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ABSTRACT

Transformer models map input token sequences to output token distributions,
layer by layer. While most interpretability work focuses on internal latent rep-
resentations, we study the evolution of these token-level distributions directly in
vocabulary space. However, such distributions are high-dimensional and defined
on an unordered support, making common descriptors like moments or cumulants
ill-suited. We address this by computing the Shannon entropy of each intermediate
predicted distribution, yielding one interpretable scalar per layer. The resulting se-
quence, the entropy profile, serves as a compact, information-theoretic signature of
the model’s computation. We introduce Entropy-Lens, a model-agnostic frame-
work that extracts entropy profiles from frozen, off-the-shelf transformers. We
show that these profiles (i) reveal family-specific computation patterns invariant
under depth rescaling, (ii) are predictive of prompt type and task format, and (iii)
correlate with output correctness. We further show that Rényi entropies yield sim-
ilar results within a broad range of α values, justifying the use of Shannon entropy
as a stable and principled summary. Our results hold across different transformers,
requiring only forward access to intermediate hidden states and the output head;
no gradients or fine-tuning are needed.

1 INTRODUCTION

Transformer-based architectures (Vaswani et al., 2023) operate by iteratively mapping token inputs
to distributions over next-token outputs, layer by layer (Shan et al., 2024). This view emphasizes
their inherently probabilistic nature: each layer produces a distribution over the vocabulary, encoding
the model’s beliefs at that stage.

Despite their success across domains—from language to biology to vision (Devlin, 2018; Ji et al.,
2021; Wu et al., 2020)—the internal evolution of these distributions remains poorly understood,
resulting in unpredictable behaviour (Wei et al., 2022) and reliability concerns (Schroeder & Wood-
Doughty, 2025; Huang et al., 2025). Most interpretability research either focuses on toy models
(Elhage et al., 2021; 2022) or requires training a set of probes (Belrose et al., 2023) or full models
on ad-hoc tasks (Nanda et al., 2023), limiting scalability and generality. Moreover, existing methods
primarily study latent representations—hidden states, attention maps, or MLP activations (Nanda &
Bloom, 2022; Bereska & Gavves, 2024; Chefer et al., 2021)—rather than the output distributions
themselves. We propose to shift perspective: instead of analyzing the internal geometry of latent
activations, we focus on the evolution of the model’s token-level predictions across layers. These
predictions, obtained by decoding intermediate representations via the model’s output head, form
probability distributions over the vocabulary. Studying their evolution offers a direct, vocabulary-
grounded view of the computation.
However, these distributions pose two challenges: they are high-dimensional (one value per to-
ken) and defined over an unordered support (the vocabulary). This makes classical descriptors like
variance or higher-order cumulants unstable or ill-defined. We address both issues by computing
the Shannon entropy of each distribution—a scalar, interpretable quantity invariant to token per-
mutation, and reflective of the model’s uncertainty at each layer. We introduce Entropy-Lens, a
simple, scalable, and model-agnostic framework for studying transformer computations through the
evolution of entropy across layers. Conceptually, Entropy-Lens can be seen as a dimensionality
reduction of transformer activity, compressing complex layer-by-layer computations into an entropy
profile that provides a compact and interpretable signature of the model’s behavior.
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In our experiments, we consider several LLMs, including Llama (Touvron et al., 2023), Gemma
(Team et al., 2024), and GPT, (Radford, 2018) up to 9B parameters. For each generated token, we
compute the entropy of its intermediate predictions, as described in Section 4, yelding one inter-
pretable value per layer: this constitutes the entropy profile. We then aggregate these profiles across
tokens and study whether they capture structural information about the internal LLM’s computation
(Figure 2a). In Section 5, we show that: (i) entropy profiles reveal family-specific signatures of
transformer architectures, invariant under depth rescaling; (ii) they are predictive of prompt seman-
tics and format; (iii) they correlate with output correctness; (iv) and results are stable across Rényi
entropy variants, justifying our use of Shannon entropy as a principled default.
Entropy-Lens requires no gradients or fine-tuning, and only forward access to intermediate hidden
states and the output head. It applies to frozen, off-the-shelf transformers of arbitrary size. While
our experiments focus on language models, the methodology is general and opens new directions
for vocabulary-grounded interpretability.

2 RELATED WORK

Lenses in LLMs. Mechanistic interpretability (Bereska & Gavves, 2024) aims to provide a pre-
cise description and prediction of transformer-based computations. Common tools in the field are
lenses, which are a broad class of probes deployed in intermediate steps of the residual stream.
For example, logit-lens (nostalgebraist, 2020) uses the model’s decoder function to decode the
intermediate activations in the vocabulary space. tuned-lens (Belrose et al., 2023) refines this tech-
nique by training a different affine probe at each layer, instead of only using the pretrained model’s
decoder function. Building on the Transformer-Lens library (Nanda & Bloom, 2022), we pro-
pose Entropy-Lens, which employs logit-lens to study and characterize LLMs’ computations
via their decoded version with information theory.

Information theory in Transformers. Information theory has been studied both in connection to
the training phase of LLMs and their interpretability. For example, a collapse in attention entropy
has been linked to training instabilities (Zhai et al., 2023) and matrix entropy was employed to eval-
uate “compression” in LLMs (Wei et al., 2024). Additionally, mutual information was used to study
the effectiveness of the chain-of-thought mechanism (Ton et al., 2024). Our work, instead, shifts the
focus on the vocabulary’s natural domain. Through Entropy-Lens, we use information theory to
study the evolution of entropy of the intermediate layers’ decoded logits. A related study by Dom-
browski & Corlouer (2024) uses information-theoretic measures to distinguish between truthful and
deceptive LLM generations. Their analysis focuses on deception under explicit instruction, whereas
our work aims at uncovering broader entropy-based signatures across model families, prompt types,
and output correctness without requiring behavioral framing or fine-tuned prompting. A further
line of research connects information theory to memorization in transformers. Brown et al. (2021)
quantified memorization using Shannon mutual information between training data and trained mod-
els, while Morris et al. (2025) extended the analysis with Kolmogorov information theory at the
instance level. Their studies focus on memorization at the final layer, whereas we estimate memo-
rization across all layers—by analyzing sub-models of increasing depth—and uncover non-trivial,
context-dependent patterns that deviate from the monotonic trend one might expect a priori (see
Appendix D.1 for a derivation linking our entropy measure to memorization).

3 BACKGROUND

3.1 INFORMATION THEORY

The main information-theoretic quantity used in our study is entropy. Given a discrete1 random
variable X with outcomes xi and probability mass function p, the Shannon entropy H of X is
defined as

H(X) = −
∑
i

p(xi) log p(xi) = E[− log p(X)]. (1)

1Although entropy can be naturally extended to the continuous case with probability density functions, we
restrict ourselves to the discrete case as it is the most relevant to our study.
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Shannon proved that this function is the only one—up to a scalar multiplication—that satisfies
intuitive properties for measuring ‘disorder’ (Shannon, 1948). These include being maximal for
a uniform distribution, minimal for the limit of a Kronecker delta function, and ensuring that
H(A,B) ≤ H(A) + H(B) for every possible random variable A and B. The same function
already existed in continuous form in physics, where it linked the probabilistic formalism of sta-
tistical mechanics with the more phenomenological framework of thermodynamics, where the term
‘entropy’ was originally coined (Gibbs, 1902). In addition to Shannon entropy, we also consider its
generalization known as Rényi entropy. Given a discrete random variable X with probability mass
function p, the Rényi entropy of order α > 0, α ̸= 1, is defined as:

Hα(X) =
1

1− α
log

∑
i

p(xi)
α. (2)

This formulation reduces to Shannon entropy in the limit α → 1, and introduces a tunable param-
eter α that modulates the sensitivity of the entropy to the distribution’s tail. Rényi entropy also
subsumes many classical descriptors of discrete distributions without intrinsic ordering: with appro-
priate choices of α, it recovers collision entropy (α = 2), min-entropy (α → ∞), and max-entropy
(α → 0), and it correlates with indices such as the Gini–Simpson index (Rényi, 1961; Jost, 2006).
In general, lower values of α give more weight to rare events, while higher values emphasize the
most probable outcomes.
Next, we study the entropy of vocabulary predictions—a quantity that is maximal when the predic-
tion assigns equal probability to all tokens, minimal when it assigns zero probability to all but one
token, and takes intermediate values when probability is distributed across multiple tokens, consis-
tent with the previously mentioned properties. In our experiments, we explored a range of α values
to understand how this parameter affects the informativeness of the resulting entropy profiles. We
identified an informative range of α values—which includes the Shannon case α = 1—where en-
tropy profiles retain high discriminative power for classification tasks. Outside of this range, we
observe that profiles tend to collapse: for very small α, entropies become nearly maximal and lose
contrast across layers and examples; for large α, they become very small and overly sensitive to
noise and local fluctuations. These findings support the use of Shannon entropy as a balanced and
parameter-free choice, robust across a wide range of practical conditions.

3.2 THE TRANSFORMER

Architecture. The transformer (Vaswani et al., 2023) is a deep learning architecture widely ap-
plied in language modelling with LLMs (Brown et al., 2020) and computer vision (Dosovitskiy
et al., 2021). Transformer computations happen through transformer blocks and residual connec-
tions, as exemplified in Figure 1b. While various design choices are possible, blocks are usually
a composition of layer normalization (Zhang & Sennrich, 2019), attention, and multi layer percep-
trons (MLPs), as shown in Figure 1a. Residual connections, instead, sum the output of the layer
i− 1 to the output of the layer i.
Inside a single transformer block, the information flows both horizontally and vertically. The for-
mer, enabled by the attention mechanism, allows the token representations to interact with each
other. In a language modelling task, for example, this is useful to identify which parts of the input
sequence—the sentence prompt—should influence the next token prediction and quantify by how
much. The latter vertical information flow allows the representation to evolve and encode different
meanings or concepts. Usually, the dimension of the latent space is the same for each block in the
transformer. The embedding spaces where these computations take place are generally called the
residual stream.

Computation schema. LLMs are trained to predict the next token in a sentence. That is, given a
sentence prompt S with tokens t1, . . . , tN , the transformer encodes each token with a linear encoder
E. Throughout the residual stream, the representation xN of the token tN evolves into the represen-
tation of the token tN+1, which is then decoded back into token space via a linear decoder D, often
set to E⊤, tying the embedding weights and the decoder. Finally, the logits—the output of D—are
normalized with softmax to represent a probability distribution over the vocabulary. We summarize
this operation with the function W := softmax ◦ D.
In formal terms, information processing can be expressed using the encoder, decoder, Transformer
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block f , and residual connection

x0
j = E(tj), xi

j = f i(xi−1
[1:N ]) + xi−1

j , yi
j = W (xi

j). (3)

where j ∈ {1, . . . , N} ranges over the number of tokens in the prompt and i ∈ {0, . . . , L} ranges
over the number of layers. Hence, xi

j represents the activations of token tj after layer i.

3.2.1 INSTRUCT MODELS

Training an LLM requires vast amounts of data and is generally divided into multiple phases. (1)
Pretraining: The model is exposed to large datasets through self-supervised tasks, such as next-
token prediction or similar variants. This phase helps the model learn a broad range of general
knowledge. (2) Fine-tuning: This phase teaches the model to generate more useful and coherent
responses. Two main strategies are used: Chat: The model is trained on structured conversations
between a user and the model, with clearly defined roles. Instruct: The model learns from simple
commands, without a predefined dialogue structure. (3) RLHF (optional): Some models undergo
Reinforcement Learning from Human Feedback (RLHF) to further refine their responses based on
human preferences.
For our experiments, we used off-the-shelf models. We also focused primarily on Instruct models
(abbreviated with it in tables and figures) instead of Chat models for two reasons: 1. the Instruct
strategy aligns better with our experimental setup 2. Instruct models are more flexible and often
preferred for practical applications.

4 METHOD

Entropy-Lens’s pipeline comprises three steps and is described in Figure 1b. After introducing the
notation and motivating the choice of entropy as a measure, in the following we describe the details
of the framework which has been used for the experiments in the following sections.

Notation. We denote the input sentence comprising tokens t1, . . . , tN by S = (ti)
N
i=1. Then, xi

j

denotes the activations of the token tj after block i for j ∈ {1, . . . , N} and i ∈ {1, . . . , L}. Since
our analysis focuses on the outputs extracted from the intermediate layers of the transformer, it will
be useful to distinguish between the raw logits and their normalized versions, i.e. the probability
distributions. We define W := softmax ◦D and yi

j := W (xi
j), the probability distribution over the

vocabulary obtained from the activations of token tj after layer i.

Why entropy? Our goal is to characterize how a transformer model evolves its predictions across
layers, remaining in the token space for interpretability. Each intermediate representation, once de-
coded and passed through softmax, yields a probability distribution over the vocabulary. However,
this distribution lives on a high-dimensional, unordered categorical support. Classical descriptors
such as variance or higher-order cumulants rely on an implicit ordering of the support and thus be-
come meaningless when applied to token distributions—shuffling token indices alters their value
arbitrarily. Entropy, on the other hand, is invariant under permutations and captures a well-defined
notion of uncertainty or informativeness regardless of vocabulary indexing. Rényi entropy, in par-
ticular, further recovers or correlates with many of the measures commonly used to describe distri-
butions over unordered supports, making it a principled and unifying choice. It is therefore a natural
and stable summary to characterize the evolution of token-level beliefs across transformer layers.

Definitions. The core of our methodology is to analyze the entropy of the generated tokens’ in-
termediate representations yi

j . These vectors are probability distributions, as they are the output of
a softmax. To obtain a single quantity that summarizes the information they contain, we compute
their entropy H(yi

j). For one generated token, we can consider the entropy of all of its intermediate
predictions H(yi

j) for i ∈ {1, . . . , L}. This leads us to the definition of entropy profile:

Definition 1 (Entropy profile) Let hi
j = H(yi

j) be the entropy of the intermediate representation
of token tj after block i and residual connection. The entropy profile of the next generated token is
defined as hN =

⊕
i h

i
N where

⊕
denotes any aggregation function.

4
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In our experiments, we set
⊕

to be concatenation, so that hN = (h1
N , . . . , hL

N )⊤, but other choices
are possible. The extraction of entropy profiles is the step 1 of our pipeline. Then, we fix the number
of tokens that the LLM is required to generate, T and repeat the same procedure for each of them,
leading us to the next definition:

Definition 2 (Aggregated entropy profile) Let hN+t be the entropy profiles according to Defini-
tion 1 for t ∈ {0, . . . , T − 1}, i.e. the entropy profile of each token generated sequentially
by a transformer. The aggregated entropy profile of the next T generated tokens is defined as
h[N :T ] =

⊗T−1
t=0 hN+t where

⊗
denotes any aggregation function.

Note that
⊗

in Definition 2 need not be the same as
⊕

in Definition 1. In our experiments, we
set both of them to be concatenation, so that h[N :T ] is the matrix with hN+t as columns, that is
(h[N :T ])

i
t = hi

N+t for i ∈ {1, . . . , L} and t ∈ {0, . . . , T − 1}. The aggregation of entropy profiles
is the step 2 of our framework.
The last step of our framework is classification, where we feed the aggregated entropy profile to a
classifier C to determine whether it contains sufficient information to identify a particular ‘entity’.
In our experiments, we take C to be a k-NN classifier.
We also examine whether aggregated entropy profiles identify model family (Section 5.1), task type
and format (Sections 5.2 and 5.5), and correct and wrong answers to multiple choice questions
(Section 5.3) in LLMs.

(a) Transformer block.

E

⋮
⋮ ⋮

⋮ ⋮

⋮
⋮

⋮

(b) Entropy-Lens’s pipeline.

Figure 1: Overview of transformer computations and Entropy-Lens framework. (Left) Structure
of a generic Transformer block. (Center) A diagram representing a transformer architecture: hidden
representations are converted into intermediate predictions with W before calculating their entropy
H . (Right) A diagram representing our framework: step 1: entropy profile extraction, step 2: entropy
profile aggregation and step 3: classification.

5 EXPERIMENTS

Our experiments focus on several key aspects. First, we show that entropy profiles are indica-
tive of model family, with distinctions becoming more pronounced as model size increases. We
then investigate whether a model’s entropy profile alone can be used to classify the task it is
performing. Next, we assess whether entropy profiles capture information about output format-
ting, independently of task content. We extend this analysis to evaluate whether entropy pro-
files provide signals that relate to correct versus incorrect task execution. Additionally, we ex-
plore the effect of varying the α parameter in Rényi entropy, examining how it influences the ex-
pressiveness of the resulting profiles. Notably, as entropy is a permutation invariant quantity, i.e.
H((p1, . . . , pn)) = H((pπ(1), . . . , pπ(n))) for all permutations π, we do not have direct access to
semantic information.
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5.1 ENTROPY PROFILES IDENTIFY MODEL FAMILIES

We assess whether aggregated entropy profiles can distinguish different model families by visualiz-
ing and analyzing those of 12 models from 4 different families (GPT, Gemma, LLama and Qwen)
with parameter counts ranging from 100M to 9B.
We average 64 entropy profiles obtained by generating 32 tokens prompting the model with a com-
pletely blank prompt. More details about the setup are available in Appendix C.1. We observe (see
Figure 2a) that the profiles relate uniquely to the model family, rather than a particular model, inde-
pendently of its size. Moreover, we observe that each model size within a particular family is tied to
a scaling factor if we normalize by number of layers (see Figure 2b).
The GPT model class starts with high vocabulary entropy in the early layers, indicating a wide
range of possible response tokens. Then, entropy gradually decreases—more smoothly than in other
classes—leading to a low-entropy state, where the model narrows down to a small set of possible
response tokens.
The Gemma model class, on the other hand, starts with high entropy in the very first layer, then
sharply drops to lower entropy, rises again in the intermediate layers, and finally decreases to low
entropy again just before the last layers, where the model is required to produce an output token.
The Llama model class starts with low entropy, then steeply rises and maintains a high entropy value
over a large range of intermediate layers, finally decreasing to low entropy again.
The Qwen model family exhibits a similar trend, but in a more gradual manner, resulting in less
well-defined regimes.
We observe that the equivalence between models of the same family but different sizes holds when
looking at the entropy trend not as a function of the absolute layer index, but rather as the relative
layer position within the model.
We conjecture that high entropy phases, whether in the early or intermediate layers, allow the model
to explore more possibilities in its response, similarly to how temperature helps avoid getting stuck
in local minima in optimization. Then, at the moment of selection, the distribution is ‘cooled down’,
forcing the output to be limited to a few possible tokens.
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Figure 2: Entropy-based characterization of model families: (a) t-SNE of aggregated entropy profiles
of different model families. Point size scales with number of parameters. (b) Average entropy
profiles over 32 tokens per model. The x axis is normalized to compare models with different
depths.

5.2 ENTROPY PROFILES IDENTIFY TASK TYPES

We verify whether the entropy profiles can identify task types examining generative (continue a
text), syntactic (count the number of words in a text), and semantic (extract the subject or moral of
a text) tasks.
We do this with the TinyStories dataset (Eldan & Li, 2023). For evaluation robustness, we construct
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for each task type three prompt templates using a combination of task-specific task prompts,
reported in Appendix C.2 Table 4, and a story from TinyStories. These templates are: (1) Base, of
the form task prompt + story; (2) Reversed, of the form story + task prompt; (3) Scrambled,
of the form task prompt + scrambled story or scrambled story + task prompt, at random.
A scrambled story is a ‘story’ obtained by randomly shuffling the words in a given story from
TinyStories. Note that, for a robust evaluation, we also use 2 possible task prompt variations, as
per Table 4.
We generate 800 prompts per task type, 1/3 of them with the base template, 1/3 with the reversed
template, and 1/3 with the scrambled templates, for a total of 2400 prompts. We then apply our
pipeline from Section 4 to classify the aggregated entropy profiles of these prompts against their
task type using a k-NN classifier. The model was evaluated in a 10-fold cross-validation using the
ROC-AUC score (one-vs-rest), a standard choice for measuring classification performance. Table
1a shows the results obtained for 6 models with parameter counts ranging from 1B to 9B. Figure 3
shows the average entropy profiles per task type.
We observe that all k-NN classifiers (i.e. one for each LLM) achieve high accuracy in distinguishing
entropy profiles, with a trend toward improved performance for larger models (see Appendix B.2
for a comparison with single-layer entropy baselines).
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Figure 3: Average entropy profiles with shaded standard deviation for different task types: genera-
tive, syntactic, and semantic. These tasks are induced with the prompts described in Appendix C.2.
Left: Llama-3.2-it. Right: Gemma-2-it.

Table 1: Results summary (ROC-AUC). Left: TinyStories task classification (Section 5.2). Middle: MMLU
correctness vs. prompt style (Section 5.3). Right: Format classification vs. Rényi α (Section 5.5).

(a) TinyStories

Model Size k-NN AUC

Gemma-2-it 2.1B 97.66 ± 0.47
Gemma-2-it 8.9B 98.38 ± 0.50
Llama-3.2-it 1B 94.94 ± 0.79
Llama-3.2-it 3B 94.77 ± 0.93
Llama-3-it 8B 96.10 ± 0.67
Phi-3 3.6B 97.07 ± 0.87

(b) MMLU correctness

Model Prompt LLM-Acc. k-NN AUC

Llama
Base 50.89 73.61 ± 1.52
Humble 58.51 69.90 ± 1.06
Instruct 60.62 67.23 ± 1.62

Gemma
Base 56.10 71.88 ± 1.63
Humble 54.71 72.78 ± 1.15
Instruct 56.38 68.36 ± 1.23

(c) Format vs. α

Model α k-NN AUC

Gemma-2-2B-it
0.5 97.3 ± 1.6
1.0 98.7 ± 1.1
5.0 98.4 ± 1.7

Llama-3.2-1B-it
0.5 97.8 ± 1.6
1.0 97.8 ± 2.4
5.0 96.6 ± 2.6

5.3 ENTROPY PROFILES CORRELATES WITH CORRECT TASK EXECUTION

We test whether entropy profiles can identify correct and wrong answers generated by LLMs using
the Massive Multitask Language Understanding (MMLU) dataset (Hendrycks et al., 2021). MMLU
consists of multiple-choice questions across 57 subjects, ranging from history and physics to law,
mathematics, and medicine. The difficulty levels span from elementary to professional, making it a
benchmark for evaluating language models on specialized domains. Each dataset entry contains: a
question string, four answer choices and a label indicating the correct answer.
We evaluate two models, a Llama-3.2 with 3B parameters Instruct and a Gemma-2 with 2B pa-
rameters, by presenting the multiple-choice questions in three different formats (as per Table 5 in
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Appendix C.3): (1) Base: A minimal version containing the topic, the question, and multiple-choice
answers. (2) Instruct: A version with a brief explanation that it’s a multiple-choice test where only
one option should be selected. (3) Humble: A version that also instructs the model to pick a com-
pletely random option if it doesn’t know the answer.
Then, we apply our pipeline to extract and aggregate the responses’ entropy profiles and classify
them against the correctness of the corresponding LLM-generated answer. We train a k-NN classi-
fier for each LLM and validate it using 10-fold cross-validation. We also conduct a t-test to compare
our classifier to a dummy model. This dummy model generates predictions randomly, sampled from
a distribution that reflects the proportion of correct and incorrect answers produced by the LLM,
ensuring robustness against class imbalance. The results reject the null hypothesis (α = 0.05) with
the k-NN achieving a ROC-AUC score between 67.23 and 73.61, depending on prompt type and
model (see Table 1b).
We observe that the instruct and humble prompts improve Llama’s average accuracy, while for
Gemma, this is only true for the instruct prompt. Additionally, in Llama, the model’s higher accu-
racy seems to be partially linked to greater difficulty in distinguishing correct from incorrect entropy
profiles, though more rigorous analysis is needed to confirm this. In Gemma, however, this claim is
harder to support.

5.4 THREE REGIMES OF RÉNYI ENTROPY

α = 0.01
σ = 0.00000

α = 0.02
σ = 0.00000

α = 0.05
σ = 0.00003

α = 0.1
σ = 0.00016

α = 0.2
σ = 0.00081

α = 0.5
σ = 0.00360

α = 1
σ = 0.00997

α = 2
σ = 0.01313

α = 5
σ = 0.01377

α = 10
σ = 0.01366

α = 20
σ = 0.00964

α = 100
σ = 0.00635

α = 200
σ = 0.00555

α = 500
σ = 0.00476

α = 1000
σ = 0.00423

α = 1500
σ = 0.00410

Figure 4: Cosine similarity matrices between entropy profiles computed on a subset of the topic-
format dataset using different values of α in the Rényi entropy. σ denotes the standard deviation of
the similarity matrix. Note how similarity flattens for very low and very high α, while intermediate
values yield more informative profiles.

To qualitatively explore how the Rényi entropy affects the structure of entropy profiles, we compute
pairwise cosine similarities between profiles generated with different values of α. This analysis is
performed on a subset of the topic-format dataset (see Appendix C.4), and the resulting similarity
matrices are shown in Figure 4.
We observe three distinct regimes as α varies: (1) For very small values of α (e.g., α < 0.2),
the similarity matrices are nearly flat, with profiles being almost identical across examples. This
is expected, as Rényi entropy in this regime weights all tokens with non-zero probability almost
equally, and usually all tokens have non-null probability. (2) For large values of α (e.g., α > 20), the
similarity matrices also flatten. In this case, the entropy becomes increasingly dominated by the few
tokens with highest probabilities. Since these sets of top tokens tend to have similar cardinalities
(in the limit equal to 1), the profiles collapse into a narrow set of values, losing expressiveness
and becoming more sensitive to local fluctuations. (3) Between these extremes lies an informative
regime—approximately 0.5 ≤ α ≤ 20—where entropy profiles are heterogeneous enough to retain
meaningful variation. This is reflected in the standard deviation of the similarity matrices, which
peaks in this interval.
This qualitative observation supports our empirical findings: in Section 5.5, we show that format
classification accuracy remains high and stable within this informative α range. Notably, Shannon
entropy (α = 1) falls within this interval, providing a strong justification for its use in the main
experiments. By choosing α = 1, we retain discriminative power while avoiding the need to tune
additional hyperparameters.
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5.5 ENTROPY PROFILES IDENTIFY TEXT FORMAT
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Simulate a chat log about

Figure 5: PCA projection on aggregated
entropy profiles extracted from the topic-
format dataset.

We test whether the entropy profiles contain signal
about the format of the generated text. In this ex-
periment, we prompt the model to produce short texts
across different topics while enforcing one of three pre-
defined formats: poem, scientific piece, or chat
log. We call these generated texts the topic-format
dataset.
We use entropy profiles computed not only with Shan-
non entropy (α = 1), but also with Rényi entropy for
α ∈ {0.5, 5.0}. As shown in Table 1c, the k-NN classi-
fier achieves high ROC-AUC scores across all values of
α, indicating that the format is reliably encoded in the
entropy profiles. Moreover, the small variability in per-
formance across α values supports our use of Shannon
entropy as a principled, parameter-free default.
To better understand the structure of the entropy pro-
files, we perform Principal Component Analysis (PCA)
and visualize the first two components. As shown in
Figure 5, the profiles cluster distinctly by format, forming linearly separable groups in the reduced
space. This indicates that format-specific computation patterns are not only detectable by a classifier,
but visibly reflected in the global shape of the entropy evolution across layers.

6 CONCLUSIONS

In this work, we prototyped a novel model-agnostic interpretability framework for large-scale
transformer-based architectures grounded in information theory. Entropy-Lens can be interpreted
as a dimensionality-reduction tool for transformer activity: it compresses complex computations
into a simple profile that makes the model’s behavior graspable at a glance. Across our experiments,
we used Entropy-Lens to uncover family-specific computational patterns. Entropy profiles also
proved informative of task type, format, and output correctness, and allowed us to identify which
layers are more sensitive to these variations (Figure 3). Moreover, they were robust across Rényi
entropy variants. Importantly, all experiments were conducted on frozen, off-the-shelf transformers
without gradients or fine-tuning. From a more theoretical perspective, our analysis suggests that
entropy profiles can be read in terms of memorization across depth (considering one layer, then two,
and so on, as explained in Appendix D). Interestingly, our results indicate that this memorization
is not monotonic, but instead depends systematically on family, task, and format—phenomena not
previously observed. Finally, we emphasize that Entropy-Lens opens the door to further analyses,
much like t-SNE or PCA do for representation spaces, which we leave to future work.

6.1 LIMITATIONS AND FUTURE WORK

While this work paves the way to further investigations in information theoretic interpretability, it
also presents a number of limitations. First, the concepts of ‘task type’ and ‘format type’ don’t
have a formal and well established definition. Moreover, we showed how different models possess
different characteristic entropy profiles. We conjecture that these particular shapes are a byproduct
of training procedure and architectural designs, but future research could focus on understanding
the precise connections. Another interesting line of research could focus on considering more fine-
grained measures of information instead of just an aggregated one such as entropy. With these
limitations in mind, our methodology could be used to probe the reasoning capabilities of LLMs,
for instance by comparing the entropy profile of a reasoning task vs. a data retrieval task. If these
profiles happen to match, it could be taken as an argument against the ability of LLMs to reason.
Conversely, if they do not, it may suggest that some form of reasoning is indeed occurring.
Finally, recent literature explored the use of entropy for private inference (PI), where computations
are performed on encrypted data without revealing users’ sensitive information (Jha & Reagen,
2025). While previous work focused on the entropy of the attention mechanism, future research
could use our methodology to develop PI-friendly applications of LLMs.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, all code necessary to reproduce the experiments presented in
this paper is available in the source code included in the supplementary materials. Complete details
about the hardware specifications and software libraries used are provided in Appendix C.5.
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ENTROPY-LENS: THE INFORMATION SIGNATURE OF TRANSFORMER
COMPUTATIONS - APPENDIX

A APPENDIX STRUCTURE

The appendix is organized as follows:

• Appendix B – Additional Experiments: We provide a preliminary exploration of our
approach on Vision Transformers (ViTs), showing that entropy profiles can also be ex-
tracted and qualitatively interpreted in non-language domains, without any modification to
our framework. We also conducted a supplementary experiment on the TinyStories dataset
(using the Gemma-2-2b-it model) to determine which transformer blocks are essential for
the classification task and whether all blocks are necessary for optimal performance.

• Appendix C – Evaluation Details: We provide full details on the datasets and prompt tem-
plates used in our experiments. In particular, we highlight details about the model family
identification, we specify how prompts were constructed for task classification, output cor-
rectness, and format classification tasks. This section also includes hardware information
to support reproducibility

• Appendix D – Theoretical Considerations: We outline a heuristic connection between
entropy profiles and memorization in transformers. Building on the frameworks of Brown
et al. (2021) and Morris et al. (2025), we show how our layer-wise entropy measures can
be interpreted as estimates of memorization across depth.

• Appendix E – Minimal Implementation: We present a minimal code snippet that re-
produces the core entropy profile extraction logic in a few lines of code. While our full
codebase offers several optimizations and utilities, this section emphasizes transparency
and ease of replication by showcasing the conceptual simplicity of our approach.

B ADDITIONAL EXPERIMENTS

To further test the generality and flexibility of our methodology, we conduct additional experiments
beyond the core settings presented in the main text. In particular, we explore how Entropy-Lens
performs in a different modality: computer vision. Without any architectural adjustment or fine-
tuning, we apply the same framework to Vision Transformers (ViTs) and observe that entropy pro-
files extracted from visual models exhibit qualitatively interpretable structure. These preliminary
results suggest that our method may extend beyond language models, but a systematic evaluation
across modalities is left for future work.
We further performed a complementary study on the TinyStories dataset, using the Gemma-2-2b-it
model, to assess which transformer blocks are most critical for task classification and whether all
layers are necessary. In this setting, we compared full entropy profiles with reduced variants ob-
tained from single layers or from equidistant subsets of layers (first, middle, and last). Our results
show that the complete entropy profile achieves substantially higher classification accuracy, indicat-
ing that information is distributed across depth and cannot be captured by a small subset of layers
alone.

B.1 ENTROPY-LENS FOR VISION TRANSFORMERS

To demonstrate the versatility and robustness of our approach beyond language modeling, we ana-
lyze the entropy profiles of ViTs and DeiTs.

Using 20 classes from ImageNet-1K (Russakovsky et al., 2015), with 20 images per class, and
without any modifications to our framework, we generate the entropy profiles shown in Figure 6.
We observe that all profiles start with high entropy values, which then decrease, mostly in the final
layers. This behavior is qualitatively similar to that of GPTs or larger LLaMa models (Section 5.1),
pointing to a possible common trend across domains as different as image processing and natural
language processing.
Focusing on computer vision models, we note that while ViT and DeiT families exhibit qualitatively
similar trends, they differ quantitatively—ViTs start with higher entropy values, making them easily
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distinguishable from DeiTs.
Notably, the only profile that stands out is that of ViT Large (with ∼ 300M parameters), compared
to the other models analyzed in this section, which have ≤ 86M parameters.
For ViT Large, entropy decreases more smoothly, appearing not only as a better approximation of
the sharp drop seen in smaller models but possibly following a different behavior entirely, with the
entropy decline starting earlier.
We hypothesize a phase transition in entropy behavior as model size increases, occurring somewhere
between 87M and 307M parameters, though a more extensive study would be required to confirm
this hypothesis.

Figure 6: Entropy profiles for ViT model families.

B.2 ENTROPY PROFILES FROM DIFFERENT BLOCKS

To assess whether entropy profiles from all transformer layers are necessary for model characteriza-
tion, or if comparable results can be achieved using fewer layers, we conducted an evaluation using
different layer subsets. Specifically, we repeated the TinyStories experiments (Section 5.2) using
four different configurations: (1) first layer only, (2) middle layer only, (3) last layer only, and (4) a
combination of first, middle, and last layers. We then compared the classification accuracy of k-NN
classifiers trained on these reduced entropy profiles against those using complete layer sequences.
The results are visible in table 2.

Experimental setup. The k-NN classifier was configured with k = 11 neighbors using Euclidean
distance as the similarity metric. For sequence generation, we employed a sampling-based approach
rather than deterministic decoding which was used for the results reported in the Section 5.2.

Table 2: k-NN AUC across different sets of considered layers for Gemma-2-2b-it.

Considered layers k-NN AUC

first-only 68.34±2.68
middle-only 78.83±3.07
last-only 76.78±2.36
first+middle+last 86.13±1.41
all 90.49±1.76
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C EVALUATION DETAILS

This section provides further details on the datasets and prompt templates used to evaluate the effec-
tiveness of entropy profiles in the main experiments. In particular, we describe how we constructed
the inputs for three key experimental settings: task type classification using the TinyStories dataset,
correctness classification using the MMLU benchmark, and format classification using the topic-
format dataset.

In all cases, prompt design plays a critical role in ensuring robust comparisons across experimental
conditions. To this end, we employed multiple prompt variations. The subsections below report the
full set of templates used, as referenced in Sections 5.2, 5.3, and 5.5 of the main paper.

The scripts used to generate these datasets—along with the full codebase to extract entropy profiles
and reproduce all experiments—are shared as part of our code release.

Finally, we also provide information about the hardware used to run our experiments to facilitate
reproducibility.

C.1 MODEL FAMILY CLASSIFICATION

In Section 5.1, we show how entropy profiles can effectively identify both model families and model
sizes. Our analysis reveals that entropy profiles exhibit qualitatively distinct patterns across different
model families and sizes, as illustrated through scatterplot visualizations. By applying t-SNE dimen-
sionality reduction, we cluster models by family, indicating that entropy profiles capture meaningful
structural differences between architectures. To quantitatively assess the classification capabilities
of entropy profiles, we employ a k-nearest neighbors classifier (k = 3 and euclidean distance) to
predict both model families and sizes based on their entropy traces. The classification results are
presented in Table 3. To obtain labeled model size categories, we binned models into 4 classes based
on parameter count (in billions): <1B, 1-3B, 3-5B, and >5B.

Table 3: F1-scores for model family and model size classification. Each reported value is the mean
across 10 runs, with the standard deviation computed over random 50/50 train–test splits.

Task Macro F1-score

model family 97.99±0.66
model size 96.31±0.87

Preprocessing Steps. Since entropy traces vary in length across models due to different layer
counts, we apply linear interpolation to standardize all traces to the same length. Additionally, to
ensure fair classification performance, we standardize the samples to reduce bias from scaling effects
in the entropy profiles, allowing the classifier to focus on the characteristics of each trace.

C.2 PROMPT TEMPLATES FOR TINYSTORIES TASKS

In Section 5.2, we describe an experimental setup designed to test whether entropy profiles can iden-
tify different types of tasks. To this end, we used the TinyStories dataset (Eldan & Li, 2023) and con-
structed prompts combining short stories with specific task instructions. Each task type—generative,
syntactic, and semantic—was associated with two distinct natural language formulations, referred to
as task prompts. These are listed in Table 4. By varying the task prompt, we ensure that our clas-
sification results are not simply driven by surface-level textual artifacts, but instead reflect deeper
computational signatures captured by the entropy profiles.

This table complements the prompt templates (base, reversed, and scrambled) described in the main
text and provides the full set of instructions used to elicit different model behaviors.

C.3 PROMPT TEMPLATES FOR MMLU CORRECTNESS CLASSIFICATION

In Section 5.3, we test whether entropy profiles can distinguish between correct and incorrect an-
swers produced by language models. To construct the dataset for this experiment, we used the
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Table 4: Prompt templates used for TinyStories tasks.

Task Type Task prompt

Generative How can the story be continued?
Which could be a continuation of the story?

Syntactic How many words are in the story?
Count the number of words in the story.

Semantic What is the main idea of the story?
Who is the subject of the story?

Massive Multitask Language Understanding (MMLU) benchmark (Hendrycks et al., 2021), apply-
ing three distinct prompt styles to elicit different answer behaviors from the models. Table 5 reports
the full prompt templates used in this experiment. Each template presents the same multiple-choice
question in a different instructional format: the Base format presents the question directly; the In-
struct format introduces an explicit instruction to select a single correct answer; and the Humble
format includes an additional fallback directive encouraging the model to guess randomly if uncer-
tain.

This variation in prompting allows us to control for instruction framing and to evaluate whether
entropy profiles can capture response confidence and correctness robustly across different model
behaviors. The table shown here complements the description in the main text.

Table 5: Prompt templates used for the MMLU dataset.

Prompt Type Prompt
Base Subject: {subject}

Question: {question}

Choices:
A. {option 1}
B. {option 2}
C. {option 3}
D. {option 4}

Answer:

Instruct The following is a multiple-choice question about {subject}. Reply only with the correct option.

Question: {question}

Choices:
A. {option 1}
B. {option 2}
C. {option 3}
D. {option 4}

Answer:

Humble The following is a multiple-choice question about {subject}. Reply only with the correct option.
If you are unsure about the answer, reply with a completely random option.

Question: {question}

Choices:
A. {option 1}
B. {option 2}
C. {option 3}
D. {option 4}

Answer:
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C.4 PROMPT CONSTRUCTION FOR THE Topic-Format DATASET

To evaluate whether entropy profiles captures stylistic features of generated text, we constructed
a custom dataset referred to as the topic-format dataset. In this setting, models are prompted to
generate short texts on various topics, each constrained to adopt one of three specific formats: poem,
scientific piece, or chat log. The goal is to determine whether these formats induce distinct
entropy profiles, independently of the topic content.

We generated prompts by pairing 150 distinct topics with the following three format instructions:

• Write a poem about ...

• Write a scientific piece about ...

• Simulate a chat log about ...

Each prompt is constructed by concatenating a format prefix with a randomly selected topic (e.g.,
Write a poem about a planet). The resulting dataset contains 450 prompt completions per
model, each paired with its entropy profile computed using Rényi entropy for α ∈ {0.5, 1.0, 5.0}.

All generations were performed using a maximum generation length of 256 tokens. We then seg-
mented the output into 8 equal-length windows and computed an entropy profile for each. The
resulting data were stored with format labels and used in the classification and visualization tasks
discussed in Section 5.5 of the main paper.

This setup enables robust testing of the extent to which entropy profiles encode formatting cues,
beyond topical content or task semantics.

C.5 EXPERIMENTAL AND HARDWARE SETUP

All experiments were conducted on a compute node equipped with an NVIDIA L40 GPU, an Intel
Xeon Gold CPU, 128 GB of RAM, and running Ubuntu 22.04. The primary software frameworks
used were PyTorch, Transformer-Lens, and HuggingFace Transformers. Inference on LLMs was
performed using float16 precision for improved efficiency.

D THEORETICAL CONSIDERATIONS

In addition to the empirical results presented in the main text, we provide here a preliminary theo-
retical perspective that connects entropy profiles to the literature on memorization in transformers.
Our goal is not to give a full formal treatment, but rather to outline how previous definitions of mem-
orization, based on information theory, can be related to the quantities we compute. We first recall
the frameworks introduced by Brown et al. (2021) and Morris et al. (2025), and then show how our
entropy profiles can be interpreted as layer-wise estimates of memorization.

D.1 ENTROPY AND MEMORIZATION

From Shannon to Kolmogorov memorization. Brown et al. (2021) introduced an information-
theoretic framework to quantify memorization in trained models. Given a training data distribution
X , a family of data-generating processes Θ, and a training algorithm L : X 7→ Θ̂ mapping training
sets to trained models, they define memorization as the mutual information between X and Θ̂

mem(X, Θ̂) = I(X, Θ̂) = H(X)−H(X|Θ̂). (4)

This quantity captures how much information about X is retained in the distribution over trained
models. It can be decomposed into

mem(X, Θ̂) = memI(X, Θ̂,Θ) + memU (X, Θ̂,Θ), (5)

where memI measures generalization and memU the unintended memorization (i.e., information
about X not attributable to the process Θ).

Building on this formalism, Morris et al. (2025) extended the analysis from distributions to in-
dividual instances, moving from Shannon to Kolmogorov information theory. The Kolmogorov
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complexity of an instance x given model parameters θ̂ is

Hk(x|θ̂) = min
s

{|s| : f(s, θ̂) = x}, (6)

where f is a computational model (imagine a decoder) that can take as input x and θ. The exact def-
inition of Kolmogorov complexity is not computable in general. In practice, it can be approximated
via arithmetic coding as

Hk(x|θ̂) ≈ − log p(x|θ̂), (7)

where p(x|θ̂) is the predictive probability assigned to x by the trained model. This allowed Morris
et al. (2025) to study instance-level memorization, although still focusing on measures computed at
the final layer of the model.

Connecting to entropy profiles. Our approach provides a complementary perspective. Instead
of measuring memorization only at the final layer, we estimate it at every layer when we analyze
entropy profiles. To see this connection, recall that in Morris et al. (2025) the term Hk(x|θ̂) is
approximated by − log p(x|θ̂), where p(x|θ̂) is the model’s predictive distribution for instance x. In
our notation, this probability corresponds to a component of the vector yi

j , the softmax-normalized
output obtained for token tj after block i. Averaging this quantity with respect to the distribution
p(x|θ̂) yields an estimate of H(X|θ̂). If we further assume that the distribution Θ̂ induced by
the training algorithm is sufficiently concentrated around the trained model, this becomes close to
H(X|Θ̂), the conditional entropy of the data given the trained model distribution.

Now, rather than computing this value only for the full model, we do so for every intermediate
truncation. Let Θ̂i denote the sub-model obtained by retaining only the first i layers of the trained
transformer and applying an early exit. The corresponding conditional entropies are

H(X|Θ̂i), i = 1, . . . , N, (8)

and the sequence {H(X|Θ̂i)}Ni=1 constitutes the entropy profile. This is equivalent to

H(X|Θ̂i) = H(X)− I(X, Θ̂i), (9)

i.e. the negative mutual information between the dataset and the truncated model up to a constant
H(X), which is equal for all layers.

This perspective suggests that entropy profiles can be interpreted as measuring how memorization is
distributed across depth. Crucially, our empirical results show that this allocation does not follow a
simple monotonic trend, as one might have expected a priori. Instead, it varies in a systematic way
depending on model family, task, format, and confidence, revealing non-trivial patterns of informa-
tion storage that had not been documented before.

E MINIMAL IMPLEMENTATION

To maximize reproducibility and transparency, we provide a minimal implementation of our frame-
work. While our full codebase includes optimizations and utility functions to streamline analysis
across models and datasets, the core idea behind Entropy-Lens is conceptually simple and can be
expressed in just a few lines of code.

This section presents a compact example that computes the entropy profile of generated tokens using
an off-the-shelf language model. Despite its brevity, this snippet captures the essence of our method:
extracting intermediate representations, mapping them to vocabulary distributions, and computing
their entropies.

E.1 MINIMAL ENTROPY PROFILE EXTRACTION

The code in listing 1 demonstrates how to compute an entropy profile for a single prompt us-
ing a standard decoder-only transformer. It relies only on model forward passes and the use of
logit-lens-style decoding. No gradients or fine-tuning are required, but only forward access to
intermediate hidden states and the output head.
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1 from transformers import AutoTokenizer, AutoModelForCausalLM
2 import torch
3
4 # Load GPT-2 and set up
5 tokenizer = AutoTokenizer.from_pretrained('gpt2')
6 model = AutoModelForCausalLM.from_pretrained('gpt2', device_map="auto").eval()
7 tokenizer.pad_token = tokenizer.eos_token
8
9 # Define entropy computation

10 ln, U = model.transformer.ln_f, model.lm_head
11 entropy = lambda x: -torch.sum(x * torch.log(x + 1e-15), dim=-1)
12
13 # Prepare input
14 input_text = 'The concept of entropy'
15 inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
16
17 # Generate with hidden states
18 outputs = model.generate(inputs,
19 do_sample=True,
20 max_new_tokens=32,
21 output_hidden_states=True,
22 return_dict_in_generate=True,
23 pad_token_id=tokenizer.pad_token_id
24 )
25
26 # Stack hidden activations and compute entropy signature
27 activations = torch.vstack([
28 torch.vstack(h).permute(1, 0, 2) for h in outputs.hidden_states
29 ])
30 entropy_signature = entropy(U(ln(activations)).softmax(dim=-1))

Listing 1: A minimal Python implementation of Entropy-Lens using Huggingface models and
Pytorch.
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