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Abstract

Preference optimization is a crucial research
direction for aligning language models with
human preferences. Direct Preference Opti-
mization (DPO) has emerged as a novel ap-
proach, replacing the paradigm of Reinforce-
ment Learning from Human Feedback (RLHF)
with the direct optimization of preference re-
ward functions. However, DPO treats all pref-
erence response pairs as equally important, re-
gardless of their quality or complexity. This
may inadvertently lead to suboptimal general-
ization, especially when the training dataset
is dominated by noisy or ambiguous prefer-
ence response pairs. In this paper, we pro-
pose a novel method called Reward-Driven
Selective Penalization for Preference Align-
ment Optimization (RSPO). RSPO for the first
time proposes to dynamically categorize pref-
erence data based on implicit reward signals
and apply selective weighting to different cate-
gories. Moreover, RSPO introduces a Penalty
Weighting Strategy that dynamically evaluates
data quality and adjusts optimization weights
in real time, effectively tackling challenges
posed by noisy and complex preference signals,
thereby improving alignment performance.

Our experiments demonstrate that RSPO
achieves remarkable performance on both the
Mistral-base and LLlama3-Instruct models, out-
performing DPO by an average of 4.55% on
AlpacaEval 2, and surpassing recent methods
such as SimPO and WPO, achieving state-
of-the-art (SOTA) performance. Our code
is available at https://anonymous.4open.
science/r/RSPO.

1 Introduction

Preference alignment optimization has recently be-
come a pivotal research focus in the development
of large language models (LLMs) (Ouyang et al.,
2022; Ziegler et al., 2019; Bai et al., 2022), striving
to better align model-generated content with human

preferences which plays a crucial role in enhanc-
ing user experience and improving performance on
downstream tasks (Raffel et al., 2020; Brown et al.,
2020; Hoffmann et al., 2022). Traditional training
methods, such as unsupervised or semi-supervised
learning, rely on fixed objective functions that fail
to capture the dynamic and diverse nature of human
preferences. As a result, there is a growing need
to explore how optimized preference signals can
improve model alignment and better accommodate
user needs (Askell et al., 2021).

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) integrates reward function learning
and policy optimization to directly maximize the
generation probability of preferred responses, offer-
ing a unified framework for preference alignment.
However, despite its advantages, DPO faces several
inherent limitations that hinder its effectiveness in
applications. One of the key challenges lies in its
uniform treatment of preference data, where all
samples are optimized using the same strategy re-
gardless of their alignment quality or complexity.
Dynamic reweighting strategies have been shown
to be highly effective in enhancing alignment per-
formance. For instance, Xu et al. (2024a) employ
curriculum learning (Bengio et al., 2009) to opti-
mize the model’s learning trajectory by incremen-
tally introducing data based on sample difficulty
and quality. Weighted Preference Optimization
(WPO) (Zhou et al., 2024) reweights preference
pairs according to their probability under the cur-
rent policy, thereby improving alignment in LLMs.
In contrast, DPO’s static optimization approach
struggles to fully leverage the distinctions among
data samples, failing to dynamically adjust to vary-
ing data quality and complexity (Wu et al., 2024b).

Additionally, DPO struggles with noisy or incon-
sistent annotations common in subjective human
evaluations (Wu et al., 2024a; Lee et al., 2023;
Gupta et al., 2022). It is also prone to policy dis-
tribution shift, where penalizing dispreferred re-
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sponses may inadvertently impair the generation
of preferred ones. Furthermore, DPO can overfit
on limited or unrepresentative data, leading to poor
generalization on unseen inputs (Xu et al., 2024c).

To overcome these limitations, we propose
RSPO (Reward-Driven Selective Penalization for
Preference Alignment Optimization), a method that
dynamically classifies preference data based on im-
plicit reward signals and applies selective weight-
ing to improve alignment. Based on in-depth explo-
ration and analysis, RSPO divides data into well-
aligned (R1) and less-aligned (R2-R4) categories,
assigning higher weights to R1 to reinforce reli-
able learning while penalizing R2—R4 to reduce
overfitting. Additionally, we propose a novel dy-
namic Penalty Weighting Strategy, which adjusts
optimization weights in real time based on data
quality, thereby enhancing stability and robustness
in complex alignment scenarios.

Our contributions are summarized as follows:

* We, for the first time, classify preference data
into four reward-alignment categories (R1—
R4) based on implicit reward distributions.
By leveraging this categorization, RSPO op-
timizes preference data selectively, assign-
ing higher weights to well-aligned (R1) data
while in a fine-grained manner adjusting the
weights of less-aligned (R2—-R4) samples
to enhance robustness and alignment perfor-
mance.

* We introduce a novel Penalty Weighting Strat-
egy, which dynamically evaluates sample qual-
ity and assigns penalties to noisy or hard-
to-align data during training. This mecha-
nism improves optimization stability, miti-
gates overfitting, and ensures effective learn-
ing of high-quality preference signals.

» Extensive experimental results demonstrate
the effectiveness of RSPO, which is imple-
mented on two widely used large language
model foundations: Mistral-base and Llama3-
Instruct. On Mistral-base model, RSPO out-
performs DPO by 4.8% on the AlpacaEval
2 benchmark. On Llama3-Instruct model,
RSPO outperforms DPO by 4.3%. RSPO also
surpasses recent methods such as SimPO (Lu
et al., 2024) and WPO (Zhou et al., 2024),
achieving new SOTA results, and exhibits
strong generalization capabilities across mul-
tiple downstream tasks.

2 Related Work

Direct Preference Optimization (DPO) and Its
Analysis. DPO (Rafailov et al., 2023) has be-
come a prominent method for aligning language
models with human preferences by directly opti-
mizing the preference reward function. However,
recent studies highlighted several limitations, in-
cluding imbalanced gradient updates, which hinder
its ability to effectively capture complex prefer-
ence signals (Feng et al., 2024). Additionally, DPO
is prone to generating out-of-distribution (OOD)
responses and exhibits high sensitivity to distribu-
tion shifts between the training dataset and model-
generated outputs (Gan et al., 2024), posing chal-
lenges for real-world deployment.

Advancements in DPO. To address the limita-
tions of DPO, several methods have been proposed.
Smaug (Pal et al., 2024) employs DPO-Positive to
fix some failure modes of DPO. WPO (Zhou et al.,
2024) adapts off-policy data to resemble on-policy
data by reweighting preference pairs according to
their probability under the current policy. R-DPO
(Park et al., 2024) incorporates an extra regulariza-
tion term into the DPO loss function, thereby miti-
gating the model’s tendency to exploit text length
during the optimization process.

Other Preference Optimization Methods. Var-
ious other preference optimization methods have
been explored. SimPO (Meng et al., 2024) per-
forms simple preference optimization using a
reference-free reward function. GPO (Generalized
Preference Optimization) (Tang et al., 2024) offers
a unified approach to offline alignment. ORPO
(Hong et al., 2024) performs monolithic preference
optimization without a reference model. RRHF
(Yuan et al., 2023) aligns language models with
human preferences by scoring sampled responses
from various sources and learning to rank them
using ranking loss. CPO (Xu et al., 2024b) uses
contrastive learning to compare pairs of outputs
and optimize preferences.

3 Method

In this section, we provide the preliminaries of
DPO in Section 3.1. We then introduce our pro-
posed RSPO, which primarily consists of two parts,
as shown in Figure 1: Classification of DPO Im-
plicit Rewards (Section 3.2) and Reward-Driven
Selective Penalization Weighting (Section 3.3).
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Figure 1: Overview of DPO and our RSPO method. RSPO dynamically classifies preference data based on implicit
reward signals into well-aligned R1 data and less-aligned R2-R4 data. It then applies weighting to selected options
according to our Penalty Weighting Strategy to evaluate data quality and adjust optimization weights in real time.
By assigning higher weights to R1 data with clear reward signals, RSPO reinforces the learning of high-alignment
data while selectively penalizing R2-R4 data to mitigate overfitting caused by hard-to-align samples.

3.1 Preliminaries

DPO (Rafailov et al., 2023) unifies reward learning
and policy optimization by implicitly reparame-
terizing the reward function via the closed-form
solution of the optimal policy. Given a human pref-
erence dataset D, where each pair consists of a
preferred response y,, and a dispreferred response
y1, DPO optimizes the policy model 7y to increase
the probability of preferred responses while de-
creasing the probability of generating dispreferred
responses by increasing the log probability of pre-
ferred responses over dispreferred responses:

7o (Yuw|) 7o (yi| %)
flog ———= —
7Tref(yw’l') 7Tref(yl|33)
where 7.t denotes a reference model.

DPO employs Bradley-Terry (Bradley and Terry,
1952) model to measure the alignment between pol-
icy model and human preference. By rearranging
the optimal solution of the general reward function,
we can derive the following reward function:

(2, ) = Blog = WIZ).
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where Z(z) is a normalization factor. By substi-
tuting this reward function into the Bradley-Terry
model, we can obtain the DPO loss function:

+ Blog Z(x),

LDPO = _E(mvy’w Yl )ND

log o (ry — rl)]

3.2 C(lassification of DPO Implicit Rewards

In DPO, all samples are optimized using the
same strategy, regardless of their alignment qual-
ity or complexity. To fully leverage the distinc-
tions among data samples and adjust optimization
weights in real time, we innovatively propose dy-
namically categorizing preference data based on
implicit reward signals into well-aligned R1 data
and less-aligned R2-?4 data, which is then applied
to subsequent preference optimization.

Four Implicit Rewards in DPO. The gradient
of Lppo with respect to the parameters 6 can be
written as:

VoLoro = — BE(4y,,.y)~D {U(Te(l”, Y1) — ro(T, Yuw))
- (Vglog mg(ywl|z) — Vg log ﬂg(yl|l‘)):| ,

where r9(x,y) = Slog % is the implicit re-
ward defined by the policy model 7y and reference
model 7s. This gradient emphasizes the objective
of DPO, which is to dynamically adjust the gen-
eration probabilities py(x, ¥, ) and py(z, y;) based
on implicit rewards derived from the preference
response pairs. Since the implicit rewards reflect
the alignment quality between the policy model
and human preferences and serve as a crucial part
of the DPO optimization process, we argue that
a more detailed study of the preference response
pairs and their implicit rewards is necessary.

Based on the implicit rewards rg(x,y,,) and
ro(x,y;), we categorize preference response pairs
into four types:

* R1: The preferred response exhibits a pos-
itive reward (rg(z,y,,) > 0), while the dis-
preferred response displays a negative reward
(rg(z,y;) < 0), representing a clear align-
ment between policy model and human pref-
erences.

* R2: Both preferred and dispreferred re-
sponses receive negative reward signals
(ro(x,yw) < 0, ro(x,y;) < 0), indicating
a failure to reinforce preference alignment ef-
fectively.

* R3: The preferred response receives a nega-
tive reward signal, while the dispreferred re-
sponse gets a positive signal (rg(x, y,,) < 0,
ro(x,y;) > 0), indicating a misalignment
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Figure 2: Distribution of four types of preference response pairs during DPO training on Mistral-SFT and Llama-3-
Instruct. Results for one epoch on the Ultrafeedback dataset (Cui et al., 2023).

where dispreferred responses are erroneously
prioritized.

* R4: Both preferred and dispreferred re-
sponses receive positive reward signals
(ro(z,yw) > 0, ro(x,y;) > 0), reflecting an
ambiguity in the alignment signals.

These four types of preference response pairs ex-
hibit distinct distributions as training progresses.
As illustrated in Figure 2, the distribution of prefer-
ence response pairs indicates that the policy model
struggles to consistently capture preference sig-
nals for most training data (where R2 is the data
with the highest proportion in the binarized Ultra-
feedback dataset). However, DPO’s optimization
framework treats all preference response pairs as
equally important, regardless of their quality or
complexity. This may inadvertently lead to subop-
timal generalization, especially when the training
dataset is dominated by noisy or ambiguous pref-
erence response pairs. Moreover, their distribution
proportions vary throughout the entire training pro-
cess (see Appendix D).

Impact of R1-R4 on the Training Process. In
our data classification, we analyze and reveal that
the R1 type provides a strong alignment signal,
indicating that the pairs are well-aligned with the
model’s learned preference. In contrast, the types
R2 - R4 may exhibit ambiguous, complex, or con-
flicting situations with respect to the human prefer-
ences that the model has learned. Building on the
concept of curriculum learning, we believe that se-
lectively reducing the loss for R2-R4 preferences
can help mitigate overfitting on challenging data
and enhance the model’s ability to generalize hu-
man preferences. This finding is experimentally
verified in Section 5.2.

3.3 Reward-Driven Selective Penalization
Weighting

In order to mitigate model’s overfitting to prefer-
ence responce pairs that are difficult to learn prefer-
ences and consolidate the preferences that the pol-
icy model has learned, we propose a novel reward-
driven selective penalization weighting approach,
which dynamically reweights these preference re-
sponse pairs to maximize model performance.

On the basis of observation in Section 3.2, the
reweighting strategy should ensure that preference
response pairs of R1 type retain their full contribu-
tion to the optimization objective, reinforcing the
model’s learned human preferences. In contrast,
for preference response pairs of R2-1?4 type, their
weights are dynamically adjusted to reflect their
relative uncertainty or conflict with the model’s
learned human preferences. This approach prevents
overfitting to challenging or ambiguous preference
response pairs while maintaining alignment with
the primary optimization objective. Formally, the
selective weight w(y., y1, ) is defined as follows:

fyw,y;,z), for R2— R4

W(Ys Y1, T) = {17 for B €))

Here, w(yw,y;,z) = 1 for the preference re-
sponse pairs of R1. In contrast, for R2-R4, the
weight f(yw, Y1, x) serves as a penalty function.
The design principle of the penalty function is to
reduce the influence of samples on gradient updates
based on their deviation from the human prefer-
ences learned by the policy model. The penalty
weight we define is as follows:

f(ywa yl,l') =Ato <Bw log

o <ﬁz log

2
ol ) P



The design of f(yw, yi, ) incorporates two key
components:

1. Constant Scaling Coefficient: The constant
A (0 < A < 1) provides a baseline penalty to
all samples in R2- R4, ensuring that their influ-
ence on the loss is consistently reduced. This
mitigates the risk of overfitting to samples
with high uncertainty or conflicting signals.

2. Preference Deviation Penalty Coefficient:
The dynamic penalty coefficient, governed
by the sigmoid functions o(-), adjusts the
sample weight based on the relative log-
probability differences between the policy
model 7y and the reference model 7. Specif-

9 (Yuw|T)

Tref (Yw | )

viations in the preferred responses v,,, while

o (61 log %) penalizes deviations in

the rejected responses y;. This ensures that

the penalty is proportionate to the degree of
misalignment, suppressing over-learning of
ambiguous data and maintaining balance in

the preference distribution.

ically, the o (Bw log ) penalizes de-

By combining these two components, the penalty
weight f(yuw, y1, ) enables the model to fine-tune
its learning process, focusing on clear and reliable
data while cautiously handling ambiguous data.
The complete RSPO loss function is defined as:

Lrspo = — E(y, y1.0) [W (Y, y1, ) 3
log o (r9(, yw) — To(,y1))]

The detailed steps of the RSPO algorithm are pre-
sented in Appendix A.

4 Experiment Setup

4.1 Experimental Settings

We utilize Mistral-base' and Llama-3-Instruct? as
our foundational models. For Mistral-base, we uti-
lize the official supervised fine-tuned (SFT) check-
point from zephyr as our SFT model, training for
one epoch on the binarized Ultrafeedback dataset
(Cui et al., 2023). For Llama-3-Instruct, we uti-
lize off-the-shelf instruction-tuned model as our
SFT model, training for one epoch on the Llama3-
Ultrafeedback dataset (Meng et al., 2024). We

"https://huggingface.co/HuggingFaceH4/
mistral-7b-sft-beta

2https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct

conduct experiments under both full parameter fine-
tuning and LoRA (Hu et al., 2022) fine-tuning set-
tings using identical parameters. More details of
experimental settings are provided in Appendix C.

4.2 Evaluation

We evaluate the instruction-following capabilities
of our models using the widely adopted AlpacaEval
2 benchmark (Li et al., 2023), reporting both the
raw Win Rate (WR) and the Length-Controlled
Win Rate (LC) (Dubois et al., 2024). To ensure
fair comparison, we follow the decoding strategy
of Meng et al. (2024).

In addition, we assess performance on sev-
eral downstream tasks—MMLU (Hendrycks et al.,
2021), ARC (Clark et al., 2018), Truthful QA (Lin
et al.,, 2022), IFEval (Zhou et al., 2023), and
GSMBS8K (Cobbe et al., 2021)—as detailed in Ap-
pendix B. We also report standard deviations in
Appendix G to assess result stability.

4.3 Baselines

We compare our method with recent SOTA prefer-
ence optimization methods, which are described in
detail in Section 2, including RRHF (Yuan et al.,
2023), DPO (Rafailov et al., 2023), ORPO (Hong
et al., 2024), IPO (Azar et al., 2024), CPO (Xu
et al., 2024b), KTO (Ethayarajh et al., 2024), R-
DPO (Park et al., 2024), WPO (Zhou et al., 2024),
and SimPO (Meng et al., 2024).

5 Experimental Results

5.1 Main Results

Under full parameter settings, Table 1 present the
results for Mistral-base and Llama-3-Instruct. Our
method consistently outperform all baselines on
AlpacaEval 2: (i) In Mistral-base configuration,
our RSPO method achieves an LC win-rate of
25.4% and a raw win-rate of 23.7%, improving
upon DPO by 4.8% in LC and 5.5% in raw win-rate.
(@) In Llama-3-Instruct configuration, our method
achieves an LC win-rate of 45.0% and a raw win-
rate of 42.5%, surpassing DPO by 4.3% in LC win-
rate and 4.4% in raw win-rate. Moreover, RSPO
also outperforms recent SOTA methods SimPO and
WPO, achieving new SOTA results.

On multiple downstream tasks, the results in
Table 2 show that our method RSPO outper-
forms DPO across multiple downstream tasks,
demonstrating consistent performance improve-
ments. Specifically, compared to DPO, our method
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Method Mistral-base (7B) ‘ Llama-3-Instruct (8B)
LC WR Avg.Len | LC WR Avg. Len
SFT 84 6.2 914 \ 26.0 253 1920
RRHF (Yuan et al., 2023) 11.6 10.2 1630 31.3 284 1805
IPO (Azar et al., 2024) 11.8 94 1380 356 35.6 1983
KTO (Ethayarajh et al., 2024) 13.1 9.1 1144 33.1 31.8 1909
CPO (Xu et al., 2024b) 9.8 89 1827 289 322 2166
ORPO (Hong et al., 2024) 147 12.2 1475 28.5 274 1888
DPO (Rafailov et al., 2023) 20.6 18.2 1521 40.7 38.1 1933
R-DPO (Park et al., 2024) 174 12.8 1335 41.1 37.8 1854
SimPO (Meng et al., 2024) 21.5 20.8 1868 447 40.5 1825
WPO (Zhou et al., 2024) 244 23.7 - 40.0 419 2084
RSPO 254 23.7 1873 45.0 425 1870

Table 1: Comparison of methods on Mistral-base (7B) and Llama-3-Instruct (8B) on AlpacaEval 2 judged by
GPT-4-turbo. Each column’s maximum value is bolded. “Avg. Len” denotes the average number of output tokens.

Method GSMS8K ARC TQA MMLU IFEval Avg.
SFT 42.61 5597 28.15 57.17 36.59 44.10
DPO 33.13  59.64 46.14 57.46 50.48 49.37
R-DPO 30.10 56.06 40.64 5848 53.24 47.70
SimPO 3359 60.15 43.45 58.25 5298 49.68
WPO 30.63 57.00 40.51 5854 55.64 48.46
RSPO 3745 5794 47.25 5858 55.04 51.25

Table 2: Performance comparison of different methods
on Mistral-Base (7B) across multiple benchmarks (TQA
indicates Truthful QA). We report the strictly match ac-
curacy, and compare with the methods that achieve simi-
lar performance to ours on AlpacaEval 2. “Avg” denotes
the average performance of all tasks.

achieves higher scores on tasks such as GSM8K,
TruthfulQA, and IFEval. Additionally, our method
achieves the highest average score 51.25% among
all methods, further demonstrating its effectiveness.

Under LoRA fine-tuning settings, RSPO also
consistently outperforms DPO across both Mistral-
base and Llama-3-Instruct. The results in Table 3
highlight RSPO’s superior performance and demon-
strate that our method achieves significant improve-
ments with fewer parameter adjustments.

5.2 Analysis on Implicit Reward Classification

To explore the impact of classifying preference
response pairs based on implicit rewards during
training on model performance, we conduct the
following two sets of experiments:

Mistral-base Llama-3-Instruct

DPO RSPO DPO RSPO
Armo WR 20.7  27.2 67 74.2
Deepseek LC  20.5  25.9 478 494
Deepseek WR  16.0  24.2 456 459
Table 3: Results of AlpacaEval 2 judged by Armo

Llama3 and DeepSeek v3 under the LoRA settings.

1. Without distinguishing data based on implicit
rewards, all data are given the penalty weight
from Equation (2) (named RSPO y,c1ass);

2. Distinguishing data based on implicit rewards,
and R2- R4 data are given the penalty weight
from Equation (2) (i.e., our RSPO).

We utilize Mistral-base as the base model, con-
ducting a single epoch of training on the binarized
Ultrafeedback dataset (Cui et al., 2023) and evalu-
ating on AlpacaEval 2. The same configuration is
employed for the subsequent ablation studies.

The experimental results are shown in Table
4. First, the results show that RSPO outperforms
RSPO N oci1ass across all metrics. This suggests that
categorizing data into different reward types and
applying penalty weights to R2- R4 data help the
model capture human preferences more accurately,
enhancing overall training effectiveness. Second,
both RSPO y,ci14ss and RSPO outperform DPO.
This further demonstrates the effectiveness of our



ARMO DeepSeek v3

Method WR LC WR
DPO 20.7 20.5 16.0
RSPONoClass  24.8 234 226
RSPO 27.2 259 24.2

Table 4: Comparison of the impact of preference re-
sponse pair classification on model performance.
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Figure 3: Exploratory experiments: Impact of R1-R4
on the training process when scaling the loss of each
type of preference response pairs by a factor of 0.1.

penalty weighting, which assigns weights based
on the degree of preference divergence between
the data and the model, as reflected by the model’s
implicit rewards.

To further investigate the impact of different pref-
erence response pairs on training, we conduct ex-
ploratory experiments by applying a weight decay
factor of 0.1 to each type and using the DPO loss.
As shown in Figure 3, applying weight decay to
preference response pairs of R1 type result in a
significant degradation in model alignment perfor-
mance compared to the DPO baseline. In contrast,
applying weight decay to the preference response
pairs of R2 - R4 types lead to alignment perfor-
mance comparable to or even better than the DPO
baseline. These results indicate that different types
of preference response pairs exert distinct influ-
ences on model training. Notably, reducing the
weight of preference pairs of R1 type appears to
have a significant negative impact on performance.

5.3 Analysis on Penalty Weights

To verify the impact of penalty weights on perfor-
mance, we conduct the following experiments.

Experimental Analysis of Penalty Weight Range.

To validate our hypothesis that reducing the loss on
R2-R4 samples mitigates overfitting and improves

ARMO DeepSeek v3

WR LC WR
A=0.075 21.6 212 18.6
A=1 20.7 205 16.0
A=5 19.3 150 10.8
A=10 12.2 124 94

Table 5: Performance comparison for different penalty
weight values of \.

generalization to human preferences, we adjust the
penalty weights as follows:

A, for R2-R4

Wt 91 2) = {1, for R1

where 0 < A < 1. Lowering A reduces the
impact of R2—R4 samples during training, while
A > 1 increases their contribution. As shown in
Table 5, appropriately reducing A improves model
performance, whereas increasing it significantly de-
grades results. This supports our approach of down-
weighting 2—R4 data to consolidate learned pref-
erences and enhance generalization.

Empirically, we set A = 0.075, based on the
observation that R1 samples comprise only about
10% of training data. When A > 0.2, the relative
weight of R1 remains insufficient. By reducing the
R2—-R4 weights to approximately 10%, we effec-
tively emphasize R1’s contribution during training.

Experimental Analysis of Penalty Weight Func-
tion. To assess the impact of penalty weighting
functions on model performance, we design several
penalty weighting functions as shown in Table 10
of Appendix F, where we also analyze our design
ideas and conduct the hyperparameter exploration
for the proposed penalty functions.

The experimental results using three different
penalty weight functions, fi, fo and f3, are pre-
sented in Table 6. These results show that different
penalty weight functions have varying impacts on
model training effectiveness, with our proposed
heuristic penalty function yielding superior perfor-
mance.

5.4 Further Analysis on Why R1 is Better for
LLM Alignment

To further investigate why R1 samples are more
beneficial for LLM alignment, we conduct experi-
mental analyses from two perspectives:



ARMO DeepSeek v3

Function WR LC WR
fi 25.3 24.1  21.2
fo 22.6 23.6  20.7
f3 27.2 259 242

Table 6: Performance comparison of different penalty
weight functions. f3 is the one proposed in Eq. (2).
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Figure 4: Performance comparison of RSPO, DPO-A,
and DPO (ARMO WR) across training steps (0-450).
Dashed lines indicate trend lines.

The evolution of model performance over train-
ing steps. In this study, we compare DPO-A (with
A = 0.075), RSPO, and standard DPO. DPO-\ ap-
plies a constant penalty to R2—R4 samples, while
RSPO employs a dynamic penalty mechanism.
Standard DPO applies no explicit penalty. Figure 4
presents the performance of DPO-)\, RSPO, and the
standard DPO across different training steps. The
results highlight that assigning higher weights to
R1 samples leads to improved model training. As
shown in the figure, both DPO-\ and RSPO achieve
better performance more quickly compared to DPO
during training. Moreover, RSPO reaches a higher
performance ceiling than DPO-)\, demonstrating
the superior effectiveness of our proposed RSPO
method.

The behavior of model gradients throughout the
training process. The gradient-based analysis in
Figure 5 reveals that RSPO consistently generates
smoother and more stable gradients compared to
DPO. This indicates that RSPO not only mitigates
abrupt fluctuations in gradient magnitudes but also
promotes a more stable and controlled optimiza-
tion trajectory during training. Such smoothness in
gradients is closely associated with enhanced con-
vergence behavior and reduced risk of exploding

Gradient Comparison with Trend Lines

Gradient

200
Step

300 400

Figure 5: Comparison of RSPO and DPO gradients
across steps (0-450).

RSPO DPO  Diff.

436.0 4329 +3.1
1.926 1.844 +0.082

Metric

Avg. GPU Mem. (GB)
Avg. Time / Epoch (hr)

Perf. Diff. (LC)

+4.8% (Mistral), +4.3% (Llama)

Table 7: Efficiency comparison between RSPO and
DPO. “Diff.” denotes efficiency difference, and *“Perf.
Diff:” indicates the performance gain of our RSPO over
DPO.

or vanishing gradients, ultimately contributing to
improved training stability. A detailed analysis of
the gradient dynamics is provided in Appendix E.

5.5 Training Efficiency and Performance
Analysis

To evaluate the computational overhead of RSPO,
we measure average GPU memory usage, training
time per epoch, and total memory consumption
during training, alongside its performance gains
over DPO. As shown in Table 7, RSPO adds a mod-
est 3.19 GB of GPU memory and extends training
time by about 4.92 minutes per epoch. Despite
this slight increase, RSPO delivers substantial im-
provements, boosting win rates on AlpacaEval 2 by
+4.8% for Mistral-base (7B) and +4.3% for Llama-
3-Instruct (8B), evaluated with GPT-4-turbo. These
results confirm RSPO as an efficient and effective
upgrade over DPO for preference optimization.

6 Conclusion

We propose Reward-Driven Selective Penalization
for Preference Alignment Optimization (RSPO), a
method that enhances preference alignment by in-
novatively categorizing data and applying selective
weighting. RSPO introduces a dynamic penalty
strategy that down-weights noisy or hard-to-align
samples during training. Experiments show that
RSPO improves alignment and generalization by
effectively handling complex preference data.



Limitations

Despite its innovative contributions, the RSPO
framework has several limitations, particularly in
the design of penalty functions and data partition-
ing mechanisms.

Impact and Future Exploration of Penalty
Functions. Although the proposed heuristic
penalty function demonstrates superior perfor-
mance in the experiments, the choice of penalty
function remains a limitation. Different penalty
weight functions have varying impacts on the
model’s training effectiveness, and only a limited
set of functions are explored in this study. Future
work will investigate a broader range of penalty
functions to identify more effective alternatives,
with the goal of improving model generalization
and training performance. Furthermore, given the
diversity and complexity of tasks, it may be neces-
sary to design task-specific penalty functions, sug-
gesting that there is significant potential for further
optimization in penalty function design.

Data Partitioning Mechanism also presents
challenges. RSPO partitions data into classes based
on alignment quality, such as R1 (high alignment)
and R2- R4 (lower alignment). Although this clas-
sification is theoretically sound, it faces practical
challenges. The boundaries between these classes
may be ambiguous, and complex data distributions
may not fit neatly into predefined categories. This
issue is particularly pronounced for intermediate
samples that are neither clearly aligned nor com-
pletely misaligned. The inefficiency in handling
such samples can negatively impact the overall op-
timization process. Future research should explore
more nuanced partitioning strategies that can better
accommodate complex data distributions.
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A RSPO Algorithm

The Reward-Driven Selective Penalization for Pref-
erence Alignment Optimization (RSPO) algorithm
refines preference optimization by dynamically ad-
justing the training signal based on implicit reward
distributions. Unlike standard Direct Preference
Optimization (DPO), which treats all preference
pairs equally, RSPO categorizes data into distinct
reward scenarios and selectively penalizes samples
that may hinder effective preference learning.

B Details of Multiple Downstream
Benchmark Tasks

We present the details of multiple downstream
benchmark tasks:

* GSMSK (Cobbe et al., 2021): A generative
primary level math dataset of 1.3k questions.
We use 8-shot in-context exemplars. We re-
port strict exact match score.

e IFEval (Zhou et al., 2023): A special
instruction-following test dataset, contains
541 verifiable instructions. We use 5-shot
prompt and report instruction-level strict ac-
curacy.

Algorithm 1: Reward-Driven Selective Pe-
nalization for Preference Alignment Opti-
mization (RSPO)

Input: Preference dataset D, policy model 7y,
reference model 7.r, number of iterations 1’
fort =0to T do
Sample a batch of preference pairs (x, Yy, ¥1)
from D;
Compute r(zx, y,y) and r(x, y;) for each data
point using 7y and 7yer;
if 7(z,y,) > 0and r(x,y;) <0 then
Assign the data to R1
else
Assign the data to R2 — R4
Assign penalty weights using Equation (2)
end if
Compute Lrspo using Equation (1)
Update the policy model parameters 6
end for

* MMLU (Hendrycks et al., 2021): One of the
most popular and largest multi-choice bench-
mark for testing common knowledge of LLMs,
covering 14k questions. We use 5-shot prompt
and present accuracy.

* TruthfulQA (Lin et al., 2022): A testing
dataset aims for assessing a model’s recog-
nition of true statements. We evaluate all 817
questions with 0-shot prompt,and reporting
truthfulga_mc1 accuracy score.

* ARC (Clark et al., 2018): A multiple-choice
benchmark for science questions from grades
3t09, splitinto Easy and Challenge parts. The
Challenge part has harder, reasoning-based
questions. We evaluate all 817 questions with
25-shot prompt, and reporting accuracy score.

C Experiment Parameters

Based on the DPO parameters provided by the
Princeton-NLP team, we achieved significant im-
provements by solely adjusting the penalty weight
coefficients. Additionally, we set the max_length
for the Llama-3-Instruct model to only half of what
the Princeton-NLP team set, which reduces training
time by nearly 50%. Table 8 provides detailed ex-
perimental parameters for Mistral-base and Llama-
3-Instruct.
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Figure 6: The proportion of the four types of preference response pairs during the DPO training process for

Mistral-SFT and Llama-3-Instruct.

Parameter Mistral-base  Llama-3-Instruct
GPU 8xAscend910B 8xAscend910B
beta 0.01 0.01
batch 128 128
learning_rate S5e-7 Te-7
max_prompt_length 512 512
max_length 1024 1024
num_train_epochs 1 1
torch_dtype bfloatl16 bfloat16
warmup_ratio 0.1 0.1

Bw 0.01 0.01

B 0.1 0.1

A 0.1 0.1

Table 8: Experimental Parameters for Mistral-base and
Llama-3-Instruct.

D Proportion of the Four Types of
Preference Response Pairs

Figure 6 shows the distribution of preference re-
sponse pairs during the DPO training process for
Mistral-Base and Llama-3-Instruct. As seen in Fig-
ure 6, the preference response pairs for Mistral-
Base are primarily concentrated in the negative
preference category, especially in the r(z,y1) <0
and r(z,y,) < 0 category, which accounts for
83.44% of the cases, indicating that the model
tends to predict negative preferences. In contrast,
the preference response distribution for Llama-3-
Instruct is more balanced. While the largest pro-
portion is still concentrated in the negative pref-
erence category, the distribution across the other
categories is relatively more spread out.

It is necessary to distinguish between these four
categories because they represent different types
of model behavior, each of which could impact the
training process and final performance. The cases
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where both responses are negative (r(x,y1) < 0
and r(x,y,) < 0) suggest that the model may
be overly conservative in assigning preference to
responses. On the other hand, when 7(z,y;) < 0
and r(z,y,) > 0, it indicates that the model is
making a more confident prediction that contradicts
the actual preference, suggesting a misalignment
that could be problematic for generalization.

Differentiating between these categories helps
ensure that the model is not overfitting to one type
of preference signal (e.g., negative preferences)
while neglecting others. Furthermore, it allows for
targeted interventions, such as adjusting the train-
ing weights for different categories based on their
quality, complexity, or relevance, improving the
model’s ability to generalize and handle ambigu-
ous or noisy preference data effectively. This is
especially critical when optimizing performance
in a real-world setting where preferences may not
always be clearly defined.

E Gradient Analysis

Previous studies have shown that DPO exhibits
significant asymmetry in the gradient signals be-
tween chosen and rejected responses during train-
ing, specifically manifested as:|Vy log 7y (y;|x)| >
Vo log 79 (yo,|2)]-

This asymmetry causes the model to rapidly de-
crease the generation probability of rejected re-
sponses while failing to effectively increase the
probability of chosen responses. The imbalance
in DPO’s learning process—where the gradient
weight for chosen responses is smaller than that
for rejected responses—makes it difficult for the
model to learn chosen responses effectively.



A Buw 8 ARMO WR
0.1 0.01 0.1 27.20%
0.0 0.01 0.1 17.01%
0.1 0.1 0.01 20.49%
0.1 0.01 0.01 23.72%
0.1 01 01 20.37%

Table 9: Hyperparameter exploration results for the
proposed RSPO method.

Functions Objective
fi Ao (\Bw log Tou|z) )
Trer(Yuw |7)
fo Ao (3 log T0Wul?) ) +o (ﬂ, log ’T‘e‘(yl‘x)>
’ T et (Y |) mo(yi|z)
fs Ao (8 log T Wul2) ) o (61 log ”“‘(y”z)>
T et (Y| @) 7o (i)

Table 10: Different penalty weight functions.

According to curriculum learning theory, forcing
the model to fit difficult problems too early can lead
to suboptimal optimization. We believe that in this
scenario, assigning a higher weight to R1-type data
can stabilize the learning process and achieve better
optimization performance.

We compared the changes in unclipped gradi-
ents between our method and DPO during training.
We observed that DPO exhibited greater gradient
fluctuations, with a sharp increase between steps
50 and 75, followed by a consistently high level.

This occurs because, during training, the model
develops some understanding of the training data,
but the data remains more complex than what the
model can fully comprehend. As a result, the model
struggles to capture the information in the samples
completely. In this scenario, the model undergoes
large gradient updates continuously, indicating that
DPO experiences highly unstable gradient updates
throughout the training process.

In contrast, our method (RSPO) assigns higher
weights to R1-type data, which aligns with the
model’s gradient update direction. This reduces the
impact of hard-to-learn data on gradient updates,
leading to more consistent updates during training.
As a result, the optimization process becomes more
stable, exhibiting a smoother gradient trajectory
with smaller fluctuations.
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F Penalty Function Design and
Hyperparameter Exploration

We further supplement our analysis of the penalty
function design and the corresponding hyperparam-
eter exploration as follows:

First, based on the experimental results pre-
sented in Figure 3 and Table 5, we observed that
assigning a higher weight to R1-type data can po-
tentially improve the model’s overall performance.
Motivated by this observation, we considered in-
creasing the weight assigned to R1 samples by
proportionally reducing the weight of other sample
types.

Our initial approach was to introduce a constant
as a penalty function. However, considering that
Direct Preference Optimization (DPO) is inherently
a pairwise preference learning method, simply us-
ing a constant could achieve some effect but would
neglect the relationship between paired preferences.
Specifically, previous studies have shown that the
model tends to more easily suppress the probability
of rejected responses than to enhance the proba-
bility of chosen responses. Hence, the model’s
ability to increase 7y (yy, |x) and decrease 7y (y;|x)
is asymmetric.

To address this, we propose a dynamic penalty
function that separately considers the chosen and
rejected responses (Table 10). Drawing inspiration
from the implicit reward formulation in DPO,

mo(ylz)

r(z,y) = Blog o

we design our penalty function as:

fws g, 2) = A+ 0 (r(2, yw)) - o (=r(z,u1))

that is,
> - <,Bl log

where o (-) denotes the Sigmoid function.
Here, the term log % captures the policy
model’s relative ability to increase the probability
of generating the chosen response compared to the
reference model. A higher value implies better
generation quality, which results in a larger weight
after passing through a scaled Sigmoid transforma-
tion parameterized by ,,.

Similarly, log 7:;«:((;1‘\;)) reflects the model’s abil-
ity to suppress the rejected response. If the policy
model assigns a high probability to a rejected re-

sponse, a lower weight is accordingly applied after

7Tref(3/l|$)
o (Y| 7)

o (Yuw!|)

= Mo <5w log et (l)




Model Method LC WR Std. Error
Mistral-sft DPO 20.6 18.2 1.19
Mistral-sft RSPO 254 23.7 1.25
Llama-3-Instruct DPO 40.7 38.1 1.52
Llama-3-Instruct RSPO 450 252 1.46

Table 11: Main results with standard errors (3 runs,
median reported).

Task Accuracy Standard Error
GSMS8K 37.45 0.01245
ARC 57.94 0.01446
TQA 47.25 0.01747
MMLU 58.58 0.00395
IFEVAL 55.04 0.02131

Table 12: Standard errors of RSPO on downstream
tasks.

mapping through the Sigmoid function scaled by
Br.

Given that models more easily learn to suppress
rejected responses than to promote chosen ones,
we set different scaling factors: specifically, 5; =
0.1 to amplify the sensitivity to the suppression of
rejected responses, and 3, = 0.01 to attenuate the
sensitivity when promoting chosen responses.

Additionally, we introduce a constant term A to
ensure a minimum gradient contribution from each
data point, preventing the dynamic penalty from be-
coming excessively small, which could otherwise
impede effective learning on certain examples.

We further conducted hyperparameter explo-
ration for the proposed penalty function. The ex-
perimental results are summarized in Table 9.

Through these ablation studies, we conclude that
assigning a relatively larger value to 5; compared to
Bw, combined with introducing a constant term A,
leads to better model performance and more stable
optimization. The experimental results also vali-
date our initial motivation in designing the penalty
function: namely, to encourage the model to focus
on learning interpretable content while maintaining
a non-negligible learning signal for each sample.

G Evaluation Stability and Standard
Error Reporting

To provide a more comprehensive evaluation of our
method, we conducted multiple experimental runs
and report standard errors alongside key results.
For both DPO and our proposed RSPO method,
we performed three independent training runs and
report the median results, along with their standard
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errors. These are presented in Table 11 for dif-
ferent models and evaluation settings. For other
baseline methods such as SimPO and WPO, we
cite results directly from their respective papers,
which involved extensive hyperparameter tuning
and repeated testing to ensure reliability.
Furthermore, we also evaluated the stability of
our method on downstream tasks. While prior
works often omit reporting standard deviations for
such tasks, we include the standard errors of accu-
racy across multiple runs in Table 12. These results
help quantify the robustness of our method across
different tasks, demonstrating that RSPO achieves
consistent performance with low variance.
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