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Abstract

Dynamic graphs exhibit complex temporal dynamics due to the interplay between
evolving node features and changing network structures. Recently, Graph Neural
Controlled Differential Equations (Graph Neural CDEs) successfully adapted Neu-
ral CDEs from paths on Euclidean domains to paths on graph domains. Building on
this foundation, we introduce Permutation Equivariant Neural Graph CDEs, which
project Graph Neural CDEs onto permutation equivariant function spaces. This
significantly reduces the model’s parameter count without compromising represen-
tational power, resulting in more efficient training and improved generalisation. We
empirically demonstrate the advantages of our approach through experiments on
simulated dynamical systems and real-world tasks, showing improved performance
in both interpolation and extrapolation scenarios.

1 Introduction

Graph Neural Networks (GNNs) [57156, 138,163 have emerged as a leading framework for modelling
graph-structured data, demonstrating significant success in applications such as protein folding [31],
social recommender systems [22] or traffic forecasting [30]]. However, real-world graphs are often
dynamic. Protein-protein interactions vary over time due to cellular processes, social networks evolve
as relationships shift, and roads close due to building works and car crashes. Effectively capturing
these temporal dynamics is crucial for accurate modelling and robust predictions.

For the last century, differential equations have been the cornerstone of modelling continuous
change. However, in recent years, deep learning has revolutionised data analysis with its ability to
learn complex patterns from vast amounts of data. While these approaches initially developed in
parallel, the concept of Neural Differential Equations (NDEs) [46] 152, [7} |34] has bridged the gap,
demonstrating their interconnectedness.

Building upon the approach introduced in [48]], we propose Permutation Equivariant Neural Graph
Controlled Differential Equations (PENG-CDEs), a novel framework which addresses key limitations
of prior modelsE] Our primary contributions are as follows:
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* Motivated by temporal and spatial symmetries, we derive PENG-CDE:s from first principles.
Our framework strikes a balance between expressiveness and parameter efficiency (Section

B).
* We formalise this trade-off and prove that, under simplified assumptions, our proposed

model is the optimal approximation to Graph Neural CDEs within the space of permutation-
equivariant functions (Section 3.2} Theorem [3.1).

» We further prove that the resulting models are equivariant under both time reparametrisations
and permutations of the node set (Section Proposition [3.2).

* We empirically validate the effectiveness of PENG-CDEs on dynamic node- and graph-level
tasks, consistently outperforming both differential equation-based and other spatio-temporal
baselines. In particular, our model sets a new state-of-the-art on the TGB-genre node
affinity prediction task (Section ).

1.1 Related work

Continuous-depth GNNs. Recent work has linked GNNs to continuous-time dynamics on graphs
by interpreting hidden layers as a discretised time axis. [6l [54] study convolutional GNNs as
discretisations of heat diffusion processes on graphs, while [[18]] proposes architectures that incorporate
both parabolic and hyperbolic PDE terms. Reaction-diffusion dynamics are explored in [12}[17], and
advection terms are added in [19]. Higher-order temporal derivatives are considered in [20} 21]]. [47]]
proposes a graph-based formulation of Neural ODEs [7], and Neural SDEs are extended to graph
domains in [2]. While these models typically assume static graphs, some work addresses dynamic
settings. [[11}[10] and [48]] extend Neural CDEs to graph domains, by modelling node-level time series
and graph structure hierarchically, and by treating the evolving topology as a control, respectively.

Spatio-temporal GNNs. A well-established line of work in dynamic graph representation learning
models spatial and temporal dynamics using separate modules for each. DCRNN [40] combines a
diffusion-based GCN [38] with a recurrent GRU [9] in an encoder-decoder architecture. STGCN
[67] applies GCN [16] for spatial modelling and 1D CNNss for temporal processing. Attention-based
extensions such as ASTGCN [26] and ASTGNN [27] introduce distinct spatial and temporal attention
mechanisms. WaveNet-GCN [42] fuses graph and temporal convolutions, while STIDGCN [41] uses
interactive learning to handle heterogeneous time scales.

Temporal Graph Networks. Another approach focuses on event-based message passing over time-
stamped interactions. TGN [53] introduced this framework, later extended by TGNv2 [59] which
considers an identification between source and target nodes. Node-centric methods such as DyRep
[60] and TCL [65] compute embeddings from temporal neighbourhoods and aggregate across edges.
In contrast, edge-centric methods like CAWN [66] and GraphMixer [14] embed edge interactions
directly for prediction.

2 Background

2.1 (Temporal) Graph representation learning

We denote the set {1,...,n} by [n] and the set of functions from X to Y by x(X,Y).

Graphs. A graph G = (V, ) consists of a collection of nodes V = [n] and edges £ CV x V. The
graph topology is described by an adjacency matrix A € R™*", where A" = 1if (i,5) € £ and
0 otherwise. The degree d; = > jey A" of anode is the number of edges incident on it. Let D

be the diagonal degree matrix with D** = d;. The graph Laplacian is defined as L = D — A and

the normalised graph Laplacian is defined as £ =1,, — D 2AD % where I, is the n x n identity
matrix. We assume the nodes are equipped with d,,.-dimensional node features x; € R%, stacked to
form a node attribute matrix X € R"*% _ The goal of Graph Representation Learning is to learn a
latent node representation Z € R™* %= which embeds the nodes into some Euclidean space.

Temporal Graph Representation Learning. In this setting, we observe a sequence of graph
snapshots G = ((to, Gt,), - - -, (tn, Gty )) generated by some unknown continuous-time underlying
process. Each snapshot (t;, Gy, ) captures the graph state at time ¢, with G;, = (V,&,) and



corresponding adjacency matrices A;, € R™*". The objective is to learn a dynamic non-linear latent
representation Z; € R™*= for the nodes for all times ¢ € (to, ¢ ).

Equivariance. Let G be a group and X, Y be two sets with a (left) G-action. A function f : X — Y
is G-equivariant if f(g-x) = g- f(x) forall g € G and x € X. If the action is trivial (i.e., g -y =y
forallg € G and y € Y), then f is called invariant, meaning f(g - x) = f(z) for all g € G and
e X.

In the context of static graph representation learning, permutation equivariance ensures that the
model’s output does not depend on the arbitrary ordering of nodes. Time-warp equivariance is
important in time series modelling when the task depends on the sequential structure of the signal
rather than the absolute timing of events. For example, in classifying the nodes of a social media
network as to whether they are friends with a specific node or friends-of-a-friend with that node, the
important characteristic is the order in which the edges appeared (you cannot connect with a friend-
of-a-friend without first connecting with the friend) and not the time in-between those connections
appearing. We now formalise both types of equivariance:

1. Permutation equivariance: Given a permutation p : [n] — [n] with corresponding matrix
P € R™", afunction f : R"*4 x R"*" — R"*4 is permutation equivariant if f(PX,PAPT) =
P f(X, A) for all permutations p and all graphs with node features X and adjacency matrix A.

2. Time-warp equivariance: Let X : [0,7] — Y be a continuous path. A time-warp is a diffeomor-
phism (a smooth bijection with smooth inverse) 7 : [0, 7] — [0, T satisfying 7(0) = Oand 7(T) = T
A function f : x([0,T],Y) — x([0,T],Y) is time-warp equivariant if f(X o 1) = f(X) o 7 for all
time-warps 7 and paths X.

For a more formal treatment of group actions and equivariance, we refer the reader to Appendix

2.2 Neural differential equations for time-series data

Neural Differential Equations (NDEs) ([46l 152} [7] [34]]) have emerged as a powerful tool at the
intersection of dynamical systems and deep learning. In [8], the authors viewed the layers of a neural
network as the time variable of an Ordinary Differential Equation (ODE), introducing the Neural
Ordinary Differential Equation (NODE). In NODEs, the time dimension is merely an internal detail of
the model, and the trajectories z are entirely determined by the initial condition. To extend the NODE
framework to sequential data, [36] introduced Neural Controlled Differential Equations (NCDEs) via
controlled differential equations (CDEs). For a continuous driving path X : [0, T] — R% NCDEs
learn a latent path 2 : [0, 7] — R% via the CDE

2(0) = £5(X(0), =(t) = 2(0) + ; fo(2(s))d X (s) M

which then returns either a scalar output y ~ ¢2(z(T')) or an output path y(t) ~ ¢2(z(t)). Here,
dX (s) denotes the Riemann-Stieltjes integral. In practice, we often only have discrete observations
((to, Xto), -, (tn, Xiy)) with ¢; € Rand X, € R%. To address this, we interpolate the obser-
vations into a continuous driving path X : [to, ty] — R% ! such that X (t;) = (t;,X;,) for all
7. This natively enables NCDE:s to process discrete-time sequences or hybrid continuous-discrete
dynamics. If the path X is differentiable and has bounded derivative, the Riemann-Stieltjes integral,
and hence NCDEs, can be rewritten as the following ordinary integral:

dX(s)
ds

z(t) = 2(0) +/f9(z(s)) ds fort € (0,7]. )
0

The choice of interpolation scheme can impact the performance of an NCDE, with [45] providing a
discussion on the theoretical properties and practical performance of a range of choices. Additionally,
Log-NCDE:s [64] extend NCDEs to non-differentiable paths X by leveraging the Log-ODE method
to approximate solutions to Equation (I). Empirically, this improves training stability and model
performance, especially for long time-series.



2.3 Permutation invariant and equivariant linear functions

Graph Neural Networks are typically constructed as permutation equivariant functions by propagating
information locally on graphs following a message passing paradigm. An alternative approach,
proposed by [44], represents d-dimensional graph data on k-tuples of nodes as a single matrix

Y € R*" x4 For example, the case k = 1 corresponds to node signals and k£ = 2 to signals on edges.

In their work, the authors provide a full characterisation of linear maps L : R xd _y R xd’ that
are equivariant with respect to permutations of the underlying node set. Remarkably, they show the

dimension of the vector space formed by these equivariant maps, denoted by €y, (k, d)d/, depends
only on k, d, and d’, and is independent of n. In Section |3} we will be interested in the basis of

€s, (2,1)%, the vector space of linear maps L : R" — R between edge-valued data, which has a
dimension of 15. For a list of terms spanning this basis, see Appendix [A]

3 Permutation equivariant neural graph controlled differential equations

This section brings together Neural CDEs and temporal graph representation learning. We begin
by introducing a recent approach proposed in [48]], called Graph Neural Controlled Differential
Equations. Through the lens of Geometric Deep Learning [S]], we will identify a key theoretical
limitation of this approach and propose an improved solution.

3.1 Graph Neural Controlled Differential Equations
The concept of neural controlled differential equations has been extended to graphs by incorporating

dynamic adjacency matrices to drive the CDE dynamics [48]].

Graph Neural CDEs. Let (5 : R"*"*2 — R"%% and f, : R"*% x R**" — R(xdz)x(nxnx2)
be two graph neural networks. The neural controlled differential equation for dynamic graphs is
defined as

t
Z, =17, +/ fo(Zs, Ag)dA s for t € (to,tN] 3)
to

where Z;, = Cy(Ay, ) is the initial condition, A : [to, ] — R™*"*2 such that Aikj = (t, Ai;j), and
the product fy(Zs,, AS)dAS is a tensor contraction over R"*"*2_ The final prediction Y, € R"¥dy
is attained by row-wise application of another linear function ¢ : R% — R% i.e. by slight abuse of
notation Y, = £g(Z,).

Practical Considerations. Implementing Equation |3|directly is computationally intractable due to
the large output dimension of fy and the complexity of the tensor contraction under the integral sign.
Hence, [48] proposes the following simplification based on a message passing paradigm:

t
Zi =17, + / ZLds  for t € (to,tn] 4)
to
where Z{" = U(Aszgl”)wﬂ—l)) forl € {1,..., L}, the adjacency matrix and its derivative are
e As . . . .
fused via A = w&E) da, | with W) ¢ Rnx2n being a learnable fusion matrix, and ZS’) =7

3
. . . ds . . . . . . . (
Importantly, this simplification preserves the multiplicative interaction between the hidden state and
control path which are critical for expressivity [[13].

3.2 Inducing permutation equivariance

As motivated in Section 2] it would be natural to require equivariance with respect to permutation
of the node and edge sets for any function on graph data. However, neither the original GN-CDE

3We note a subsequent version of the GN-CDE introduced an additional fusion matrix, A; =

wh {(ﬁ;} w2 F [49]). Our theoretical analysis still is valid, as the fusion remains a linear map.

ds
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formulation in Equation [3] nor its approximation in Equation [ satisfy this property. See Appendix
for a detailed proof.

In the following, we introduce a fully permutation equivariant variant of the GN-CDE framework.
By leveraging the characterisation of linear permutation equivariant layers presented in Section
our goal is to approximate Equation 4| while maintaining equivariance. Since the equivariance
breaks in the fusion step, our strategy is to project the fusion operation onto the subspace of linear
equivariant functions. Specifically, if we interpret the fusion as the application of linear maps
Ly, Ly : R**™ — R™ ™ to the matrices A4 and %, respectively, we can project L1 and Lo onto
€s (2,1)!. According to the Projection Theorem (see Appendix @), this yields the best possible
approximation. This motivates us to propose the following:

The model. Let L, Ly € €sx, (2,1)! be two learnable permutation equivariant linear maps, i.e. a
weighted combination of the basis terms in Appendix[A] Using these, we combine the adjacency and
its time derivative as

A, =Li(A,) + Ly <dAS>. )

ds

Now, let o be a non-linear activation function and denote by sz) the latent representation obtained by
an iterative convolution operation of the form zd) = J(ASZ(EZ*DWU_”) forl € {1,..., L} where

the W) are learnable matrices. The Permutation Equivariant Neural Graph Controlled Differential
Equation (PENG-CDE) then takes the form

t
Zy = Zy, +/ o(AZPOWE)ds  for t € (to, tn]. (6)
to

with initial condition Z;, = Cg(Ato).

Theoretical Properties. In the purely linear case (i.e., without applying the non-linearities ¢ in
between the layers), one can show that the notion of optimality above, as motivated by the Projection
Theorem, is satisfied, as formalised in the following theorem:

Theorem 3.1. In the absence of non-linearities, the PENG-CDE model in Equation|6|is the projection
of the model in Equation{d|onto the space of equivariant linear functions.

Proof sketch. Projecting an the flow of an ODE onto a function space is equivalent to projecting its
associated vector field. Moreover, note that the vector field in Equation E] can be decomposed as the
composition of a standard convolutional graph neural network, which is inherently equivariant, and
the adjacency fusion, which is not. Thus, projecting Equation []is equivalent to projecting only the
fusion operator. For a detailed proof, see Appendices|C|and

Although the projection-based notion of optimality holds strictly only in the linear case, by construc-
tion, our model satisfies both equivariance constraints outlined in Section 2.1}

Proposition 3.2. The PENG-CDE model in Equation[6]is both permutation equivariant in the spatial
domain and time-warp equivariant in the temporal domain.

Proof. See Appendix [E] O

3.3 Including dynamic node features

So far, our framework only incorporates dynamic adjacency matrices into the latent dynamics, leaving
dynamic node features unaddressed. To remedy this, we draw on the approach of [[11]. Concretely,
suppose node feature snapshots { Xy, },JCVZO are available, where each X;, € R%. We interpolate

these snapshots to obtain a continuous, differentiable path X : [to,tx] — R%*+1 asin Section
Next, we choose WX € Rd=x(d:x(d=+1)) (o set the output dimension of U(AS VA W(L)> to

Rnx(dzx(de+1)) enabling a row-wise (i.e., node-wise) Hadamard multiplication, denoted by ®. The
resulting system is

Yrors dX
- (L) W (L) s
Zy = 2y, + /to{U(AS Zy ) © — }ds for ¢ € (to, tn]. (7



Building on Proposition [3.2] this extension preserves both permutation equivariance in the spatial
domain and time-warp equivariance in the temporal domain. Intuitively, this is because a permutation

of the node indices reorders both of A, sz) W(L)) and dd>§3 in the same manner, ensuring that the

3

overall model remains equivariant. A detailed proof is provided in Appendix

4 Numerical experiments

In this section, we evaluate the PENG-CDE model on a range of synthetic and real-world tasks. First,
we replicate the experiments from [48]] and compare them with the non-permutation-equivariant
version. Next, we evaluate the model on well-established real-world dynamic graph benchmarks
against other common approaches. Finally, we conduct an ablation study to examine the weighting
of different basis terms of €5, (2,1)! in Appendix For supplementary information regarding
implementation details, see Appendix [G] Appendix [H|contains a statistical analysis of the results.

4.1 Synthetic experiments: heat diffusion and gene regulation

Task. We randomly sample initial graphs from four distinct graph distributions (grid, small-world,
power-law, and community), each comprising 400 nodes. We then take 120 irregularly sampled
time-stamps spanning 7' = 0 to 7' = 5. At 12 time steps, sampled uniformly at random from these
snapshots, we randomly add or remove edges following a Bernoulli trial. The final 20 snapshots are
allocated for extrapolation validation, while from the remaining 100, a random subset of 20 is used for
interpolation validation and the remaining 80 for training. This means the expected number of times
the graph topology changes during training and validation phases are 8 and 4, respectively. A batch
of four such time series are generated for each of training, validation, and testing. We then simulate
node features according to the heat diffusion dynamics governed by Newton’s law of cooling and the
gene regulatory dynamics governed by the Michaelis—Menten equation. For additional experiments
on personal capital and opinion dynamics, see Appendix [F}

Baselines. We compare the performance of

—— GNODE —— GNCDE —— Pre Mult GNCDE several mOdelS, inCluding state-of-the-art re-
M SNEDE T PENGICOR T Graph topojogy ehange current (DCRNN [40]), interactive (STIDGCN

Heat Diffusion Gene Regulation

[41]), and attentional (ASTGCN [26]]) baselines.

D v/ For differential equation—based baselines, we

‘ first consider a simple model with a constant
\w:} vector field (Const), that is sz> = b for all
, ; . s € [to, tn] in Equation 4] Next, we consider
R I BRI T T . 7 % the Graph Neural ODE (GNODE) model [47]],

in which the adjacency matrix within the vector
Figure 1. Test losses, plotted against simula- field is discretised by flooring the time index.
tion time, for the Graph Neural ODE, three GN- The GNODE is governed by the equation:
CDE variants, and our proposed Permutation-
Equivariant GN-CDE model on the heat diffusion
(left) and gene regulation (right) tasks. Dashed ver-
tical lines mark changes in graph topology, while
the bold black line indicates the final time point for all ¢ € (to,tx] where A |, is the adja-
in the training set. Results are reported as means cency matrix corresponding to the graph G,
(solid) and ranges (shaded) over a test set with a With ¢, = |s]. Additionally, we consider sev-
batch size of four. eral variants of the GN-CDE. Firstly, we include

a simplified fusion model, named Adjacency
GN-CDE, which employs interpolated adjacency matrices, i.e. A; = A;. We note that for the
experiments on these two datasets, the GN-CDE [48]] model implemented the fusion by a simple

element-wise summation between the adjacency matrix and its derivative (i.e. Ay = Ay + df; ),
which implicitly achieves permutation equivariance - a property not present in the original formulation.
To ensure a fair comparison with a non-equivariant GN-CDE variant, we also consider the Premulti-
plication Fusion GN-CDE (Pre Mult GN-CDE) model. In this variant, the fusion step is performed

via premultiplication by learnable matrices W1 and W, such that As =W A, +W, %. Lastly,

we include our proposed Permutation Equivariant Neural Graph CDE (PENG-CDE). Experimental
results for the heat diffusion and gene regulation tasks are summarised in Table[T} Moreover, we visu-

t
ztzztﬁ/ fo(Zo AL )ds  (®)
to




alise the test loss over simulation time for models initialised from the community graph distribution
in Figure|[T]

Finding I: Equivariance improves performance. Incorporating permutation equivariance (found in
models Adjacency GN-CDE, Original GN-CDE, and PENG-CDE) leads to performance improve-
ments of an order of magnitude over the non-equivariant Pre Mult GN-CDE across all considered
tasks and graph distributions.

Finding II: Enhanced expressivity via 15 basis terms boosts performance. Integrating all
15 basis terms of linear equivariant maps into the fusion of our model significantly enhances its
expressivity. Compared to the original implementation, the PENG-CDE achieves relative MSE
improvements ranging from 30.44% to 73.84% on the heat diffusion task and from 39.71% to
67.06% on gene regulation tasks. One plausible explanation is that summing across rows (basis term
3 in Appendix [A)) corresponds to computing node degrees in an unweighted graph, which facilitates
degree normalisation as required in Equation[26]

Finding III: Additional terms enhance extrapolation behaviour. As shown in Figure[T] for the
heat diffusion task, our PENG-CDE is the only model capable of maintaining constant losses during
the extrapolation phase (i.e. over the final 20 snapshots). This suggests that the added equivariant
terms contribute to more robust extrapolation, likely due to the mechanisms discussed above.

Table 1: Comparison of GN-CDE variants and baselines on the heat diffusion (top) and gene
regulation (bottom) tasks. Mean MSEs with 95% confidence intervals are reported, with the best
mean highlighted in bold, and all results within the corresponding confidence interval are underlined.
The final row in each table reports the relative improvement of PENG-CDE over the original GN-CDE
formulation.

Heat Diffusion Task (MSE |)

Model Community Grid Power Law Small World
DCRNN [40] 0.722 £ 1.145 70.392 4+ 108.473 1.690 4+ 1.456 84.690 + 105.696
STIDGCN [41] 0.554 £ 0.393 4.297 £0.975 0.907 £ 0.268 1.826 £ 0.240
ASTGCN [26] 2.188 £ 0.656 15.480 £+ 1.757 3.849 £+ 0.832 8.269 + 1.094
STG-NCDE [11] 2.091 £ 0.645 11.989 + 1.090 3.518 £ 1.105 6.902 £+ 1.303
Constant 1.936 + 0.550 11.155 £+ 0.669 3.147 £ 0.850 6.286 £+ 1.056
Graph Neural ODE [47] 0.237 £0.322 1.001 4+ 0.751 0.270 £ 0.310 0.311 4 0.268
Adjacency GN-CDE 0.208 £ 0.240 0.691 £ 0.887 0.258 + 0.288 0.248 4 0.240
Pre Mult GN-CDE 1.968 + 0.548 12.262 + 1.437 7.440 + 4.458 6.829 + 0.644
 Original GN-CDE 8] __ 03660400 13240630 _ 04170314 05520470
PENG-CDE (ours) 0.096 + 0.051 0.481 +£0.195 0.290 + 0.265 0.247 +0.215
Relative Improvement 73.84% 63.70% 30.44% 55.20%
Gene Regulation Task (MSE |)
Model Community Grid Power Law Small World
DCRNN 159.095 4+ 149.970  28.784 +£16.926  77.469 +28.178  27.300 + 11.641
STIDGCN 14.579 £+ 2.815 0.633 £0.163 4.828 £ 0.694 0.611 £0.162
ASTGCN 13.366 + 3.302 0.695 +0.178 4.722 + 0.644 0.579 +£0.116
STGNCDE 88.354 + 15.126 8.753 £ 0.898 20.498 4+ 2.633 6.760 + 0.787
Constant 36.307 + 2.609 1.390 + 0.168 7.099 £+ 0.382 0.772 +£0.126
Graph Neural ODE [47] 8.548 £+ 3.212 0.167 £ 0.191 0.372 +0.398 0.294 4+ 1.308
Adjacency GN-CDE 8.909 £ 6.311 1.476 4+ 2.504 0.498 £ 0.126 0.195 4 0.046
Pre Mult GN-CDE 153.084 4+ 149.609 2.553 £ 0.251 6.978 £+ 3.045 1.591 £ 0.146
 Original GN-CDE (8] __ 10.717£7.070 ___0.457=0.167 __ 082250290 03230151
PENG-CDE (ours) 4.566 + 2.780 0.247 £+ 0.090 0.526 £+ 0.220 0.186 +0.484
Relative Improvement 67.06% 45.90% 39.71% 54.14%




Table 2: Results of experiments for the england-covid and twitter-tennis tasks from the
Pytorch Geometric Temporal datasets [55]. Mean values and 95% confidence intervals are reported,
with the best mean highlighted in bold and all results within the confidence interval around the best
mean are underlined.

england-covid twitter-tennis

Model MSE | MSE |
Validation Test Validation Test
DCRNN [40] 0.898 +£0.126  1.021 £0.203 | 0.472 +£0.136 0.455 + 0.087
ASTGCN [26] 1.2354+0.139 1.283 +£0.257 | 0.545 +0.128 0.530 4 0.078
STIDGCN [41]] 0.916 +£0.111  0.933 £0.100 | 0.524 +0.140 0.495 + 0.059
" GNODE47] ~ | 0.802+0.184  0.945+0.251 | 0.419 +0.068 0.525 + 0.043

STG-NCDE [[L1]] 1.484 +£0.515 1.778 £1.084 | 0.372+0.108 0.453 4 0.035
GN-CDE [48] 0.892 +0.143 0.962 £ 0.278 | 0.369 = 0.070  0.443 + 0.053
PENG-CDE (ours) | 0.836 £0.122  0.913 +0.200 | 0.391 +0.069  0.440 + 0.053

Oversampling and irregularity. In Figure [2, we compare the performance of the PENG-CDE with
DCRNN [40], STIDGCN [41] and ASTGCN [26] on data generated from the graph SIR disease
spread model [33]. Its parameters are chosen to produce trajectories both with and without an
outbreak, and the task is to classify each trajectory into one of the two categories. To study the effect
of oversampling, we simulate each trajectory up to a fixed terminal time 7" = 1 and train and evaluate
the models on datasets with an increasing number of observation points (left and middle panels).
We also investigate how performance varies with the regularity of the sampling grid: by drawing
observation times from a Gamma distribution with controlled shape parameter k, we obtain series
with different degrees of irregularity and plot test accuracy as irregularity increases (right panel). For
implementation details, see Appendix [G.3]

Finding IV: PENG-CDE is robust
to oversampling and irregular sam-
pling. CDE-based models such as
PENG-CDE decouple the computa-
tional complexity of their forward
passes from the number of input ob-
servations: the number of vector field e, Of“samp‘f;s B oo amp‘fgs w T kil
evaluations is determined by the ODE tregularity = ¢
solver, not by the sampling rate of the
data. This property makes them in-
herently robust to oversampling. As
shown in Figure[2] increasing the sam-
pling frequency negatively impacts
both the performance and runtime of
the recurrent baseline (DCRNN), while our model remains largely unaffected. Although STIDGCN
also maintains performance under oversampling, its computational cost increases with the number of
observations, in contrast to the constant runtime of our approach. Likewise, PENG-CDE sustains high
performance across all levels of irregularity, while the other models exhibit degraded performance.

—=— STIDGCN —+— DCRNN —+— PENG-CDE  ----- Random Guessing
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Figure 2: Classification accuracy on the SIR model for
STIDGCN, ASTGCN, DCRNN, and our PENG-CDE as
a function of the number of observed timesteps (left) and
sampling irregularity (right). Inference time with increasing
numbers of observations is shown in the middle panel.

4.2 Real-world tasks

We evaluate our framework on two types of real-world datasets: snapshot-based and event-based.
First, we consider two node regression tasks from PyTorch Geometric Temporal [S5]] and then two
node affinity prediction tasks from the Temporal Graph Benchmark (TGB) [29, [24]. Implementation
details are provided in Appendix[G.4]

Snapshot-based datasets. In this setting, we observe a sequence of dense graphs, one at each
timestep. To demonstrate that our modifications enable our model to better capture dynamic graph
topologies, we compare it against several differential equation-based models: the Graph Neural ODE
[47], the Spatio-Temporal Graph Neural Controlled Differential Equation (STG-NCDE) [11]], and
the original GN-CDE [48]]. Additionally, we include comparisons with recurrent (DCRNN [40]),



attentional (ASTGCN [26]), and interactive (STIDGCN [41]) models. We benchmark performance
using the england-covid and twitter-tennis datasets from PyTorch Geometric Temporal [S5] -
the only datasets in the library exhibiting dynamic graph topologies. Table 2reports the mean MSE
with 95% confidence intervals on both the validation and test sets over 10 random seeds.

Finding V: PENG-CDE generalises well on dynamic snapshot datasets. While not achieving
the lowest validation error, PENG-CDE attains the lowest test error on both tasks, indicating better
generalisation and reduced overfitting compared to other models.

Table 3: Experimental results for the tgbn-trade and Event-based datasets. In many ap-
tgbn-genre node affinity prediction tasks from the Tem- Plications, a temporal graph is repre-
poral Graph Benchmark datasets [29], 24]]. Results marked sented as a sequence of events § =
with 1 are from [29], those with } are from [68]], and those {(ei, ts, x.i)}?:h where each event e;
with * are from [59]. Mean values and standard deviations (e.g.,an Interaction between qodes u
are reported with results within one standard deviation of the and v) occurs at time ¢; and is asso-

. . d .
best mean highlighted in bold (for deterministic and learned ciated with data z; € R?. Since GN-
models separately). CDE:s are not inherently designed for

processing individual events, we ag-
gregate events into snapshots. In more

trade genre detail, given a time window of length

Model NDCGe1ot At, w§ partition the overall tiiqe
Persistent Forecast (L) 0.855 0.357 span [t t,] into m = |f2cfo| non-
Moving Avg (L) 0.823 0.509 overlapping intervals. For each inter-
Moving Avg (M) 0.777 0.472 val indexed by k£ € {0,1,...,m —
JODIE! [39] 0.374+0.09  0.350:£0.04 1}, we define the snapshot graph
TGAT* [15] 0.375£0.07  0.3520.03 Gk to include all events (or edges)
CAWN! [66] 0.37440.09 _ that occur within the time w1ndoyv
TCL? [63] 0.375£0.00  0.354+0.02 [to + kAL, to + (k + 1)At]. This
GraphMixer® [14] 0.37540.11  0.352+0.03 then gives us a sequence of snapshots
DyGFoTrmeri 1681 0.388+0.64  0.365+0.20 ;{egg(i‘;l.té- {nfﬁzﬁi’sgfgiféh aﬁgvﬁa“vléﬁ
?éliﬁp[s[;]()] ggxigggi gzgiigggé evaluate our framework in this event-
TGNv2* [39] 0.73540.006 0.469+0.002 based setting on the trade and genre
node affinity prediction tasks from the

STG-NCDE [10] 0.61840.024 0.43840.038 Temporal Graph Benchmark (TGB)
GNCDE[48] | 0.713+0.026 _0.460£0.016 [29, 24]. These two tasks were se-
PEFS(;&?;?Target d 8 ‘Zéii%%éi 0‘523_i0'017 lected from the four available.: in the
i i benchmark, as the dense adjacency

matrices required by Neural ODE-
based models make the remaining tasks computationally infeasible within our constraints.

Baselines. For the event-based experiments, we first compare against three simple heuristics based
on ground-truth labels and messages: ‘Persistent Forecast (L)’ and ‘Moving Average (L)’, which
operate on labels, and ‘Moving Average (M)’, which is applied to messages. We then benchmark
several learned models, including JODIE [39], TGAT [15], CAWN [66], TCL [65]], GraphMixer [14]],
DyGFormer [68], DyRep [60], TGN [53]], and TGNv2 [59]]. Additionally, we include STG-NCDE
[10], GN-CDE [48]}"} and our proposed PENG-CDE. It is a known issue that the heuristics above often
outperform learned models on node-affinity prediction tasks [24]]; see [S9]] for a detailed discussion.
This motivated TGNv2 to introduce a mechanism that learns node embeddings to distinguish source
and target nodes for each interaction, a feature tailored specifically to the node affinity prediction task.
To ensure a fair comparison, we incorporate an analogous mechanism into a variant of our model.
Further details are provided in Appendix [G.5] The experimental results are summarised in Table 3]

Finding VI: PENG-CDE achieves state-of-the-art performance on TGB. Without source-target
identification, our model is outperformed only by TGNv2 on the tgbn-trade task; with source-target
identification, it performs on par. Moreover, on tgbn-genre, our model significantly outperforms
all baselines; notably, it is the only machine-learned approach to surpass all heuristic baselines.

*Here, the GN-CDE employs the original element-wise additive fusion, A=A+ % [48]. Concurrently
to this work, Qin et al. [49]] proposed a non-linear element-wise fusion for GN-CDE tailored to the TGBN
datasets that achieves comparable performance to the permutation-equivariant fusion of PENG-CDE.



4.3 Ablation studies

Fusion. To understand how our model - ape 4: Fusion operation weights of the Permutation Equiv-

fuses the adjacency matrix and its  arjant GN-CDE model. Weights with absolute value larger
derivative, we analyse the learned (a1 0.1 are in bold.

weights of the 15 basis terms (Table[d)
in the heat diffusion task described in

Section .1} Both GCN layers assign Operation " Layer :A " Layer zA
the largest weights to the identity op- s s s s
erations. This is expected, given heat Tanspose 01026 00210 | ~0.0270 00535
diffusion aggregates over node neigh- Diagonalisation 0.0297 —0.0754 | 0.0072 0.0317
bourhoods. Because the constructed ows | 0.7753 —0.0635 | 0.0358 —0.0114
graph is undirected, the transpose op- Sumrows on columns | 0.3407 0.0015 | —0.0242 0.0790
eration is equivalent to the identity, diagonal | —0.0875 —0.0222 | —0.0707 0.0869
allowing the corresponding weight in Sumallon .. 2 0.4315 0.4260 | 0.0039 0.0020
layer 1 to be disregarded. Layer 1 also diagonal | —0.0002 —0.0001 | 0.0362 0.0088

assigns importance to non-identity components. Large weights are given to the summations of adja-
cency matrix rows and columns, corresponding to node degree computation, which indicates attention
to global graph properties. Similarly, large weights are observed for the total sums of both the
adjacency matrix and its derivative, which may correspond to a form of normalisation. Overall, we
see that the model utilises the additional expressivity over GN-CDE:s.

5 Conclusion

In this work, we introduced Permutation Equivariant Neural Graph CDEs - a geometrically grounded
approach to temporal graph representation learning that balances parameter efficiency with formal
expressivity. In the linear setting, we showed that our model can be derived as a projection of Graph
Neural CDEs onto the space of permutation equivariant functions. Through synthetic experiments,
we demonstrated that both the imposed equivariance and enhanced expressivity improve performance
in both interpolation and extrapolation tasks. Additionally, our model retains the strengths of Neural
CDE:s in handling oversampling and irregular time intervals. On the TGB-genre dataset, our model
achieves a new state-of-the-art — becoming the first learned method to surpass a moving average
baseline.

5.1 Limitations and future work

Like the original GN-CDE, PENG-CDEs have quadratic memory complexity in the number of nodes
due to the need to store dense adjacency matrices, which restricts scalability to large, sparse graphs.
This constraint arises primarily from JAX’s limited support for sparse matrix operations. As shown in
Table[TT)in Appendix [l once memory allocation constraints are met, PENG-CDE scales much more
favourably in runtime compared to GN-CDE — demonstrating its potential for efficient modelling at
larger scales.

Future work includes addressing this scalability bottleneck and investigating the impact of more
tailored hyperparameter configurations, such as the choice of interpolation schemes, ODE solvers, and
vector field architectures. In addition, advanced solvers like Log-NCDE [64], originally developed for
Euclidean paths, could be adapted to the graph setting. While we chose dynamic adjacency matrices
as the control signal for the CDE, this is just one possible vectorisation of graph structure. Prior
work [25]] suggests that adjacency matrices are often suboptimal for representing graph properties.
Identifying more expressive or task-aligned graph representations could further improve performance
and remains an exciting research direction. Finally, while Neural CDEs are known to be universal
approximators on Euclidean domains [36]], and recent work has also provided generalisation bounds
[3]], no such theoretical guarantees currently exist for graph-based Neural CDEs. Establishing these
would be a valuable theoretical contribution to the growing field of temporal graph representation
learning.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we make the following claims that reflect the
paper’s contributions and scope:

a) Induce permutation equivariance into Graph Neural CDEs by projecting them onto
permutation equivariant function spaces; foramlly prove this statement in the linear
case

b) Demonstrate theoretically that our model is equivariant with respect to permutations
and time-warps

¢) Empirically validate our model on dynamic node-level tasks using synthetic experi-
ments as well as standard benchmark datasets

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations anmd future work in Section 3.1
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

¢ The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results in the main text (Theorem Proposition are
proved in Appendix [E| All new results in Appendices [C] and [Df are proved after their
statement. All assumptions and auxiliary results are clearly stated.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a full and detailed description of all experiments in the main text
in Section 4] with additional details in Appendix [G] An anonymised version of the source
code used to run the experiments is provided at https://anonymous.4open.science/
r/perm_equiv_gn_cdes-BBF8/README.md,

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The TGB and Pytorch Geometric Temporal datasets used in Section [
are publicly available. The data generation procedures for the synthetic experiments
are extensively described in Section 4] and Appendix [G| and part of the code base at
https://anonymous.4open.science/r/perm_equiv_gn_cdes-BBF8/README.md.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All chosen hyperparameters and the ranges we chose them from are detailed in
Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat each experiment multiple times over different random seeds for data
generation and model initialisations. We report either standard deviations or confidence
intervals.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about the type and amount of compute used for each
experiment in Section[G.I]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: As this paper does not involve research involving human subjects or partici-
pants, and all data has been properly standardised and anonymised. The work adheres to the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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10.

11.

12.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We briefly discuss the societal impact of this work in Appendix [J.1}
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not pose any of the mentioned risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

15.

Answer: [Yes]

Justification: All datasets, programming languages and libraries used in this work have been
attributed properly.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets were introduced in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing nor research with human subjects is part of this paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LMMs have been used for the core method development of this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Permuation equivariant linear basis terms

Maron et al. [44] derive the 15 basis elements of all linear permutation equivariant maps L : R —
R™ on edge-valued signals A € R *1, They show the following 15 maps span this space:
We denote by 1 € R™ the vector whose entries are all equal to one, and by diag the operator that

either places a vector on the diagonal of a matrix or extracts the diagonal of a matrix, depending on
context. With this notation, the basis elements of €5, (2,1)! can be listed explicitly as follows:

1. The identity and transpose operations: L(A) = A, L(A) = AT,

2. Elimination of non-diagonal elements: L(A) = diag(diag(A)),

3. Sum of rows replicated on rows/columns/diagonal: L(A) = 11TA/L(A) =
1(A1)T, L(A) = diag(A1),

4. Sum of columns replicated on rows/columns/diagonal: L(A) = AT117 L(A) =
1(AT1)T L(A) = diag(AT1),

5. Sum of all matrix entries replicated on all entries/diagonal: L(A) = 1TA1- 117, L(A) =
1TA1 - diag(1),

6. Sum of all diagonal entries replicated on all entries/diagonal: L(A) = 17diag(A) -
117, L(A) = 17diag(A) - diag(1),

7. Diagonal elements replicated on rows/columns: L(A) = diag(A)17, L(A) = 1diag(A)7T,

B Projection theorem

Definition B.1 (Projection). Let H be a Hilbert space with inner product (-,-). A linear map
p: H — H is called a projection if p o p = p. A projection is called orthogonal if for all x € H it
holds that for all y € H, p(y) = 0 implies (p(x),y) = 0.

Intuitively, this is saying that applying a projection operator twice yields the same result as applying
it once, which captures the idea of “selecting” or “filtering out” a specific component of a vector.
The additional condition for an orthogonal projection ensures that the difference between any vector
and its projected counterpart is perpendicular to the subspace, embodying the concept of the closest
approximation in the geometry of the space.

Theorem B.2 (Projection Theorem, e.g. [1]], Chapter 1). Let H be a Hilbert space and U a closed
linear subspace. Then every x € H can uniquely be written as * = u + u* where u € U,
u* € ULt :={y € H: (y,u) =0 Yu € U}. Moreover, the map Py : H — H defined as Py (x) = u
is an orthogonal projection and satisfies

— — 1 I _
I1Pu(e) — 2l = inf ' ~ a]. ©
forall x € H.

The Projection Theorem asserts that every vector in a Hilbert space can be uniquely decomposed into
a sum of two parts: one lying in a closed subspace and the other in its orthogonal complement, thus
clarifying the geometric structure of the space. Moreover, it guarantees the projection onto a subspace
is the unique map that assigns to each element x € H the closest element from that subspace, thereby
establishing a rigorous method for optimal approximation in terms of the inner product.

C General theory of equivariance

In the following, we formalise notions of how symmetries can “act” on data and how we want to
define functions that respect these symmetries.

C.1 Equivariance of static functions

Definition C.1 (Group Action). Let G be a group and X a set. A group action of G on X is a
Junction - : G x X — X satisfying:
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1. Identity: forall x € X, e - x = x, where e is the identity element of G,
2. Compatibility: for all g,h € Gandx € X, (gh) -z =g - (h-x).

This definition formalises the idea that the elements of the group G can act on the set X in a way that
reflects the group’s structure. It essentially captures the concept of symmetry by showing how each
group element transforms or “moves” elements in X .

Definition C.2 (Group Representation). Let G be a group and V' a vector space. A group representa-
tion of G on V' is a homomorphism p : G — GL(V') such that:

o Identity: p(e) = Iy, where e is the identity element of G and Iy is the identity map on'V,
» Compatibility: For all g1, 9> € G, p(g192) = p(g1)p(g2).

This definition realises abstract group elements as concrete, invertible linear transformations on V,
thereby representing the group’s symmetry in a linear framework. It provides a way to analyse the
structure of GG by studying how it acts on a vector space.

Definition C.3 (Equivariance). Let p : G — GL(V') and o : G — GL(W) be representations of a
group G on vector spaces V and W, respectively. A function f : V — W is said to be G-equivariant

ifforallg € Gandv €V,
Fp(g)(v)) = olg)(f(v)).

This definition states that applying the group action before or after the function f produces the same
outcome. Equivariance ensures that f preserves the symmetry structure imposed by G, making it a
natural and symmetry-respecting mapping between the spaces.

C.2 Haar measure
Definition C.4 (Haar measure). Let G be a compact Hausdorff topological group. There exists a
unique regular Borel measure 1 on G invariant under both left and right translations:

w(gE) = u(Eg) = u(E) forallg € G, E C G Borel
with total mass 1, i.e. u(G) = 1. We call this measure the Haar measure.
Remark C.5. If G is finite of order |G

, the Haar measure reduces to the uniform distribution:

1 1
n({g}) = Gl Vg €G, /Gf(g) du(g) = Gl > flg)-

geqG
In this discrete (hence compact) setting, Haar integration is exactly averaging over group elements.
C.3 Projection of non-equivariant functions

Given Hilbert spaces V' and W, the set of functions {f : V — W} form a vector space under
pointwise scalar multiplication and addition. Given group representations p and o of a group G over
V and W, respectively, we can consider the subspace of functions that are equivariant with respect
to these representations. The following lemma and corollary show what the projection onto this
subspace looks like.

Lemma C.6. Let V and W be finite-dimensional vector spaces with an action of a finite group
G with representations p : G — GL(V) and 0 : G — GL(W) respectively. For any linear map
T :V — W, define the averaged map by

Ty (v) = /G o(9)" T (o(g)v) d u(g)-

Then T,y is G-equivariant, and moreover, 1" is G-equivariant if and only if T' = T.,.
Proof. To show that T}, is G-equivariant, take any h € G and v € V. Then

Tavg(p(h)v) = /G a(9)" T (p(9)p(h)v) d u(g)

_ /G o(9) T (p(gh)v) d u(g).
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By substituting g’ = gh (so that g = g’h~!), we obtain

T (p(h)0) = /G o(gh"1) " T (p(g')o) d ()

= [ oate) T (ol )0) a )
= 0(h)Tavg(v),
where we used o(g’h!)"! = o(h)o(g’)~" because o is a homomorphism. Thus, T,y is G-
equivariant.
Next, if T is already G-equivariant, then for every g € G,
a(9) ' T(p(g)v) = T(v),
so that

O

Corollary C.7. In the setting of the previous lemma, the map () avg : Hom(V, W) — Hom(V, W)
defined by T' — T, is the projection map onto the subspace of G-equivariant linear maps.

Proof. In the previous proof we saw that (). acts as the identity on the subspace of G-equivariant
linear maps. Since applying ()avg to any linear map 7" yields a G-equivariant map Tyyg, ()avg iS @
projection onto the subspace of GG-equivariant linear maps. O

Next, we study what form the projection of the composition of a linear equivariant function with
another function takes.

Proposition C.8. Let V, X, W be finite-dimensional vector spaces with an action of a finite group G
given by representations py : G — GL(V), px : G = GL(X) and pw : G — GL(W) respectively.
Denote the projection of Hom(V, W) onto the space of of G-equivariant functions with respect to the
representations py and py by Py w and similar for the other combinations. Now suppose we have
SfunctionsT :V - W, R:V — X, S : X — W such that

e T'=SoR,
* S is G-equivariant and linear.

We then have Py (T) = S o Py x (R).

Proof. Since Py, projects onto an equivariant subspace, by the above we know that

(PywT)(v) = /GPW(Q)_IT(PV(Q)U) du(g)

for all v € V. Now by definition and the linearity of S,

(PyawT)(v) = /G pw(9)1(S 0 R) (pv (g)) dpu(g)

_ /G o (9) " S(R(pv (9)0)) ds(g)

:/GS(px(g)flR(pv(g)v))du(g) (equivariance of S)

=S (/G PW(Q)_lR(pv(g)U) d,u(g)) (linearity of S)

=S ((PvxR)(v))
since S (PV (9)"'R(pv (g)v)) = pw(9)"1S(R(pyv(g)v)) by the equivariance of S. This concludes
the proof. o
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C.4 Equivariance in Neural ODEs

Definition C.9. Let f : X x I — X be a smooth function, where I C R is an interval containing 0
and X is some Banach space. For each x € X, consider the initial value problem

i (O (10)

The flow of the ODE is the mapping ® : I x X — X, (t,x) — ®4(z), which assigns to each pair
(t, z) the solution to the IVP in equation[IO\with initial condition x evaluated at time t.

Proposition C.10. Ler ®;(x) be the flow of an ODE with vector field f : X x I — X and let P be
the projection operator of the space of functions {g : X — X} onto the space G-equivariant maps

with respect to a group representation p of G on X. Then the projected flow P(®;) and the flow &)t
of the projected vector field P(f) : X x I — X agree for all timest € I, i.e. P(®;) = D,.

Proof. First, we note that by Corollary P can be realised by

P(f)(at) = / p(9)" f(plg)x.t) d u(g),

G
P(®,)(x) = /G p(9) 1 ®4(p(g)7) d ().

Now, by the uniqueness theory of ODEs (see for example Theorem 6 in [43]]), it suffices to show that
P(®,) satisfies the same initial condition and ODE as ®,. To that end, we calculate

d 1 d
— (P2)(x) = | plg)"— @:(p(g)x) d u(g)

dt G dt

- /G pl9) F(plg),t) d ()

= P(f)(z,1)
and
(PD)(z) = / p(9) ' @o(p(g)z) d u(g)
G
= / p(9) " p(g)xd u(g)
G
This finishes the proof. O

This theorem shows that, under the stated conditions, if one projects the full flow &, using P, then
this projected flow is exactly the same as the flow obtained by integrating the projected vector field

P(f).

D Application to Graph Neural CDE

Definition D.1 (Representation of the Permutation Group). We define a representation of the permu-
tation group S,, on the space of node features R"*? for each o € S,, by p(c)(X) = P,X where P,
is the permutation matrix associated with o. Similarly, we define a representation on the space of
node features R"*" by 7(c)(X) = P, XPZ.

The pre-multiplication by P, permutes the rows of a matrix, and the post-multiplication permutes the
columns.

Proof of Theorem[3.1] Firstly, by Proposition[C.10] the projection of any Graph Neural ODE onto
the subspace of permutation equivariant functions is the Neural ODE where the vector field is the
projection of the Graph Neural ODE. Hence, it suffices to consider the projection of the integrand in
Equation 4]
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We can decompose this integrand as the composition of the following two functions:

rza S = (zwem | 4))
S ds

S(Z,A) = AZPwE)
where Z(L) are latent representations obtained by an iterative convolutional process of the form
Z0) = AZ-DWID for | € {1,..., L} where the W) are learnable matrices.

The function S is a standard convolutional GNN and hence both permutation equivariant and linear
in Z. Hence, we can apply Proposition and realise we only need to consider the projection of R.

But since W (P%) is learnable and in Section we characterised the space of linear equivariant
functions on the space of adjacency matrices, instead of projecting onto the space of equivariant
functions, we may directly parameterise an element of this space as a linear combination of the basis
elements. This concludes the proof. O

E Proofs

Proof the GN-CDE (Equation[3)) is not permutation equivariant. For notational simplicity, we flat-
ten fo(Zs,As) and the control dA into tensors of ranks 2 and 1, respectively:

Fy(Zs, As) = vec[fo(Zs, Ay)] € RM=x207, (11)
B = vec[dA,] € R¥. (12)

Under a node permutation o € S,,, with permutation matrix P, these transform as
Fy(Zs,As) — (Po®@1a,) Fy(Zs, As), 13)
B — (P,®P,®L)B. (14)
Requiring that the contraction
To(Zs, As) = Fy(Zs,As)B
be permutation-equivariant then gives

Tp(Py Zs, Po A P)) = (P, ®14) Ty(Zs, Ay) (P, ®P, @) Vo€ S,.

No general architecture for fy (for example, a standard multilayer perceptron) can satisfy this con-
straint unless it is explicitly parametrised to output elements in the space of permutation-equivariant
linear maps. O

Proof the GN-CDE fusion operation (EquationH) is not permutation equivariant. Firstly we note
that by writing W) = [W%F ) WgF )] for WgF), WéF) € R™*™ the fusion takes the form

- A, A, dA;
ds ds
dA

Thus, the fusion operation can be viewed as pre-multiplying each of A and <3¢ by a learnable
weight matrix and then summing the result. However, letting P be an arbitrary permutation matrix,
we have

- dA,
PA.P” = PW\" A PT + PW{ =22 pT (162)
ds
(F) T, wF)pdAspr
# W7 'PAP" + W, PTP (16b)
s
in general, since WEF) and WéF) do not necessarily commute with P. O
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Proof of Proposition[3.2] First we show permutation equivariance which follows immediately from
the construction of the linear fusion. For let P be an arbitrary permutation matrix. Then

dA,
Li(PAP) + L, <P i

S

dA, _
PT) =PL,(A,)PT +PL, (ds‘> P = PA,PT. (17)

Since (p is implemented as a GNN, (p(PX;,,PAy, PT) = P(y(Xy,, At,) = PZ,, and so overall for
all t € (to, tn] we have

t t
PZ,, + / o(PAPTPZLWW)ds = PZ,, + / Po(AZPWL))ds (18a)
to tO
t
=PZ,, +P / o(AZPWWD)ds (18b)
to

t
=P (zto +/ o(AsngW(L))ds) (18¢)
to
=PZ, (18d)
using the orthogonality of P and linearity of the integral.

To show time-warp equivariance, suppose a latent path Z : [0, 7] — R"* %= satisfies

dZ dA

Z(0) = Zo, — ()= fe(Z(t)aA(t))E

= (). (19)

for some dynamic graph data A : [0,7] — R™*™. Then the warped path Z = Z o 7 satisfies

Z(0) = (Z o 7)(0) = Z(0) = Z. (20)
and by a simple application of the chain rule we get

dz d dz .

() = 3 (Zom)) = Z ()7 1) 21a)
A
= fe(Z(T(t)),A(T(t)))%(f(t))f’(f) (21b)
A d -

= fo(Z(t),A(7(t))) 3; (A o T)(t) 2le)
which is what we wanted. O

Proof of equivariance in Section[3.3] First we show that for general A € R"*™*4 and B € R"*¢
we have P(A ©® B) = PA @ PB. In Einstein notation we have

{P(AOB)},;; = Pir(A ©B)y; (22a)
= PyAyB. (22b)

k

At the same time

(PA ©®PB),; = (PA),;i(PB); (23a)
= Pir AP B (23b)
= PiyAg;By (23¢)

k
={PAOB)},; (23d)

because P;i, P;pr € {0, 1}, so the only terms contributing to the sum are those where P;;, = P/
which happens if and only if & = k' as P is a permutation matrix.

Hence, we see that the vector field in equation [/|is permutation equivariant. By the above, we can
conclude that the entire model is equivariant. O
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F Additional Experiments

Here, we present the results of the additional experiments on personal capital and opinion dynamics.

Table 5: Additional comparison of GN-CDE variants and baselines on the wealth (top) and opinion
dynamics (bottom) tasks. Mean MSEs with 95% confidence intervals are reported, with the best mean
highlighted in bold, and all results within the corresponding confidence interval are underlined. The
final row in each table reports the relative improvement of PENG-CDE over the original GN-CDE

formulation.
Wealth Dynamics (MSE |)
Model Community Grid Power Law Small World
DCRNN [40] 2.639 £ 1.981 22.619+17.115  113.564 £+ 236.126  200.486 + 280.387
STIDGCN [41] 1.862 + 0.947 7.296 + 2.547 2.124 £1.012 3.133 +1.286
ASTGCN [26] 3.431+1.224 19.694 + 2.986 5.153 +1.184 9.246 £ 2.204
STG-NCDE 36.087 4+ 2.454 44.677 + 3.755 37.148 + 2.742 41.046 + 2.205
Constant 2.504 £0.473 14.157 £ 1.746 3.682 +£0.873 7.445 £ 1.200
Graph Neural ODE [47]] 0.878 +0.388 1.898 +1.342 0.950 £ 0.660 0.940 +0.185
Adjacency GN-CDE 0.904 +0.493 2.193 £1.721 1.075 4+ 0.847 1.297 £ 0.765
Pre Mult GN-CDE 7.740 £1.122 24.522 + 6.594 39.715 + 32.698 16.568 £ 6.902
 Original GN-CDE _____ LSTTL078L 658243273 24060965 30761193
PENG-CDE (ours) 0.522 +0.316 4.273 + 3.818 0.863 +0.330 0.813 + 0.627
Relative Improvement (%) 66.89% 35.09% 64.13% 73.57%
Opinion Dynamics (MSE )
Model Community Grid Power Law Small World
DCRNN [40] 20.659 +32.149  92.165 + 132.026 91.687 + 81.638 173.554 4+ 183.913
STIDGCN [41] 2.434 +1.562 6.977 £ 2.451 2.724 £1.530 3.933 + 1.567

ASTGCN [26]

22.001 +1.519

34.855 £ 2.370

22.517 £1.490

27.439 + 1.554

STG-NCDE 57.495 4 9.245 85.405 + 6.479 59.446 £ 9.294 68.092 £ 8.988
Constant 22.989 4+ 1.372 33.124 + 1.275 23.775 4+ 1.480 27.239 4+ 1.929
Graph Neural ODE [47]] 0.665 + 0.620 2.338 &£ 1.277 3.073 £ 6.114 0.779 £0.417
Adjacency GN-CDE 0.777 £ 0.798 1.912 £+ 0.566 0.802 4+ 0.652 0.909 + 0.416

Pre Mult GN-CDE 38.717 £+ 6.229 64.825 4+ 14.066 61.226 +47.714 88.503 + 74.608

Original GN-CDE (] LOG0£0.436  6.963£ 4698 GTSLEILI 522324210

PENG-CDE (ours) 0.525 + 0.581 1.851 + 1.488 0.674 + 0.606 1.161 +£6.011
Relative Improvement (%) 50.52% 73.41% 90.07% 77.77%

G Implementation details

We will release all code alongside the camera-ready version of this paper. The implementation is
written in the Python programming language [62], and uses the JAX framework [4]. Key dependencies
include Diffrax [34] for differentiable ODE solvers, Equinox [35] for neural network modules in JAX,
Optax [4]] for optimisation, and Lineax [S0] for linear algebra routines. Additional dependencies
include NumPy [28], Exca [51]], PyTorch [55], and PyTorch Geometric [23]].

All differential equation-based models use the Tsitouras’ 5/4 method [61] as implemented in Diffrax.

G.1 Compute resources

All experiments were conducted on a computing cluster equipped with NVIDIA H100 (80 GB) and
H200 (141 GB) GPUs. Each node in the cluster features 64-core AMD EPYC 9334 CPUs running at
3.90 GHz, along with 256 GB of RAM. The heat diffusion and gene regulation experiments described
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in Section [4.1| required approximately 3.5 GPU days to complete, whereas the oversampling and
irregularity experiments finished within a total of 12 GPU hours. The PyTorch Geometric Temporal
experiments ran for approximately 8 hours. Running STG-NCDE, GN-CDE, and both versions of
our model on the two Temporal Graph Benchmark tasks required around 8 GPU hours in total.

G.2 Heat diffusion and gene regulation

Two important examples of dynamical systems on networks are heat diffusion and gene regulation
dynamics, both of which describe the local exchange of information or state between connected nodes.
While heat diffusion models symmetric spreading (e.g., temperature equalisation), gene regulation
introduces asymmetric, nonlinear interactions typical of biological systems. These processes can be
modelled as follows:

. . qu(t) Xu (t) Xy (t)
Heat Diffusion: = Lix,(t) = Z < - (24
dt VEN(t) Vi, o
. odxy(t) Xo(t)
Gene Regulation: 5 = X O f+ Z @ 1 (25)

veEN ()

where x,,(t) is the temperature of node v at time ¢, AV, (¢) denotes its neighbourhood, and £; is the
normalised graph Laplacian.

To extend our evaluation to economic networks and social interactions, we additionally include the
following two dynamical systems, in which x,, (¢) models the personal capital or opinion of node u at
time ¢, respectively:

dx,(t
Wealth Dynamics: th( ) _ 5: %, ()% + Z (X0 (t) — X4 (1)) + 0%, (2) (26)
vEN, (1)
. . dx, (%)
Opinion Dynamics: T —X,(t) + threshold Z x,(t),0.5 | . 27
VEN ()

Here, threshold denotes the thresholding function defined as threshold(z,y) = 1iff x > y and 0
otherwise.

G.3 Synthetic experiments

To ensure a fair comparison, the vector fields of all differential equation-based models are imple-
mented using a two-layer GCN [38]] with a hidden dimension of 16, and layer normalisation is applied.
The models are trained for 2000 epochs using the Adam optimiser [37] with a learning rate of 10~2
and weight decay of 104,

G.3.1 SIR model

The Susceptible-Infected-Recovered (SIR) model on graphs [33] is a network-based extension of
the foundational compartmental model in epidemiology [32] that describes how infectious diseases
spread through a structured population. It partitions nodes in a graph into three groups: susceptible
(Sy), infected (I,,), and recovered (R,,) for each node v, with transitions governed by the system

ds, dl, dR,
=88 D L =85S Y Li—yl, =1L, (28)
weN (v) wEN (v)
where (3 is the transmission rate, -y the recovery rate, and ' (v) denotes the neighbours of node v in
the graph.

A key insight from the graph-based SIR model is that the epidemic threshold depends not only on
the infection ratio R = /3/+, but also on the structure of the underlying graph, such as its spectral
radius or degree distribution. If local connectivity supports sufficient transmission, the infection can
spread widely; otherwise, it dies out. Despite its structural complexity, the graph SIR model preserves
essential features of epidemic dynamics and extends the classical model to networked populations.
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G.3.2 Oversampling

To study the dependence of performance and compute time on the number of observed samples, we
construct grid graphs with 100 nodes and generate irregularly sampled time series between 7" = 0
and T = 1, using n = 20, 40, 60, . . ., 200 observations respectively. The dynamic graph topology is
generated as described in Section[4.1] Trajectories are produced by numerically solving Equation [2§]
with random initial conditions. We use two parameter settings: (81 = 0.25,y; = 0.7), modelling
a scenario where the epidemic dies out, and (82 = 0.3, = 0.3), modelling a scenario where the
infection spreads. For each setting, we generate 50 trajectories each for training, validation, and test
sets.

The task is to perform binary classification, predicting whether a given trajectory corresponds to an
outbreak (i.e., sustained spread of infection) or a non-outbreak (i.e., rapid die-out).

We train the models using binary cross-entropy loss for 2000 epochs, applying early stopping with
a patience of 200 epochs and a minimum of 200 epochs. Training is performed using the Adam
optimizer [37] with a learning rate of 10~2 and a weight decay of 10~*. The model hyperparameters
are summarised in Table

Table 6: Hyperparameters for SIR experiments.

Perm Equiv GN-CDE =~ DCRNN

Hidden Dimension 32 8
Number of Layers 3 3
Data Embedding Dimension 3 3
Layer type GCN -
Chebyshev Order - 3

G.3.3 Irregular observation spacing

To assess how the regularity of observation times affects model performance, we generate classifica-
tion data exactly as before, except that we now sample the irregular observation time-stamps from
a Gamma-driven process. In more detail, let N be the total number of desired time-points on the
interval [0, T']. We begin by drawing N — 1 independent inter-arrival increments

At; ~ Gamma(k,0), i=1,...,N—1,

where k& > 0 controls the shape (and hence burstiness) and 6 > 0 scales the raw increments. To force
the observations to span exactly [0, 7], we normalise the increments by their sum:

At; = 7Nﬁi
> j=1 Atj

with tg = 0 and ¢y = 7. This construction guarantees 0 =ty < t; < --- < ty = T and yields
exactly IV + 1 strictly increasing time-stamps.

7
T,  ti=)» At
j=1

In our experiments, we set 7' = 1 and draw N = 20 observations per trajectory using this Gamma-
based sampler for k£ € {3,5,10,25,,50,100}. All other aspects of model training - network
architecture, optimisation schedule, and hyperparameters - remain identical to those in the previous
section.

G.4 Real-world experiments

All models are trained over 200 epochs with an early stopping criterion with a patience of 15 and a
minimum epoch of 20. In all applications, we utilise cubic splines [34, Chapter 3.5] for interpolation
of the data. All hyperparameters have been selected from the ranges in Table [7using a grid search.
For the chosen values see Tables[8] [0]and[T0} All experiments have been averaged over 10 random
seeds.

31



Table 7: Ranges the optimal hyperparameters (PENG) GN-CDE (top) and STG-NCDE (bottom).

Range

Hidden Dimension {8,16,32,64}
Number of Layers {2,3,4}
Data Embedding Dimension {8,16, 32,64}
Number of Recurrent Layers {1,2,3}
Recurrent Hidden Dimension {8, 16, 32,64}
Number of GNN Layers {1,2,3}
GNN Hidden Dimension {8,16,32,64}
Data Embedding Dimension {8,16, 32,64}
Chebychev Order {2}
Node Embedding Dimension {5}

Table 8: Hyperparameters for real-world experiments for the GN-CDE model.

tgbn-trade tgbn-genre twitter-tennis england-covid

Hidden Dimension 8 8 8 32
Number of Layers 3 2 2 4
Data Embedding Dimension 16 8 - -
Layer type GCN GCN GCN GCN

G.5 Source target identification

In [59], the authors address the well-known issue that machine-learned models underperform on node
affinity prediction tasks compared to simple heuristics [53]] by modifying the message construction
in TGN [53] as follows: Given an interaction between nodes u and v at time ¢ with associated data
ey (t), the messages m,,(t) and m,, (¢) sent to nodes u and v, respectively, are defined as

m, () = msg, (su(t*), Sp(t7), e (AL), eyn (L), dn(u), <j)n(v)), (29)
m, (1) = msgy (s, (t7),8u(t7), $¢(AL), eun (1), 90 (v), Pn(u)), (30)
where At is the time elapsed since their last interaction and ¢ : R — R is an encoder function for

node indices. In their work, the authors use ¢(u) = (cos(w;u))!=; -

Inspired by this, we incorporate source-target identification into our equivariant fusion by transforming
the adjacency matrix A and its derivative 4 dASS using an attention-style approach. Specifically, each
entry a,,, of either matrix is passed through an MLP together with the encoding of both » and v to
form a new matrix B with entries

buv = MLP(auol|¢(u)||(v)). €2

where || denotes concatenation. We selected the following hyperparameters: an embedding dimension
of n = 512, an MLP width of 8, and 2 hidden layers. We slightly deviated from the original approach
by defining ¢(u) = MLP(u) with a hidden dimension of 8 and 2 hidden layers.

Table 9: Hyperparameters for real-world experiments for the Permutation Equivariant GN-CDE
model.

tgbn-trade tgbn-genre twitter-tennis  england-covid

Hidden Dimension 32 16 64 64
Number of Layers 2 3 3 3
Data Embedding Dimension 8 8 - -
Layer type GCN GCN GCN GCN
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Table 10: Hyperparameters for real-world experiments for the STG-NCDE model.

tgbn-trade tgbn-genre twitter-tennis england-covid

Number of Recurrent Layers 1 3 3 1
Recurrent Hidden Dimension 8 16 32 32
Number of GNN Layers 2 1 2 3
GNN Hidden Dimension 8 16 32 32
Data Embedding Dimension 32 8 - -
Chebychev Order 2 2 2 2
Node Embedding Dimension 5 5 5 5

Table 11: Runtime per training epoch (s) for GN-CDE and PENG-CDE across different node counts

in Section [ZE}

Model 128 256 512 1024 2048
Pre Mult GN-CDE [48] 045 056 1.18 1.62 9.15
PENG-CDE (ours) 042 049 057 090 150
Rel. Improv. (%) 7.1 143 107.0 80.0 5100

H Statistical analysis of Experiments

In this section, we conduct a statistical verification of the relevance of our experiments. Note that in
Section ] whenever possible, we reported means along with 95% confidence intervals. This applies
to all synthetic experiments and the PyTorch Geometric Temporal datasets reported in Tables [T|and 2]
in the main text. For the Temporal Graph Benchmark datasets, baseline results were only available as
mean NDGC @ 10 scores with standard deviations, so we adopted the same format for consistency.

To address statistical significance testing, we employ critical difference diagrams, based on a two-stage
procedure:

1. A global Friedman test was used to determine whether any model differences were statisti-
cally significant.

2. If the null hypothesis was rejected, we performed pairwise comparisons using the aligned
Friedman post-hoc test.

We present the critical difference diagrams for the dynamical systems, Pytorch Geometric Temporal
and Temporal Graph Benchmark datasets in Figures [3] ] and [5] respectively.

We can see that in all synthetic experiments (Figure [3), our PENG-CDE consistently ranks within the
top non-significant clique, which demonstrates its strong and stable performance. For the PyTorch
Geometric Temporal datasets (twitter-tennis, england-covid; Figure ), the global Friedman test was
inconclusive, meaning the test did not reject the null hypothesis that no model (even the baselines)
is statistically different from the others. On the Temporal Graph Benchmark, the critical difference
analysis (Figure [5) shows that PENG-CDE performs significantly better than both GN-CDE and
STG-NCDE.

I Runtime analysis

Runtime. To highlight the computational benefits of our approach, we repeat the experiments from
Section 4.1 with varying numbers of nodes and record the time per training epoch in Table [T]
Our approach exhibits significantly better runtime performance scaling, as the number of learnable
parameters in the fusion matrices W in the Pre Mult GN-CDE scales quadratically with the number
of nodes, whereas the parameter count of PENG-CDE is independent of graph size.
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(b) Heat diffusion dynamics.
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(d) Consensus opinion dynamics.
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(e) Personal capital dynamics.

Figure 3: Critical difference diagrams for the synthetic experiments in Section4.1|and Tables and

J Miscellaneous

J.1 Societal impact

This work constitutes foundational research and is not tied to any specific application or deployment.
As such, it shares the general risks and benefits inherent to novel machine-learning architectures. For
example, dynamic graph representation learning models have traditionally been applied to tasks such
as traffic forecasting [[11}[10] and molecular modelling [58]], and we hope that the advances presented
here will further drive progress in these and related areas. Overall, we assess the societal impact of

this work to be predominantly positive.
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1 2 3 4 5 6 7 8
| 1 | 1 | 1 1 | 1 | 1 | 1 |
ConstVectorField 22322 l I—W astgen
GraphVectorField 22167 55833 3T GraphVectorField
GNODEFIoorVectorField £202 4250 permEquivGraphVectorField
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Figure 4: Critical difference diagrams for the Pytorch Geometric Temporal (PGT) real-world experi-
ments in Section [f.2]and Table 2}
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Figure 5: Critical difference diagrams for the Temporal Graph Benchmark (TGB) real-world experi-

ments in Section and Table
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