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Abstract001

Preference optimization is a crucial research002
direction for aligning language models with003
human preferences. Direct Preference Opti-004
mization (DPO) has emerged as a novel ap-005
proach, replacing the paradigm of Reinforce-006
ment Learning from Human Feedback (RLHF)007
with the direct optimization of preference re-008
ward functions. However, DPO treats all pref-009
erence response pairs as equally important, re-010
gardless of their quality or complexity. This011
may inadvertently lead to suboptimal general-012
ization, especially when the training dataset013
is dominated by noisy or ambiguous prefer-014
ence response pairs. In this paper, we pro-015
pose a novel method called Reward-Driven016
Selective Penalization for Preference Align-017
ment Optimization (RSPO). RSPO for the first018
time proposes to dynamically categorize pref-019
erence data based on implicit reward signals020
and apply selective weighting to different cate-021
gories. Moreover, RSPO introduces a Penalty022
Weighting Strategy that dynamically evaluates023
data quality and adjusts optimization weights024
in real time, effectively tackling challenges025
posed by noisy and complex preference signals,026
thereby improving alignment performance.027

Our experiments demonstrate that RSPO028
achieves remarkable performance on both the029
Mistral-base and Llama3-Instruct models, out-030
performing DPO by an average of 4.55% on031
AlpacaEval 2, and surpassing recent methods032
such as SimPO and WPO, achieving state-033
of-the-art (SOTA) performance. Our code034
is available at https://anonymous.4open.035
science/r/RSPO.036

1 Introduction037

Preference alignment optimization has recently be-038

come a pivotal research focus in the development039

of large language models (LLMs) (Ouyang et al.,040

2022; Ziegler et al., 2019; Bai et al., 2022), striving041

to better align model-generated content with human042

preferences which plays a crucial role in enhanc- 043

ing user experience and improving performance on 044

downstream tasks (Raffel et al., 2020; Brown et al., 045

2020; Hoffmann et al., 2022). Traditional training 046

methods, such as unsupervised or semi-supervised 047

learning, rely on fixed objective functions that fail 048

to capture the dynamic and diverse nature of human 049

preferences. As a result, there is a growing need 050

to explore how optimized preference signals can 051

improve model alignment and better accommodate 052

user needs (Askell et al., 2021). 053

Direct Preference Optimization (DPO) (Rafailov 054

et al., 2023) integrates reward function learning 055

and policy optimization to directly maximize the 056

generation probability of preferred responses, offer- 057

ing a unified framework for preference alignment. 058

However, despite its advantages, DPO faces several 059

inherent limitations that hinder its effectiveness in 060

applications. One of the key challenges lies in its 061

uniform treatment of preference data, where all 062

samples are optimized using the same strategy re- 063

gardless of their alignment quality or complexity. 064

Dynamic reweighting strategies have been shown 065

to be highly effective in enhancing alignment per- 066

formance. For instance, Xu et al. (2024a) employ 067

curriculum learning (Bengio et al., 2009) to opti- 068

mize the model’s learning trajectory by incremen- 069

tally introducing data based on sample difficulty 070

and quality. Weighted Preference Optimization 071

(WPO) (Zhou et al., 2024) reweights preference 072

pairs according to their probability under the cur- 073

rent policy, thereby improving alignment in LLMs. 074

In contrast, DPO’s static optimization approach 075

struggles to fully leverage the distinctions among 076

data samples, failing to dynamically adjust to vary- 077

ing data quality and complexity (Wu et al., 2024b). 078

Additionally, DPO struggles with noisy or incon- 079

sistent annotations common in subjective human 080

evaluations (Wu et al., 2024a; Lee et al., 2023; 081

Gupta et al., 2022). It is also prone to policy dis- 082

tribution shift, where penalizing dispreferred re- 083

1

https://anonymous.4open.science/r/RSPO
https://anonymous.4open.science/r/RSPO
https://anonymous.4open.science/r/RSPO


sponses may inadvertently impair the generation084

of preferred ones. Furthermore, DPO can overfit085

on limited or unrepresentative data, leading to poor086

generalization on unseen inputs (Xu et al., 2024c).087

To overcome these limitations, we propose088

RSPO (Reward-Driven Selective Penalization for089

Preference Alignment Optimization), a method that090

dynamically classifies preference data based on im-091

plicit reward signals and applies selective weight-092

ing to improve alignment. Based on in-depth explo-093

ration and analysis, RSPO divides data into well-094

aligned (R1) and less-aligned (R2–R4) categories,095

assigning higher weights to R1 to reinforce reli-096

able learning while penalizing R2–R4 to reduce097

overfitting. Additionally, we propose a novel dy-098

namic Penalty Weighting Strategy, which adjusts099

optimization weights in real time based on data100

quality, thereby enhancing stability and robustness101

in complex alignment scenarios.102

Our contributions are summarized as follows:103

• We, for the first time, classify preference data104

into four reward-alignment categories (R1–105

R4) based on implicit reward distributions.106

By leveraging this categorization, RSPO op-107

timizes preference data selectively, assign-108

ing higher weights to well-aligned (R1) data109

while in a fine-grained manner adjusting the110

weights of less-aligned (R2–R4) samples111

to enhance robustness and alignment perfor-112

mance.113

• We introduce a novel Penalty Weighting Strat-114

egy, which dynamically evaluates sample qual-115

ity and assigns penalties to noisy or hard-116

to-align data during training. This mecha-117

nism improves optimization stability, miti-118

gates overfitting, and ensures effective learn-119

ing of high-quality preference signals.120

• Extensive experimental results demonstrate121

the effectiveness of RSPO, which is imple-122

mented on two widely used large language123

model foundations: Mistral-base and Llama3-124

Instruct. On Mistral-base model, RSPO out-125

performs DPO by 4.8% on the AlpacaEval126

2 benchmark. On Llama3-Instruct model,127

RSPO outperforms DPO by 4.3%. RSPO also128

surpasses recent methods such as SimPO (Lu129

et al., 2024) and WPO (Zhou et al., 2024),130

achieving new SOTA results, and exhibits131

strong generalization capabilities across mul-132

tiple downstream tasks.133

2 Related Work 134

Direct Preference Optimization (DPO) and Its 135

Analysis. DPO (Rafailov et al., 2023) has be- 136

come a prominent method for aligning language 137

models with human preferences by directly opti- 138

mizing the preference reward function. However, 139

recent studies highlighted several limitations, in- 140

cluding imbalanced gradient updates, which hinder 141

its ability to effectively capture complex prefer- 142

ence signals (Feng et al., 2024). Additionally, DPO 143

is prone to generating out-of-distribution (OOD) 144

responses and exhibits high sensitivity to distribu- 145

tion shifts between the training dataset and model- 146

generated outputs (Gan et al., 2024), posing chal- 147

lenges for real-world deployment. 148

Advancements in DPO. To address the limita- 149

tions of DPO, several methods have been proposed. 150

Smaug (Pal et al., 2024) employs DPO-Positive to 151

fix some failure modes of DPO. WPO (Zhou et al., 152

2024) adapts off-policy data to resemble on-policy 153

data by reweighting preference pairs according to 154

their probability under the current policy. R-DPO 155

(Park et al., 2024) incorporates an extra regulariza- 156

tion term into the DPO loss function, thereby miti- 157

gating the model’s tendency to exploit text length 158

during the optimization process. 159

Other Preference Optimization Methods. Var- 160

ious other preference optimization methods have 161

been explored. SimPO (Meng et al., 2024) per- 162

forms simple preference optimization using a 163

reference-free reward function. GPO (Generalized 164

Preference Optimization) (Tang et al., 2024) offers 165

a unified approach to offline alignment. ORPO 166

(Hong et al., 2024) performs monolithic preference 167

optimization without a reference model. RRHF 168

(Yuan et al., 2023) aligns language models with 169

human preferences by scoring sampled responses 170

from various sources and learning to rank them 171

using ranking loss. CPO (Xu et al., 2024b) uses 172

contrastive learning to compare pairs of outputs 173

and optimize preferences. 174

3 Method 175

In this section, we provide the preliminaries of 176

DPO in Section 3.1. We then introduce our pro- 177

posed RSPO, which primarily consists of two parts, 178

as shown in Figure 1: Classification of DPO Im- 179

plicit Rewards (Section 3.2) and Reward-Driven 180

Selective Penalization Weighting (Section 3.3). 181
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Figure 1: Overview of DPO and our RSPO method. RSPO dynamically classifies preference data based on implicit
reward signals into well-aligned R1 data and less-aligned R2-R4 data. It then applies weighting to selected options
according to our Penalty Weighting Strategy to evaluate data quality and adjust optimization weights in real time.
By assigning higher weights to R1 data with clear reward signals, RSPO reinforces the learning of high-alignment
data while selectively penalizing R2-R4 data to mitigate overfitting caused by hard-to-align samples.

3.1 Preliminaries182

DPO (Rafailov et al., 2023) unifies reward learning183

and policy optimization by implicitly reparame-184

terizing the reward function via the closed-form185

solution of the optimal policy. Given a human pref-186

erence dataset D, where each pair consists of a187

preferred response yw and a dispreferred response188

yl, DPO optimizes the policy model πθ to increase189

the probability of preferred responses while de-190

creasing the probability of generating dispreferred191

responses by increasing the log probability of pre-192

ferred responses over dispreferred responses:193

β log
πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

,194

where πref denotes a reference model.195

DPO employs Bradley-Terry (Bradley and Terry,196

1952) model to measure the alignment between pol-197

icy model and human preference. By rearranging198

the optimal solution of the general reward function,199

we can derive the following reward function:200

r∗(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x),201

where Z(x) is a normalization factor. By substi-202

tuting this reward function into the Bradley-Terry203

model, we can obtain the DPO loss function:204

LDPO = −E(x,yw,yl)∼D

[
log σ(rw − rl)

]
205

3.2 Classification of DPO Implicit Rewards206

In DPO, all samples are optimized using the207

same strategy, regardless of their alignment qual-208

ity or complexity. To fully leverage the distinc-209

tions among data samples and adjust optimization210

weights in real time, we innovatively propose dy-211

namically categorizing preference data based on212

implicit reward signals into well-aligned R1 data213

and less-aligned R2-R4 data, which is then applied214

to subsequent preference optimization.215

Four Implicit Rewards in DPO. The gradient 216

of LDPO with respect to the parameters θ can be 217

written as: 218

∇θLDPO =− βE(x,yw,yl)∼D

[
σ(rθ(x, yl)− rθ(x, yw))

· (∇θ log πθ(yw|x)−∇θ log πθ(yl|x))

]
,

219

where rθ(x, y) = β log πθ(y|x)
πref(y|x) is the implicit re- 220

ward defined by the policy model πθ and reference 221

model πref. This gradient emphasizes the objective 222

of DPO, which is to dynamically adjust the gen- 223

eration probabilities pθ(x, yw) and pθ(x, yl) based 224

on implicit rewards derived from the preference 225

response pairs. Since the implicit rewards reflect 226

the alignment quality between the policy model 227

and human preferences and serve as a crucial part 228

of the DPO optimization process, we argue that 229

a more detailed study of the preference response 230

pairs and their implicit rewards is necessary. 231

Based on the implicit rewards rθ(x, yw) and 232

rθ(x, yl), we categorize preference response pairs 233

into four types: 234

• R1: The preferred response exhibits a pos- 235

itive reward (rθ(x, yw) ≥ 0), while the dis- 236

preferred response displays a negative reward 237

(rθ(x, yl) ≤ 0), representing a clear align- 238

ment between policy model and human pref- 239

erences. 240

• R2: Both preferred and dispreferred re- 241

sponses receive negative reward signals 242

(rθ(x, yw) < 0, rθ(x, yl) ≤ 0), indicating 243

a failure to reinforce preference alignment ef- 244

fectively. 245

• R3: The preferred response receives a nega- 246

tive reward signal, while the dispreferred re- 247

sponse gets a positive signal (rθ(x, yw) < 0, 248

rθ(x, yl) > 0), indicating a misalignment 249
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(a) Mistral-SFT. (b) Llama-3-Instruct.

Figure 2: Distribution of four types of preference response pairs during DPO training on Mistral-SFT and Llama-3-
Instruct. Results for one epoch on the Ultrafeedback dataset (Cui et al., 2023).

where dispreferred responses are erroneously250

prioritized.251

• R4: Both preferred and dispreferred re-252

sponses receive positive reward signals253

(rθ(x, yw) ≥ 0, rθ(x, yl) > 0), reflecting an254

ambiguity in the alignment signals.255

These four types of preference response pairs ex-256

hibit distinct distributions as training progresses.257

As illustrated in Figure 2, the distribution of prefer-258

ence response pairs indicates that the policy model259

struggles to consistently capture preference sig-260

nals for most training data (where R2 is the data261

with the highest proportion in the binarized Ultra-262

feedback dataset). However, DPO’s optimization263

framework treats all preference response pairs as264

equally important, regardless of their quality or265

complexity. This may inadvertently lead to subop-266

timal generalization, especially when the training267

dataset is dominated by noisy or ambiguous pref-268

erence response pairs. Moreover, their distribution269

proportions vary throughout the entire training pro-270

cess (see Appendix D).271

Impact of R1–R4 on the Training Process. In272

our data classification, we analyze and reveal that273

the R1 type provides a strong alignment signal,274

indicating that the pairs are well-aligned with the275

model’s learned preference. In contrast, the types276

R2 - R4 may exhibit ambiguous, complex, or con-277

flicting situations with respect to the human prefer-278

ences that the model has learned. Building on the279

concept of curriculum learning, we believe that se-280

lectively reducing the loss for R2-R4 preferences281

can help mitigate overfitting on challenging data282

and enhance the model’s ability to generalize hu-283

man preferences. This finding is experimentally284

verified in Section 5.2.285

3.3 Reward-Driven Selective Penalization 286

Weighting 287

In order to mitigate model’s overfitting to prefer- 288

ence responce pairs that are difficult to learn prefer- 289

ences and consolidate the preferences that the pol- 290

icy model has learned, we propose a novel reward- 291

driven selective penalization weighting approach, 292

which dynamically reweights these preference re- 293

sponse pairs to maximize model performance. 294

On the basis of observation in Section 3.2, the 295

reweighting strategy should ensure that preference 296

response pairs of R1 type retain their full contribu- 297

tion to the optimization objective, reinforcing the 298

model’s learned human preferences. In contrast, 299

for preference response pairs of R2-R4 type, their 300

weights are dynamically adjusted to reflect their 301

relative uncertainty or conflict with the model’s 302

learned human preferences. This approach prevents 303

overfitting to challenging or ambiguous preference 304

response pairs while maintaining alignment with 305

the primary optimization objective. Formally, the 306

selective weight w(yw, yl, x) is defined as follows: 307

w(yw, yl, x) =

{
f(yw, yl, x), for R2−R4

1, for R1
(1) 308

Here, w(yw, yl, x) = 1 for the preference re- 309

sponse pairs of R1. In contrast, for R2-R4, the 310

weight f(yw, yl, x) serves as a penalty function. 311

The design principle of the penalty function is to 312

reduce the influence of samples on gradient updates 313

based on their deviation from the human prefer- 314

ences learned by the policy model. The penalty 315

weight we define is as follows: 316

f(yw, yl, x) = λ+ σ

(
βw log

πθ(yw|x)
πref(yw|x)

)
317

· σ
(
βl log

πref(yl|x)
πθ(yl|x)

)
(2) 318
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The design of f(yw, yl, x) incorporates two key319

components:320

1. Constant Scaling Coefficient: The constant321

λ (0 < λ < 1) provides a baseline penalty to322

all samples in R2-R4, ensuring that their influ-323

ence on the loss is consistently reduced. This324

mitigates the risk of overfitting to samples325

with high uncertainty or conflicting signals.326

2. Preference Deviation Penalty Coefficient:327

The dynamic penalty coefficient, governed328

by the sigmoid functions σ(·), adjusts the329

sample weight based on the relative log-330

probability differences between the policy331

model πθ and the reference model πref. Specif-332

ically, the σ
(
βw log πθ(yw|x)

πref(yw|x)

)
penalizes de-333

viations in the preferred responses yw, while334

σ
(
βl log

πref(yl|x)
πθ(yl|x)

)
penalizes deviations in335

the rejected responses yl. This ensures that336

the penalty is proportionate to the degree of337

misalignment, suppressing over-learning of338

ambiguous data and maintaining balance in339

the preference distribution.340

By combining these two components, the penalty341

weight f(yw, yl, x) enables the model to fine-tune342

its learning process, focusing on clear and reliable343

data while cautiously handling ambiguous data.344

The complete RSPO loss function is defined as:345

LRSPO =− E(yw,yl,x)[w(yw, yl, x)· (3)346

log σ(rθ(x, yw)− rθ(x, yl))]347

The detailed steps of the RSPO algorithm are pre-348

sented in Appendix A.349

4 Experiment Setup350

4.1 Experimental Settings351

We utilize Mistral-base1 and Llama-3-Instruct2 as352

our foundational models. For Mistral-base, we uti-353

lize the official supervised fine-tuned (SFT) check-354

point from zephyr as our SFT model, training for355

one epoch on the binarized Ultrafeedback dataset356

(Cui et al., 2023). For Llama-3-Instruct, we uti-357

lize off-the-shelf instruction-tuned model as our358

SFT model, training for one epoch on the Llama3-359

Ultrafeedback dataset (Meng et al., 2024). We360

1https://huggingface.co/HuggingFaceH4/
mistral-7b-sft-beta

2https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

conduct experiments under both full parameter fine- 361

tuning and LoRA (Hu et al., 2022) fine-tuning set- 362

tings using identical parameters. More details of 363

experimental settings are provided in Appendix C. 364

4.2 Evaluation 365

We evaluate the instruction-following capabilities 366

of our models using the widely adopted AlpacaEval 367

2 benchmark (Li et al., 2023), reporting both the 368

raw Win Rate (WR) and the Length-Controlled 369

Win Rate (LC) (Dubois et al., 2024). To ensure 370

fair comparison, we follow the decoding strategy 371

of Meng et al. (2024). 372

In addition, we assess performance on sev- 373

eral downstream tasks—MMLU (Hendrycks et al., 374

2021), ARC (Clark et al., 2018), TruthfulQA (Lin 375

et al., 2022), IFEval (Zhou et al., 2023), and 376

GSM8K (Cobbe et al., 2021)—as detailed in Ap- 377

pendix B. We also report standard deviations in 378

Appendix G to assess result stability. 379

4.3 Baselines 380

We compare our method with recent SOTA prefer- 381

ence optimization methods, which are described in 382

detail in Section 2, including RRHF (Yuan et al., 383

2023), DPO (Rafailov et al., 2023), ORPO (Hong 384

et al., 2024), IPO (Azar et al., 2024), CPO (Xu 385

et al., 2024b), KTO (Ethayarajh et al., 2024), R- 386

DPO (Park et al., 2024), WPO (Zhou et al., 2024), 387

and SimPO (Meng et al., 2024). 388

5 Experimental Results 389

5.1 Main Results 390

Under full parameter settings, Table 1 present the 391

results for Mistral-base and Llama-3-Instruct. Our 392

method consistently outperform all baselines on 393

AlpacaEval 2: (i) In Mistral-base configuration, 394

our RSPO method achieves an LC win-rate of 395

25.4% and a raw win-rate of 23.7%, improving 396

upon DPO by 4.8% in LC and 5.5% in raw win-rate. 397

(ii) In Llama-3-Instruct configuration, our method 398

achieves an LC win-rate of 45.0% and a raw win- 399

rate of 42.5%, surpassing DPO by 4.3% in LC win- 400

rate and 4.4% in raw win-rate. Moreover, RSPO 401

also outperforms recent SOTA methods SimPO and 402

WPO, achieving new SOTA results. 403

On multiple downstream tasks, the results in 404

Table 2 show that our method RSPO outper- 405

forms DPO across multiple downstream tasks, 406

demonstrating consistent performance improve- 407

ments. Specifically, compared to DPO, our method 408
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Method Mistral-base (7B) Llama-3-Instruct (8B)

LC WR Avg. Len LC WR Avg. Len

SFT 8.4 6.2 914 26.0 25.3 1920

RRHF (Yuan et al., 2023) 11.6 10.2 1630 31.3 28.4 1805
IPO (Azar et al., 2024) 11.8 9.4 1380 35.6 35.6 1983
KTO (Ethayarajh et al., 2024) 13.1 9.1 1144 33.1 31.8 1909
CPO (Xu et al., 2024b) 9.8 8.9 1827 28.9 32.2 2166
ORPO (Hong et al., 2024) 14.7 12.2 1475 28.5 27.4 1888
DPO (Rafailov et al., 2023) 20.6 18.2 1521 40.7 38.1 1933
R-DPO (Park et al., 2024) 17.4 12.8 1335 41.1 37.8 1854
SimPO (Meng et al., 2024) 21.5 20.8 1868 44.7 40.5 1825
WPO (Zhou et al., 2024) 24.4 23.7 - 40.0 41.9 2084

RSPO 25.4 23.7 1873 45.0 42.5 1870

Table 1: Comparison of methods on Mistral-base (7B) and Llama-3-Instruct (8B) on AlpacaEval 2 judged by
GPT-4-turbo. Each column’s maximum value is bolded. “Avg. Len” denotes the average number of output tokens.

Method GSM8K ARC TQA MMLU IFEval Avg.

SFT 42.61 55.97 28.15 57.17 36.59 44.10
DPO 33.13 59.64 46.14 57.46 50.48 49.37
R-DPO 30.10 56.06 40.64 58.48 53.24 47.70
SimPO 33.59 60.15 43.45 58.25 52.98 49.68
WPO 30.63 57.00 40.51 58.54 55.64 48.46

RSPO 37.45 57.94 47.25 58.58 55.04 51.25

Table 2: Performance comparison of different methods
on Mistral-Base (7B) across multiple benchmarks (TQA
indicates TruthfulQA). We report the strictly match ac-
curacy, and compare with the methods that achieve simi-
lar performance to ours on AlpacaEval 2. “Avg” denotes
the average performance of all tasks.

achieves higher scores on tasks such as GSM8K,409

TruthfulQA, and IFEval. Additionally, our method410

achieves the highest average score 51.25% among411

all methods, further demonstrating its effectiveness.412

Under LoRA fine-tuning settings, RSPO also413

consistently outperforms DPO across both Mistral-414

base and Llama-3-Instruct. The results in Table 3415

highlight RSPO’s superior performance and demon-416

strate that our method achieves significant improve-417

ments with fewer parameter adjustments.418

5.2 Analysis on Implicit Reward Classification419

To explore the impact of classifying preference420

response pairs based on implicit rewards during421

training on model performance, we conduct the422

following two sets of experiments:423

Mistral-base Llama-3-Instruct

DPO RSPO DPO RSPO

Armo WR 20.7 27.2 67 74.2
Deepseek LC 20.5 25.9 47.8 49.4
Deepseek WR 16.0 24.2 45.6 45.9

Table 3: Results of AlpacaEval 2 judged by Armo
Llama3 and DeepSeek v3 under the LoRA settings.

1. Without distinguishing data based on implicit 424

rewards, all data are given the penalty weight 425

from Equation (2) (named RSPONoClass); 426

2. Distinguishing data based on implicit rewards, 427

and R2-R4 data are given the penalty weight 428

from Equation (2) (i.e., our RSPO). 429

We utilize Mistral-base as the base model, con- 430

ducting a single epoch of training on the binarized 431

Ultrafeedback dataset (Cui et al., 2023) and evalu- 432

ating on AlpacaEval 2. The same configuration is 433

employed for the subsequent ablation studies. 434

The experimental results are shown in Table 435

4. First, the results show that RSPO outperforms 436

RSPONoClass across all metrics. This suggests that 437

categorizing data into different reward types and 438

applying penalty weights to R2-R4 data help the 439

model capture human preferences more accurately, 440

enhancing overall training effectiveness. Second, 441

both RSPONoClass and RSPO outperform DPO. 442

This further demonstrates the effectiveness of our 443
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ARMO DeepSeek v3

Method WR LC WR

DPO 20.7 20.5 16.0
RSPONoClass 24.8 23.4 22.6
RSPO 27.2 25.9 24.2

Table 4: Comparison of the impact of preference re-
sponse pair classification on model performance.

Figure 3: Exploratory experiments: Impact of R1–R4
on the training process when scaling the loss of each
type of preference response pairs by a factor of 0.1.

penalty weighting, which assigns weights based444

on the degree of preference divergence between445

the data and the model, as reflected by the model’s446

implicit rewards.447

To further investigate the impact of different pref-448

erence response pairs on training, we conduct ex-449

ploratory experiments by applying a weight decay450

factor of 0.1 to each type and using the DPO loss.451

As shown in Figure 3, applying weight decay to452

preference response pairs of R1 type result in a453

significant degradation in model alignment perfor-454

mance compared to the DPO baseline. In contrast,455

applying weight decay to the preference response456

pairs of R2 - R4 types lead to alignment perfor-457

mance comparable to or even better than the DPO458

baseline. These results indicate that different types459

of preference response pairs exert distinct influ-460

ences on model training. Notably, reducing the461

weight of preference pairs of R1 type appears to462

have a significant negative impact on performance.463

5.3 Analysis on Penalty Weights464

To verify the impact of penalty weights on perfor-465

mance, we conduct the following experiments.466

Experimental Analysis of Penalty Weight Range.467

To validate our hypothesis that reducing the loss on468

R2–R4 samples mitigates overfitting and improves469

ARMO DeepSeek v3

WR LC WR

λ= 0.075 21.6 21.2 18.6
λ= 1 20.7 20.5 16.0
λ= 5 19.3 15.0 10.8
λ= 10 12.2 12.4 9.4

Table 5: Performance comparison for different penalty
weight values of λ.

generalization to human preferences, we adjust the 470

penalty weights as follows: 471

w(yw, yl, x) =

{
λ, for R2–R4

1, for R1
472

where 0 < λ < 1. Lowering λ reduces the 473

impact of R2–R4 samples during training, while 474

λ > 1 increases their contribution. As shown in 475

Table 5, appropriately reducing λ improves model 476

performance, whereas increasing it significantly de- 477

grades results. This supports our approach of down- 478

weighting R2–R4 data to consolidate learned pref- 479

erences and enhance generalization. 480

Empirically, we set λ = 0.075, based on the 481

observation that R1 samples comprise only about 482

10% of training data. When λ > 0.2, the relative 483

weight of R1 remains insufficient. By reducing the 484

R2–R4 weights to approximately 10%, we effec- 485

tively emphasize R1’s contribution during training. 486

Experimental Analysis of Penalty Weight Func- 487

tion. To assess the impact of penalty weighting 488

functions on model performance, we design several 489

penalty weighting functions as shown in Table 10 490

of Appendix F, where we also analyze our design 491

ideas and conduct the hyperparameter exploration 492

for the proposed penalty functions. 493

The experimental results using three different 494

penalty weight functions, f1, f2 and f3, are pre- 495

sented in Table 6. These results show that different 496

penalty weight functions have varying impacts on 497

model training effectiveness, with our proposed 498

heuristic penalty function yielding superior perfor- 499

mance. 500

5.4 Further Analysis on Why R1 is Better for 501

LLM Alignment 502

To further investigate why R1 samples are more 503

beneficial for LLM alignment, we conduct experi- 504

mental analyses from two perspectives: 505

7



ARMO DeepSeek v3

Function WR LC WR

f1 25.3 24.1 21.2
f2 22.6 23.6 20.7
f3 27.2 25.9 24.2

Table 6: Performance comparison of different penalty
weight functions. f3 is the one proposed in Eq. (2).

Figure 4: Performance comparison of RSPO, DPO-λ,
and DPO (ARMO WR) across training steps (0-450).
Dashed lines indicate trend lines.

The evolution of model performance over train-506

ing steps. In this study, we compare DPO-λ (with507

λ = 0.075), RSPO, and standard DPO. DPO-λ ap-508

plies a constant penalty to R2–R4 samples, while509

RSPO employs a dynamic penalty mechanism.510

Standard DPO applies no explicit penalty. Figure 4511

presents the performance of DPO-λ, RSPO, and the512

standard DPO across different training steps. The513

results highlight that assigning higher weights to514

R1 samples leads to improved model training. As515

shown in the figure, both DPO-λ and RSPO achieve516

better performance more quickly compared to DPO517

during training. Moreover, RSPO reaches a higher518

performance ceiling than DPO-λ, demonstrating519

the superior effectiveness of our proposed RSPO520

method.521

The behavior of model gradients throughout the522

training process. The gradient-based analysis in523

Figure 5 reveals that RSPO consistently generates524

smoother and more stable gradients compared to525

DPO. This indicates that RSPO not only mitigates526

abrupt fluctuations in gradient magnitudes but also527

promotes a more stable and controlled optimiza-528

tion trajectory during training. Such smoothness in529

gradients is closely associated with enhanced con-530

vergence behavior and reduced risk of exploding531

Figure 5: Comparison of RSPO and DPO gradients
across steps (0-450).

Metric RSPO DPO Diff. Perf. Diff. (LC)

Avg. GPU Mem. (GB) 436.0 432.9 +3.1
+4.8% (Mistral), +4.3% (Llama)

Avg. Time / Epoch (hr) 1.926 1.844 +0.082

Table 7: Efficiency comparison between RSPO and
DPO. “Diff.” denotes efficiency difference, and “Perf.
Diff.” indicates the performance gain of our RSPO over
DPO.

or vanishing gradients, ultimately contributing to 532

improved training stability. A detailed analysis of 533

the gradient dynamics is provided in Appendix E. 534

5.5 Training Efficiency and Performance 535

Analysis 536

To evaluate the computational overhead of RSPO, 537

we measure average GPU memory usage, training 538

time per epoch, and total memory consumption 539

during training, alongside its performance gains 540

over DPO. As shown in Table 7, RSPO adds a mod- 541

est 3.19 GB of GPU memory and extends training 542

time by about 4.92 minutes per epoch. Despite 543

this slight increase, RSPO delivers substantial im- 544

provements, boosting win rates on AlpacaEval 2 by 545

+4.8% for Mistral-base (7B) and +4.3% for Llama- 546

3-Instruct (8B), evaluated with GPT-4-turbo. These 547

results confirm RSPO as an efficient and effective 548

upgrade over DPO for preference optimization. 549

6 Conclusion 550

We propose Reward-Driven Selective Penalization 551

for Preference Alignment Optimization (RSPO), a 552

method that enhances preference alignment by in- 553

novatively categorizing data and applying selective 554

weighting. RSPO introduces a dynamic penalty 555

strategy that down-weights noisy or hard-to-align 556

samples during training. Experiments show that 557

RSPO improves alignment and generalization by 558

effectively handling complex preference data. 559
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Limitations560

Despite its innovative contributions, the RSPO561

framework has several limitations, particularly in562

the design of penalty functions and data partition-563

ing mechanisms.564

Impact and Future Exploration of Penalty565

Functions. Although the proposed heuristic566

penalty function demonstrates superior perfor-567

mance in the experiments, the choice of penalty568

function remains a limitation. Different penalty569

weight functions have varying impacts on the570

model’s training effectiveness, and only a limited571

set of functions are explored in this study. Future572

work will investigate a broader range of penalty573

functions to identify more effective alternatives,574

with the goal of improving model generalization575

and training performance. Furthermore, given the576

diversity and complexity of tasks, it may be neces-577

sary to design task-specific penalty functions, sug-578

gesting that there is significant potential for further579

optimization in penalty function design.580

Data Partitioning Mechanism also presents581

challenges. RSPO partitions data into classes based582

on alignment quality, such as R1 (high alignment)583

and R2-R4 (lower alignment). Although this clas-584

sification is theoretically sound, it faces practical585

challenges. The boundaries between these classes586

may be ambiguous, and complex data distributions587

may not fit neatly into predefined categories. This588

issue is particularly pronounced for intermediate589

samples that are neither clearly aligned nor com-590

pletely misaligned. The inefficiency in handling591

such samples can negatively impact the overall op-592

timization process. Future research should explore593

more nuanced partitioning strategies that can better594

accommodate complex data distributions.595
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A RSPO Algorithm803

The Reward-Driven Selective Penalization for Pref-804

erence Alignment Optimization (RSPO) algorithm805

refines preference optimization by dynamically ad-806

justing the training signal based on implicit reward807

distributions. Unlike standard Direct Preference808

Optimization (DPO), which treats all preference809

pairs equally, RSPO categorizes data into distinct810

reward scenarios and selectively penalizes samples811

that may hinder effective preference learning.812

B Details of Multiple Downstream813

Benchmark Tasks814

We present the details of multiple downstream815

benchmark tasks:816

• GSM8K (Cobbe et al., 2021): A generative817

primary level math dataset of 1.3k questions.818

We use 8-shot in-context exemplars. We re-819

port strict exact match score.820

• IFEval (Zhou et al., 2023): A special821

instruction-following test dataset, contains822

541 verifiable instructions. We use 5-shot823

prompt and report instruction-level strict ac-824

curacy.825

Algorithm 1: Reward-Driven Selective Pe-
nalization for Preference Alignment Opti-
mization (RSPO)

Input: Preference dataset D, policy model πθ,
reference model πref, number of iterations T
for t = 0 to T do

Sample a batch of preference pairs (x, yw, yl)
from D;
Compute r(x, yw) and r(x, yl) for each data
point using πθ and πref;
if r(x, yw) ≥ 0 and r(x, yl) ≤ 0 then

Assign the data to R1
else

Assign the data to R2−R4
Assign penalty weights using Equation (2)

end if
Compute LRSPO using Equation (1)
Update the policy model parameters θ

end for

• MMLU (Hendrycks et al., 2021): One of the 826

most popular and largest multi-choice bench- 827

mark for testing common knowledge of LLMs, 828

covering 14k questions. We use 5-shot prompt 829

and present accuracy. 830

• TruthfulQA (Lin et al., 2022): A testing 831

dataset aims for assessing a model’s recog- 832

nition of true statements. We evaluate all 817 833

questions with 0-shot prompt,and reporting 834

truthfulqa_mc1 accuracy score. 835

• ARC (Clark et al., 2018): A multiple-choice 836

benchmark for science questions from grades 837

3 to 9, split into Easy and Challenge parts. The 838

Challenge part has harder, reasoning-based 839

questions. We evaluate all 817 questions with 840

25-shot prompt, and reporting accuracy score. 841

C Experiment Parameters 842

Based on the DPO parameters provided by the 843

Princeton-NLP team, we achieved significant im- 844

provements by solely adjusting the penalty weight 845

coefficients. Additionally, we set the max_length 846

for the Llama-3-Instruct model to only half of what 847

the Princeton-NLP team set, which reduces training 848

time by nearly 50%. Table 8 provides detailed ex- 849

perimental parameters for Mistral-base and Llama- 850

3-Instruct. 851
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(a) Mistral-SFT. (b) Llama-3-Instruct.

Figure 6: The proportion of the four types of preference response pairs during the DPO training process for
Mistral-SFT and Llama-3-Instruct.

Parameter Mistral-base Llama-3-Instruct

GPU 8×Ascend910B 8×Ascend910B
beta 0.01 0.01
batch 128 128
learning_rate 5e-7 7e-7
max_prompt_length 512 512
max_length 1024 1024
num_train_epochs 1 1
torch_dtype bfloat16 bfloat16
warmup_ratio 0.1 0.1
βw 0.01 0.01
βl 0.1 0.1
λ 0.1 0.1

Table 8: Experimental Parameters for Mistral-base and
Llama-3-Instruct.

D Proportion of the Four Types of852

Preference Response Pairs853

Figure 6 shows the distribution of preference re-854

sponse pairs during the DPO training process for855

Mistral-Base and Llama-3-Instruct. As seen in Fig-856

ure 6, the preference response pairs for Mistral-857

Base are primarily concentrated in the negative858

preference category, especially in the r(x, y1) ≤ 0859

and r(x, yw) < 0 category, which accounts for860

83.44% of the cases, indicating that the model861

tends to predict negative preferences. In contrast,862

the preference response distribution for Llama-3-863

Instruct is more balanced. While the largest pro-864

portion is still concentrated in the negative pref-865

erence category, the distribution across the other866

categories is relatively more spread out.867

It is necessary to distinguish between these four868

categories because they represent different types869

of model behavior, each of which could impact the870

training process and final performance. The cases871

where both responses are negative (r(x, y1) ≤ 0 872

and r(x, yw) < 0) suggest that the model may 873

be overly conservative in assigning preference to 874

responses. On the other hand, when r(x, y1) ≤ 0 875

and r(x, yw) ≥ 0, it indicates that the model is 876

making a more confident prediction that contradicts 877

the actual preference, suggesting a misalignment 878

that could be problematic for generalization. 879

Differentiating between these categories helps 880

ensure that the model is not overfitting to one type 881

of preference signal (e.g., negative preferences) 882

while neglecting others. Furthermore, it allows for 883

targeted interventions, such as adjusting the train- 884

ing weights for different categories based on their 885

quality, complexity, or relevance, improving the 886

model’s ability to generalize and handle ambigu- 887

ous or noisy preference data effectively. This is 888

especially critical when optimizing performance 889

in a real-world setting where preferences may not 890

always be clearly defined. 891

E Gradient Analysis 892

Previous studies have shown that DPO exhibits 893

significant asymmetry in the gradient signals be- 894

tween chosen and rejected responses during train- 895

ing, specifically manifested as:|∇θ log πθ(yi|x)| > 896

|∇θ log πθ(yvi |x)|. 897

This asymmetry causes the model to rapidly de- 898

crease the generation probability of rejected re- 899

sponses while failing to effectively increase the 900

probability of chosen responses. The imbalance 901

in DPO’s learning process—where the gradient 902

weight for chosen responses is smaller than that 903

for rejected responses—makes it difficult for the 904

model to learn chosen responses effectively. 905
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λ βw βl ARMO WR

0.1 0.01 0.1 27.20%
0.0 0.01 0.1 17.01%
0.1 0.1 0.01 20.49%
0.1 0.01 0.01 23.72%
0.1 0.1 0.1 20.37%

Table 9: Hyperparameter exploration results for the
proposed RSPO method.

Functions Objective

f1 λ+ σ

(
βw log

πθ(yw|x)
πref(yw|x)

)
f2 λ · σ

(
βw log

πθ(yw|x)
πref(yw|x)

)
+ σ

(
βl log

πref(yl|x)
πθ(yl|x)

)
f3 λ+ σ

(
βw log

πθ(yw|x)
πref(yw|x)

)
· σ

(
βl log

πref(yl|x)
πθ(yl|x)

)

Table 10: Different penalty weight functions.

According to curriculum learning theory, forcing906

the model to fit difficult problems too early can lead907

to suboptimal optimization. We believe that in this908

scenario, assigning a higher weight to R1-type data909

can stabilize the learning process and achieve better910

optimization performance.911

We compared the changes in unclipped gradi-912

ents between our method and DPO during training.913

We observed that DPO exhibited greater gradient914

fluctuations, with a sharp increase between steps915

50 and 75, followed by a consistently high level.916

This occurs because, during training, the model917

develops some understanding of the training data,918

but the data remains more complex than what the919

model can fully comprehend. As a result, the model920

struggles to capture the information in the samples921

completely. In this scenario, the model undergoes922

large gradient updates continuously, indicating that923

DPO experiences highly unstable gradient updates924

throughout the training process.925

In contrast, our method (RSPO) assigns higher926

weights to R1-type data, which aligns with the927

model’s gradient update direction. This reduces the928

impact of hard-to-learn data on gradient updates,929

leading to more consistent updates during training.930

As a result, the optimization process becomes more931

stable, exhibiting a smoother gradient trajectory932

with smaller fluctuations.933

F Penalty Function Design and 934

Hyperparameter Exploration 935

We further supplement our analysis of the penalty 936

function design and the corresponding hyperparam- 937

eter exploration as follows: 938

First, based on the experimental results pre- 939

sented in Figure 3 and Table 5, we observed that 940

assigning a higher weight to R1-type data can po- 941

tentially improve the model’s overall performance. 942

Motivated by this observation, we considered in- 943

creasing the weight assigned to R1 samples by 944

proportionally reducing the weight of other sample 945

types. 946

Our initial approach was to introduce a constant 947

as a penalty function. However, considering that 948

Direct Preference Optimization (DPO) is inherently 949

a pairwise preference learning method, simply us- 950

ing a constant could achieve some effect but would 951

neglect the relationship between paired preferences. 952

Specifically, previous studies have shown that the 953

model tends to more easily suppress the probability 954

of rejected responses than to enhance the proba- 955

bility of chosen responses. Hence, the model’s 956

ability to increase πθ(yw|x) and decrease πθ(yl|x) 957

is asymmetric. 958

To address this, we propose a dynamic penalty 959

function that separately considers the chosen and 960

rejected responses (Table 10). Drawing inspiration 961

from the implicit reward formulation in DPO, 962

r(x, y) = β log
πθ(y|x)
πref(y|x)

963

we design our penalty function as: 964

f(yw, yl, x) = λ+ σ (r(x, yw)) · σ (−r(x, yl)) 965

that is, 966

= λ+σ

(
βw log

πθ(yw|x)
πref(yw|x)

)
·σ

(
βl log

πref(yl|x)
πθ(yl|x)

)
967

where σ(·) denotes the Sigmoid function. 968

Here, the term log πθ(yw|x)
πref(yw|x) captures the policy 969

model’s relative ability to increase the probability 970

of generating the chosen response compared to the 971

reference model. A higher value implies better 972

generation quality, which results in a larger weight 973

after passing through a scaled Sigmoid transforma- 974

tion parameterized by βw. 975

Similarly, log πref(yl|x)
πθ(yl|x) reflects the model’s abil- 976

ity to suppress the rejected response. If the policy 977

model assigns a high probability to a rejected re- 978

sponse, a lower weight is accordingly applied after 979
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Model Method LC WR Std. Error
Mistral-sft DPO 20.6 18.2 1.19
Mistral-sft RSPO 25.4 23.7 1.25
Llama-3-Instruct DPO 40.7 38.1 1.52
Llama-3-Instruct RSPO 45.0 25.2 1.46

Table 11: Main results with standard errors (3 runs,
median reported).

Task Accuracy Standard Error
GSM8K 37.45 0.01245
ARC 57.94 0.01446
TQA 47.25 0.01747
MMLU 58.58 0.00395
IFEVAL 55.04 0.02131

Table 12: Standard errors of RSPO on downstream
tasks.

mapping through the Sigmoid function scaled by980

βl.981

Given that models more easily learn to suppress982

rejected responses than to promote chosen ones,983

we set different scaling factors: specifically, βl =984

0.1 to amplify the sensitivity to the suppression of985

rejected responses, and βw = 0.01 to attenuate the986

sensitivity when promoting chosen responses.987

Additionally, we introduce a constant term λ to988

ensure a minimum gradient contribution from each989

data point, preventing the dynamic penalty from be-990

coming excessively small, which could otherwise991

impede effective learning on certain examples.992

We further conducted hyperparameter explo-993

ration for the proposed penalty function. The ex-994

perimental results are summarized in Table 9.995

Through these ablation studies, we conclude that996

assigning a relatively larger value to βl compared to997

βw, combined with introducing a constant term λ,998

leads to better model performance and more stable999

optimization. The experimental results also vali-1000

date our initial motivation in designing the penalty1001

function: namely, to encourage the model to focus1002

on learning interpretable content while maintaining1003

a non-negligible learning signal for each sample.1004

G Evaluation Stability and Standard1005

Error Reporting1006

To provide a more comprehensive evaluation of our1007

method, we conducted multiple experimental runs1008

and report standard errors alongside key results.1009

For both DPO and our proposed RSPO method,1010

we performed three independent training runs and1011

report the median results, along with their standard1012

errors. These are presented in Table 11 for dif- 1013

ferent models and evaluation settings. For other 1014

baseline methods such as SimPO and WPO, we 1015

cite results directly from their respective papers, 1016

which involved extensive hyperparameter tuning 1017

and repeated testing to ensure reliability. 1018

Furthermore, we also evaluated the stability of 1019

our method on downstream tasks. While prior 1020

works often omit reporting standard deviations for 1021

such tasks, we include the standard errors of accu- 1022

racy across multiple runs in Table 12. These results 1023

help quantify the robustness of our method across 1024

different tasks, demonstrating that RSPO achieves 1025

consistent performance with low variance. 1026
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