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Abstract
Despite the success of Bregman proximal-type algorithms, such as mirror descent, in machine
learning, most theoretical results depend on the gradient Lipschitz property of the kernel, excluding
widely used cases like the Shannon entropy kernel. This paper uncovers a fundamental limitation:
Spurious stationary points inevitably arise when non-gradient Lipschitz kernels are used. We es-
tablish an algorithm-dependent hardness result, showing that Bregman proximal-type algorithms
cannot escape these spurious stationary points in finite steps if the initial point is unfavorable, even
in convex settings. Those challenges are discovered through the lack of a well-defined stationarity
measure, typically based on Bregman divergence, for these algorithms. While some extensions
attempt to address this, we demonstrate that they still fail to distinguish reliably between stationary
and non-stationary points for non-gradient Lipschitz kernels. Our findings highlight the need for
new theoretical tools and algorithms within Bregman geometry, opening new avenues for further
research.

1. Introduction

In this paper, we study structured nonsmooth (non)-convex optimization problems of the form

min
x∈Rn

F (x) := f(x) + g(x), (P)

where dom(g) = X is a nonempty closed convex set, f : Rn → R is a continuously differentiable
function, and g : Rn → R is a convex and locally Lipschitz continuous function. To solve Problem
(P) efficiently, Bregman proximal-type (BPs) algorithms are widely used methods that effectively
exploit the geometry of the set X to avoid costly projection or proximal steps under the Ecludiean
space [1, 6, 8, 26].

We now present the unified formulation of the class of Bregman proximal-type (BPs) algorithms
that we will investigate in this paper, where the iterative schemes are defined as follows

xk+1 = argmin
y∈Rn

{
γ
(
y;xk

)
+ g(y) +

1

tk
Dh(y,x

k)

}
. (1.1)

Here, γ( · ;x) is the surrogate model for f at the point x, tk ≥ 0 is the step size in the k-th iteration
and Dh is the Bregman divergence associated with the kernel function h. Specifically, when the
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surrogate model is the original function f , the update rule (1.1) simplifies to the Bregman proximal
point method [11, 17]. If the surrogate model is a linear approximation, given by γ(y;xk) :=
f(xk) + ∇f(xk)T (x − xk), then the update (1.1) encompasses the Bregman proximal gradient
descent method (BPG) [3, 5, 10, 24, 29]. Alternatively, one may choose a quadratic surrogate
model given by γ(y;xk) := f(xk) +∇f(xk)T (x− xk) + 1

2(x− xk)T∇2f(xk)(x− xk), which
has been recently investigated by Doikov and Nesterov [13].

Many efforts have been devoted to obtaining non-asymptotic convergence results for Bregman
proximal-type algorithms, which are expected to be similar to those for Euclidean cases. However,
these results have been limited to scenarios where dom(h) = Rn (see, e.g., [27]) or where ∇h is
Lipschitz continuous (see, e.g., [28]). These conditions essentially guarantee the non-degenerate
property of the mirror map, where Euclidean and Bregman geometries align. Unfortunately, they
exclude most of powerful kernels that enhance the practical appeal of BPs, such as the Shannon en-
tropy function. This raises a natural question: Is there any fundamental difference between Bregman
proximal-type algorithms and their Euclidean counterparts when the mirror map is degenerate (i.e.,
when the kernel function is not gradient Lipschitz)?

In this paper, we fully address this question and explore the fundamental differences that prevent
achieving analogous convergence results for non-gradient Lipchitz kernels. We begin by identifying
a class of undesirable points, termed spurious stationary points, which arise in scenarios where the
kernel function is not gradient Lipschitz continuous. We then show that the existence of spurious
stationary points is inevitable, even in simple convex problems. More importantly, if we initialize
BPs near a spurious stationary point, the generated sequence can remain trapped within a small
neighborhood of this point, regardless of the number of steps taken. This hardness result provides a
negative answer to the possibility of obtaining similar convergence results as those in the Euclidean
space.

Taking a step further, we aim to clarify why BPs become trapped at these spurious stationary
points and how we discovered this result that has been overlooked by the research community for an
extended period. To analyze the behavior of the iterate sequences and their proximity to stationary
points, researchers typically introduce a residual function R : Rn → R+ quantifies the stationarity of
the iterates and subsequently establish the convergence of {R(xk)}k∈N. This trapping phenomenon
is observed through the unsatisfactory behaviours of all existing stationarity measures. Specifically,
these measures fail to satisfy the following equivalence (Q) when the kernel function is not gradient
Lipschitz continuous:

lim
k→∞

R(xk) = 0 ⇐⇒
?

0 ∈ ∂F

(
lim
k→∞

xk

)
. (Q)

This failure implies that we cannot classify whether the iterates of BPs are approximately stationary
or not, even when the stationarity measures are relatively small. Spurious stationary points are
precisely those points where the stationarity measure equals zero, yet zero does not belong to their
subdifferential. It is worth noting that the equivalence (Q) trivially holds for all algorithms under
Euclidean geometry, as well as under conditions such as dom(h) = Rn (see, e.g., [27]) or when
∇h is Lipschitz continuous (see, e.g., [28]) for BPs. Consequently, there are no spurious stationary
points in these cases.

Main techinical novelty The key tool for establishing the existence of spurious stationary points
and the associated hardness results is the extended Bregman stationarity measure, which may also
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be of independent interest. We begin by unifying all existing stationarity measures and extending
their definitions to encompass the entire domain of kernels. This extension allows us to compute
the residual function at accumulation points. Notably, prior to our work, all existing stationarity
measures were not well-defined at the boundaries of the kernel functions’ domains. We then estab-
lish the continuity properties of the newly developed stationarity measure and demonstrate that a
stationarity measure equal to zero can still indicate non-stationary points (i.e., spurious stationary
points). The hardness results follow directly from this analysis.

Notation. Our notation is mostly standard. The set of extended real numbers is denoted by R. For
a vector x ∈ Rn, its i-th coordinate is represented by xi, and xI denotes a subvector of x indexed
by I. The Euclidean ball Bϵ(x) is defined through Bϵ(x) := {y ∈ Rn : ∥x − y∥2 ≤ ϵ}. Given
a set X ⊆ Rn, we use cl(X ), int(X ), and bd(X ) to denote its closure, interior, and boundary,
respectively. The indicator function δX of the set X is defined through δX (x) = 0 if x ∈ X ;
δX (x) = +∞ otherwise. We employ the shorthand δg(x)=0 to compactly represent δ{x∈Rn:g(x)=0}
for any real-valued function g : Rn → R.

2. Assumptions and justification

In this section, we state our blanket assumptions and justify their validity in applications. To begin,
we introduce the definition of the separable kernel function.

Definition 1 We say that h : Rn → R is a separable kernel function if (i) h is defined by
h(x) =

∑n
i=1 φ(xi), where φ : R → R is a univariate function that is continuously differentiable

on int(dom(φ)); (ii) |φ′(xk)| → +∞ as xk → x ∈ bd(dom(φ)); (iii) φ is strictly convex.

The separability structure outlined in property (i) is ubiquitous in real-world scenarios [2, 5, 20].
Properties (ii) and (iii) are referred to as Legendre-type properties, as defined in [3]. We illustrate
their practicality by presenting several widely used kernel functions in Example 1.

Assumption 1 (Problem (P)) Let dom(g) = X be a nonempty closed convex set. Suppose:

(i) The function f is continuously differentiable on X .

(ii) The function g is convex and locally Lipschitz continuous on X .

(iii) There exists a strictly feasible point xint ∈ int(dom(h)) ∩ X and X ⊆ cl(dom(h)).

(iv) The function h is a separable kernel function, see Definition 1.

Assumptions 1 (i)-(iii) or their stronger versions are widely adopted in the literature; see, e.g.,
Assumption A in [3], Assumption A in [5], and Definition 1 and Assumption 1 in [2]. We also refer
the readers to see the practical problems that satisfy these assumptions and are solved by Bregman
proximal-type methods satisfying these assumptions in, e.g., problem (3) in [23], and problem (6)
in [24] and problem (7) in [12].

Next, we proceed to give assumptions of algorithm classes (i.e., the update rule (1.1)), which is
characterized by the surrogate model γ.

Assumption 2 (Surrogate model γ) The following hold.

(i) The function (x,y) 7→ γ(y;x) and gradient (x,y) 7→ ∇γ(y;x) (w.r.t y) are jointly contin-
uous w.r.t. (y,x) for all y ∈ X and x ∈ X .
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(ii) For all x ∈ X , we have ∇γ(y;x) |y=x= ∇f(x), and γ(y;x) |y=x= f(x).

(iii) For all x ∈ X , there exists a constant t > 0 such that tγ( · ;x) + h(·) is strictly convex.

(iv) Either X is compact or we have the following condition: For all step sizes t ∈ (0, t] and all
sequences {xk}k∈N, {yk}k∈N ⊆ int(dom(h)) ∩ X such that ∥yk∥ → ∞ and xk → x ∈ X ,
the following holds:

lim
k→∞

γ(yk;xk) + g(yk) +
1

t
Dh(y

k,xk) = +∞, (2.1)

where Dh(y,x) := h(y)− h(x)− h′(x)(y − x).

Unless otherwise specified, the step size t in this paper is assumed to satisfy t ∈ (0, t].

Assumptions 2 (i) and (ii) are standard, serving to ensure the continuity and local correctness of
the surrogate model γ. Assumption 2 (iii) usually reduces to conditions commonly adopted in the
literature or is automatically satisfied for all three choices mentioned in the introduction. When γ
represents the first-order expansion of f at the current iterate x, Assumption 2 (iii) is trivially satis-
fied. If γ is selected as the original function f , it reduces to the relatively weak convexity condition,
as discussed in [9, 28]. When γ is the second-order expansion of f at the current iterate x, the
L-smoothness of f and strong convexity of h suffice to guarantee Assumption 2 (iii). Assumption 2
(iv) is to ensure the well-posedness of the Bregman proximal-type update (1.1). If X is unbounded,
then Assumption 2 (iv) can be implied by supercoercive-type conditions, see Lemma 2 in Bauschke
et al. [3] and Assumption B in Bolte et al. [9]. Interested readers are referred to Appendix B for the
rigorous verification of this assumption for commonly used γ.

Based on Assumptions 1 and 2, we present the following lemma, which discusses the well-
posedness of update (1.1) on int(dom(h)). Similar results can also be found in [3, 14].

Lemma 2 For all x ∈ int(dom(h)) ∩ X , we have T t
γ(x) ∈ int(dom(h)) ∩ X , where the update

mapping T t
γ is defined through T t

γ := argminy γ(y;xk) + g(y) + 1
tDh(y,x

k).

Algorithm 1: Bregman divergence-based algorithms
Input: {tk}k∈N with tk > 0, initial point x0 ∈ int(dom(h)) ∩ X , and k = 0.
while Stopping Criteria is not satisfied do

xk+1 = T tk
γ (xk);

Set k = k + 1
end
Output: The last iterate xk

3. Main results

In this section, we aim to provide a negative answer for (Q) and further establish a hardness result
for the BPs. The central tool to achieve these results is a newly introduced notion, namely, spurious
stationary points. To begin, we define the index sets

B(x) := {b ∈ [n] : xb ∈ bd (dom(φ))} ; I(x) := {i ∈ [n] : xi ∈ int (dom(φ))} .

Then, the formal definition of spurious stationary points is given as follows.
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Definition 3 (Spurious stationary points) A point x ∈ X is defined as a spurious stationary point
of problem (P) if there exists a vector p ∈ ∂F (x) satisfying pI(x) = 0 but 0 /∈ ∂F (x).

Remark 4 (i) Spurious stationary points exist only when the kernel is non-gradient Lipschitz. (ii)
For a kernel h with gradient Lipschitz property, Definition 1 (ii) implies that dom(h) = Rn and
I(x) = [n] hold for all x ∈ X , thereby precluding the existence of spurious stationary points by
definition.

The following proposition demonstrates that spurious stationary points are precisely counter ex-
amples where zero does not belong to the subdifferential, yet the stationary measure equals zero.
Consequently, one cannot classify whether the output points of the BPs are approximately stationary
even when their stationarity measure is small.

Proposition 5 Let {xk}k∈N ⊆ int(h)∩X be a sequence converging to a spurious stationary point
x̃∗ ∈ X for problem (P). Then, the Bregman stationarity measure of {xk}k∈N goes to zero, i.e., for
all t > 0 and R(x) := Dh(T

t
γ(x),x) or R(x) := Dh

(
proxht,γ(x),x

)
,

lim
k→∞

R(xk) = 0.

Remark 6 We consider R(x) := Dh(T
t
γ(x),x) and R(x) := Dh

(
proxht,γ(x),x

)
in Proposition

5 because these two measures typically evaluate the descent property of the BPs; see e.g., [3, 28].
Other measures, such as the function value gap F (x) − F ∗ and the minimal subgradient norm
dist(0, ∂F (x)), either fail to identify stationary points in the nonconvex setting or have no decrease
guarantee for the iterate sequence of the BPs, as illustrated by Example 3.

We further uncover some practical challenges stemming from spurious stationary points. While it
seems that spurious stationary points only impact the Bregman stationarity measure and that the
BPs will get rid of them since they are non-stationary, the following hardness result demonstrates
that we cannot escape from spurious stationary points in finite steps using Algorithm 1.

Theorem 7 (Hardness) If there exists a spurious stationary point x̃∗ ∈ X for problem (P), then
for every K ∈ N and ϵ > 0, there exists an initial point x0 ∈ Bϵ(x̃

∗)∩X ∩ int(h), sufficiently close
to the spurious point x̃∗, such that the sequence {xk}k∈[K] generated by Algorithm 1 satisfies

xk ∈ Bϵ(x̃
∗) for all k ∈ [K]. (3.1)

Remark 8 (i) If the iterates of Algorithm 1 enter a small neighborhood of a spurious stationary
point, then we cannot get rid of them with any finite steps. (ii) Allowing for an infinite number of
steps, under certain conditions, Algorithm 1 can eventually escape from them and converge to true
stationary points. For instance, Corollary 1 in [3] establishes that, under the convexity of f and
additional conditions, the sequence {xk}k∈N generated by BPG satisfies

f(xk)−min
x∈X

f ≤ Dh(x,x
0)

t
· 1
k
, (3.2)

where x ∈ argminx∈X f is the global minimizer, t is the step size, and x0 is an arbitrary ini-
tial point. The non-asymptotic convergence result (3.2) guarantees that f(xk) → minx∈X f(x).
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Therefore, the limit points of {xk}k∈N are globally optimal (stationary). (iii) Our hardness result
does not contradict the non-asymptotic rate in (3.2). When (3.1) holds, the initial point x0 is suffi-
ciently close (as we constructed) to a spurious stationary point x̃∗, and the distance Dh(x,x

0) can
be extremely large, allowing (3.2) to hold for all k ∈ [K].

A remaining question is that whether spurious stationary points exist in practical optimization
problems. In Appendix F, we give examples of spurious stationary points in both convex and non-
convex problems. Furthermore, the following proposition demonstrates that for a broad class of
convex problems with polytopal constraints, the existence of spurious points is guaranteed.

Proposition 9 (Existence of spurious stationary points) Consider a convex optimization prob-
lem minx∈X f(x), where X = {x ∈ Rn : Ax = b,x ≥ 0} is compact, A ∈ Rm×n, and f
is not constant on X . If Assumption 1 holds and cl(dom(h)) = Rn

+, then every maximal point
x̃∗ ∈ argmaxx∈X f(x) is a spurious stationary point.

4. Closing remark

The algorithm-dependent hardness results in this paper raise an open question:

How can we escape spurious stationary points by modifying Bregman proximal-type
algorithms and establish a valid non-asymptotic convergence rate?

To address this question, our paper suggests one possible direction: Identify a stationarity measure
that meets the equivalence (Q) and has a decreasing guarantee for the BP iterates. For convex
settings, a well-known candidate stationarity measure is the function value gap F − F ∗. However,
when the objective functions are nonconvex, the possibility of addressing this question remains
unanswered. By seeking an eligible stationarity measure, one might discover new principles for
algorithm design to eliminate undesirable points.
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The appendix is structured as follows. Firstly, in Appendix A, we present some basic definitions
essential for our subsequent discussions. Following that, in Appendix B, we offer an exhaustive
verification of our assumptions and prove the well-posedness of Algorithm 1 under them. In Ap-
pendix C, we introduce the extended Bregman stationarity measure as a tool to investigate (Q) and
unveil spurious stationary points. In Appendix D, we provide the proof of the continuity of extended
stationarity measure. Then, we furnish the proofs of main results in Appendix E. Finally, we give
several examples of spurious stationary points in Appendix F.

Appendix A. Supplementary definitions

We begin by revisiting two types of subgradients for convex functions, crucial for analyzing the
optimality condition.

Definition 10 (Subgradients of convex functions) Rockafellar and Wets [22, Definition 8.3]) For
a convex function l : Rn → R, we define the subgradient at the point x by

∂l(x) :=
{
v ∈ Rn : l(x)− l(x) ≥ v⊤(x− x̄), for all x ∈ dom(l)

}
,

and the horizon subgradient at the point x by

∂∞l(x) :=
{
v ∈ Rn : λkvk → v with λk → 0+,vk ∈ ∂l(xk), and xk → x

}
.

Then, we introduce the normal cone to handle the convex constraint.

Definition 11 (Normal cone of convex sets) [22, Theorem 6.9]) For a convex set D ⊆ Rn, we
define the normal cone at the point x ∈ D via

ND(x) :=
{
v ∈ Rn : v⊤(x− x) ≤ 0, for all x ∈ D

}
.

For more properties of ∂l, ∂∞l, and ND, we refer interested readers to [22, Chapter 8].
Let us revisit the three-point identity for Bregman divergence, as outlined in Lemma 3.1 of [11],

i.e.,

Dφ(z, x) +Dφ(x, y)−Dφ(z, y) = (z − x) · (φ′(y)− φ′(x)), for all x, y, z ∈ dom(φ).

Since the strict convexity of φ implies the strict monotonic increase of φ′, the following fact holds.

Fact 1 For a strictly convex function φ, the following statements hold:

(i) If z ≤ x ≤ y, then Dφ(z, x) ≤ Dφ(z, y).

(ii) If z ≤ x ≤ y, then Dφ(x, y) ≤ Dφ(z, y).

Next, we introduce the notion of the supercoercive property, commonly employed to ensure the
well-posedness of the BPG algorithm; see [3, 9].

Definition 12 (Supercoercive property) Given a function q : Rn → R, we say that q is supercoer-
cive if for all sequences {xk}k∈N such that ∥xk∥ → ∞, it holds that

lim
k→∞

q(xk)

∥xk∥
→ +∞.
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Finally, we give the definition of Bregman proximal mapping, which serves as a crucial tool in
connecting our stationarity measure with existing ones.

Definition 13 (Bregman proximal mapping) [4, 19] For t > 0 and a kernel function h : Rn → R,
the Bregman proximal mapping for F : int(dom(h)) → R is defined by

proxth,F (x) = argmin
y∈Rn

{
F (y) +

1

t
Dh(y,x)

}
.

Appendix B. Justification of Assumptions

This section is devoted to justifying our assumptions. We first present commonly used kernels that
meet Definition 1 to demonstrate the generality of the separable kernels.

Example 1

(i) Boltzmann–Shannon entropy kernel h(x) =
∑n

i=1 xi log(xi);

(ii) Fermi–Dirac entropy kernel h(x) =
∑n

i=1 xi log(xi) + (1− xi) log(1− xi);

(iii) Burg entropy kernel h(x) =
∑n

i=1− log(xi);

(iv) Fractional power kernel h(x) =
∑n

i=1 pxi −
xp
i

1−p (0 < p < 1);

(v) Hellinger entropy kernel h(x) =
∑n

i=1−
√
1− x2i .

The implication of the separable structure is that cl(dom(h)) forms a box, i.e.,

cl(dom(h)) = [a, c]× [a, c]× · · · × [a, c],

where a, c ∈ R ∪ {±∞} with cl(dom(φ)) = [a, c]. Due to the convexity of φ and Definition 1 (ii),
φ′ is monotonically increasing and further φ′(x) → −∞ (resp. +∞) if x → a+ (resp. x → c−)
and a > −∞ (resp. c < +∞).

B.1. Verification of Assumption 2 (iv)

In this subsection, we aim to identify the condition for Assumption 2 to hold.

(i) When dom(ϕ) is open, e.g., ϕ(x) = 1/x, to ensure the well-posedness of the Bregman
proximal-type algorithms, we should invoke the compactness of X as stated in Assumption 2
since the condition (2.1) typically fails. Such a supplement is also made in classical Bregman
literature; see condition (i) in [3, Lemma 2].

(ii) Even without X being compact, the closeness of dom(ϕ) and the supercoercivity of local
update model is able to ensure that Assumption 2 (iv) is met, under Assumptions 1 and 2
(i)–(iii), see Proposition 14 for further details.

(iii) Without Assumption 2 (iv), the update (1.1) may not have an optimal solution, as illustrated
by Example 2.

10
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Example 2 (Necessity of Assumption 2 (iv)) Let h(x) = 1/x, g(x) = δR+(x), f(x) = (x − 3)2,
and γ(y;x) = (x− 3)2 + 2(x− 3)(y − x). Assumption 1 and Assumptions 2 (i)–(iii) hold for this
problem with any t̄ > 0. We can verify that Assumption 2 (iv) fails when we pick xk = 1

2 + 1
2k

,
yk = 2k and t = 1. It turns out that the well-posedness of (1.1) does not hold. For all x ∈ [12 , 1] and
t = 1, we have

argmin
y∈R+

{
γ (y;x) +

1

t
Dh(y, x)

}
=argmin

y∈R+

{
1

y
+

(
2x+

1

x2
− 6

)
(y − x)

}
= ∅,

where the last equality is due to 2x+ 1
x2 − 6 ≤ −1 for x ∈ [12 , 1].

Proposition 14 Suppose that dom(ϕ) is closed. The following hold:

(i) If the surrogate model takes the form γ(y;x) = f(x) + ∇f(x)⊤(y − x) and h + tg is
supercoercive for all t > 0, then Assumption 2 (iv) is satisfied.

(ii) If the surrogate model takes the form γ(y;x) = f(y) and h + tF is supercoercive for all
t > 0, then Assumption 2 (iv) is satisfied.

(iii) If the surrogate model takes the form γ(y;x) = f(x)+∇f(x)⊤(y−x)+1
2(y−x)⊤∇2f(x)(y−

x), h + tg is supercoercive for all t > 0, and f is a convex function, then Assumption 2 (iv)
holds.

Remark 15 Regarding (iii), the convexity condition for f is also posited in Doikov and Nesterov
[13].

Proof Case (i):
To justify that Assumption 2 (iv) is satisfied, we proceed to prove a stronger counterpart, i.e.,

lim
k→∞

γ(yk;xk) + g(yk) + 1
tDh(y

k,xk)

∥yk∥
= +∞.

When ∥yk∥ → ∞, xk → x, and continuity of ∇f , we have

lim
k→∞

γ(yk;xk)

∥yk∥
= ∇f(x)⊤ lim

k→∞

yk

∥yk∥
< +∞.

Subsequently, it remains to show

lim
k→∞

1
tDh(y

k,xk) + g(yk)

∥yk∥
= +∞.

To do so, we consider the interior coordinates and boundary coordinates separately. Recall that
B(x̄) = {b ∈ [n] : xb ∈ bd(dom(φ))} and I(x̄) = {i ∈ [n] : xi ∈ int(dom(φ))}. Without loss of
generality (WLOG), we assume that dom(φ) = [a, b].

11



SPURIOUS STATIONARITY AND HARDNESS RESULTS FOR MIRROR DESCENT

(a) For all i ∈ I(x̄), we have lim
k→∞

|φ′(xki )| = |φ′(x̄i)| < ∞ due to the continuous differentia-

bility of φ. Then, we have

lim
k→∞

Dφ(y
k
i , x

k
i )

∥yk∥
= lim

k→∞

φ(yki )− φ(xki )− φ′(xki )(y
k
i − xki )

∥yk∥
,

= lim
k→∞

φ(yki )

∥yk∥
− φ′(x̄i) · lim

k→∞

yki
∥yk∥

, ∀i ∈ I(x̄), (B.1)

where the first equality follows from the definition of Dφ and the second equality is due to
the finiteness of φ(x̄i) and x̄i.

(b) For all b ∈ B(x̄), we may assume WLOG that x̄b = a. As limk→∞ xkb = x̄b = a, we have
xkb < x0b for sufficiently large k. Then, we try to give a lower bound on Dφ(y

k
b , x

k
b ) and

analyze its limit for all b ∈ B(x̄).
If ykb ≤ x0b , then we have Dφ(y

k
b , x

0
b) ≤ Dφ(a, x

0
b) due to Fact 1 (ii) and a < ykb ≤ x0b . It

follows that

Dφ(y
k
b , x

k
b ) ≥ 0 ≥ Dφ(y

k
b , x

0
b)−Dφ(a, x

0
b), ∀b ∈ B(x̄).

Otherwise, we have
Dφ(y

k
b , x

k
b ) ≥ Dφ(y

k
b , x

0
b), ∀b ∈ B(x̄),

due to Fact 1 (i) and xkb < x0b < ykb . Consequently, we get

lim
k→∞

Dφ(y
k
b , x

k
b )

∥yk∥
≥ lim

k→∞

Dφ(y
k
b , x

0
b)

∥yk∥
= lim

k→∞

φ(ykb )− φ′(x0b)y
k
b

∥yk∥
, ∀b ∈ B(x̄), (B.2)

where the first inequality follows from the finiteness of Dφ(a, x
0
b).

Together (B.1) and (B.2), we have

lim
k→∞

1
tDh(y

k,xk) + g(yk)

∥yk∥

≥ lim
k→∞

1
th(y

k) + g(yk)

∥yk∥
− 1

t

∑
i∈I(x̄)

φ′(x̄i) · lim
k→∞

yki
∥yk∥

− 1

t

∑
b∈B(x̄)

φ′(x0b) · lim
k→∞

ykb
∥yk∥

= +∞,

where the equality holds since h+ tf is supercoercive for all t > 0 and the finiteness of φ′(x0b) and
φ′(x̄i) for all b ∈ B(x̄) and i ∈ I(x̄). This completes the proof of case (i).

Case (ii): The ideas of the proof of case (ii) are similar to those of case (i). We just need to
replace g with F .

Case (iii): Given the convexity of f , we find that (y−x)⊤∇2f(x)(y−x) ≥ 0 for any y ∈ Rn.
Thus, it suffices to show

lim
k→∞

f(xk) +∇f(xk)T (yk − xk) + g(yk) +
1

t
Dh(y

k,xk) = +∞,

which reduces to the case (i). We complete the proof.

12
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B.2. Proof of Lemma 2

With Assumptions 1 and 2 justified, we prove Lemma 2 to establish the well-posedness of Algorithm
1 under them.
Proof We prove the result by contradiction. Suppose that x ∈ int(dom(h)) and T t

γ(x) /∈ int(dom(h)).
Then, can select an interior point xint ∈ int(dom(h))∩X , where its distance from T t

γ(x) is bounded.
Subsequently, we construct an intermediate point as

xθ := θxint + (1− θ)T t
γ(x),

and an univariate function as

ϕ(θ) := γ
(
xθ;x

)
+

1

t
Dh

(
xθ,x

)
+ g

(
xθ
)
,

where θ ∈ (0, 1].
Our strategy is to show that

lim
θ→0+

ϕ(θ)− ϕ(0)

θ
= −∞

holds 1. Then, it is sufficient to demonstrate that there exists a constant θ ∈ (0, 1) such that ϕ(θ)−
ϕ(0), thereby contradicting the definition of T t

γ(x).
Now, we focus on the decomposition of ϕ(θ)− ϕ(0) as below:

ϕ(θ)− ϕ(0)

= γ
(
xθ;x

)
− γ(T t

γ(x);x) + g
(
xθ
)
− g(T t

γ(x)) +
1

t

(
Dh

(
xθ,x

)
−Dh(T

t
γ(x),x)

)
=
[
γ
(
xθ;x

)
− γ(T t

γ(x);x)
]
+
[
g
(
xθ
)
− g(T t

γ(x))
]
+

1
t

n∑
j=1

(
φ
(
xθj

)
− φ

(
T t
γ(x)j

))
−θ

t

n∑
j=1

φ′(xj)
(
xintj − T t

γ(x)j
) .

Then, we address each component individually.

(i) Due to the differentiability of γ(·,x) at the point x (see Assumption 2 (ii)), there exists a suffi-
cient small θ such that ∣∣∣∣∣γ

(
xθ;x

)
− γ

(
T t
γ(x);x

)
θ

∣∣∣∣∣ ≤ O(1).

(ii) Given the local Lipschitz continuity of g on X , there also exists a sufficiently small θ (i.e., you
can certainly choose the same θ to satisfy both (i) and (ii)) such that∣∣∣∣∣g

(
xθ
)
− g(T t

γ(x))

θ

∣∣∣∣∣ ≤ O(1).

1. θ → 0+ denotes the limit of θ as it approaches 0 from the right.

13
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(iii) By Mean Value Theorem, we have

n∑
j=1

φ
(
xθj

)
− φ

(
T t
γ(x)j

)
θ

=

n∑
j=1

φ′
(
zθj

)
·
(
xintj − T t

γ(x)j
)
,

where zθj is in the interval between xθj and T t
γ(x)j for all j ∈ [n]. When θ → 0+, the term

(xintj − T t
γ(x)j) is always bounded. Moreover, we have zθb → T t

γ(x)b when θ → 0+. Thus, the key
lies in the boundedness of φ′(T t

γ(x)j)) for all j ∈ [n].

We will discuss the interior coordinates and boundary coordinate of T t
γ(x) separately.

(a) For all i ∈ I(T t
γ(x)), we know that T t

γ(x)i ∈ int(dom(φ)), and therefore φ′(T t
γ(x)i) is

bounded due to the continuity of φ′.
(b) For all b ∈ B(T t

γ(x)), we have T t
γ(x)b ∈ bd(dom(φ)) and thus |φ′(T t

γ(x)b)| = +∞ from
Definition 1 (ii). WLOG, we can assume that cl(dom(φ)) = [a, c] and T t

γ(x)b = a. Moreover,
as φ′ is strictly increasing by the strict convexity of φ, we have φ′(T t

γ(x)b) = −∞. Together
with the fact xintb − T t

γ(x)b > 0, we have

lim
θ→0+

φ′
(
zθb

)
·
(
xintb − T t

γ(x)b
)
= −∞.

(iv) The final term is constant w.r.t. θ and thus bounded for sure.

Putting all the pieces together, we conclude the proof.

Appendix C. Extended Bregman stationarity measure

To investigate (Q) and develop tools for studying spurious stationary points, we define an extended
Bregman stationarity measure in this section.

To begin, we unify existing stationarity measures as Rt
γ(x) := Dh(T

t
γ(x),x),

2 where t > 0
is the step size. Conceptually, we use the relative change under the Bregman geometry to quantify
the stationarity, which has been well explored in the literature [7, 15, 16, 18]. If we set γ = f , then
the update mapping T t

γ(x) coincides with proxth,F (x), and thus Rt
γ recovers the stationarity gap

Dh(prox
t
h,F (x),x) proposed by [28].

Despite the unification, Rt
γ is still not well-defined on the boundary bd(dom(h)), as the map-

ping x 7→ T t
γ(x) defined by (1.1) involves the Bregman divergence function (y,x) 7→ Dh(y,x),

which is only defined on dom(h)× int(dom(h)). Given this limitation, we are motivated to extend
the domain of Bregman stationarity measures to cl(dom(h)). As a preliminary action, we define
the extended update mapping that is applicable to cl(dom(h)) ∩ X as follows.

Definition 16 We define the extended update mapping by T
t
γ(x) := argmin

y∈X
Gt

γ(y;x), where

Gt
γ(y;x) := γ(y;x) + g(y) +

1

t

∑
i∈I(x)

Dφ(yi, xi)︸ ︷︷ ︸
Interior coordinates

+ δyB(x)=xB(x)
(y)︸ ︷︷ ︸

Boundary coordinates

.

2. Here, we ignore the difference between Dh(T
t
γ(x),x) and Dh(x, T

t
γ(x)) for simplicity. As we will discuss in

Remark 29, this difference would not affect our theoretical results.

14
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This newly updated rule distinguishes between interior and boundary coordinates. For boundary
coordinates of x, we enforce y to be equal to x, while for interior coordinates, we update following
the original update rule (1.1). This construction enables us to focus on the boundary points to
address non-gradient Lipschitz kernel functions.

Armed with the extended update mapping T
t
γ , we are ready to provide the formal definition of

the extended Bregman stationarity measure R
t
γ . It is worth noting that Rt

γ is defined over the entire
domain X , and it retrieves Rt

γ(x) for x ∈ int(dom(h)) ∩ X .

Definition 17 (Extended stationarity measure) We define the extended Bregman stationarity mea-
sure R

t
γ(x) : X → R as Rt

γ(x) :=
∑

i∈I(x)Dφ(T
t
γ(x)i, xi).

C.1. Well-definedness

To prove the well-definedness of the extended measure Rt
γ , it suffices to prove the well-definedness

of the extended mapping T
t
γ . For this purpose, we first prove that the level sets of Gt

γ( · ;x) are
nonempty; see Lemma 18. Then, due to Assumptions 2 (i) and (iv), we see that the level sets of
Gt

γ( · ;x) are compact. Further, Assumption 2 (iii) guarantees the strict convexity of Gt
γ( · ;x).

Both the strict convexity and level boundedness of Gt
γ ensure the well-definedness and uniqueness

of the extended update mapping T
t
γ .

Lemma 18 (Existence) For all x ∈ X , we have

argminy∈X Gt
γ(y;x) ̸= ∅.

Proof To ensure the existence of the optimal solution, it suffices to show that, for some constant
c ∈ R, the level set {y ∈ X : Gt

γ(y;x) ≤ c} is compact for any x ∈ X . At first, from [22,
Theorem 1.6], we know this level set is closed due to the lower semicontinuity of : Gt

γ(·,x) for any
x ∈ X .

Next, our task is to show the set {y ∈ X : Gt
γ(y;x) ≤ c} is bounded. We consider two cases

separately:

(i) If x ∈ int(dom(h)) ∩ X , the boundedness of the set {y ∈ X : Gt
γ(y;x) ≤ c} is from

Assumption 2 (iv), as the coerciveness can imply one non-empty bounded level set.

(ii) If x ∈ bd(dom(h))∩X , it suffices to show the coerciveness of Gt
γ(·;x). That is, if we consider

an arbitrary sequence {yk} ⊆ X with ∥yk∥ → +∞, we have Gt
γ(y

k;x) → +∞.

WLOG, we can assume that yk
B(x) ≡ xB(x); otherwise, Gt

γ(y
k;x) = +∞, for any k ∈ N. Then,

we pick up an interior point xint ∈ int(dom(h)) ∩ X and construct three sequences {xk}k∈N,
{ỹk}k∈N and {x̃k}k∈N satisfying

xk → x with B(xk) = B(x), ∀k ∈ N

ỹk = (1− θk)y
k + θkx

int, ∀k ∈ N,

x̃k = (1− θk)x
k + θkx

int, ∀k ∈ N,

15
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where θk ∈ (0, 1) and θk → 0. Then, it is trivial to conclude that ∥ỹk∥ → +∞ and x̃k → x.
Moreover, due to ỹk

B(x) = x̃k
B(x),∀k ∈ N, we get

γ(ỹk; x̃k) + g(ỹk) +
1

t
Dh(ỹ

k, x̃k) = γ(ỹk; x̃k) + g(ỹk) +
1

t

∑
i∈I(x)

Dφ(ỹ
k
i , x̃

k
i ).

By the continuity of the mappings γ(·), g(·), and Dϕ(·, ·), there exists a sufficiently small θk > 0
such that ∣∣∣∣γ(ỹk; x̃k) + g(ỹk) +

1

t
Dh(ỹ

k, x̃k)−Gt
γ(y

k;x)

∣∣∣∣ ≤ 1.

From Assumption 2 (iv), we know γ(ỹk; x̃k) + g(ỹk) + 1
tDh(ỹ

k, x̃k) → +∞. Thus, we can
conclude that Gt

γ(y
k;x) → +∞.

C.2. Continuity of extended stationarity measure

To investigate the equivalence described in (Q), our first step is to establish the continuity of Rt
γ .

This task involves recognizing that Rt
γ’s definition depends on both T

t
γ and I(x), which may exhibit

discontinuity. To start, we establish the continuity of the extended update mapping:

Proposition 19 The extended update mapping T
t
γ : X → Rn is continuous on the domain X .

The continuity of T t
γ on X serves as a fundamental property of the extended update mapping. Not

only does it provide insight into T
t
γ(x) for x ∈ bd(dom(h)) ∩ X , but it also plays a crucial role

in establishing the continuity of Rt
γ . Leveraging the continuity of T t

γ and the structure of I(x), we
establish one of the main theoretical results as below:

Theorem 20 The extended stationarity measure R
t
γ : X → R is continuous on the domain X .

C.3. Necessity of zero extended stationarity measure

In this subsection, we will establish the necessary conditions by utilizing the extended stationarity
measure. The key idea for proving necessity is through the fixed-point equation T

t
γ(x) = x. Below

is the flowchart outlining the proofs:

0 ∈ ∂F (x)
Proposition 22

=⇒ T
t
γ(x) = x

Proposition 21⇐⇒ R
t
γ(x) = 0 for x ∈ X .

We start with establishing the equivalence between T
t
γ(x) = x and R

t
γ(x) = 0.

Proposition 21 For all x ∈ X , the extended stationarity measure being zero, i.e., Rt
γ(x) = 0, is

equivalent to T
t
γ(x) = x.

16
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Proof Considering the definition of T t
γ(x), we observe that T t

γ(x)B(x) = xB(x) on the boundary

coordinates. Regarding those interior coordinates, the definition of Rt
γ guarantees that Rt

γ(x) = 0

if and only if T t
γ(x)I(x) = xI(x). By combining these two observations and the fact that I(x) ∪

B(x) = [n], we establish the equivalence between R
t
γ(x) = 0 and T

t
γ(x) = x.

Next, we will investigate the relation between the fixed-point equation T
t
γ(x) = x and the stationary

condition 0 ∈ ∂F (x).

Proposition 22 If x ∈ X is a stationary point, then we have T
t
γ(x) = x.

Proof To start, it is sufficient to demonstrate that x = argminy G
t
γ(y;x), a condition that is equiv-

alent to 0 ∈ ∂Gt
γ(x;x) according to optimality condition. Based on Assumption 2 (ii) and [22,

Corollary 10.9], we have

∂Gt
γ(y;x) |y=x= ∇f(x) + ∂g(x) + ∂δyB(x)=xB(x)

(y) |y=x . (C.1)

Since we have 0 ∈ ∂δyB(x)=xB(x)
(y) |y=x, we know 0 ∈ ∂F (x) and then 0 ∈ ∂Gt

γ(x;x).

Equipped with Proposition 21 and Proposition 22, we are poised to demonstrate our primary dis-
covery: The extended stationarity measure equals zero for all stationary points.

Theorem 23 If x ∈ X is a stationary point, i.e., 0 ∈ ∂F (x), then we have R
t
γ(x) = 0.

Combining Theorem 23 with the continuity of Rt
γ (as demonstrated in Theorem 20), we can now

establish the necessity direction of equivalence (Q).

Corollary 24 Let the sequence {xk}k∈N ⊆ int(dom(h))∩X converge to x ∈ X with 0 ∈ ∂F (x).
Then, we have

lim
k→∞

R
t
γ(x

k) = 0. (C.2)

Proof Here is a one-line proof:

lim
k→∞

R
t
γ(x

k) = R
t
γ

(
lim
k→∞

xk

)
= R

t
γ(x) = 0,

where the first equality follows from the continuity of Rt
γ (see Theorem 20), and the last one is due

to the neccessity of Rt
γ (see Theorem 23).

Corollary 24 claims that if a limit point of a sequence is stationary, then (C.2) holds true. However,
existing counterparts of (C.2) are typically established under the assumption that the kernel func-
tions are gradient Lipschitz, see [21, 25, 28]. In contrast to existing works, Corollary 24 presented
in this paper can be applied to a broader class of kernel functions, such as those without the gradient
Lipschitz property.
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C.4. Non-sufficiency of zero extended stationarity measure

Based on the extended stationarity measure, we give a characterization of spurious stationary points,
demostrating the non-sufficiency of zero extended stationarity measure. Then, the proof of Propo-
sition 5 directly follows.

Proposition 25 (Characterization of spurious stationary points) A point x ∈ X is a spurious
stationary point if and only if

R
t
γ(x) = 0 but 0 /∈ ∂F (x).

Proof From Definition 3, it is sufficient to show the equivalence between R
t
γ(x) = 0 and the

existence of a vector p ∈ ∂F (x) where pI(x) = 0. Following the proof of Proposition 22,
we will proceed to check the equivalent optimality condition of 0 ∈ ∂Gt

γ(x;x). Observing that
∂δyB(x)=xB(x)

(x) = span{eb : b ∈ B(x)}, we know that 0 ∈ ∂Gt
γ(x;x) is equivalent to the

existence of a vector p ∈ ∂F (x) with pI(x) = 0. We complete the proof.

Considering the continuity of R
t
γ , if a sequence {xk}k∈N ⊆ X ∩ int(dom(h)) converges to a

spurious stationary point, then R
t
γ(x

k) → 0. This proves proves Proposition 5.

Appendix D. Proof of continuity of extended stationarity measure

To begin, we introduce two technical lemmas essential for proving Proposition 19.

Lemma 26 Suppose the sequence {xk}k∈N ⊆ int(dom(h)) ∩ X is bounded, and the sequence
{T t

γ(x
k)}k∈N converges to x∗ ∈ X . We define a sequence {dk+1}k∈N satisfying

∇γ
(
T t
γ(x

k);xk
)
+dk+1+

1

t

(
∇h
(
T t
γ(x

k)
)
−∇h(xk)

)
= 0 and dk+1 ∈ ∂g

(
T t
γ(x

k)
)
. (D.1)

Then, the sequence {dk+1}k∈N is bounded.

Proof We prove the boundedness of {dk+1}k∈N by contradiction. Suppose that the sequence
{dk+1}k∈N is not bounded. Then, there must exist a subsequence that diverges. WLOG, we
can assume that ∥dk+1∥ → ∞ and dk+1/∥dk+1∥ → d∗ for some d∗. Due to Definition 10 and
T t
γ(x

k) → x∗, we have d∗ ∈ ∂∞g(x∗). Moreover, owing to the convexity and continuity of the
function g, we can apply Rockafellar and Wets [22, Proposition 8.12] to get ∂∞g(x∗) = NX (x

∗)
and hence we have

(x∗ − x)⊤d∗ ≥ 0 for all x ∈ X . (D.2)

In view of (D.2), we consider the following two scenarios separately:

(i) (x∗ − x)⊤d∗ = 0 for all x ∈ X ;

(ii) There exists some x ∈ X such that (x∗ − x)⊤d∗ > 0.

Scenarios (i): For all k ∈ N, we have

(T t
γ(x

k)− xk)⊤d∗ = 0, (D.3)

by substituting x = xk and x = T t
γ(x

k) in (D.2), and summing them.
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From (D.3), we have

φ′
(
T t
γ(x

k)i

)
− φ′(xki ) = −t

(
∇iγ(T

t
γ(x

k);xk) + dk+1
i

)
, ∀i ∈ [n]. (D.4)

Next, we want to argue that the left-hand side of (D.4) will go to infinity, which will contradict with
(D.3).

Given the boundedness of the sequence {xk}k∈N and {T t
γ(x

k)}k∈N → x∗, it follows from the
joint continuity property of ∇γ(·; ·), as stated in Assumption 2 (i), that {∇iγ(T

t
γ(x

k);xk)}k∈N is
also bounded. We proceed to discuss the term dk+1

i for all i ∈ [n]. Let I+ := {i ∈ [n] : d∗i > 0} and
I− := {i ∈ [n] : d∗i < 0}. Thus, we have dk+1

i → +∞ (resp. dk+1
i → −∞) by dk+1

i /∥dk+1∥ →
d∗i , for all i ∈ I+ (resp. I−). Hence, the equation (D.4) yields

φ′
(
T t
γ(x

k)i

)
− φ′(xki ) → −∞ (resp. +∞) for i ∈ I+ (resp. i ∈ I−).

Moreover, since φ′ is strictly increasing by the strict convexity of φ, for sufficiently large k, we have

T t
γ(x

k)i < xki for i ∈ I+ and T t
γ(x

k)i > xki for i ∈ I−.

Consequently, we get

(T t
γ(x

k)− xk)⊤d∗ < 0 for sufficiently large k,

which contradicts (D.3).
Scenarios (ii): There must exists a point x ∈ X and a positive constant α > 0 such that

(x∗−x)⊤d∗ ≥ α. Additionally, we can select some xint ∈ int(dom(h))∩X , which is sufficiently
close to x such that (xint − x)Td∗ ≤ α

2 . Therefore, we have

(x∗ − xint)Td∗ = lim
k→∞

(T t
γ(x

k)− xint)T
dk+1

∥dk+1∥
≥ α

2
.

where the first equality follows from T t
γ(x

k) → x∗ and the definition of d∗. Then, for sufficiently
large k, we have

(T t
γ(x

k)− xint)Tdk+1 ≥ α

2
∥dk+1∥. (D.5)

Furthermore, by multiplying (D.1) by T t
γ(x

k)− xint, we obtain

(T t
γ(x

k)− xint)⊤
[
∇γ
(
T t
γ(x

k);xk
)
+ dk+1 +

1

t

(
∇h(T t

γ(x
k))−∇h(xk)

)]
= 0.

It follows that

(T t
γ(x

k)− xint)⊤
(
∇h(T t

γ(x
k))−∇h(xk)

)
=− (T t

γ(x
k)− xint)Tdk+1 − (T t

γ(x
k)− xint)T∇γ

(
T t
γ(x

k);xk
)

≤− α

2
∥dk+1∥2 − (T t

γ(x
k)− xint)T∇γ

(
T t
γ(x

k);xk
)
→ −∞,

(D.6)

where the first inequality is due to (D.5), and the last limit follows from the boundedness of
{∇γ(T t

γ(x
k);xk)}k∈N and ∥dk+1∥ → ∞.
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We now utilize (D.6) to establish the contradiction. The key proof idea follows from the one in
Lemma 2. For all k ∈ N, we construct a sequence of intermediate points as

xθ,k := θxint + (1− θ)T t
γ(x

k),

and a sequence of univariate functions as

ϕk(θ) := γ
(
xθ,k;x

)
+

1

t
Dh

(
xθ,k,x

)
+ g

(
xθ,k

)
,

where θ ∈ (0, 1]. By the definition of T t
γ(x

k), we have ϕk(0) = minθ∈[0,1] ϕk(θ) for k ∈ N. Then,
our strategy is to show that for sufficiently large k

lim
θ→0+

ϕk(θ)− ϕk(0)

θ
< 0,

and thus yields a contradiction. By Mean Value Theorem, we have

ϕk(θ)− ϕk(0)

θ

=
γ
(
xθ,k;x

)
− γ

(
T t
γ(x

θ,k);x
)

θ
+

1

t
(T t

γ(x
k)− xint)⊤

(
∇h(zθ,k)−∇h(xk)

)
+

g
(
xθ,k

)
− g

(
T t
γ(x

k)
)

θ
, (D.7)

where zθ,k is between xθ,k and T t
γ(x

k). Owing to the continuous differentiability of γ and local
Lipschitz continuity of g, we know the first and third terms in (D.7) are bounded. From (D.6), as θ
approaches 0+, the second term tends toward −∞ for sufficiently large k. Consequently, we have

lim
k→∞

lim
θ→0+

ϕk(θ)− ϕk(0)

θ
= −∞,

which leads to a contradiction. We complete our proof.

Next, we extend Lemma 26 to a more general case, whose proof techiniques are essentially the
same as the one developed in Lemma 26.

Corollary 27 Suppose that the sequence {xk}k∈N ⊆ X is bounded satisfying I(xk) ≡ I0 ⊆ [n]

and B(xk) ≡ B0, and the sequence {T t
γ(x

k)}k∈N converges to x∗ ∈ X . We define a sequence
{dk+1}k∈N satisfying

∇γ(T
t
γ(x

k);xk) + dk+1 + pk+1 +
1

t

∑
i∈I0

∇
(
Dφ(T

t
γ(x

k)i, x
k
i )
)
= 0, (D.8)

where dk+1 ∈ ∂g
(
T
t
γ(x

k)
)

and pk+1 ∈ ∂δyB0
=xk

B0

(
T
t
γ(x

k)
)

, for all k ∈ N. Then, the sequence

{dk+1
I0 }k∈N is bounded.
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Proof WLOG, we assume that cl(dom(φ)) = [a, c] and xk
B0

≡ x0
B0

for all k ∈ N. Let g̃ =

g + δyB0
=x0

B0
, X̃ = X ∩ {y ∈ X : yB0 = x0

B0
}, and d̃k+1 = dk+1 + pk+1. Then, we have

d̃k+1
B0

= dk+1
B0

, d̃k+1 ∈ ∂g̃
(
T
t
γ(x

k)
)
, and dom(g̃) = X̃ .

We continue to rewrite (D.8) as

∇γ(T
t
γ(x

k);xk) + d̃k+1 +
1

t

∑
i∈I0

∇
(
Dφ(T

t
γ(x

k)i, x
k
i )
)
= 0, (D.9)

where d̃k+1 ∈ ∂g̃
(
T
t
γ(x

k)
)
. Due to the boundedness of {T t

γ(x
k)}k∈N and {xk}k∈N, and the

continuity of ∇γ, it follows that the sequence {∇γ(T
t
γ(x

k);xk)}k∈N is bounded. Moreover, we

know the sequence {d̃k+1
B0

}k∈N is bounded from the boundedness of {T t
γ(x

k)}k∈N and (D.9).
We left to show the sequence {dk+1

I0 }k∈N is bounded. We prove this result by contradiction.
Suppose that the sequence {dk+1

I0 }k∈N is unbounded. Hence, the sequence {d̃k+1}k∈N is also
unbounded. Then, there must exist a subsequence that diverges. WLOG, we can assume that
d̃k+1/∥d̃k+1∥ → d for some d. Here, we have ∥dI0∥ = 1 and dB0 = 0 due to boundedness
of {d̃k+1

B0
}k∈N. Then, the left proof is the same as the one in Lemma 26. We omit the proof details.

Lemma 28 If the sequence {xk}k∈N ⊆ int(dom(h))∩X is bounded, then the sequence {T t
γ(x

k)}k∈N

is also bounded.

Proof We prove this result by contradiction. WLOG, we can assume xk → x ∈ X by the bound-
edness of {xk}k∈N. From Assumption 2 (iv), we have

lim
k→+∞

γ(T t
γ(x

k),xk) +
1

t
Dh(T

t
γ(x

k),xk) + g(T t
γ(x

k)) = +∞. (D.10)

Moreover, we have

lim
k→+∞

γ(xk;xk) +
1

t
Dh(x

k,xk) + g(xk) = γ(x;x) + g(x) = f(x) + g(x) < +∞,

where the first equality is owing to the continuity of γ and g, the second one is from Assumption
2 (ii), and the last inequality is due to x ∈ X . Then, together with (D.10), for k large enough, it
follows that

γ(T t
γ(x

k),xk) +
1

t
Dh(T

t
γ(x

k),xk) + g(T t
γ(x

k)) > γ(xk,xk) +
1

t
Dh(x

k,xk) + g(xk),

which contradicts with the definition of T t
γ(x

k). Hence, the sequence {T t
γ(x

k)}k∈N is bounded.

Now, we are ready to give a full proof of Proposition 19.
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D.1. Proof of Proposition 19

Proof To show that the mapping T
t
γ(·) is continuous, it suffices to show that for any sequence

{xk}k∈N ⊆ X converging to x ∈ X , it holds that:

lim
k→∞

T
t
γ(x

k) = T
t
γ(x).

To proceed, we consider the following two scenarios sequentially:

(i) The sequence {xk}k∈N ⊆ int(dom(h)) ∩ X .

(ii) The sequence {xk}k∈N ⊆ cl(dom(h)) ∩ X .

To start with, we consider the simple case (i). Later on, we can extend our proof strategy to consider
the general case by considering the interior and boundary coordinates of x separately. Then, we can
reduce the general case to the simple case considered here.

Scenarios (i): Due to T
t
γ(·) = T t

γ(·) on int(dom(h)) ∩ X . It is equivalent to show

T
t
γ(x) = lim

k→∞
T t
γ(x

k).

The remainder of the proof proceeds in two steps. We give a proof sketch here initially.

• Step 1: For the boundary coordinates of x, we have limk→∞ T t
γ(x

k)B(x) = T
t
γ(x)B(x).

By Lemma 28, we can pass to a subsequence such that T t
γ(x

k) → x̃ ∈ cl(dom(h)). Then, we have

to show x̃B(x) = xB(x) from the definition of T t
γ , i.e., T t

γ(x)B(x) = xB(x). We prove this result by
contradiction. Our proof strategy essentially follows the one we developed in Lemma 2 and Lemma
26. For all k ∈ N, we construct a sequence of intermediate points as

xθ,k := θxk + (1− θ)T t
γ(x

k),

and a sequence of univariate functions as

ϕk(θ) := γ
(
xθ,k;x

)
+

1

t
Dh

(
xθ,k,x

)
+ g

(
xθ,k

)
,

where θ ∈ (0, 1]. Then, we show ϕk(θ) < ϕk(0) would hold for some θ ∈ (0, 1] and k ∈ N if
x̃B(x) ̸= xB(x).

• Step 2: We prove x̃ = limk→∞ T t
γ(x

k) = T
t
γ(x) via the optimality condition.

For all k ∈ N, from the definition of T t
γ(x

k), we can write down its optimality condition:

∇γ
(
T t
γ(x

k);xk
)
+

1

t

(
∇h(T t

γ(x
k))−∇h(xk)

)
+ dk+1 = 0, (D.11)

where dk+1 ∈ ∂g(T t
γ(x

k)). As xk → x and T t
γ(x

k) → x̃, we can apply Lemma 26 and get the
boundedness of {dk+1}k∈N. By passing to a subsequence, we can assume that dk+1 → d. Then,
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we have d ∈ ∂g(x̃). As k approaches infinity in (D.11), and given that the limit of ∇h(xk) exists
for the coordinates corresponding to I(x), it follows that

∇I(x)γ (x̃;x) +
1

t

(
∇I(x)h(x̃)−∇I(x)h(x)

)
+ dI(x) = 0. (D.12)

Moreover, from Step 1, we know x̃B(x) = xB(x) and thus (D.12) is the optimality condition of the
problem

min
y∈Rn

Gt
γ(y;x) = γ(y;x) + δyB(x)=xB(x)

(y) +
1

t

∑
i∈I(x)

Dφ(yi, xi) + g(y). (D.13)

From Definition 16, we know x̃ = T
t
γ(x).

Scenarios (ii): The key steps essentially follow those developed in Scenarios (i). We highlight the
key differences and omit redundant details for simplicity.

To prove Step 1, we have to show the sequence {T t
γ(x

k)}k∈N is bounded, as we we did in
Lemma 28. We prove this result by contradiction. By passing to a subsequence, we assume that
∥T t

γ(x
k)∥ → +∞. Then, we construct a sequence {yk}k∈N ⊆ int(dom(h)) ∩ X that satisfying

∥xk − yk∥ ≤ 2−k and ∥T t
γ(y

k) − T
t
γ(x

k)∥ ≤ 1. Such a sequence exists due to the result of Sce-
narios (i) and the existence of interior points. That is, for each k ∈ N, we can always construct a
sequence converging to xk, and pick a point yk in the sequence satisfying the conditions. Conse-
quently, we have ∥T t

γ(y
k)∥ → +∞ when yk → x. We obtain the contradiction by applying the

same arguments in Lemma 28.
From the boundedness of the sequence {T t

γ(x
k)}k∈N, we can assume T t

γ(x
k) → x̃ ∈ cl(dom(h))

by passing to a subsequence if necessary. For all k ∈ N, we construct a sequence of intermediate
points as

xθ,k := θxk + (1− θ)T
t
γ(x

k),

and a sequence of univariate functions as

ϕk(θ) := Gt
γ

(
xθ,k;xk

)
,

where θ ∈ (0, 1]. We can prove that T t
γ(x)B(x) = x̃B(x) = xB(x) by the same arguments developed

in Step 1 for Scenarios (i).
Step 2: Owing to xk → x, WLOG, we can assume that I(xk) = I0 ⊆ [n]. From the definition of
T
t
γ(x

k), we have

∇I0γ
(
T
t
γ(x

k);xk
)
+

1

t

(
∇I0h(T

t
γ(x

k))−∇I0h(x
k)
)
+ dk+1

I0 = 0, (D.14)

where dk+1 ∈ ∂g(T
t
γ(x

k)). Moreover, the sequence {dk+1
I0 }k∈N is bounded due to Corollary 27.

Then, there always exists a subsequence such that dk+1
I0 → dI0 for some d ∈ Rn. As k approaches

infinity in (D.14), and given that the limit of ∇h(xk) exists for the coordinates corresponding to
I(x), it follows that

∇I(x)γ (x̃;x) +
1

t

(
∇I(x)h(x̃)−∇I(x)h(x)

)
+ dI(x) = 0.
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Lastly, due to x̃B(x) = xB(x), we know T
t
γ(x) = x̃.

For the final section, our objective is to furnish a comprehensive proof within Step 1 under
Scenarios (i). To demonstrate that ϕk(θ) < ϕk(0) holds for some θ ∈ (0, 1] and k ∈ N if x̃B(x) ̸=
xB(x), we decompose ϕk(θ) − ϕk(0) following the proof outlined in Lemma 2 and 26. By Mean
Value Theorem, we have

ϕk(θ)− ϕk(0)

θ

=
γ
(
xθ,k;x

)
− γ

(
T t
γ(x

θ,k);x
)

θ
+

1

t
(T t

γ(x
k)− xk)⊤

(
∇h(zθ,k)−∇h(xk)

)
+

g
(
xθ,k

)
− g

(
T t
γ(x

k)
)

θ
,

where zθ,k is between xθ,k and T t
γ(x

k). Following the same argument we did in (D.7). The first
term and the third term are uniformly bounded. We just focus on the second term here.

Since we have assumed x̃B(x) ̸= xB(x), there is a b∗ ∈ B(x) such that x̃b∗ ̸= xb∗ . As zθ,kb∗
lies

in the interval between xθ,kb∗
and T t

γ(x
k)b∗ , we have zθ,kb∗

− xθ,kb∗
= ξ · (T t

γ(x
k)b∗ − xkb∗) for some

ξ > 0. The monotone of φ′ yields(
φ′
(
zθ,kb∗

)
− φ′(xkb∗)

)
·
(
xkb∗ − T t

γ(x
k)b∗

)
≤ 0. (D.15)

Using x̃b∗ ̸= xb∗ , we have xkb∗ − T t
γ(x

k)b∗ ↛ 0. Then, noticing |φ′(xkb∗)| → ∞ due to xb∗ ∈
bd(dom(φ)), we have(

φ′
(
zθ,kb∗

)
− φ′(xkb∗)

)
·
(
xkb∗ − T t

γ(x
k)b∗

)
→ −∞ as k → ∞.

Thus, we get

lim
k→∞

ϕk(θ)− ϕk(0)

θ
= −∞,

which yields a contradiction. We complete our proof.

D.2. Proof of Theorem 20

Proof For x ∈ int(dom(h)) ∩ X , we have I(x) = [n] and the continuity of Rt
γ at x follows from

the continuity of T t
γ at x. Then, we only need to show that T t

γ is continuous at x ∈ bd(dom(h)).
That is, for any {xk}k∈N converging to x ∈ bd(dom(h)),

lim
k→∞

R
t
γ(x

k) = R
t
γ(x). (D.16)

Recall the definition of Rt
γ as

R
t
γ(x) =

∑
i∈I(x)

Dφ(T
t
γ(x)i, xi).
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Then, the main difficulty to verifying (D.16) is that I(xk) may not equal I(x) for k sufficiently
large.

WLOG, we can assume that I(xk) ≡ I0 ⊆ [n] for all k ∈ N. Then, we have I(x) ⊆ I0 as
xk → x. Now, we discuss I(x) and I0 \ I(x) separately.

(i) For all i ∈ I(x), we have

Dφ

(
T
t
γ(x

k)i, x
k
i

)
→ Dφ

(
T
t
γ(x)i, xi

)
,

due to the continuity of T t
γ and xki → xi ∈ int(dom(φ)).

(ii) For all i ∈ I0 \ I(x), we want to show

Dφ

(
T
t
γ(x

k)i, x
k
i

)
→ 0.

To see this, we notice that the convexity of φ yields

Dφ

(
T
t
γ(x

k)i, x
k
i

)
≤
(
φ′
(
T
t
γ(x

k)i

)
− φ′(xki )

)
·
(
T
t
γ(x

k)i − xki

)
.

To show the right-hand side goes to zero for i ∈ I0 \I(x), we revisit the optimality condition
(D.14). Owing to the boundedness of {dk+1

I0 }k∈N and ∇γ(T
t
γ(x

k);xk), it follows that∣∣∣φ′
(
T
t
γ(x

k)i

)
− φ′(xki )

∣∣∣ ≤ O(1).

By continuity of T t
γ and xk → x, we have xki → xi and T

t
γ(x

k)i → T
t
γ(x)i for i ∈ I0\I(x).

Note that I0\I(x) ⊆ B(x) and T
t
γ(x)b = xb for b ∈ B(x) by the definition of T t

γ . It follows

that T t
γ(x

k)i − xki → 0 for i ∈ I0 \ I(x), which completes the proof.

Remark 29 We remark that the non-symmetry of Bregman divergnece, i.e., Dh(y,x) ̸= Dh(x,y),
does not affect our results. For instance, if Rt(x) = Dh(x, T

t
γ(x)), and correspondingly,

R
t
γ(x) :=

∑
i∈I(x)

Dφ

(
xi, T

t
γ(x)i

)
,

then we still get the continuity of Rt
γ by applying the proof of Theorem 20 with Bregman divergences

Dφ

(
T
t
γ(x

k)i, x
k
i

)
and Dφ

(
T
t
γ(x)i, xi

)
replaced by Dφ

(
xki , T

t
γ(x

k)i

)
and Dφ

(
xi, T

t
γ(x)i

)
.

Appendix E. Proof of main results

In this section, we provide the missing proofs of main results in Sec. 3, which are mainly based on
the continuity property of the extended stationarity measure and the definition of spurious stationary
points. We note that the proof of Proposition 5 has been given in Sec. C.4.
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E.1. Proof of Theorem 7

Proof For any K ∈ N and arbitrary ϵ > 0, our goal is to construct the initial point x0 sufficiently
close to the spurious point x̃ such that ∥xK − x̃∗∥ ≤ ϵ.

The key step lies in proving the following claim is correct: Given an arbitrary ϵ0 > 0, there exist
ϵ1 ∈ (0, 12ϵ0] such that

∥xK − x̃∗∥ ≤ ϵ0,

whenever ∥xK−1− x̃∗∥ ≤ ϵ1. At first, we have T t
γ(x

K−1) = T
t
γ(x

K−1) since xK−1 is the interior
point and Proposition 25, we have

∥xK − x̃∗∥ = ∥T t
γ(x

K−1)− T
t
γ(x

K−1) + T
t
γ(x

K−1)− T
t
γ(x̃

∗) + T
t
γ(x̃

∗)− x̃∗∥2
= ∥T t

γ(x
K−1)− T

t
γ(x̃

∗)∥2.

Moreover, due to Theorem 20, we know the mapping T
t
γ is continuous. Thus, for any ϵ0 > 0, there

exists some constants δ > 0 such that ∥xK−1 − x̃∗∥2 < δ, we have ∥T t
γ(x

K−1)− T
t
γ(x̃

∗)∥2 < ϵ0.
We can always choose a small constant ϵ′ < min{δ, 12ϵ0} to make the above argument hold.

Repeating the above argument K times, there exists a sequence {ϵk}Kk=0 such that ϵk+1 ≤ 1
2ϵk

and
∥xK−k − x̃∗∥ ≤ ϵk,

whenever we have ∥xK−k−1 − x̃∗∥ ≤ ϵk+1, for any k ∈ [K].
Now, we are ready to construct the initial point, i.e., x0 ∈ BϵK (x̃

∗)∩X ∩ int(dom(h)). We set
ϵ0 = ϵ and get

xk ∈ BϵK−k
(x̃∗) ⊆ Bϵ(x̃

∗) for k = 0, 1, . . . ,K.

We complete our proof.

E.2. Proof of Proposition 9

Proof Since cl(dom(h)) = Rn
+, then cl(dom(φ)) = R+, I(x) = {i ∈ [n] : xi > 0}, and

B(x) = {b ∈ [n] : xb = 0}. Moreover, we have g(x) = δX (x) and

∂g(x) = {ATµ− λ : µ ∈ Rm, λi = 0 ∀i ∈ I(x), λb ≥ 0 ∀b ∈ B(x)}.

The compactness of X ensures the existence of x̃∗ = argmaxx∈X f(x). Since minx∈X f(x)
is convex problem and f is not a constant on X , we have f(x̃∗) ̸= minx∈X f(x). Thus, from
optimality condition, we have

0 /∈ ∇f(x̃∗) + ∂g(x̃∗). (E.1)

By contrast, x̃∗ is the optimal solution of problem minx∈X −f(x), whose optimality condition
yields 0 ∈ −∇f(x̃∗) + ∂δX (x̃

∗), which is equivalent to

0 ∈ {−∇f(x̃∗) +ATµ− λ : µ ∈ Rm, λi = 0 ∀i ∈ I(x̃∗), λb ≥ 0 ∀b ∈ B(x̃∗)}

It follows that there exists µ and λ such that

λB(x̃∗) ≥ 0, λI(x̃∗) = 0, and 0 = −∇f(x̃∗) +ATµ− λ.
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Let p = −λ. Then, we have

p = ∇f(x̃∗)−ATµ ∈ ∇f(x̃∗) + ∂g(x̃∗) and pI(x̃∗) = 0.

Together with (E.1), we can conclude that x̃∗ is a spurious point.

Appendix F. Examples of spurious stationary points

We present simple counter-examples, both convex and non-convex, to illustrate the presence of
spurious stationary points.

Example 3 (Convex counter-example) Suppose that cl(dom(h)) = R2
+ and consider the follow-

ing simple problem:

min
x1,x2

−x1

s.t. x1 + x2 = 1, x1, x2 ≥ 0.

The point (0, 1) is identified as a spurious stationary point. We can determine the interior coordinate
I((0, 1)) = 2 and compute the subdifferential at the point (0, 1) as

∂F ((0, 1)) = (−1, 0) +N{x∈R2
+:x1+x2=1}((0, 1))

= {(−1, 0) + λ(−1, 0) + µ(1, 1) : λ ∈ R+, µ ∈ R}.

Consequently, we find that 0 /∈ ∂F ((0, 1)) and p = (−1, 0) ∈ ∂F ((0, 1)) with pI((0,1)) = p2 = 0.

Remark 30 It is worth noting that in Example 3, for all feasible points x lying in the interior,

dist(0, ∂F (x)) = min
µ∈R

∥(−1, 0) + µ(1, 1)∥ =

√
2

2
.

Since a sequence {xk}k∈N generated by the BPs belong to the interior of the kernel domain, we see
that dist(0, ∂F (xk)) ≡ 0 for all k ∈ N. Hence, the minimal subdifferential norm dist(0, ∂F ) is
not a suitable measure for the BPs.

Example 4 (Nonconvex counter-example) Suppose that cl(dom(h)) = R2
+ and consider the fol-

lowing simple problem:

min
x1,x2

f(x1, x2) = −x21 + x2

s.t. x1 + x2 = 1, x1, x2 ≥ 0.

Similar with the convex case, the point (0, 1) is identified as a spurious stationary point. We can
determine that the interior coordinate I((0, 1)) = 2 and compute the subdifferential at the point
(0, 1) as

∂F ((0, 1)) = {(0, 1) + λ(−1, 0) + µ(1, 1) : λ ∈ R+, µ ∈ R}.

Consequently, we find that 0 /∈ ∂F ((0, 1)) and p = (−1, 0) ∈ ∂F ((0, 1)) with pI((0,1)) = p2 = 0.
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Figure 1: Illustration for Example 5

One may wonder whether spurious stationary points must be (locally) maximal points. The follow-
ing example reveals that this is not true.

Example 5 Consider the convex problem

min
x∈R2

+

f(x1, x2) = (x1 + 1)2 + (x2 − 1)2

s.t. x22 ≤ x1.

The point (0, 0) is identified as a spurious stationary point. We can determine the interior coordinate
I((0, 0)) = ∅ and compute the subdifferential at the point (0, 0) as

∂F ((0, 0)) = (2,−2) +N{x∈R2
+:x2

2≤x1}((0, 0))

=
{
(2,−2) + λ1(−1, 0) + λ2(−1, 0) + λ3(0,−1) : λ ∈ R3

+

}
.

Consequently, we find that 0 /∈ ∂F ((0, 0)), and hence (0, 0) is a spurious stationary point.

In Example 5, the spurious stationary point (0, 0) is not a (local) maximal point. We illustrate this
fact through Figure 1. Clearly, the region where F ≤ F ((0, 0)), i.e., the yellow part that satisfies
(x1 + 1)2 + (x2 − 1)2 ≤ 2, x22 ≤ x1, and x ∈ R2

+, is non-empty.
Finally, to enhance our understanding of the finite step trap behavior nearby spurious points, we

give several instances on escaping from spurious stationary points.

Example 6 We revisited the convex counter-example presented in Example 3, where the unique
spurious point is x̃∗ = (0, 1). We choose the kernel function as the negative entropy φ(x) =
x log(x), a popular choice for managing simplex constraints. For any K ∈ N and ϵ > 0, we
construct the initial point x0 as follows:

x0 =

(√
2ϵ

2
e−tK , 1−

√
2ϵ

2
e−tK

)
.

Moreover, for all k ∈ [K], we apply the standard Bregman gradient descent method as

xk+1 = argmin
y

t(−1, 0)Ty +Dh(y,x
k) + δ∆2(y)
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Figure 2: The trajectory plot for {xk1}k∈[K] in Example 6 and 7 (α = 1), with K = 120 and ϵ = 0.1.
The initial point is chosen according to the negative entropy kernel scenario.

=

(
xk1

xk1 + e−txk2
,

e−txk2
xk1 + e−txk2

)
, ∀k ∈ [K].

Then, we can quantify the distance between xk+1 and x̃∗ as

∥xk+1 − x̃∗∥ =

√
2xk1

xk1 + e−txk2
≤

√
2etxk1 ≤

√
2etkx01 = e−t(K−k)ϵ ≤ ϵ,

where the first inequality is derived from the constraint xk1+xk2 = 1 and t ≥ 0, the second inequality
is justified by iteratively applying the recursive relation from the first inequality k times.

From the example involving negative entropy, it becomes clear that constructing the initial point
at a distance that exponentially decays with respect to the spurious point is crucial. Later on, we
want to provide another artificially constructed example to demonstrate the importance of the kernel
function’s growth condition in determining the necessary distance between the initial point and the
spurious point to trigger a finite step trap. Essentially, the challenge of falling into a finite step trap
varies significantly across different kernel functions.

Example 7 (Polynomial kernel) We still consider the convex counter-example presented in Exam-
ple 3 with a kernel function as φ(x) = 1

αx
−a where α > 0. For any K ∈ N and ϵ > 0, we construct

the initial point x0 as follows:

x0
1 = min

{(
2

tK + ϵ−(α+1)

) 1
α+1

,
1

1 + 2α+1

}

and x02 = 1 − x01. Moreover, for all k ∈ [K], we apply the standard Bregman gradient descent
method as

xk+1 = argmin
y

t(−1, 0)Ty +Dh(y,x
k) + δ∆2(y).
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If xk ∈ int(dom(h)) ∩ X , we have xk+1 ∈ int(dom(h)) ∩ X from Lemma 2. We can write down
its optimality condition: 

− t+ φ′(xk+1
1 )− φ′(xk1) + µk+1 = 0

φ′(xk+1
2 )− φ′(xk2) + µk+1 = 0

xk+1
1 + xk+1

2 = 1.

Summing up the above equation from k = 0 to k = K − 1, we have
− tK + φ′(xK1 )− φ′(x01) +

K∑
k=1

µk+1 = 0

φ′(xK2 )− φ′(x02) +
K∑
k=1

µk+1 = 0.

Since φ′(x) = −x−α−1 and (φ′)−1(y) =
(
− 1

y

) 1
1+α , we know φ′ is negative on R++ and (φ′)−1 is

monotonically increasing on R−. Then, we have

−
K∑
k=1

µk+1 = φ′(xK2 )− φ′(x02) ≤ −φ′(x02).

Finally, we proceed to bound xK1

xK1 = (φ′)−1

(
φ′(x01)−

K∑
k=1

µk+1 + tK

)
≤ (φ′)−1

(
φ′(x01)− φ′(1− x01) + tK

)
=
(
(x01)

−α−1 − (1− x01)
−α−1 − tK

) −1
1+α ≤ ϵ.

where the first inequality follows from −
∑K

k=1 µk+1 ≤ −φ′(x02) and x01 + x02 = 1 and the last
inequality follows from

(x01)
−α−1 − (1− x01)

−α−1 ≥ (2x01)
−α−1

due to x01 ≤ 1
1+2α+1 and (2x01)

−α−1 − tK > 0. For simplicity, we ignore the final constant
√
2.

Remark 31 From Figure 2, it is evident that despite both kernels facing the challenges outlined
in Theorem 7, the nonnegative entropy kernel demonstrates superior performance compared to the
polynomial kernel. This advantage can be attributed to the curvature information encapsulated by
the inverse mapping of ∇h(x). Specifically, when h(x) = x log(x), ∇−1h(x) exhibits exponential
growth behavior, enabling each iteration to escape the unfavorable point by at least doubling the
distance from it.
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