to train
language-conditioned policies that can execute the instruction in the environment [8]. In contrast,
our work aims to leverage language for task-agnostic agent pre-training. Instead of training a policy
to execute human language commands, we aim to equip an agent with a set of semantic skills that
improves the efficiency of reinforcement learning on downstream tasks.

Pre-training Policies for RL. Developing policy pre-training approaches for faster downstream
learning has been investigated for many years [20, 21, 22]. Recent advances in offline reinforcement
learning [23] enabled approaches that can pre-train agents offline and effectively finetune them on
online tasks [24, 25, 26, 27]. However, these approaches require the pre-training data to have target-
task reward annotations and the resulting pre-trained policies are trained only to solve the target
task. In contrast, meta-RL approaches pre-train on a range of tasks and allow fast adaptation to
unseen downstream tasks [28, 29, 30, 31], yet require tedious manual definition of pre-training tasks
by experts, making them less scalable. To avoid manual task design, other works have explored
unsupervised pre-training approaches based on behavior diversification [32, 1, 33] or extraction of
behavior priors from offline agent experience [5, 34, 35]. Closest to ours is the approach of Chebotar
et al. [6], which performs unsupervised pre-training by learning to reach randomly sampled states
from offline agent experience. Yet, unsupervised pre-training approaches learn semantically mean-
ingless skills which, as we demonstrate in Section 4, lead to worse transfer to downstream tasks. In
contrast, we introduce a scalable pre-training approach based on natural language instructions that
equips agents with semantically meaningful skills and allows for efficient transfer to unseen tasks.

3 SPRINT: Scalable Semantic Policy Pre-Training with Language
Instructions

In this work, we propose SPRINT (Scalable Pre-training via Relabeling Language INsTructions), an
approach for pre-training a policy to solve a wide range of semantic skills in order to enable efficient
finetuning on unseen tasks. SPRINT has three core technical components which we will describe
in this section: (1) offline instruction-conditioned RL with crowd-sourced language instructions,
(2) language-model-based skill aggregation and (3) cross-trajectory skill chaining. But first, we will
detail the data we use for pre-training and give an intuitive overview of our approach.

3

Pre-training Data. Following prior work on agent pre-training, we assume access to a large offline
dataset D of agent experience [36, 4, 5, 6, 37, 38]. Such data can be collected at scale, e.g., from
prior RL runs, via teleoperation, through autonomous agent exploration or any combination thereof.
We further assume that the data contains natural language descriptions of the skills performed by
the agent, e.g., “put a mug in the coffee machine” or “push the brew button.” Such descriptions
can be collected at scale by non-experts by annotating sequences from our offline dataset D in
hindsight, e.g., via crowd-sourcing through platforms like Amazon Mechanical Turk [8, 10]. Given
a randomly sampled sequence τ from the dataset D, annotators can label sub-trajectories τ1 =
[s0, a0, s1, . . .], τ2 = . . . with free-form language descriptions z1, z2, . . . of the tasks performed in
the respective sub-trajectories, for example:

τz̄ = [τz1 , τz2] = [[(sz10 , a
z1
0 , z1), ..., (s

z1
T , a

z1
T , z1)]︸ ︷︷ ︸

“Put a mug in the coffee machine”

, [(sz20 , a
z2
0 , z2), ...]︸ ︷︷ ︸

“Push the brew button”

]. (1)

This results in a dataset DL = {τz̄1 , τz̄2 , . . . } of diverse trajectories with natural language descrip-
tions (see Figure 2, left).

Approach Overview. Our approach leverages skill descriptions in DL as instructions for the pol-
icy during pre-training: each description defines a task and the policy is rewarded for successfully
executing the instruction. Intuitively, the more diverse the set of language instructions during pre-
training, the more semantic skills the policy will learn and the more downstream tasks can it fine-
tune on efficiently. Thus, SPRINT introduces two approaches for increasing the diversity of the
pre-training instructions without additional human inputs. Firstly, SPRINT leverages pre-trained
language models to aggregate the human annotated instructions (Figure 2, middle). Secondly, we
propose an approach for cross-trajectory skill-chaining, that allows us to combine behaviors across
multiple training trajectories to generate completely unseen instructions (Figure 2, right). Both ap-
proaches expand the set of pre-training tasks, leading to more effective pre-training.

Once the policy is trained, we can transfer it to a new task for finetuning, either by providing a
language description ztarget of the target task or by replacing the language instruction input with a
vector of trainable parameters and finetuning it jointly on the target task, similar to prior work [6, 39].

3.1 Instruction-Conditioned Offline RL

To pre-train our policy with the natural language instruction dataset DL, we condition our policy
π(a|s, z) on language instructions z from DL and provide a sparse reward to the agent for reaching
the end-state sT of the respective sub-trajectory. Formally, we define the reward as:

R(s, a, z) =

{
1, for s = szT
0, otherwise.

(2)

We can optimize the policy π(a|s, z) and critic Q(s, a, z) on this reward function using any offline
RL algorithm. In this work, we use Implicit Q-Learning (IQL) [27].

3.2 Language-Model-Based Instruction Aggregation

Large language models (LLMs), trained on massive corpora of internet text data, have been shown
to be effective at performing a variety of tasks – from question answering to program synthesis
– when prompted with relevant text [40, 41, 42, 43, 44, 45, 46, 47]. Here we use LLMs to ag-
gregate, i.e., paraphrase, the existing language annotations in DL (see Figure 2, middle, for an
illustration). Given a trajectory that contains multiple sub-trajectories, we can aggregate adjacent
sub-trajectories into a longer trajectory and relabel its natural language annotation with a sum-
mary of the individual instructions generated by the LLM, thereby generating a new higher-level
pre-training task that encompasses instructions from multiple sub-trajectories.2 We use a simple
summarization prompt to instruct the language model (see Figure 3 for an example, Section B for
the full prompt used). Specifically, we aggregate with OPT-13B [46], an open-source 13 billion
parameter large language model comparable with the second-largest GPT-3 text completion model,

2Other relabeling operations, such as splitting an instruction into multiple lower-level instructions, can also
be performed by the language model. However, such operations require grounding the language model to the
agent’s observations to determine sub-trajectory split points. We leave investigating this to future work.

4

text-curie-001 [42].3 Like before, the reward for this new aggregated sub-trajectory is 1 at
the last transition and 0 otherwise. Taking Eq. 1 as an example, we prompt the language model to
summarize the two skills (z1 : “Put a mug in the coffee machine,” z2 : “Push the brew button”),
resulting in a new semantic annotation ẑ1:2 describing both skills (e.g., “Make coffee”). We then
add the new trajectory back to our dataset DL. Using this technique, we generate new language
annotations for all

(
N
2

)
tuples of consecutive sub-trajectories in our dataset. In practice, this allows

us to increase the number of pre-training task instructions by 2.5x without additional human effort.

3.3 Cross-Trajectory Chaining

LLM Prompt Example

Summarize the following steps.

1: Pick up the knife on the counter.
2: Slice the tomato with the knife.
Summary: Pick up a knife and slice the tomato.

1: [SKILL 1]
2: [SKILL 2]
...
Summary:

Figure 3: A shortened example of the LLM
prompt. Full prompt in Section B.

Agents trained with offline RL can combine be-
haviors from multiple trajectories via value prop-
agation, i.e., “stitch” them [23]. For example, if
trajectory (A) shows cleaning the mug in the sink
and then placing it on the shelf, while trajectory
(B) starts with placing the mug in the coffee ma-
chine, offline RL algorithms are able to learn to
clean the mug in the sink and then place it in the
coffee machine (see Figure 2, right). In our case
of instruction-conditioned offline RL, enabling
such stitching behavior requires special care. Due
to the different language instruction condition-
ings for the critic Q(s, a, zA) and Q(s, a, zB),
values do not naturally propagate from trajectory

(B) back to trajectory (A). Instead, we must actively add “chaining examples” to our training
dataset [6]. For this, we randomly sample a sub-trajectory τzA = [s0:t, a0:t, zA] from the train-
ing dataset DL, e.g., part of trajectory (A), and replace its language instruction with the instruction
zB from another trajectory τzB , e.g., “place mug in coffee machine.” Note that we do not need to
sample the full trajectory (A). Instead, st can be any state from trajectory (A) from which we try to
execute skill (B). Crucially, we cannot use the same reward function as before: since the last state
st of the sampled sub-trajectory, e.g., a mug in the sink, does not solve the instruction zB , “put mug
in coffee machine,” we cannot set its reward to 1. Which reward should we use instead?

Let’s recap that when using temporal-difference (TD) learning [48], Q functions for the sparse re-
ward definition from Equation 2 intuitively represent a value that is proportional to the probability
of reaching the goal at time T [49, 6]: Qπ(st, at, z) = E

[∑
t′=t γ

t′R(st′ , at′ , z)
]
∝ Pπ(sT =

gz|st, at). Similarly, we want Q(s, a, zB) to represent the probability of reaching the goal gzB , the
mug being in the coffee machine, from state s. Thus, we need to set the reward of the last state st in
the sampled sub-trajectory to the probability of reaching the goal gzB from st, i.e., Q(st, at, zB):

R(s, a, zB) =

{
Q(s, a, zB), for s = sT
0, otherwise.

(3)

Finally, we can apply the skill aggregation approach from Section 3.2 in the cross-trajectory case.
Instead of sampling two sub-trajectories from the same training trajectory as in skill aggregation,
we can now sample τzA and τzB from different training trajectories and chain them together. The
aggregate instruction ẑ implies that the agent first finishes skill (A) and then finishes skill (B), e.g.,
“clean the coffee mug and place it in the coffee machine.” Thus, following the logic above, we need
to set the reward for the final state in trajectory (B), sTB

, to 1 since it solves the task ẑ, and the
reward in the final state of trajectory (A), sTA

, to the probability of solving skill (B) from there:

R(s, a, ẑ) =

1, for s = sTB

Q(s, a, zB), for s = sTA

0, otherwise.
(4)

To generate the aggregate instruction ẑ we can use the LLM summarization from Section 3.2. Yet, in
practice we found the resulting summaries are often meaningless, since randomly paired instructions

3See appendix, Sections E.1 and E.2 for example aggregated skills and comparisons of different LLMs.

5

from different trajectories can rarely be summarized meaningfully. Instead, we saw better perfor-
mance by simply concatenating the natural language instructions from τA and τB . Finally, since Q
changes over the course of training, we compute the rewards in Eqs. 3 and 4 online during training.

4 Experiments

In our experiments, we investigate how well an agent pre-trained with SPRINT performs on unseen,
semantically meaningful tasks. Specifically, we are interested in answering the following questions:
(1) Does pre-training with SPRINT lead to more efficient finetuning on unseen target tasks than
previous pre-training approaches? (2) Can agents pre-trained with SPRINT execute unseen language
instructions zero-shot? (3) Does pre-training with semantic skills lead to better generalization to
unseen environments than unsupervised pre-training approaches?

4.1 Experimental Setup

1

2 3

4
5 6

"walk to the coffee
maker on the right"

"wash the mug in the sink"
"put the clean mug
in the coffee maker"

"pick up the mug and go
back to the coffee maker"

"pick up the dirty mug
from the coffee maker" "turn and walk to the sink"

visual navigation

visual navigation
memory

object interaction
state changes

visual navigationobject interaction

object interaction

Goal: "Rinse off a mug and place it in the coffee maker"

t 0= t 10= t 21=

t 50=t 27= t 36=

Figure 4: ALFRED. Figure from Shridhar
et al. [10], drawn with permission.

ALFRED Benchmark. We choose the ALFRED
benchmark [10] for evaluation (Figure 4), since it
allows us to test our pre-trained agents on seman-
tically meaningful, long-horizon tasks in a realistic
household setting. Additionally, ALFRED provides
a dataset of 6.6k episodes of offline agent experience
with crowd-sourced natural language instruction an-
notations (e.g., “pick up the dirty mug”, “wash it in
the sink”, . . . , see Figure 4). The observation space
in ALFRED consists of 300 × 300 egocentric RGB
observations and the action space consists of 12 dis-
crete action choices (e.g. turn left, look up, pick up
object), along with 82 discrete object types [50]. We
leverage 73k language instructions and their associ-
ated observation-action trajectories from the dataset
for pre-training. For more details, see Section D.

Evaluation Tasks. We create a set of 100 unseen long-horizon evaluation instructions (EVAL 100),
by sampling sequences of 1 to 7 instructions from the ALFRED training dataset and asking human
annotators to provide an instruction that summarizes the sequence (see appendix, Section D.2 for
examples). Additionally, we create a set of 20 evaluation commands that test the agent’s chaining
capabilities (EVAL CHAIN): we withhold trajectories and instruction summaries of sequences with
7 to 8 instructions from the ALFRED dataset, making sure that the respective skill chains are not
present in any single training trajectory. Thus, the agent needs to learn to chain behaviors across
multiple trajectories to solve these tasks. Finally, to test environment generalization capabilities, we
also create a set of 10 tasks in household floor plans not seen in any trajectory in the training dataset
(EVAL UNSEEN), consisting in equal parts of 1 to 5-instruction sequences.

Comparisons. We compare SPRINT against common policy pre-training approaches: behavioral
cloning and offline goal-conditioned RL. Specifically, we compare to the following prior works:

• Language-conditioned BC (L-BC) [51, 8]: Behavior cloning (BC) conditioned on the
individual ALFRED language instructions.

• Actionable Models (AM) [6]: Goal-conditioned offline RL with randomly sampled goal
observations from the ALFRED training set.

We implement all methods with shared training parameters and architectures wherever possible; for
more details, see Section C. All results reported are means and standard deviations over 3 seeds.

4.1.1 SPRINT Solves Long-Horizon Tasks Zero-Shot

We first test the effectiveness of SPRINT’s pre-training by analyzing zero-shot performance across
the 100 tasks in the EVAL 100 evaluation set. We report results in Figure 5 (left). Our approach,
SPRINT, achieves 3x higher zero-shot task performance than prior pre-training approaches AM and
L-BC. To better understand the differences between the methods, we report the breakdown of returns

6

Eval_100 Overall0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f C
om

ple
te

d
Su

bt
as

ks

1 2 3 4 5 6 7 8
Task Length (Number of Subtasks)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 T
as

k C
om

ple
te

d EVAL_100 EVAL_CHAINAM L-BC SPRINT

Figure 5: Zero shot evaluation performance on the EVAL 100 and EVAL CHAIN task sets, computed
over 3 seeds. The left figure plots the overall number of completed subtasks on EVAL 100 (i.e.,
average return), with our method in green. The right figure plots the proportion of task completed
(number of subtasks successfully executed divided by task length), split by task length, in both the
task sets. See appendix, Table 3 for exact numerical results.

by length of the evaluation task in Figure 5, right. We find that L-BC achieves good performance on
short-horizon tasks. However, on long-horizon tasks, SPRINT achieves much higher returns, since
it can leverage the language-model to automatically generate longer-horizon pre-training tasks. In
contrast, standard L-BC approaches train only on the human-provided, shorter-horizon annotations
and thus cannot zero-shot perform long-horizon tasks. This trend holds even when evaluating with
detailed step-by-step instructions (see appendix Section E.3). Similar to our approach, AM trains to
reach long-horizon goals during pre-training but the results in Figure 5, right, show that AM’s pre-
training with goal-state conditioning is less effective than our language-conditioned pre-training.

To evaluate the pre-training approaches’ ability to perform unseen skill sequences, we evaluate zero-
shot performance on the EVAL CHAIN task set in Figure 5. Unsurprisingly, both L-BC and AM
largely fail to generate returns on these long-horizon tasks. In contrast, SPRINT can solve un-
seen long-horizon tasks with up to 8 subtasks (see Figure 7 for an example trajectory, appendix
Section E.5 for more qualitative comparisons). This shows that, with the help of cross-trajectory
chaining, SPRINT is able to go beyond the skills in the training data and execute unseen tasks.

4.1.2 SPRINT Agents Finetune Effectively in Unseen Environments

0k 20k 40k 60k
Environment Steps (1k)

0.0

0.2

0.4

0.6

Av
er

ag
e

Re
tu

rn

EVAL_UNSEEN Average Return vs Env Steps
SPRINT
AM
L-BC

Figure 6: Finetuning results on floorplans not
seen during pre-training (standard deviations
shaded).

To test downstream task performance, we finetune
the pre-trained agents on the EVAL UNSEEN task
set in unseen household floor plans. To implement
finetuning for SPRINT and AM, we condition the
policy on a language instruction or goal image from
the target task respectively and then run IQL [27]
with online data collection. For L-BC, we first pre-
train a language-conditioned Q-function with IQL
on the pre-training dataset and then finetune policy
and Q-function with online IQL.

We report finetuning results in Figure 6, with qual-
itative examples in appendix, Section E.5. Our ap-
proach, SPRINT, is able to achieve 2x higher down-
stream task return than the best prior work. Specifically, we find L-BC converges quickly to a low
return as it is not pre-trained for longer horizon tasks. Meanwhile, AM struggles to transfer the
learned skills to the new environment, possibly since the goal states from the new environment are
unseen. In contrast, our method’s pre-training with language conditioning allows for effective trans-
fer to unseen environments since the semantics of the tasks transfer well: the description “place cup
in coffee machine” transfers to many environments while the goal image for the same task might
look very different. Thus, pre-training with language instructions can enable better transfer in new
environments than pre-training to reach goal states.

7

Task: “Warm up a piece of apple”

“Pick up apple” “Place apple 
on table” “Pick up knife” “Slice apple” “Place knife 

on table”
“Pick up 

apple slice”

“Heat apple slice in the microwave and take it back out” “Place apple slice on the table”

Figure 7: Example task execution of our pre-trained SPRINT agent for the task “Warm up a piece
of apple”. Successful execution of this task requires solving 8 subtasks in sequence and a total of
50 steps. This exact sequence of subtasks was never observed in the training data. SPRINT leverages
cross-trajectory stitching and LLM aggregation to learn how to execute unseen tasks.

4.1.3 Ablation Studies

We verify the effectiveness of the components of our approach, with the following ablations:

• SPRINT w/o chain: removes cross-trajectory chaining (Section 3.3), instead trains only
on within-trajectory human-provided and LLM-aggregated tasks

• SPRINT w/o LLM-agg: additionally removes the LLM aggregation (Section 3.2), thus
trains offline RL agent only on the human-provided task annotations.

Table 1: EVAL 100 and EVAL CHAIN returns.

EVAL 100 EVAL CHAIN

SPRINT (ours) 1.27 ± 0.13 2.59 ± 0.66

SPRINT w/o chain 0.91 ± 0.03 2.04 ± 0.04

SPRINT w/o LLM-agg 0.38 ± 0.05 0.10 ± 0.04

We report zero-shot evaluation results in
Table 1. The results show the importance of
the different components of our approach.
Without cross-trajectory chaining, perfor-
mance drops by ∼20-30%. Interestingly,
we find that performance also degrades
on the EVAL 100 task set, indicating that
cross-trajectory chaining can improve performance even on long-horizon tasks in the training set.

We observe an even larger performance loss when removing the language model aggregation of
pre-training tasks: the resulting agent is solely trained on the shorter horizon human task annota-
tions, and thus struggles to solve long-horizon evaluation tasks, similar to the L-BC approach in
Section 4.1.1. We provide the per-task-length breakdown of the ablation performances in appendix,
Section E.4. This section also presents additional ablation experiments that use simple concate-
nation instead of LLM summarization for task aggregation, resulting in the same longer-horizon
pre-training trajectories but different task labels, further supporting the importance of the usage of
LLMs in our pre-training approach.

5 Discussion

In this paper, we presented SPRINT, an approach for scalable agent pre-training with offline
instruction-conditioned RL. We demonstrated how we can leverage easy-to-collect natural language
instructions on offline agent experience for effective pre-training. Further, we introduced approaches
for using pre-trained large language models and cross-trajectory skill chaining to automatically ex-
pand the set of pre-training tasks. In our experimental evaluations on the ALFRED household task
benchmark [10] we demonstrated that SPRINT pre-training allows for substantially more efficient
finetuning on downstream tasks in unseen environments than prior works. SPRINT represents a step
towards scalable approaches for pre-training agents with a set of semantically meaningful skills.

8

References
[1] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills

without a reward function. In ICLR, 2019.

[2] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. ICLR, 2020.

[3] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving
goals via world models, 2021.

[4] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In CoRL, 2020.

[5] K. Pertsch, Y. Lee, and J. J. Lim. Accelerating reinforcement learning with learned skill priors.
In CoRL, 2020.

[6] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysen-
bach, R. C. Julian, C. Finn, and S. Levine. Actionable models: Unsupervised offline re-
inforcement learning of robotic skills. In M. Meila and T. Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 1518–1528. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/chebotar21a.html.

[7] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning, 2019.

[8] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.
Robotics: Science and Systems, 2021. URL https://arxiv.org/abs/2005.07648.

[9] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
Ruano, K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,
M. Yan, and A. Zeng. Do as i can and not as i say: Grounding language in robotic affordances.
In arXiv preprint arXiv:2204.01691, 2022.

[10] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. URL
https://arxiv.org/abs/1912.01734.

[11] J. Andreas, D. Klein, and S. Levine. Learning with latent language. In North American Chapter
of the Association for Computational Linguistics, 2017.

[12] K. Narasimhan, T. Kulkarni, and R. Barzilay. Language understanding for text-based games
using deep reinforcement learning. In Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1–11, Lisbon, Portugal, Sept. 2015. Association for
Computational Linguistics. doi:10.18653/v1/D15-1001. URL https://aclanthology.
org/D15-1001.

[13] H. Küttler, N. Nardelli, A. H. Miller, R. Raileanu, M. Selvatici, E. Grefenstette, and
T. Rocktäschel. The nethack learning environment, 2020. URL https://arxiv.org/
abs/2006.13760.

[14] S. R. Branavan, H. Chen, L. Zettlemoyer, and R. Barzilay. Reinforcement learning for mapping
instructions to actions. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP, pages 82–90, 2009.

[15] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy
sketches. In International Conference on Machine Learning, 2017.

9

https://proceedings.mlr.press/v139/chebotar21a.html
https://proceedings.mlr.press/v139/chebotar21a.html
https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/1912.01734
http://dx.doi.org/10.18653/v1/D15-1001
https://aclanthology.org/D15-1001
https://aclanthology.org/D15-1001
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2006.13760

[16] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Ex-
tracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207, 2022.

[17] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter.
Inner monologue: Embodied reasoning through planning with language models. In arXiv
preprint arXiv:2207.05608, 2022.

[18] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation, 2022. URL https://arxiv.org/abs/2203.12601.

[19] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu,
and A. Anandkumar. Minedojo: Building open-ended embodied agents with internet-scale
knowledge. arXiv preprint arXiv: Arxiv-2206.08853, 2022.

[20] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. In Proceedings 2002 IEEE International Conference on Robotics
and Automation (Cat. No. 02CH37292), volume 2, pages 1398–1403. IEEE, 2002.

[21] E. Theodorou, J. Buchli, and S. Schaal. Reinforcement learning of motor skills in high di-
mensions: A path integral approach. In 2010 IEEE International Conference on Robotics and
Automation, pages 2397–2403. IEEE, 2010.

[22] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations. In Association for
the Advancement of Artificial Intelligence, 2018.

[23] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[24] X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple
and scalable off-policy reinforcement learning, 2019. URL https://arxiv.org/abs/
1910.00177.

[25] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine. Cog: Connecting new skills to
past experience with offline reinforcement learning. Conference on Robot Learning, november
2020.

[26] A. Nair, M. Dalal, A. Gupta, and S. Levine. Accelerating online reinforcement learning with
offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[27] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=68n2s9ZJWF8.

[28] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. RL 2: Fast rein-
forcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

[29] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. ICML, 2017.

[30] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In ICML, 2019.

[31] T. Nam, S.-H. Sun, K. Pertsch, S. J. Hwang, and J. J. Lim. Skill-based meta-reinforcement
learning. In International Conference on Learning Representations (ICLR), 2022.

[32] J. Achiam, H. Edwards, D. Amodei, and P. Abbeel. Variational option discovery algorithms.
arXiv, 2018.

[33] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. arXiv, abs/1907.01657, 2019.

[34] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. Opal: Offline primitive discovery
for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.

10

https://arxiv.org/abs/2203.12601
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8

[35] A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine. Parrot: Data-driven behavioral
priors for reinforcement learning. ICLR, 2021.

[36] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. CoRL, 2019.

[37] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.
In RSS, 2022.

[38] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim. Demonstration-guided reinforcement learning with
learned skills. In CoRL, 2021.

[39] M. Laskin, D. Yarats, H. Liu, K. Lee, A. Zhan, K. Lu, C. Cang, L. Pinto, and P. Abbeel. Urlb:
Unsupervised reinforcement learning benchmark. NeurIPS, 2021.

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2018. URL https://arxiv.org/abs/1810.
04805.

[41] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguistics, 11 2019. URL https:
//arxiv.org/abs/1908.10084.

[42] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei. Language models are few-shot learners, 2020. URL https://arxiv.org/
abs/2005.14165.

[43] B. Wang and A. Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/mesh-transformer-jax,
May 2021.

[44] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Hen-
derson, R. Ring, S. Young, E. Rutherford, T. Hennigan, J. Menick, A. Cassirer, R. Powell,
G. v. d. Driessche, L. A. Hendricks, M. Rauh, P.-S. Huang, A. Glaese, J. Welbl, S. Dathathri,
S. Huang, J. Uesato, J. Mellor, I. Higgins, A. Creswell, N. McAleese, A. Wu, E. Elsen,
S. Jayakumar, E. Buchatskaya, D. Budden, E. Sutherland, K. Simonyan, M. Paganini, L. Sifre,
L. Martens, X. L. Li, A. Kuncoro, A. Nematzadeh, E. Gribovskaya, D. Donato, A. Lazari-
dou, A. Mensch, J.-B. Lespiau, M. Tsimpoukelli, N. Grigorev, D. Fritz, T. Sottiaux, M. Pa-
jarskas, T. Pohlen, Z. Gong, D. Toyama, C. d. M. d’Autume, Y. Li, T. Terzi, V. Miku-
lik, I. Babuschkin, A. Clark, D. d. L. Casas, A. Guy, C. Jones, J. Bradbury, M. Johnson,
B. Hechtman, L. Weidinger, I. Gabriel, W. Isaac, E. Lockhart, S. Osindero, L. Rimell, C. Dyer,
O. Vinyals, K. Ayoub, J. Stanway, L. Bennett, D. Hassabis, K. Kavukcuoglu, and G. Irving.
Scaling language models: Methods, analysis & insights from training gopher, 2021. URL
https://arxiv.org/abs/2112.11446.

[45] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas,
L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. v. d. Driess-
che, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and
L. Sifre. Training compute-optimal large language models, 2022. URL https://arxiv.
org/abs/2203.15556.

[46] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li,
X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar,
T. Wang, and L. Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.
URL https://arxiv.org/abs/2205.01068.

11

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2205.01068

[47] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao,
P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope,
J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat,
S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito,
D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick,
A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee,
Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck,
J. Dean, S. Petrov, and N. Fiedel. Palm: Scaling language modeling with pathways, 2022.
URL https://arxiv.org/abs/2204.02311.

[48] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[49] B. Eysenbach, T. Zhang, R. Salakhutdinov, and S. Levine. Contrastive learning as goal-
conditioned reinforcement learning, 2022. URL https://arxiv.org/abs/2206.
07568.

[50] A. Pashevich, C. Schmid, and C. Sun. Episodic Transformer for Vision-and-Language Navi-
gation. In ICCV, 2021.

[51] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-z:
Zero-shot task generalization with robotic imitation learning. In 5th Annual Conference on
Robot Learning, 2021. URL https://openreview.net/forum?id=8kbp23tSGYv.

[52] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[53] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchi-
cal image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009. doi:10.1109/CVPR.2009.5206848.

[54] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. FiLM: Visual Reasoning with
a General Conditioning Layer. In Association for the Advancement of Artificial Intelligence,
2018.

12

https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2206.07568
https://arxiv.org/abs/2206.07568
https://openreview.net/forum?id=8kbp23tSGYv
http://dx.doi.org/10.1109/CVPR.2009.5206848

Appendix

Table of Contents
A SPRINT Pseudocode 14

B Large Language Model Prompt 14

C Baselines and Implementation 15
C.1 Language-conditioned Behavior CLoning . 17

C.2 Actionable Models (AM) . 17

C.3 SPRINT . 17

D Dataset and Environment Details 18
D.1 Dataset Details . 18

D.2 Evaluation Tasks . 19

E Extended Experiments, Results, and Analysis 22
E.1 LLM Summary Examples . 22

E.2 Comparing Summaries from Different LLMs 24

E.3 Step by Step Zero-shot evaluations . 24

E.4 Extended Ablation Study . 25

E.5 Qualitative Comparison Results . 25

13

A SPRINT Pseudocode

Algorithm 1 SPRINT Algorithm

Require: Dataset DL w/ language instruction labels, LLM
1: AGGREGATESKILLS(DL, LLM) . Automated LLM skill relabeling (Sec. 3.2)
2: while not converged do
3: τz ← DL: Sample an annotated skill (sub-)trajectory
4: Train offline RL on τz
5:
6: τ chain

z ←CROSSCHAINSKILLS(DL) . Cross-trajectory skill chaining (Sec. 3.3)
7: Train offline RL on τ chain

z

8:
9: τagg1 , τagg2 ← CROSSAGGREGATESKILLS(DL, LLM) . Cross-traj. aggregation (Sec. 3.3)

10: Train offline RL on τagg1 , τagg2
11: end while
12:
13: procedure AGGREGATESKILLS(DL, LLM)
14: for composite trajectory τz̄ in DL do
15: Separate τz̄ into language annotated sub-trajectories [τz1 , ..., τzN]
16: for all adjacent sub-trajectories

[
τzi ...τzj

]
do

17: Assign name from LLM: LLM(zi...zj) = ẑi:j
18: τẑi:j ← Concat

[
τzi , ..., τzj

]
and relabel with ẑi:j

19: T ← length of τẑi:j
20: R(sT , aT , ẑi:j) = 1 . Label last reward with 1 (Eq. 2).
21: DL = DL ∪

{
τẑi:j

}
22: end for
23: end for
24: end procedure
25:
26: procedure CROSSCHAINSKILLS(DL)
27: Sample random (sub)trajectories τz1 , τz2 ∼ DL
28: Sample random endpoint j in τz1
29: τ chain

z2 ← [(s0, a0, 0, z2) , ..., (sj , aj , Q
π(sj , aj , z2), z2)] . Relabel reward w/ Eq. 3.

30: return τ chain
z2

31: end procedure
32:
33: procedure CROSSAGGREGATESKILLS(DL, LLM)
34: Sample random (sub)trajectories τz1 , τz2 ∼ DL with lengths T1, T2

35: Assign new name : ẑ = “{z1}.{z2}”
36: τagg1 ← [(s0, a0, 0, ẑ) , ..., (sT1 , aT1 , Q

π(sT , aT |z2), ẑ)] . Relabel reward w/ Eq. 4
37: τagg2 ← [(s0, a0, 0, ẑ) , ..., (sT2 , aT2 , 1, ẑ)] . Relabel reward w/ Eq. 4.
38: return τagg1 , τagg2
39: end procedure

B Large Language Model Prompt

We list the full large language model summarization prompt in Figure 8. The examples in the
prompt are fixed for all summarization queries. These examples are selected from the ALFRED
validation dataset (which is not otherwise used in our work) at random: We spell out the primitive
skill annotations in the “Task Steps:” part of each prompt example. Then, the “Summary” for each of
these is the high-level, human-written annotation for that trajectory from ALFRED. We repeatedly
sampled these trajectories until each example mentioned a different object to prevent biasing the
LLM towards certain types of objects.

We note that the “Look at the vase under the light” example is important to make the LLM give
reasonable summaries for similar tasks in ALFRED where the agent picks something up and turns
on a light. This is because most of the human labels for turning on the lamp do not mention the
object in the previous step, making it difficult for the LLM to realize that the task has to do with
looking at the held object under a lamp.

14

Instructions: summarize the following ordered steps describing common household tasks.

Task Steps: 1: Pick up the smaller knife on the counter to the left of the stove. 2: Slice the
tomato with the smaller knife. 3: Put the knife in the sink. 4: Pick up a slice of tomato from
the countertop. 5: Heat up the slice of tomato in the microwave, removing it afterwards.
Summary: Microwave the tomato slice after slicing it with the smaller knife on the counter.

Task Steps: 1: Pick up the vase. 2: Turn on the lamp.
Summary: Look at the vase under the light.

Task Steps: 1: Grab the pencil off of the desk. 2: Put the pencil in the bowl. 3: Grab the
container off of the desk. 4: Put the container down at the back of the desk.
Summary: Put a bowl with a pencil in it on the desk.

Task Steps: 1: Pick up the bar of soap from the back of the toilet. 2: Put the bar of soap in to
the sink, turn on the faucet to rinse off the soap, pick up the soap out of the sink. 3: Put the
soap in the cabinet under the sink and on the left.
Summary: Put a rinsed bar of soap in the cabinet under the sink.

Task Steps: 1: [SKILL 1]. 2: [SKILL 2]. 3: [SKILL 3]. ... N: [SKILL N].
Summary:

Figure 8: The full prompt that we use for summarization. Following the suggestions of Ahn et al.
[9] for prompt design, we explicitly number each step. The LLM completion task begins after
“Summary:”. For brevity, we omit the new line characters between all numbered steps.

C Baselines and Implementation

We implement IQL [27] as the base offline RL algorithm for all goal-conditioned offline RL pre-
training baselines and ablations due to its strong offline and finetuning performance on a variety of
dense and sparse reward environments. At a high level, IQL trains on in-distribution (s, a, s′, r, a′)
tuples from the dataset rather than sampling a policy for a′ to ensure that the Q and value func-
tions represent accurate estimated returns constrained to actions in the dataset. The value function is
trained with an expectile regression loss controlled by a hyperparameter τ , where τ = 0.5 results in
standard mean squared error loss and τ → 1 approximates the max operator, resulting in a more op-
timistic value function that can better “stitch” together trajectories to obtain distant reward in sparse
reward settings. The IQL policy is trained to maximize the following objective:

eβ(Q(s,a)−V (s)) log π(a|s),

which performs advantage-weighted regression [24] with an inverse temperature term β. In practice,
the exponential advantage term is limited to a maximum value to avoid numerical overflow issues.
We detail shared training and implementation details below, with method-specific information and
hyperparameters in the following subsections.

Observation space. The state space of the ALFRED environment consists of 300 × 300 RGB
images. Following the baseline method in ALFRED [10], we preprocess these images by sending
them through a frozen ResNet-18 encoder [52] pretrained on ImageNet [53]. This results in a 512×
7 × 7 feature map that we use as the observation input to all networks. Furthermore, as ALFRED
is a partially observable, egocentric navigation environment, we concatenate the last 5 frames as the
full observation, resulting in an observation that is of the shape (512 ∗ 5)× 7× 7.

Action space. The agent chooses from 12 discrete low-level actions. There are 5 navigation ac-
tions: MoveAhead, RotateRight, RotateLeft, LookUp, and LookDown and 7 interaction
actions: Pickup, Put, Open, Close, ToggleOn, ToggleOff, and Slice. For interaction
actions the agent additionally selects one of 82 object types to interact with, as defined by Pashevich
et al. [50]. In total, the action space consists of 5 + 7 ∗ 82 = 579 discrete action choices. Note that
this action space definition is different from the action space in Shridhar et al. [10], which used a
pixel-wise mask output to determine the object to interact with. In contrast to Shridhar et al. [10] we

15

aim to train agents with reinforcement learning instead of imitation learning and found the discrete
action parametrization more amenable to RL training than dense mask outputs. For all methods,
due to the large discrete action space, we perform some basic action masking to prevent agents from
taking actions that are not possible. For example, we do not allow the agent to Close objects that
aren’t closeable nor can they ToggleOn objects that can’t be turned on.

Language embedding. We embed language instructions with the all-mpnet-base-v2 pre-
trained sentence embedding language model from the SentenceTransformers python package [41].
This produces a 768-dimensional language embedding which is used as input for language-
conditioned policy and critic functions, as detailed below.

Policy and critic networks. We train a discrete policies with two output heads of size 12 and 82 for
the action and interaction object outputs respectively. Critic networks are conditioned on both the
observation and the discrete action output of the policy. In all policy and critic networks, we process
the ResNet feature observation inputs with 4 convolutional layers. In networks with language input,
we flatten the output of the convolutional layers and concatenate the observation features with the
768-dim language embedding, before passing the concatenated image-language features through a
series of fully connected layers. Additionally, we use FiLM [54] to condition convolutional layers
on the language embeddings.

Pre-training hyperparameters. A hyperparameter search was performed first on the language-
conditioned BC-baseline to optimize for training accuracy. These hyperparameters were carried
over to the IQL implementation, and another search for IQL-specific hyperpameters were performed
on a baseline IQL policy conditioned on semantic instructions. With these parameters fixed, we
performed one more hyperparameter search specific to Actionable Models but for the final imple-
mentation of SPRINT we re-used the same hyperparameters and only selected SPRINT-specific
parameters heuristically. Hyperparameters for each method are detailed in a separate table. Shared
hyperparameters for all methods (where applicable) are listed below:

Param Value

Batch Size 1024
Training Batches 140k
Learning Rate 2e-3
Optimizer AdamW
Dropout Rate 0.2
Weight Decay 0.05
Discount γ 0.98
Q Update Polyak Averaging Coefficient 0.005
Q-Network Discrete Action Embedding Size 48
Q-Network Discrete Object Selection Action Embedding Size 24
Policy and Q Update Period Once every training iteration
Batch Norm True
Nonlinearity ReLU
IQL Advantage Clipping [0, 100]
IQL Advantage Inverse Temperature β 10
IQL Quantile τ 0.9

Finetuning details and hyperparameters. We perform finetuning experiments for Language-
conditioned BC, Actionable Models, and SPRINT. For all models, we finetune the model on only
newly collected task data by running online IQL (without any of the chaining or aggregation steps).
Each method is finetuned on every task in the EVAL UNSEEN task set individually; that is, we
pre-train once and then finetune ten times, once for every task in the task set. We then average re-
turns over all tasks, then report metrics averaged over all random seeds. For each task, we define a
maximum rollout time horizon of 2 timesteps per environment action required by the expert planner.

When not specified, finetuning parameters are identical to pre-training parameters. Finetuning hy-
perparameters are specified below:

16

Param Value

Dropout Rate 0
Initial Rollouts 50
Training to Env Step Ratio 0.5
ε in ε-greedy action sampling 0.25: annealed down to 0.05
Parallel Rollout Samplers 4

C.1 Language-conditioned Behavior CLoning

Our language-conditioned behavior cloning (L-BC) comparison method is inspired by and repli-
cates BC-Zero [51] and LangLfP [8]. BC-Zero performs FiLM-conditioned semantic imitation
learning [54] and both BC-Zero and LangLfP have an additional image/video-language alignment
objective. In BC-Zero, their video alignment objective aligns language embeddings with videos of
humans performing tasks related to those the BC-Zero robot agent trains on. LangLfP’s image-
language alignment objective allows their policy to accept both image and natural language goals as
input due to only having a subset of their data labeled with hindsight language labels. As we don’t
have human videos of these tasks and our entire dataset is labeled with language labels, we do not
add a video or image alignment objective.

Therefore, we implement L-BC by using the same architecture as described above with just a single
policy network that trains to maximize the log-likelihood of actions in the dataset. As our entire
dataset consists of expert trajectories, this baseline ideally learns optimal actions for the instructions.

Hyperparameters for the L-BC baseline are identical to the shared parameters above, where appli-
cable.

C.2 Actionable Models (AM)

Actionable Models [6] pretrains a goal-conditioned Q function conditioned on randomly sampled
image goals and also performs a goal-chaining procedure very similar to our semantic skill chaining
procedure. We implement AM by modifying the base IQL policy and critic networks to take in
image goals instead of natural language embeddings as goals. These goals are provided in the
same way as the observations, i.e., as a concatenated stack of 5 frames (the last 5 frames in the
trajectory) processed by a frozen ResNet-18. Therefore, goals are the same shape as observations:
(512 ∗ 5)× 7× 7.

To allow for fair comparison between our approach and AM, we implement AM with the same
powerful offline RL algorithm, IQL [27], used in our method. IQL ensures that the policy does not
choose out-of-distribution actions by using advantage-weighted regression on in-distribution actions
for policy extraction. With this, we found the conservative auxiliary loss AM adds to push down Q-
values for out-of-distribution actions to be unnecessary and even hurtful to its overall performance,
so we omit this additional loss term.

We also pre-train AM on the same long-horizon trajectories as those generated by SPRINT during
LLM-based skill aggregation. This ensures a fair comparison in terms of the types and lengths of
tasks seen during pre-training.

Finally, after consulting the authors of AM, we tried varying maximum trajectory lengths when
sampling random goals. We found that allowing random goals to be sampled from anywhere within a
trajectory resulted in the best zero-shot evaluation performance for AM, so our numbers are reported
with this implementation detail.

C.3 SPRINT

The implementation details of SPRINT follow from the discussion about implementing IQL at the
top of this section. The key differences are in (1) language model skill aggregation and (2) cross-
trajectory skill chaining, detailed below.

LLM Skill Aggregation. We perform LLM skill aggregation fully offline by iterating through
every ALFRED trajectory and aggregating sequences of adjacent primitive skill sub-trajectories.

17

Assuming a trajectory with N primitive skills, we select all
(
N
2

)
pairs of start and end skills and

aggregate all instructions from start to end with the LLM. With 73k original language-annotated
trajectories, this procedure allows us to generate an additional 110k aggregated trajectories. We
then add these trajectories to the original dataset and train on the entire set.

Cross-trajectory skill chaining. We perform cross-trajectory skill chaining in-batch. Instead of
sampling a second trajectory to perform chaining on, we simply permute the batch indicies to gener-
ate a set of randomly sampled second trajectories. Then, we perform a second loss function update,
in addition to the original update on the sampled trajectories, with equal loss weighting, to apply the
skill-chaining update.

SPRINT-specific hyperparameters follow:

Param Value

Large Language Model for Relabeling OPT-13B [46]
LLM Token Filtering Top-p1 0.9

LLM Token Sampling Temperature 0.8

1At each token generation step, only the highest probability tokens with total probability mass that add up
to the top-p are considered.

D Dataset and Environment Details

D.1 Dataset Details

For training and evaluation we leverage the ALFRED benchmark and dataset [10]. The ALFRED
training dataset contains ∼6.6k trajectories collected by an optimal planner following a set of 7
high-level tasks with randomly sampled objects (e.g., pick up an object and heat it). Each trajectory
has at least three crowd-sourced sets of language instruction annotations. Each trajectory consists of
a sequence of 3-19 individually annotated skills (see Figure 9, left). This results in a total of 141k
language-annotated skill trajectories.

However, nearly half of the language instructions in the ALFRED dataset are navigation skill in-
structions like “turn left, then look up and walk to the counter on the right”. To get a more balanced
skill annotation dataset, we merge all navigation skills with the skill that immediately follows them,
using only the annotation of the next skill. After this processing step, the resulting dataset contains
73k language-annotated primitive skill trajectories. After we merge the navigation skills, the aver-
age number of skills in each trajectory is 3.5 skills per trajectory (Figure 9, middle), and the average
number of actions in each skill is 14.3 (Figure 9, right).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of Skills

0

250

500

750

1000

1250

1500

1750

2000

N
um

be
r o

f T
ra

je
ct

or
ie

s

(a) Skills per trajectory in the origi-
nal ALFRED dataset.

2 3 4 5 6 7 8 9 10
Number of Skills

0

250

500

750

1000

1250

1500

1750

2000

N
um

be
r o

f T
ra

je
ct

or
ie

s

(b) Skills per trajectory in the
merged dataset.

0 10 20 30 40 50 60 70
Number of Actions

0

200

400

600

800

1000

1200

1400

N
um

be
r o

f S
ki

lls

(c) Actions per skill in the merged
dataset.

Figure 9: Left: distribution of the number of skills in each trajectory in the original ALFRED
dataset. Middle: distribution of skills per trajectory in the “merged” dataset with merged navigation
skills. Right: distribution of number of actions per skill in the “merged” dataset.

18

D.2 Evaluation Tasks

Figure 10: Data collection jupyter notebook page. Note that there is a “Skip” button so that human
annotators can skip an instruction sequence if they do not feel it is semantically meaningful or easy
to summarize.

We evaluate agents through zero-shot policy evaluation and finetuning on three sets of evaluation
tasks in the ALFRED environment: (1) EVAL 100 to measure the ability of pre-trained agents to
execute semantically meaningful instructions at varied levels of abstraction, (2) EVAL CHAIN to
measure the ability of agents to chain behaviors across multiple trajectories to solve long tasks, and
(3) EVAL UNSEEN to evaluate generalization performance when finetuning to unseen household
floor plans.

Collecting evaluation task data. The ALFRED dataset provides high-level language annotations
for each of the trajectories in the dataset. We could use these annotations as unseen task-instructions
to evaluate our agents. However, we found that the different skills are not equally distributed across
trajectories of different skill lengths, e.g., most 2-skill trajectories perform pick-and-place tasks
while tasks involving heating skills only appear in length 7+ trajectories. To allow evaluation with
a less biased skill distribution, we create the EVAL 100 task set by randomly choosing a trajectory
from the ALFRED dataset and then randomly sampling a subsequence of skills of a certain length
from this trajectory. To obtain a high-level language instruction that summarizes this new subse-
quence, we crowd-source labels from human annotators. For labeling, each annotator is presented

19

with a remotely hosted Jupyter notebook interface (see Figure 10). Whenever we by chance sample
a full ALFRED trajectory for annotation, we directly used the existing high-level annotation from
the ALFRED dataset. We annotate 80 trajectories with human annotators and combine them with 20
randomly sampled single-skill trajectories, resulting in a total of 100 evaluation tasks (see Figure 11
for example instructions). This results in 20 tasks of length 1 skills, 20 tasks of length 2 skills, 20
tasks of length 3 skills, 20 tasks of length 4 skills, and 20 tasks of lengths 5+ (5-7) skills.

For EVAL CHAIN, we randomly sampled 20 full trajectories from the ALFRED dataset that had
sequences of 7 or 8 skills (10 of length 7, 10 of length 8) and removed these trajectories from the
post-LLM aggregated training dataset. We did not remove any of the LLM-aggregated trajectories
made up of subsequences of skills within that trajectory. This allows AM and SPRINT to perform
skill chaining to solve these tasks by ensuring that there were valid sequences of skills to chain
together to be able to solve these removed tasks. For example, assume a (shortened for clarity)
sampled skill sequence is “pick up apple,” then “put apple in microwave”, then “slice the apple.”
Then, either Actionable Models or SPRINT can chain together the sub-trajectory associated with
“pick up apple” then “put apple in microwave” with the “slice the apple” sub-trajectory to solve this
task. These trajectories all had annotations from ALFRED annotators, so we used those annotations
directly (see Figure 13 for example instructions).

Finally, for EVAL UNSEEN, we collected a set of 10 full-length trajectories from the ALFRED
“valid-unseen” dataset consisting of validation tasks in unseen floor plans. We collected 2 of each
length from 1 through 5 for a total of 10 tasks by sampling random full-length trajectories from
this dataset, with the exception of length 1 tasks (we just sample random skills to create length 1
tasks). As these are full trajectories, they already have human annotations from ALFRED, which
we directly use as the task description (see Figure 12 for example instructions).

We list additional details about the tasks in each evaluation set in Table 2.

Table 2: Evaluation Task Specifics. Note that the “number of env actions per task” corresponds to
the number of environment actions the ALFRED expert planner required to complete that task.

EVAL 100 EVAL CHAIN EVAL Unseen

Number of Tasks 100 20 10

Task Lengths (# primitive skills) [1, 2, 3, 4, 5, 6, 7] [7, 8] [1, 2, 3, 4, 5]

Min Number of Env Actions per Task 1 34 2

Avg Number of Env Actions per Task 39.1 60.9 46.6

Max Number of Env Actions per Task 113 104 124

Finally, we display 5 randomly sampled tasks, along with their human annotations, from each of our
task sets in Figures 11, 12, and 13.

Online finetuning environment setup. During online-finetuning we initialize the agent in the
same house floor plan as the trajectory the task was extracted from to ensure executability. During
finetuning, we give each episode a time horizon of 2x the number of environment actions needed by
the expert planner to solve the task. We give sparse rewards for each skill solved by the agent during
the episode. Therefore for length 1 tasks, the agent can only be rewarded once before the episode
ends, while for length 5 tasks, the episode terminates on the fifth reward signal. We give a reward
of 1

num total skills for each skill the agent successfully executes so that the return sums to 1. We found
that this helped to finetune all comparison methods more stably, possibly due to the fact that giving
larger rewards (e.g., 1 for each skill) results in out-of-distribution critic values (when compared to
pre-training) that de-stabilize online reinforcement learning.

20

Skills to Summarize: 1: Grab the knife on the counter. 2: Place the knife in the sink then turn
the faucet on so water fills the sink. Turn the faucet off and pick up the knife again. 3: Place
the knife on the table to the left of the wooden bowl.
Annotator Summary: Wash the knife from the counter, put in on the table.

Skills to Summarize: 1: Pick up the blue book closest to your and the phone from the bed. 2:
Turn on the lamp to take a look at the book in the light.
Annotator Summary: Examine the book by the light of a lamp.

Skills to Summarize: 1: Pick up yellow candle on counter. 2: Open cabinet, put candle in
cabinet, close cabinet 3: Pick up yellow candle from toilet.
Annotator Summary: Move the candle from the sink to the cabinet under the sink, close it and
and then pick the candle from the top of the toilet in front of you.

Skills to Summarize: 1: Pick the pot on the left side up from the stove. 2: Set the bowl and
knife on the table next to the tomato.
Annotator Summary: Put the bowl with the knife in it next to the tomato.

Skills to Summarize: 1: Pick up the pen that’s in front of you that’s under the mug. 2: Put the
pencil in the mug that was above it. 3: Pick up the mug with the pencil in it.
Annotator Summary: Put the pen into the mug and pick up the mug.

Figure 11: Randomly sampled, human language instruction annotations from the EVAL 100 task
set.

Skills to Summarize: 1: Pick up the lettuce on the counter. 2: Chill the lettuce in the fridge. 3:
Put the chilled lettuce on the counter, in front of the bread.
Annotator Summary: Put chilled lettuce on the counter.

Skills to Summarize: 1: Pick up an egg from off of the kitchen counter. 2: Open the fridge, put
the egg in to chill for a few seconds and then take it back out. 3: Place the cold egg in the sink.
Annotator Summary: Chill an egg and put it in the sink.

Skills to Summarize: 1: Pick up the butter knife off of the right side of the kitchen island. 2:
Put the knife handle down in the frying pan that is on the front left burner of the stove. 3: Pick
up the frying pan with the knife in it off of the stove. 4: Put the frying pan with the knife in it
into the sink basin to the right of the potato.
Annotator Summary: Put a frying pan with a knife in it into the sink.

Skills to Summarize: 1: Take the pencil from the desk. 2: Put the pencil on the desk.
Annotator Summary: Take the pencil from the desk, put it on the other side of the desk.

Skills to Summarize: 1: Pick up the left pillow on the chair. 2: Put the pillow on the sofa right
of the newspaper. 3: Pick up the pillow on the chair. 4: Put the pillow on the sofa left of the
newspaper.
Annotator Summary: Place two pillows on a sofa.

Figure 12: Randomly sampled, human language instruction annotations from the EVAL UNSEEN
task set.

21

E Extended Experiments, Results, and Analysis

Table 3: EVAL 100 and EVAL Chain eval dataset per-length and overall skill completion rates. See
Section 4 for experiment setup.

AM L-BC SPRINT

EVAL 100

Number of Completed Subtasks Overall 0.46 ± 0.05 0.41 ± 0.02 1.27 ± 0.13
Length 1 Progress 0.23 ± 0.01 0.77 ± 0.04 0.53 ± 0.07
Length 2 Progress 0.22 ± 0.03 0.24 ± 0.03 0.49 ± 0.03
Length 3 Progress 0.17 ± 0.03 0.16 ± 0.04 0.48 ± 0.03
Length 4 Progress 0.10 ± 0.01 0.06 ± 0.01 0.35 ± 0.06
Length 5 Progress 0.16 ± 0.08 0.02 ± 0.01 0.46 ± 0.06
Length 6 Progress 0.16 ± 0.01 0.02 ± 0.03 0.36 ± 0.12
Length 7 Progress 0.00 ± 0.00 0.00 ± 0.01 0.01 ± 0.02

EVAL CHAIN
Number of Completed Subtasks Overall 0.67 ± 0.09 0.04 ± 0.05 2.59 ± 0.66
Length 7 Progress 0.04 ± 0.01 0.00 ± 0.00 0.25 ± 0.10
Length 8 Progress 0.13 ± 0.02 0.01 ± 0.01 0.43 ± 0.08

Here, we present additional results complementary to the experiments in the main paper in Section 4.
We present and analyze LLM annotation examples in Section E.1, zero-shot evaluations with step-
by-step task instructions in Section E.3, and an extended ablation analysis in Section E.4.

E.1 LLM Summary Examples

We randomly sample 12 OPT-13B task summaries produced while performing skill aggregation
(explained in Section 3.2) using the prompt in Figure 8 and display them in Figure 14. Because we
sample the tokens sequentially during text generation, some of the summaries mostly describe one or
a few of the skills but in a non-sensical manner (e.g., LLM(“Pick up the plastic bowl on the left. Turn
on the lamp.”) = “Look at the plastic bowl on the left”). The summaries also likely can be improved
by including more examples in the prompt. However, after analyzing many more examples, we
see that OPT-13B generally provides fitting high-level summaries for most sequences by skipping
over implied sub-tasks (although it sometimes also skips over important sub-tasks, likely due to the
prompt). For example, it summarizes the task “Pick up the plaid pillow that is on the left end of
the couch. Place the pillow on the ottoman” as “Place a plaid pillow on the ottoman,” in which
picking up the plaid pillow is implied. It also often demonstrates object relation understanding, e.g.,
by stating “Place a plaid pillow” when only the first sub-task in the sequence mentions that the
pillow is plaid.

22

Skills to Summarize: 1: Pick up the plaid pillow that is on the left end of the couch. 2: Place
the pillow on the ottoman.
LLM-generated Summary: Place a plaid pillow on the ottoman.

Skills to Summarize: 1: Pick up the piece of potato furthest to the right. 2: Open the
microwave, place the potato inside, close the door, microwave for two seconds, then remove
the potato. 3: Place the cooked potato piece to the right of the salt shaker.
LLM-generated Summary: Place a cooked potato piece on the table.

Skills to Summarize: 1: Put the spoon in the pot on the left. 2: Pick up the pot with the spoon.
LLM-generated Summary: Put the pot with the spoon on the left.

Skills to Summarize: 1: Open the microwave above the stove and slice the apple inside with
the knife. 2: Place the knife standing up on the blue dish. 3: Remove a slice of apple from the
microwave. 4: Place the apple slice on the blue plate.
LLM-generated Summary: Put an apple slice on the blue plate.

Skills to Summarize: 1: Pick up the butter knife that is next to the fork. 2: Open the
refrigerator. 3: Open the refrigerator and place the knife on the bottom shelf in the refrigerator
then close the door.
LLM-generated Summary: Open the refrigerator and place the butter knife on the bottom shelf
in the refrigerator then close the door.

Skills to Summarize: 1: Open the fridge and put the knife inside. 2: Take a piece of the apple
out of the microwave.
LLM-generated Summary: Take a slice of apple out of the microwave.

Skills to Summarize: 1: Pick up the remote that is on the shelf. 2: Put the remote on the couch.
LLM-generated Summary: Put the remote on the couch.

Skills to Summarize: 1: Pick up the dirty green towel to the right of the bar of soap on the
vanity. 2: Put the towel into the sink, rinse it for a few seconds and pick it back up. 3: Open
the far left bottom drawer to the left of the sink, put the rinsed green towel inside and close the
drawer.
LLM-generated Summary: Put the towel in the drawer.

Skills to Summarize: 1: Pick up the plastic bowl on the left. 2: Turn on the lamp.
LLM-generated Summary: Look at the plastic bowl on the left.

Skills to Summarize: 1: Slice up the fruit that is in the sink. 2: Place the knife in the second
row of the fridge. 3: Grab a slice of the fruit. 4: Place the fruit slice on the back right pan. 5:
Grab the pan that has the fruit in it.
LLM-generated Summary: Put a slice of fruit on a pan in the fridge

Skills to Summarize: 1: Pick up the pot on the front right burner. 2: Chill the pot in the fridge
then get it back out and close the door.
LLM-generated Summary: Put a pot on the stove, put it in the fridge, get it out, close the door.

Skills to Summarize: 1: Pick up the knife on the counter. 2: Cut the potato in the sink into
slices. 3: Put the knife in the sink with the potato. 4. Pick up a slice of potato from in the sink.
5. Warm the potato slice in the microwave and then remove it.
LLM-generated Summary: Warm the potato slice in the microwave.

Figure 14: LLM Summary examples. We randomly sample 12 language combinations generated by
the OPT-13B text generation model [46] and display them without cherry-picking specific examples.
The LLM often creates a high level description by skipping implied steps (like humans do), e.g., “Put
the remote on the couch” implies the need to pick up the remote.

23

E.2 Comparing Summaries from Different LLMs

In this section, we justify the use of OPT-13b as our summarization model by comparing its sum-
maries of three different skill sequences to OPT-350m (350 million parameters) and OPT-1.3b (1.3
billion parameters). The summaries and sequences are displayed in Figure 15. Although these are
3 randomly sampled examples, they highlight differences between the models that hold true across
many examples that we examined.

As the language model size increases, it understands more of the relationships between sub-tasks in
each sequence, therefore generating better summaries. An example of this is the second example
in Figure 15, which highlights a sequence in which both OPT-1.3b and OPT-13b understand the
high-level task of putting a warmed plate in the cabinet, as opposed to OPT-350m which essentially
repeats the second sub-task in the sequence. Yet sometimes, only OPT-13b produces a reasonable
summary. In the last example, OPT-13b produces a summary that implies that an agent must wash
the potato (“Put a rinsed potato on the counter...”); the other two models’ summaries only mention
the last step of putting the potato down.

Skills to summarize: 1. Pick the clock up from the desk. 2. Turn the lamp on.
OPT-350m Summary: Look at the clock.
OPT-1.3b Summary: Turn on the lamp.
OPT-13b Summary: Look at the clock.

Skills to summarize: 1. Take the plate from the cabinet to the left of the stove. 2. Warm the
plate in the microwave, above the stove. 3. Put the plate in the cabinet.
OPT-350m Summary: Place the plate in the microwave.
OPT-1.3b Summary: Put a warmed plate in the cabinet.
OPT-13b Summary: Put a warmed plate in the cabinet.

Skills to summarize: 1. Open the microwave, take out the potato and shut the door. 2. Put the
potato in the sink, turn the water on and off again. Take the potato out of the sink. 3. Place the
potato on the counter, to the right of the sink.
OPT-350m Summary: Put the potato on the counter, to the left of the sink.
OPT-1.3b Summary: Place the potato on the counter, to the right of the sink.
OPT-13b Summary: Put a rinsed potato on the counter to the right of the sink.

Figure 15: Comparison of OPT-350m, 1.3b, and 13b summaries on 3 randomly sampled sequences
from our dataset. In general, as the model size increases, the summary becomes better. However,
there are some sequences all three on which all 3 models do not generate good summaries for, such
as the first sequence in these examples.

E.3 Step by Step Zero-shot evaluations

Humans may sometimes prefer to give more detailed instructions, e.g., if they do not trust a house-
hold robot to successfully execute a high-level instruction. In that case, they are likely to give
detailed, step-by-step instructions instead. In this section, we demonstrate the effectiveness of our
pre-training strategy in enabling execution of longer-horizon tasks when specified by such step-by-
step instructions. To generate these step-by-step instructions, we combine all subtask instructions
into one paragraph to condition agents on instead of the high-level human annotation. For example,
a task with 2 subtasks, “Pick up the knife” and “Slice the potato,” is given the simple task annotation
“Pick up the knife. Slice the potato.”

We compare SPRINT and IL on both EVAL 100 and EVAL CHAIN tasks with the combined, step-
by-step task annotations in Table 4. L-BC and SPRINT both perform similarly on the step-by-
step EVAL 100 tasks compared to with the original annotations, while both perform better on
EVAL CHAIN tasks thatn with the original annotations. This is likely due to how EVAL CHAIN

24

tasks are on average much longer (7 or 8 tasks). Therefore, instructions spelling out exactly what to
do allow agents to more easily understand what and in which order subtasks should be performed.

Table 4: Step-by-step evaluation number of completed sub-tasks (number of completed sub-tasks).
L-BC SPRINT

EVAL 100 Completed Subtasks 0.46 ± 0.01 1.24 ± 0.19
EVAL CHAIN Completed Subtasks 0.22 ± 0.03 3.11 ± 0.08

E.4 Extended Ablation Study

In this section, we examine a series of additional questions regarding specific design choices of our
method, in a manner complementary to Section 4.1.3. We also visualize all ablations’ zero-shot
policy evaluation performance in on both EVAL 100 and EVAL CHAIN task sets in Table 5.

How much does the LLM contribute to skill aggregation? To answer this question, we com-
pare using SPRINT with LLM aggregation on adjacent sub-trajectory sequences but no chaining
(SPRINT w/o chain) to SPRINT with skill aggregation, but where the skills are relabeled by
naı̈vely concatenating the sentences together (SPRINT w/o chain, w/ concat-agg). Across both
task sets, SPRINT w/o chain, w/ concat-agg is outperformed by SPRINT w/o chain, especially in
EVAL CHAIN. This signifies that using the LLM helps with understanding very-long horizon, high-
level semantic instructions as the LLM generates relevant task summaries for consecutive skills in a
trajectory.

What if we relabel with the LLM during chaining? We examine also using the LLM to label
skills during cross-trajectory skill aggregation (SPRINT w/ LLM-chain), rather than concatenating
the skill annotations together (SPRINT). Overall, SPRINT w/ LLM-chain performs slightly worse
in average return and success rates. When analyzing the summaries generated by the LLM, we
found that randomly paired instructions can rarely be summarized meaningfully, thereby resulting
in noisy and sometimes meaningless instructions. Therefore, we implemented SPRINT w/ LLM-
chain by only utilizing the top 1% (top 10 candidates with our batch size of 1024) of in-batch
chaining candidates (ranked by the LLM’s prediction of what the next skill should be). Even so,
the performance is not better than just simply concatenating the instructions, as even these top 1%
candidates still have a high chance of not being sensible sentences to summarize.

Table 5: EVAL 100 Ablation Returns and Success Rates
EVAL 100 Average Return EVAL CHAIN Average Return

SPRINT (ours) 1.27 ± 0.13 2.59 ± 0.66
SPRINT w/ LLM-chain 1.15 ± 0.01 2.46 ± 0.21
SPRINT w/o chain 0.91 ± 0.03 2.04 ± 0.04
SPRINT w/o chain, w/ concat-agg 0.77 ± 0.06 0.67 ± 0.20
SPRINT w/o LLM-agg 0.38 ± 0.05 0.10 ± 0.04

E.5 Qualitative Comparison Results

Zero-shot evaluation. We compare SPRINT, AM, and L-BC zero-shot evaluation results on long
EVAL CHAIN tasks in Figure 16. In general, SPRINT is able to make substantially more progress
on EVAL CHAIN tasks as it leverages the large language model to generate longer-horizon, seman-
tically meaningful pre-training tasks and performs cross-trajectory chaining to learn to chain its
existing dataset tasks. In the visualized examples, SPRINT is able to understand and successfully
execute many of the sub-tasks implied but not directly stated by the natural language task instruc-
tion. L-BC makes very little progress on these tasks, not even understanding what the first sub-task
to complete should be as the task annotation is out of distribution from what it saw while training.
Finally, AM is able to make some progress on some of these tasks due to its long-horizon goal pre-
training objective. However, this is less effective than our language-conditioned pre-training in such
zero-shot evaluations.

25

Finetuning. We finetune SPRINT, AM, and L-BC on EVAL UNSEEN tasks, in household floor-
plans that were never seen while training, and visualize qualitative policy rollout examples after
finetuning in Figure 17. In general, SPRINT is able to finetune to longer-horizon tasks while AM
and L-BC both struggle with making progress on longer-horizon tasks despite receiving rewards for
every completed sub-task. SPRINT’s ability to complete more sub-tasks on many of the longer-
horizon tasks is demonstrated in Figure 17a, while a case in which both SPRINT and AM make
partial progress throughout finetuning is demonstrated in Figure 17b. We believe that AM has more
trouble finetuning on these tasks than SPRINT because the task specification for AM (goal images) is
out of distribution; pre-training on semantic tasks with SPRINT allows agents to more easily learn
longer-horizon behaviors as the task specifications may still be in-distribution of the pre-training
tasks that LLM skill-aggregation and skill chaining produce.

26

Skills to Summarize: 1: Pick up the knife in front of the lettuce. 2: Slice the apple in the sink
with the knife. 3: Place the knife into the sink. 4: Pick up the sliced apple from the sink. 5:
Place the apple slice into the pot on the stove. 6: Pick up the pot from the stove. 7: Pick up the
pot from the stove.
Annotator Summary: Slice an apple for the pot on the stove and put the pot on the counter to
the right of the door.

Skills to Summarize: 1: Take the apple from the counter in front of you. 2: Place the apple
in the sink in front of you. 3: Take the knife by the sink in front of you. 4: Cut the apple in
the sink in front of you. 5: Place the knife in the sink in front of you. 6: Take an apple slice
from the sink in front of you. 7: Heat the apple in the microwave, take it out and close the
microwave. 8: Place the apple slice in the sink in front of you.
Annotator Summary: Place a warm apple slice in the sink.

Skills to Summarize: 1: Pick up the loaf of bread. 2: Put the bread on the counter above the
spatula. 3: Pick up the knife that’s above and to the right of the loaf of bread. 4: Cut the top
half of the loaf of bread into slices. 5: Put the knife on the edge of the counter in front of you
horizontally. 6: Pick up a slice of bread from the middle of the loaf. 7: Cook the bread in the
microwave then take it out and close the microwave door. 8: Throw the cooked slice of bread
away.
Annotator Summary: Put a microwaved slice of bread in the oven.

Skills to Summarize: 1: Pick the knife up from off of the table. 2: Open the microwave, slice
the potato, and close the microwave. 3: Open the microwave, place the knife inside of it,
and close the microwave. 4: Open the microwave, pick up the potato slice inside, close the
microwave. 5: Place the potato slice in the pan on the stove. 6: Pick up the pan from the stove.
7: Open the refrigerator, place the pan inside, and close the refrigerator.
Annotator Summary: Move the pan from the stove top to inside the black refrigerator.

Skills to Summarize: 1: Pick up the red tomato on the counter to the right of the stove. 2: Put
the tomato onto the island below the butter knife. 3: Pick up the butter knife off of the kitchen
island. 4: Slice up the tomato on the kitchen island. 5: Place the butter knife onto the island to
the right of the sliced tomato. 6: Pick up a tomato slice off of the kitchen island. 7: Open the
fridge and put the tomato slice on the bottom shelf, then close the door, after a couple seconds
open the fridge and remove the tomato slice then close the door. 8: Open the microwave door
and place the tomato slice inside the microwave in front of the egg.
Annotator Summary: Put a chilled tomato slice into the microwave.

Figure 13: Randomly sampled, human language instruction annotations from the EVAL CHAIN task
set.

27

SPRINT

AM

L-BC

Task: Throw away a microwaved slice of potato. Completed
Subtasks

8/8

1/8

0/8

(a) SPRINT successfully solves this task, while AM fails to slice the potato and repetitively iterates
between putting the potato in the fridge and microwave. L-BC fails to even pick up the potato, as
the task annotation does not directly describe picking up a potato.

SPRINT

AM

L-BC

Task: Place a cooked potato slice inside the refrigerator. Completed
Subtasks

7/8

0/8

0/8

(b) SPRINT nearly solves this task, while AM picks up an egg instead of a potato. L-BC picks up
random objects not related to the annotation.

SPRINT

AM

L-BC

Task: Put a chilled tomato slice into the microwave. Completed
Subtasks

8/8

1/8

0/8

(c) SPRINT completes the entire task. AM picks up the tomato but fails to put it down onto the
counter and slice it. L-BC aimlessly wanders and picks up random objects.

Figure 16: Visualizations of zero-shot policy rollouts on three tasks in the EVAL CHAIN task set.

28

SPRINT

AM

L-BC

Task: Place two pillows on a sofa. Completed
Subtasks

3/4

1/4

1/4

(a) SPRINT picks up and places one of the pillows on the sofa, and picks up the second but does not
manage to place the second on the sofa, thus completing 3/4 subtasks. AM and L-BC both learn to
pick up a pillow but never learned to place it in the correct spot.

SPRINT

AM

L-BC

Task: Take the pencil from the desk, put it on the other side of the desk. Completed
Subtasks

1/2

1/2

0/2

(b) SPRINT and AM both learn to pick up a pencil from the desk, although neither manage to put
the pencil down in the correct place “on the other side of the desk.” Meanwhile, L-BC never picks
up the pencil.

Figure 17: Visualizations of policy rollouts on two tasks in the EVAL UNSEEN task set, after fine-
tuning each method. These floor plans were originally unseen to all agents until finetuning.

29

	Introduction
	Related Work
	SPRINT: Scalable Semantic Policy Pre-Training with Language Instructions
	Instruction-Conditioned Offline RL
	Language-Model-Based Instruction Aggregation
	Cross-Trajectory Chaining

	Experiments
	Experimental Setup
	SPRINT Solves Long-Horizon Tasks Zero-Shot
	SPRINT Agents Finetune Effectively in Unseen Environments
	Ablation Studies

	Discussion
	
	SPRINT Pseudocode
	Large Language Model Prompt
	Baselines and Implementation
	Language-conditioned Behavior CLoning
	Actionable Models (AM)
	SPRINT

	Dataset and Environment Details
	Dataset Details
	Evaluation Tasks

	Extended Experiments, Results, and Analysis
	LLM Summary Examples
	Comparing Summaries from Different LLMs
	Step by Step Zero-shot evaluations
	Extended Ablation Study
	Qualitative Comparison Results

