
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENTROPY-LENS: THE INFORMATION SIGNATURE OF
TRANSFORMER COMPUTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer models map input token sequences to output token distributions,
layer by layer. While most interpretability work focuses on internal latent rep-
resentations, we study the evolution of these token-level distributions directly in
vocabulary space. However, such distributions are high-dimensional and defined
on an unordered support, making common descriptors like moments or cumulants
ill-suited. We address this by computing the Shannon entropy of each intermediate
predicted distribution, yielding one interpretable scalar per layer. The resulting se-
quence, the entropy profile, serves as a compact, information-theoretic signature of
the model’s computation. We introduce Entropy-Lens, a model-agnostic frame-
work that extracts entropy profiles from frozen, off-the-shelf transformers. We
show that these profiles (i) reveal family-specific computation patterns invariant
under depth rescaling, (ii) are predictive of prompt type and task format, and (iii)
correlate with output correctness. We further show that Rényi entropies yield sim-
ilar results within a broad range of α values, justifying the use of Shannon entropy
as a stable and principled summary. Our results hold across different transformers,
requiring only forward access to intermediate hidden states and the output head;
no gradients or fine-tuning are needed.

1 INTRODUCTION

Transformer-based architectures (Vaswani et al., 2023) operate by iteratively mapping token inputs
to distributions over next-token outputs, layer by layer (Shan et al., 2024). This view emphasizes
their inherently probabilistic nature: each layer produces a distribution over the vocabulary, encoding
the model’s beliefs at that stage.

Despite their success across domains—from language to biology to vision (Devlin, 2018; Ji et al.,
2021; Wu et al., 2020)—the internal evolution of these distributions remains poorly understood,
resulting in unpredictable behaviour (Wei et al., 2022) and reliability concerns (Schroeder & Wood-
Doughty, 2025; Huang et al., 2025). Most interpretability research either focuses on toy models
(Elhage et al., 2021; 2022) or requires training a set of probes (Belrose et al., 2023) or full models
on ad-hoc tasks (Nanda et al., 2023), limiting scalability and generality. Moreover, existing methods
primarily study latent representations—hidden states, attention maps, or MLP activations (Nanda &
Bloom, 2022; Bereska & Gavves, 2024; Chefer et al., 2021)—rather than the output distributions
themselves. We propose to shift perspective: instead of analyzing the internal geometry of latent
activations, we focus on the evolution of the model’s token-level predictions across layers. These
predictions, obtained by decoding intermediate representations via the model’s output head, form
probability distributions over the vocabulary. Studying their evolution offers a direct, vocabulary-
grounded view of the computation.
However, these distributions pose two challenges: they are high-dimensional (one value per to-
ken) and defined over an unordered support (the vocabulary). This makes classical descriptors like
variance or higher-order cumulants unstable or ill-defined. We address both issues by computing
the Shannon entropy of each distribution—a scalar, interpretable quantity invariant to token per-
mutation, and reflective of the model’s uncertainty at each layer. We introduce Entropy-Lens, a
simple, scalable, and model-agnostic framework for studying transformer computations through the
evolution of entropy across layers. Conceptually, Entropy-Lens can be seen as a dimensionality
reduction of transformer activity, compressing complex layer-by-layer computations into an entropy
profile that provides a compact and interpretable signature of the model’s behavior.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In our experiments, we consider several LLMs, including Llama (Touvron et al., 2023), Gemma
(Team et al., 2024), and GPT, (Radford, 2018) up to 9B parameters. For each generated token, we
compute the entropy of its intermediate predictions, as described in Section 4, yelding one inter-
pretable value per layer: this constitutes the entropy profile. We then aggregate these profiles across
tokens and study whether they capture structural information about the internal LLM’s computation
(Figure 2a). In Section 5, we show that: (i) entropy profiles reveal family-specific signatures of
transformer architectures, invariant under depth rescaling; (ii) they are predictive of prompt seman-
tics and format; (iii) they correlate with output correctness; (iv) and results are stable across Rényi
entropy variants, justifying our use of Shannon entropy as a principled default.
Entropy-Lens requires no gradients or fine-tuning, and only forward access to intermediate hidden
states and the output head. It applies to frozen, off-the-shelf transformers of arbitrary size. While
our experiments focus on language models, the methodology is general and opens new directions
for vocabulary-grounded interpretability.

2 RELATED WORK

Lenses in LLMs. Mechanistic interpretability (Bereska & Gavves, 2024) aims to provide a pre-
cise description and prediction of transformer-based computations. Common tools in the field are
lenses, which are a broad class of probes deployed in intermediate steps of the residual stream.
For example, logit-lens (nostalgebraist, 2020) uses the model’s decoder function to decode the
intermediate activations in the vocabulary space. tuned-lens (Belrose et al., 2023) refines this tech-
nique by training a different affine probe at each layer, instead of only using the pretrained model’s
decoder function. Building on the Transformer-Lens library (Nanda & Bloom, 2022), we pro-
pose Entropy-Lens, which employs logit-lens to study and characterize LLMs’ computations
via their decoded version with information theory.

Information theory in Transformers. Information theory has been studied both in connection to
the training phase of LLMs and their interpretability. For example, a collapse in attention entropy
has been linked to training instabilities (Zhai et al., 2023) and matrix entropy was employed to eval-
uate “compression” in LLMs (Wei et al., 2024). Additionally, mutual information was used to study
the effectiveness of the chain-of-thought mechanism (Ton et al., 2024). Our work, instead, shifts the
focus on the vocabulary’s natural domain. Through Entropy-Lens, we use information theory to
study the evolution of entropy of the intermediate layers’ decoded logits. A related study by Dom-
browski & Corlouer (2024) uses information-theoretic measures to distinguish between truthful and
deceptive LLM generations. Their analysis focuses on deception under explicit instruction, whereas
our work aims at uncovering broader entropy-based signatures across model families, prompt types,
and output correctness without requiring behavioral framing or fine-tuned prompting. A further
line of research connects information theory to memorization in transformers. Brown et al. (2021)
quantified memorization using Shannon mutual information between training data and trained mod-
els, while Morris et al. (2025) extended the analysis with Kolmogorov information theory at the
instance level. Their studies focus on memorization at the final layer, whereas we estimate memo-
rization across all layers—by analyzing sub-models of increasing depth—and uncover non-trivial,
context-dependent patterns that deviate from the monotonic trend one might expect a priori (see
Appendix D.1 for a derivation linking our entropy measure to memorization).

3 BACKGROUND

3.1 INFORMATION THEORY

The main information-theoretic quantity used in our study is entropy. Given a discrete1 random
variable X with outcomes xi and probability mass function p, the Shannon entropy H of X is
defined as

H(X) = −
∑
i

p(xi) log p(xi) = E[− log p(X)]. (1)

1Although entropy can be naturally extended to the continuous case with probability density functions, we
restrict ourselves to the discrete case as it is the most relevant to our study.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Shannon proved that this function is the only one—up to a scalar multiplication—that satisfies
intuitive properties for measuring ‘disorder’ (Shannon, 1948). These include being maximal for
a uniform distribution, minimal for the limit of a Kronecker delta function, and ensuring that
H(A,B) ≤ H(A) + H(B) for every possible random variable A and B. The same function
already existed in continuous form in physics, where it linked the probabilistic formalism of sta-
tistical mechanics with the more phenomenological framework of thermodynamics, where the term
‘entropy’ was originally coined (Gibbs, 1902). In addition to Shannon entropy, we also consider its
generalization known as Rényi entropy. Given a discrete random variable X with probability mass
function p, the Rényi entropy of order α > 0, α ̸= 1, is defined as:

Hα(X) =
1

1− α
log

∑
i

p(xi)
α. (2)

This formulation reduces to Shannon entropy in the limit α → 1, and introduces a tunable param-
eter α that modulates the sensitivity of the entropy to the distribution’s tail. Rényi entropy also
subsumes many classical descriptors of discrete distributions without intrinsic ordering: with appro-
priate choices of α, it recovers collision entropy (α = 2), min-entropy (α → ∞), and max-entropy
(α → 0), and it correlates with indices such as the Gini–Simpson index (Rényi, 1961; Jost, 2006).
In general, lower values of α give more weight to rare events, while higher values emphasize the
most probable outcomes.
Next, we study the entropy of vocabulary predictions—a quantity that is maximal when the predic-
tion assigns equal probability to all tokens, minimal when it assigns zero probability to all but one
token, and takes intermediate values when probability is distributed across multiple tokens, consis-
tent with the previously mentioned properties. In our experiments, we explored a range of α values
to understand how this parameter affects the informativeness of the resulting entropy profiles. We
identified an informative range of α values—which includes the Shannon case α = 1—where en-
tropy profiles retain high discriminative power for classification tasks. Outside of this range, we
observe that profiles tend to collapse: for very small α, entropies become nearly maximal and lose
contrast across layers and examples; for large α, they become very small and overly sensitive to
noise and local fluctuations. These findings support the use of Shannon entropy as a balanced and
parameter-free choice, robust across a wide range of practical conditions.

3.2 THE TRANSFORMER

Architecture. The transformer (Vaswani et al., 2023) is a deep learning architecture widely ap-
plied in language modelling with LLMs (Brown et al., 2020) and computer vision (Dosovitskiy
et al., 2021). Transformer computations happen through transformer blocks and residual connec-
tions, as exemplified in Figure 1b. While various design choices are possible, blocks are usually
a composition of layer normalization (Zhang & Sennrich, 2019), attention, and multi layer percep-
trons (MLPs), as shown in Figure 1a. Residual connections, instead, sum the output of the layer
i− 1 to the output of the layer i.
Inside a single transformer block, the information flows both horizontally and vertically. The for-
mer, enabled by the attention mechanism, allows the token representations to interact with each
other. In a language modelling task, for example, this is useful to identify which parts of the input
sequence—the sentence prompt—should influence the next token prediction and quantify by how
much. The latter vertical information flow allows the representation to evolve and encode different
meanings or concepts. Usually, the dimension of the latent space is the same for each block in the
transformer. The embedding spaces where these computations take place are generally called the
residual stream.

Computation schema. LLMs are trained to predict the next token in a sentence. That is, given a
sentence prompt S with tokens t1, . . . , tN , the transformer encodes each token with a linear encoder
E. Throughout the residual stream, the representation xN of the token tN evolves into the represen-
tation of the token tN+1, which is then decoded back into token space via a linear decoder D, often
set to E⊤, tying the embedding weights and the decoder. Finally, the logits—the output of D—are
normalized with softmax to represent a probability distribution over the vocabulary. We summarize
this operation with the function W := softmax ◦ D.
In formal terms, information processing can be expressed using the encoder, decoder, Transformer

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

block f , and residual connection

x0
j = E(tj), xi

j = f i(xi−1
[1:N]) + xi−1

j , yi
j = W (xi

j). (3)

where j ∈ {1, . . . , N} ranges over the number of tokens in the prompt and i ∈ {0, . . . , L} ranges
over the number of layers. Hence, xi

j represents the activations of token tj after layer i.

3.2.1 INSTRUCT MODELS

Training an LLM requires vast amounts of data and is generally divided into multiple phases. (1)
Pretraining: The model is exposed to large datasets through self-supervised tasks, such as next-
token prediction or similar variants. This phase helps the model learn a broad range of general
knowledge. (2) Fine-tuning: This phase teaches the model to generate more useful and coherent
responses. Two main strategies are used: Chat: The model is trained on structured conversations
between a user and the model, with clearly defined roles. Instruct: The model learns from simple
commands, without a predefined dialogue structure. (3) RLHF (optional): Some models undergo
Reinforcement Learning from Human Feedback (RLHF) to further refine their responses based on
human preferences.
For our experiments, we used off-the-shelf models. We also focused primarily on Instruct models
(abbreviated with it in tables and figures) instead of Chat models for two reasons: 1. the Instruct
strategy aligns better with our experimental setup 2. Instruct models are more flexible and often
preferred for practical applications.

4 METHOD

Entropy-Lens’s pipeline comprises three steps and is described in Figure 1b. After introducing the
notation and motivating the choice of entropy as a measure, in the following we describe the details
of the framework which has been used for the experiments in the following sections.

Notation. We denote the input sentence comprising tokens t1, . . . , tN by S = (ti)
N
i=1. Then, xi

j

denotes the activations of the token tj after block i for j ∈ {1, . . . , N} and i ∈ {1, . . . , L}. Since
our analysis focuses on the outputs extracted from the intermediate layers of the transformer, it will
be useful to distinguish between the raw logits and their normalized versions, i.e. the probability
distributions. We define W := softmax ◦D and yi

j := W (xi
j), the probability distribution over the

vocabulary obtained from the activations of token tj after layer i.

Why entropy? Our goal is to characterize how a transformer model evolves its predictions across
layers, remaining in the token space for interpretability. Each intermediate representation, once de-
coded and passed through softmax, yields a probability distribution over the vocabulary. However,
this distribution lives on a high-dimensional, unordered categorical support. Classical descriptors
such as variance or higher-order cumulants rely on an implicit ordering of the support and thus be-
come meaningless when applied to token distributions—shuffling token indices alters their value
arbitrarily. Entropy, on the other hand, is invariant under permutations and captures a well-defined
notion of uncertainty or informativeness regardless of vocabulary indexing. Rényi entropy, in par-
ticular, further recovers or correlates with many of the measures commonly used to describe distri-
butions over unordered supports, making it a principled and unifying choice. It is therefore a natural
and stable summary to characterize the evolution of token-level beliefs across transformer layers.

Definitions. The core of our methodology is to analyze the entropy of the generated tokens’ in-
termediate representations yi

j . These vectors are probability distributions, as they are the output of
a softmax. To obtain a single quantity that summarizes the information they contain, we compute
their entropy H(yi

j). For one generated token, we can consider the entropy of all of its intermediate
predictions H(yi

j) for i ∈ {1, . . . , L}. This leads us to the definition of entropy profile:

Definition 1 (Entropy profile) Let hi
j = H(yi

j) be the entropy of the intermediate representation
of token tj after block i and residual connection. The entropy profile of the next generated token is
defined as hN =

⊕
i h

i
N where

⊕
denotes any aggregation function.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In our experiments, we set
⊕

to be concatenation, so that hN = (h1
N , . . . , hL

N)⊤, but other choices
are possible. The extraction of entropy profiles is the step 1 of our pipeline. Then, we fix the number
of tokens that the LLM is required to generate, T and repeat the same procedure for each of them,
leading us to the next definition:

Definition 2 (Aggregated entropy profile) Let hN+t be the entropy profiles according to Defini-
tion 1 for t ∈ {0, . . . , T − 1}, i.e. the entropy profile of each token generated sequentially
by a transformer. The aggregated entropy profile of the next T generated tokens is defined as
h[N :T] =

⊗T−1
t=0 hN+t where

⊗
denotes any aggregation function.

Note that
⊗

in Definition 2 need not be the same as
⊕

in Definition 1. In our experiments, we
set both of them to be concatenation, so that h[N :T] is the matrix with hN+t as columns, that is
(h[N :T])

i
t = hi

N+t for i ∈ {1, . . . , L} and t ∈ {0, . . . , T − 1}. The aggregation of entropy profiles
is the step 2 of our framework.
The last step of our framework is classification, where we feed the aggregated entropy profile to a
classifier C to determine whether it contains sufficient information to identify a particular ‘entity’.
In our experiments, we take C to be a k-NN classifier.
We also examine whether aggregated entropy profiles identify model family (Section 5.1), task type
and format (Sections 5.2 and 5.5), and correct and wrong answers to multiple choice questions
(Section 5.3) in LLMs.

(a) Transformer block.

E

⋮
⋮ ⋮

⋮ ⋮

⋮
⋮

⋮

(b) Entropy-Lens’s pipeline.

Figure 1: Overview of transformer computations and Entropy-Lens framework. (Left) Structure
of a generic Transformer block. (Center) A diagram representing a transformer architecture: hidden
representations are converted into intermediate predictions with W before calculating their entropy
H . (Right) A diagram representing our framework: step 1: entropy profile extraction, step 2: entropy
profile aggregation and step 3: classification.

5 EXPERIMENTS

Our experiments focus on several key aspects. First, we show that entropy profiles are indica-
tive of model family, with distinctions becoming more pronounced as model size increases. We
then investigate whether a model’s entropy profile alone can be used to classify the task it is
performing. Next, we assess whether entropy profiles capture information about output format-
ting, independently of task content. We extend this analysis to evaluate whether entropy pro-
files provide signals that relate to correct versus incorrect task execution. Additionally, we ex-
plore the effect of varying the α parameter in Rényi entropy, examining how it influences the ex-
pressiveness of the resulting profiles. Notably, as entropy is a permutation invariant quantity, i.e.
H((p1, . . . , pn)) = H((pπ(1), . . . , pπ(n))) for all permutations π, we do not have direct access to
semantic information.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.1 ENTROPY PROFILES IDENTIFY MODEL FAMILIES

We assess whether aggregated entropy profiles can distinguish different model families by visualiz-
ing and analyzing those of 12 models from 4 different families (GPT, Gemma, LLama and Qwen)
with parameter counts ranging from 100M to 9B.
We average 64 entropy profiles obtained by generating 32 tokens prompting the model with a com-
pletely blank prompt. More details about the setup are available in Appendix C.1. We observe (see
Figure 2a) that the profiles relate uniquely to the model family, rather than a particular model, inde-
pendently of its size. Moreover, we observe that each model size within a particular family is tied to
a scaling factor if we normalize by number of layers (see Figure 2b).
The GPT model class starts with high vocabulary entropy in the early layers, indicating a wide
range of possible response tokens. Then, entropy gradually decreases—more smoothly than in other
classes—leading to a low-entropy state, where the model narrows down to a small set of possible
response tokens.
The Gemma model class, on the other hand, starts with high entropy in the very first layer, then
sharply drops to lower entropy, rises again in the intermediate layers, and finally decreases to low
entropy again just before the last layers, where the model is required to produce an output token.
The Llama model class starts with low entropy, then steeply rises and maintains a high entropy value
over a large range of intermediate layers, finally decreasing to low entropy again.
The Qwen model family exhibits a similar trend, but in a more gradual manner, resulting in less
well-defined regimes.
We observe that the equivalence between models of the same family but different sizes holds when
looking at the entropy trend not as a function of the absolute layer index, but rather as the relative
layer position within the model.
We conjecture that high entropy phases, whether in the early or intermediate layers, allow the model
to explore more possibilities in its response, similarly to how temperature helps avoid getting stuck
in local minima in optimization. Then, at the moment of selection, the distribution is ‘cooled down’,
forcing the output to be limited to a few possible tokens.

−30 −20 −10 0 10 20 30

TSNE 1

−30

−20

−10

0

10

20

T
S

N
E

2

Gpt2-Small

Gpt2-Medium

Gpt2-Large

Gpt2-Xl

Gemma-2-2B-It

Gemma-2-9B-It

Llama-3.2-1B-It

Llama-3.2-3B-It

Llama-3-8B-It

Qwen3-1.7B

Qwen3-4B

Qwen3-8B

(a)

2

3

4

5

6

7

8 Gpt2-small

Gpt2-medium

Gpt2-large

Gpt2-xl

0

2

4

6

8

10

Llama-3.2-1b-it

Llama-3.2-3b-it

Llama-3-8b-it

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5 Gemma-2-2b-it

Gemma-2-9b-it

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

Qwen3-1.7b

Qwen3-4b

Qwen3-8b

Layer depth (normalized)

E
nt

ro
py

(b)

Figure 2: Entropy-based characterization of model families: (a) t-SNE of aggregated entropy profiles
of different model families. Point size scales with number of parameters. (b) Average entropy
profiles over 32 tokens per model. The x axis is normalized to compare models with different
depths.

5.2 ENTROPY PROFILES IDENTIFY TASK TYPES

We verify whether the entropy profiles can identify task types examining generative (continue a
text), syntactic (count the number of words in a text), and semantic (extract the subject or moral of
a text) tasks.
We do this with the TinyStories dataset (Eldan & Li, 2023). For evaluation robustness, we construct

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

for each task type three prompt templates using a combination of task-specific task prompts,
reported in Appendix C.2 Table 4, and a story from TinyStories. These templates are: (1) Base, of
the form task prompt + story; (2) Reversed, of the form story + task prompt; (3) Scrambled,
of the form task prompt + scrambled story or scrambled story + task prompt, at random.
A scrambled story is a ‘story’ obtained by randomly shuffling the words in a given story from
TinyStories. Note that, for a robust evaluation, we also use 2 possible task prompt variations, as
per Table 4.
We generate 800 prompts per task type, 1/3 of them with the base template, 1/3 with the reversed
template, and 1/3 with the scrambled templates, for a total of 2400 prompts. We then apply our
pipeline from Section 4 to classify the aggregated entropy profiles of these prompts against their
task type using a k-NN classifier. The model was evaluated in a 10-fold cross-validation using the
ROC-AUC score (one-vs-rest), a standard choice for measuring classification performance. Table
1a shows the results obtained for 6 models with parameter counts ranging from 1B to 9B. Figure 3
shows the average entropy profiles per task type.
We observe that all k-NN classifiers (i.e. one for each LLM) achieve high accuracy in distinguishing
entropy profiles, with a trend toward improved performance for larger models (see Appendix B.2
for a comparison with single-layer entropy baselines).

0 5 10 15 20 25

Layer

0

2

4

6

8

10

12

E
nt

ro
py

Generative

Syntactic

Semantic

0 5 10 15 20 25

Layer

0

1

2

3

4

5

6

E
nt

ro
py

Generative

Syntactic

Semantic

Figure 3: Average entropy profiles with shaded standard deviation for different task types: genera-
tive, syntactic, and semantic. These tasks are induced with the prompts described in Appendix C.2.
Left: Llama-3.2-it. Right: Gemma-2-it.

Table 1: Results summary (ROC-AUC). Left: TinyStories task classification (Section 5.2). Middle: MMLU
correctness vs. prompt style (Section 5.3). Right: Format classification vs. Rényi α (Section 5.5).

(a) TinyStories

Model Size k-NN AUC

Gemma-2-it 2.1B 97.66 ± 0.47
Gemma-2-it 8.9B 98.38 ± 0.50
Llama-3.2-it 1B 94.94 ± 0.79
Llama-3.2-it 3B 94.77 ± 0.93
Llama-3-it 8B 96.10 ± 0.67
Phi-3 3.6B 97.07 ± 0.87

(b) MMLU correctness

Model Prompt LLM-Acc. k-NN AUC

Llama
Base 50.89 73.61 ± 1.52
Humble 58.51 69.90 ± 1.06
Instruct 60.62 67.23 ± 1.62

Gemma
Base 56.10 71.88 ± 1.63
Humble 54.71 72.78 ± 1.15
Instruct 56.38 68.36 ± 1.23

(c) Format vs. α

Model α k-NN AUC

Gemma-2-2B-it
0.5 97.3 ± 1.6
1.0 98.7 ± 1.1
5.0 98.4 ± 1.7

Llama-3.2-1B-it
0.5 97.8 ± 1.6
1.0 97.8 ± 2.4
5.0 96.6 ± 2.6

5.3 ENTROPY PROFILES CORRELATES WITH CORRECT TASK EXECUTION

We test whether entropy profiles can identify correct and wrong answers generated by LLMs using
the Massive Multitask Language Understanding (MMLU) dataset (Hendrycks et al., 2021). MMLU
consists of multiple-choice questions across 57 subjects, ranging from history and physics to law,
mathematics, and medicine. The difficulty levels span from elementary to professional, making it a
benchmark for evaluating language models on specialized domains. Each dataset entry contains: a
question string, four answer choices and a label indicating the correct answer.
We evaluate two models, a Llama-3.2 with 3B parameters Instruct and a Gemma-2 with 2B pa-
rameters, by presenting the multiple-choice questions in three different formats (as per Table 5 in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Appendix C.3): (1) Base: A minimal version containing the topic, the question, and multiple-choice
answers. (2) Instruct: A version with a brief explanation that it’s a multiple-choice test where only
one option should be selected. (3) Humble: A version that also instructs the model to pick a com-
pletely random option if it doesn’t know the answer.
Then, we apply our pipeline to extract and aggregate the responses’ entropy profiles and classify
them against the correctness of the corresponding LLM-generated answer. We train a k-NN classi-
fier for each LLM and validate it using 10-fold cross-validation. We also conduct a t-test to compare
our classifier to a dummy model. This dummy model generates predictions randomly, sampled from
a distribution that reflects the proportion of correct and incorrect answers produced by the LLM,
ensuring robustness against class imbalance. The results reject the null hypothesis (α = 0.05) with
the k-NN achieving a ROC-AUC score between 67.23 and 73.61, depending on prompt type and
model (see Table 1b).
We observe that the instruct and humble prompts improve Llama’s average accuracy, while for
Gemma, this is only true for the instruct prompt. Additionally, in Llama, the model’s higher accu-
racy seems to be partially linked to greater difficulty in distinguishing correct from incorrect entropy
profiles, though more rigorous analysis is needed to confirm this. In Gemma, however, this claim is
harder to support.

5.4 THREE REGIMES OF RÉNYI ENTROPY

α = 0.01
σ = 0.00000

α = 0.02
σ = 0.00000

α = 0.05
σ = 0.00003

α = 0.1
σ = 0.00016

α = 0.2
σ = 0.00081

α = 0.5
σ = 0.00360

α = 1
σ = 0.00997

α = 2
σ = 0.01313

α = 5
σ = 0.01377

α = 10
σ = 0.01366

α = 20
σ = 0.00964

α = 100
σ = 0.00635

α = 200
σ = 0.00555

α = 500
σ = 0.00476

α = 1000
σ = 0.00423

α = 1500
σ = 0.00410

Figure 4: Cosine similarity matrices between entropy profiles computed on a subset of the topic-
format dataset using different values of α in the Rényi entropy. σ denotes the standard deviation of
the similarity matrix. Note how similarity flattens for very low and very high α, while intermediate
values yield more informative profiles.

To qualitatively explore how the Rényi entropy affects the structure of entropy profiles, we compute
pairwise cosine similarities between profiles generated with different values of α. This analysis is
performed on a subset of the topic-format dataset (see Appendix C.4), and the resulting similarity
matrices are shown in Figure 4.
We observe three distinct regimes as α varies: (1) For very small values of α (e.g., α < 0.2),
the similarity matrices are nearly flat, with profiles being almost identical across examples. This
is expected, as Rényi entropy in this regime weights all tokens with non-zero probability almost
equally, and usually all tokens have non-null probability. (2) For large values of α (e.g., α > 20), the
similarity matrices also flatten. In this case, the entropy becomes increasingly dominated by the few
tokens with highest probabilities. Since these sets of top tokens tend to have similar cardinalities
(in the limit equal to 1), the profiles collapse into a narrow set of values, losing expressiveness
and becoming more sensitive to local fluctuations. (3) Between these extremes lies an informative
regime—approximately 0.5 ≤ α ≤ 20—where entropy profiles are heterogeneous enough to retain
meaningful variation. This is reflected in the standard deviation of the similarity matrices, which
peaks in this interval.
This qualitative observation supports our empirical findings: in Section 5.5, we show that format
classification accuracy remains high and stable within this informative α range. Notably, Shannon
entropy (α = 1) falls within this interval, providing a strong justification for its use in the main
experiments. By choosing α = 1, we retain discriminative power while avoiding the need to tune
additional hyperparameters.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.5 ENTROPY PROFILES IDENTIFY TEXT FORMAT

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
PC1

−4

−2

0

2

4

6

8

P
C

2

Write a scientific piece about

Write a poem about

Simulate a chat log about

Figure 5: PCA projection on aggregated
entropy profiles extracted from the topic-
format dataset.

We test whether the entropy profiles contain signal
about the format of the generated text. In this ex-
periment, we prompt the model to produce short texts
across different topics while enforcing one of three pre-
defined formats: poem, scientific piece, or chat
log. We call these generated texts the topic-format
dataset.
We use entropy profiles computed not only with Shan-
non entropy (α = 1), but also with Rényi entropy for
α ∈ {0.5, 5.0}. As shown in Table 1c, the k-NN classi-
fier achieves high ROC-AUC scores across all values of
α, indicating that the format is reliably encoded in the
entropy profiles. Moreover, the small variability in per-
formance across α values supports our use of Shannon
entropy as a principled, parameter-free default.
To better understand the structure of the entropy pro-
files, we perform Principal Component Analysis (PCA)
and visualize the first two components. As shown in
Figure 5, the profiles cluster distinctly by format, forming linearly separable groups in the reduced
space. This indicates that format-specific computation patterns are not only detectable by a classifier,
but visibly reflected in the global shape of the entropy evolution across layers.

6 CONCLUSIONS

In this work, we prototyped a novel model-agnostic interpretability framework for large-scale
transformer-based architectures grounded in information theory. Entropy-Lens can be interpreted
as a dimensionality-reduction tool for transformer activity: it compresses complex computations
into a simple profile that makes the model’s behavior graspable at a glance. Across our experiments,
we used Entropy-Lens to uncover family-specific computational patterns. Entropy profiles also
proved informative of task type, format, and output correctness, and allowed us to identify which
layers are more sensitive to these variations (Figure 3). Moreover, they were robust across Rényi
entropy variants. Importantly, all experiments were conducted on frozen, off-the-shelf transformers
without gradients or fine-tuning. From a more theoretical perspective, our analysis suggests that
entropy profiles can be read in terms of memorization across depth (considering one layer, then two,
and so on, as explained in Appendix D). Interestingly, our results indicate that this memorization
is not monotonic, but instead depends systematically on family, task, and format—phenomena not
previously observed. Finally, we emphasize that Entropy-Lens opens the door to further analyses,
much like t-SNE or PCA do for representation spaces, which we leave to future work.

6.1 LIMITATIONS AND FUTURE WORK

While this work paves the way to further investigations in information theoretic interpretability, it
also presents a number of limitations. First, the concepts of ‘task type’ and ‘format type’ don’t
have a formal and well established definition. Moreover, we showed how different models possess
different characteristic entropy profiles. We conjecture that these particular shapes are a byproduct
of training procedure and architectural designs, but future research could focus on understanding
the precise connections. Another interesting line of research could focus on considering more fine-
grained measures of information instead of just an aggregated one such as entropy. With these
limitations in mind, our methodology could be used to probe the reasoning capabilities of LLMs,
for instance by comparing the entropy profile of a reasoning task vs. a data retrieval task. If these
profiles happen to match, it could be taken as an argument against the ability of LLMs to reason.
Conversely, if they do not, it may suggest that some form of reasoning is indeed occurring.
Finally, recent literature explored the use of entropy for private inference (PI), where computations
are performed on encrypted data without revealing users’ sensitive information (Jha & Reagen,
2025). While previous work focused on the entropy of the attention mechanism, future research
could use our methodology to develop PI-friendly applications of LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, all code necessary to reproduce the experiments presented in
this paper is available in the source code included in the supplementary materials. Complete details
about the hardware specifications and software libraries used are provided in Appendix C.5.

REFERENCES

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens, 2023. URL https://arxiv.org/abs/2303.08112.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety – a review, 2024.
URL https://arxiv.org/abs/2404.14082.

Gavin Brown, Mark Bun, Vitaly Feldman, Adam Smith, and Kunal Talwar. When is memorization
of irrelevant training data necessary for high-accuracy learning? In Proceedings of the 53rd
annual ACM SIGACT symposium on theory of computing, pp. 123–132, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization,
2021. URL https://arxiv.org/abs/2012.09838.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Ann-Kathrin Dombrowski and Guillaume Corlouer. An information-theoretic study of lying in
LLMs. In ICML 2024 Workshop on LLMs and Cognition, 2024. URL https://openreview.
net/forum?id=9AM5i1wWZZ.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy model/index.html.

Josiah Willard Gibbs. Elementary principles in statistical mechanics: developed with especial ref-
erence to the rational foundations of thermodynamics. C. Scribner’s sons, 1902.

10

https://arxiv.org/abs/2303.08112
https://arxiv.org/abs/2404.14082
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2012.09838
https://openreview.net/forum?id=9AM5i1wWZZ
https://openreview.net/forum?id=9AM5i1wWZZ
https://arxiv.org/abs/2010.11929

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions. ACM Transactions on
Information Systems, 43(2):1–55, January 2025. ISSN 1558-2868. doi: 10.1145/3703155. URL
http://dx.doi.org/10.1145/3703155.

Nandan Kumar Jha and Brandon Reagen. Entropy-guided attention for private llms, 2025. URL
https://arxiv.org/abs/2501.03489.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
encoder representations from transformers model for dna-language in genome. Bioinformatics,
37(15):2112–2120, 2021.

Lou Jost. Entropy and diversity. Oikos, 113(2):363–375, 2006.

John X Morris, Chawin Sitawarin, Chuan Guo, Narine Kokhlikyan, G Edward Suh, Alexander M
Rush, Kamalika Chaudhuri, and Saeed Mahloujifar. How much do language models memorize?
arXiv preprint arXiv:2505.24832, 2025.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/TransformerLensOrg/
TransformerLens, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress mea-
sures for grokking via mechanistic interpretability, 2023. URL https://arxiv.org/abs/2301.
05217.

nostalgebraist. interpreting gpt: the logit-lense. https://www.lesswrong.com/posts/
AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens, 2020. Accessed: 17-02-2025.

Alec Radford. Improving language understanding by generative pre-training, 2018.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pp. 547–562. University of California Press, 1961.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Kayla Schroeder and Zach Wood-Doughty. Can you trust llm judgments? reliability of llm-as-a-
judge, 2025. URL https://arxiv.org/abs/2412.12509.

Weiqiao Shan, Long Meng, Tong Zheng, Yingfeng Luo, Bei Li, Tong Xiao, Jingbo Zhu, et al. Early
exit is a natural capability in transformer-based models: An empirical study on early exit without
joint optimization. arXiv preprint arXiv:2412.01455, 2024.

Claude E Shannon. A mathematical theory of communication. The Bell system technical journal,
27(3):379–423, 1948.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex
Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, An-
tonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo,
Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric
Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Hen-
ryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,

11

https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
http://dx.doi.org/10.1145/3703155
https://arxiv.org/abs/2501.03489
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://www.lesswrong. com/posts/AcKRB8wDpdaN6v6ru/ interpreting-gpt-the-logit-lens
https://www.lesswrong. com/posts/AcKRB8wDpdaN6v6ru/ interpreting-gpt-the-logit-lens
https://arxiv.org/abs/2412.12509

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee,
Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko
Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo
Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree
Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin
Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah
Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on
gemini research and technology, 2024. URL https://arxiv.org/abs/2403.08295.

Jean-Francois Ton, Muhammad Faaiz Taufiq, and Yang Liu. Understanding chain-of-thought in llms
through information theory, 2024. URL https://arxiv.org/abs/2411.11984.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022. URL https://arxiv.org/abs/2206.07682.

Lai Wei, Zhiquan Tan, Chenghai Li, Jindong Wang, and Weiran Huang. Diff-erank: A novel rank-
based metric for evaluating large language models, 2024. URL https://arxiv.org/abs/2401.
17139.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision, 2020.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Josh Susskind. Stabilizing transformer training by preventing attention
entropy collapse. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https://
arxiv.org/abs/1910.07467.

12

https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2411.11984
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2401.17139
https://arxiv.org/abs/2401.17139
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

ENTROPY-LENS: THE INFORMATION SIGNATURE OF TRANSFORMER
COMPUTATIONS - APPENDIX

A APPENDIX STRUCTURE

The appendix is organized as follows:

• Appendix B – Additional Experiments: We provide a preliminary exploration of our
approach on Vision Transformers (ViTs), showing that entropy profiles can also be ex-
tracted and qualitatively interpreted in non-language domains, without any modification to
our framework. We also conducted a supplementary experiment on the TinyStories dataset
(using the Gemma-2-2b-it model) to determine which transformer blocks are essential for
the classification task and whether all blocks are necessary for optimal performance.

• Appendix C – Evaluation Details: We provide full details on the datasets and prompt tem-
plates used in our experiments. In particular, we highlight details about the model family
identification, we specify how prompts were constructed for task classification, output cor-
rectness, and format classification tasks. This section also includes hardware information
to support reproducibility

• Appendix D – Theoretical Considerations: We outline a heuristic connection between
entropy profiles and memorization in transformers. Building on the frameworks of Brown
et al. (2021) and Morris et al. (2025), we show how our layer-wise entropy measures can
be interpreted as estimates of memorization across depth.

• Appendix E – Minimal Implementation: We present a minimal code snippet that re-
produces the core entropy profile extraction logic in a few lines of code. While our full
codebase offers several optimizations and utilities, this section emphasizes transparency
and ease of replication by showcasing the conceptual simplicity of our approach.

B ADDITIONAL EXPERIMENTS

To further test the generality and flexibility of our methodology, we conduct additional experiments
beyond the core settings presented in the main text. In particular, we explore how Entropy-Lens
performs in a different modality: computer vision. Without any architectural adjustment or fine-
tuning, we apply the same framework to Vision Transformers (ViTs) and observe that entropy pro-
files extracted from visual models exhibit qualitatively interpretable structure. These preliminary
results suggest that our method may extend beyond language models, but a systematic evaluation
across modalities is left for future work.
We further performed a complementary study on the TinyStories dataset, using the Gemma-2-2b-it
model, to assess which transformer blocks are most critical for task classification and whether all
layers are necessary. In this setting, we compared full entropy profiles with reduced variants ob-
tained from single layers or from equidistant subsets of layers (first, middle, and last). Our results
show that the complete entropy profile achieves substantially higher classification accuracy, indicat-
ing that information is distributed across depth and cannot be captured by a small subset of layers
alone.

B.1 ENTROPY-LENS FOR VISION TRANSFORMERS

To demonstrate the versatility and robustness of our approach beyond language modeling, we ana-
lyze the entropy profiles of ViTs and DeiTs.

Using 20 classes from ImageNet-1K (Russakovsky et al., 2015), with 20 images per class, and
without any modifications to our framework, we generate the entropy profiles shown in Figure 6.
We observe that all profiles start with high entropy values, which then decrease, mostly in the final
layers. This behavior is qualitatively similar to that of GPTs or larger LLaMa models (Section 5.1),
pointing to a possible common trend across domains as different as image processing and natural
language processing.
Focusing on computer vision models, we note that while ViT and DeiT families exhibit qualitatively
similar trends, they differ quantitatively—ViTs start with higher entropy values, making them easily

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

distinguishable from DeiTs.
Notably, the only profile that stands out is that of ViT Large (with ∼ 300M parameters), compared
to the other models analyzed in this section, which have ≤ 86M parameters.
For ViT Large, entropy decreases more smoothly, appearing not only as a better approximation of
the sharp drop seen in smaller models but possibly following a different behavior entirely, with the
entropy decline starting earlier.
We hypothesize a phase transition in entropy behavior as model size increases, occurring somewhere
between 87M and 307M parameters, though a more extensive study would be required to confirm
this hypothesis.

Figure 6: Entropy profiles for ViT model families.

B.2 ENTROPY PROFILES FROM DIFFERENT BLOCKS

To assess whether entropy profiles from all transformer layers are necessary for model characteriza-
tion, or if comparable results can be achieved using fewer layers, we conducted an evaluation using
different layer subsets. Specifically, we repeated the TinyStories experiments (Section 5.2) using
four different configurations: (1) first layer only, (2) middle layer only, (3) last layer only, and (4) a
combination of first, middle, and last layers. We then compared the classification accuracy of k-NN
classifiers trained on these reduced entropy profiles against those using complete layer sequences.
The results are visible in table 2.

Experimental setup. The k-NN classifier was configured with k = 11 neighbors using Euclidean
distance as the similarity metric. For sequence generation, we employed a sampling-based approach
rather than deterministic decoding which was used for the results reported in the Section 5.2.

Table 2: k-NN AUC across different sets of considered layers for Gemma-2-2b-it.

Considered layers k-NN AUC

first-only 68.34±2.68
middle-only 78.83±3.07
last-only 76.78±2.36
first+middle+last 86.13±1.41
all 90.49±1.76

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C EVALUATION DETAILS

This section provides further details on the datasets and prompt templates used to evaluate the effec-
tiveness of entropy profiles in the main experiments. In particular, we describe how we constructed
the inputs for three key experimental settings: task type classification using the TinyStories dataset,
correctness classification using the MMLU benchmark, and format classification using the topic-
format dataset.

In all cases, prompt design plays a critical role in ensuring robust comparisons across experimental
conditions. To this end, we employed multiple prompt variations. The subsections below report the
full set of templates used, as referenced in Sections 5.2, 5.3, and 5.5 of the main paper.

The scripts used to generate these datasets—along with the full codebase to extract entropy profiles
and reproduce all experiments—are shared as part of our code release.

Finally, we also provide information about the hardware used to run our experiments to facilitate
reproducibility.

C.1 MODEL FAMILY CLASSIFICATION

In Section 5.1, we show how entropy profiles can effectively identify both model families and model
sizes. Our analysis reveals that entropy profiles exhibit qualitatively distinct patterns across different
model families and sizes, as illustrated through scatterplot visualizations. By applying t-SNE dimen-
sionality reduction, we cluster models by family, indicating that entropy profiles capture meaningful
structural differences between architectures. To quantitatively assess the classification capabilities
of entropy profiles, we employ a k-nearest neighbors classifier (k = 3 and euclidean distance) to
predict both model families and sizes based on their entropy traces. The classification results are
presented in Table 3. To obtain labeled model size categories, we binned models into 4 classes based
on parameter count (in billions): <1B, 1-3B, 3-5B, and >5B.

Table 3: F1-scores for model family and model size classification. Each reported value is the mean
across 10 runs, with the standard deviation computed over random 50/50 train–test splits.

Task Macro F1-score

model family 97.99±0.66
model size 96.31±0.87

Preprocessing Steps. Since entropy traces vary in length across models due to different layer
counts, we apply linear interpolation to standardize all traces to the same length. Additionally, to
ensure fair classification performance, we standardize the samples to reduce bias from scaling effects
in the entropy profiles, allowing the classifier to focus on the characteristics of each trace.

C.2 PROMPT TEMPLATES FOR TINYSTORIES TASKS

In Section 5.2, we describe an experimental setup designed to test whether entropy profiles can iden-
tify different types of tasks. To this end, we used the TinyStories dataset (Eldan & Li, 2023) and con-
structed prompts combining short stories with specific task instructions. Each task type—generative,
syntactic, and semantic—was associated with two distinct natural language formulations, referred to
as task prompts. These are listed in Table 4. By varying the task prompt, we ensure that our clas-
sification results are not simply driven by surface-level textual artifacts, but instead reflect deeper
computational signatures captured by the entropy profiles.

This table complements the prompt templates (base, reversed, and scrambled) described in the main
text and provides the full set of instructions used to elicit different model behaviors.

C.3 PROMPT TEMPLATES FOR MMLU CORRECTNESS CLASSIFICATION

In Section 5.3, we test whether entropy profiles can distinguish between correct and incorrect an-
swers produced by language models. To construct the dataset for this experiment, we used the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Prompt templates used for TinyStories tasks.

Task Type Task prompt

Generative How can the story be continued?
Which could be a continuation of the story?

Syntactic How many words are in the story?
Count the number of words in the story.

Semantic What is the main idea of the story?
Who is the subject of the story?

Massive Multitask Language Understanding (MMLU) benchmark (Hendrycks et al., 2021), apply-
ing three distinct prompt styles to elicit different answer behaviors from the models. Table 5 reports
the full prompt templates used in this experiment. Each template presents the same multiple-choice
question in a different instructional format: the Base format presents the question directly; the In-
struct format introduces an explicit instruction to select a single correct answer; and the Humble
format includes an additional fallback directive encouraging the model to guess randomly if uncer-
tain.

This variation in prompting allows us to control for instruction framing and to evaluate whether
entropy profiles can capture response confidence and correctness robustly across different model
behaviors. The table shown here complements the description in the main text.

Table 5: Prompt templates used for the MMLU dataset.

Prompt Type Prompt
Base Subject: {subject}

Question: {question}

Choices:
A. {option 1}
B. {option 2}
C. {option 3}
D. {option 4}

Answer:

Instruct The following is a multiple-choice question about {subject}. Reply only with the correct option.

Question: {question}

Choices:
A. {option 1}
B. {option 2}
C. {option 3}
D. {option 4}

Answer:

Humble The following is a multiple-choice question about {subject}. Reply only with the correct option.
If you are unsure about the answer, reply with a completely random option.

Question: {question}

Choices:
A. {option 1}
B. {option 2}
C. {option 3}
D. {option 4}

Answer:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.4 PROMPT CONSTRUCTION FOR THE Topic-Format DATASET

To evaluate whether entropy profiles captures stylistic features of generated text, we constructed
a custom dataset referred to as the topic-format dataset. In this setting, models are prompted to
generate short texts on various topics, each constrained to adopt one of three specific formats: poem,
scientific piece, or chat log. The goal is to determine whether these formats induce distinct
entropy profiles, independently of the topic content.

We generated prompts by pairing 150 distinct topics with the following three format instructions:

• Write a poem about ...

• Write a scientific piece about ...

• Simulate a chat log about ...

Each prompt is constructed by concatenating a format prefix with a randomly selected topic (e.g.,
Write a poem about a planet). The resulting dataset contains 450 prompt completions per
model, each paired with its entropy profile computed using Rényi entropy for α ∈ {0.5, 1.0, 5.0}.

All generations were performed using a maximum generation length of 256 tokens. We then seg-
mented the output into 8 equal-length windows and computed an entropy profile for each. The
resulting data were stored with format labels and used in the classification and visualization tasks
discussed in Section 5.5 of the main paper.

This setup enables robust testing of the extent to which entropy profiles encode formatting cues,
beyond topical content or task semantics.

C.5 EXPERIMENTAL AND HARDWARE SETUP

All experiments were conducted on a compute node equipped with an NVIDIA L40 GPU, an Intel
Xeon Gold CPU, 128 GB of RAM, and running Ubuntu 22.04. The primary software frameworks
used were PyTorch, Transformer-Lens, and HuggingFace Transformers. Inference on LLMs was
performed using float16 precision for improved efficiency.

D THEORETICAL CONSIDERATIONS

In addition to the empirical results presented in the main text, we provide here a preliminary theo-
retical perspective that connects entropy profiles to the literature on memorization in transformers.
Our goal is not to give a full formal treatment, but rather to outline how previous definitions of mem-
orization, based on information theory, can be related to the quantities we compute. We first recall
the frameworks introduced by Brown et al. (2021) and Morris et al. (2025), and then show how our
entropy profiles can be interpreted as layer-wise estimates of memorization.

D.1 ENTROPY AND MEMORIZATION

From Shannon to Kolmogorov memorization. Brown et al. (2021) introduced an information-
theoretic framework to quantify memorization in trained models. Given a training data distribution
X , a family of data-generating processes Θ, and a training algorithm L : X 7→ Θ̂ mapping training
sets to trained models, they define memorization as the mutual information between X and Θ̂

mem(X, Θ̂) = I(X, Θ̂) = H(X)−H(X|Θ̂). (4)

This quantity captures how much information about X is retained in the distribution over trained
models. It can be decomposed into

mem(X, Θ̂) = memI(X, Θ̂,Θ) + memU (X, Θ̂,Θ), (5)

where memI measures generalization and memU the unintended memorization (i.e., information
about X not attributable to the process Θ).

Building on this formalism, Morris et al. (2025) extended the analysis from distributions to in-
dividual instances, moving from Shannon to Kolmogorov information theory. The Kolmogorov

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

complexity of an instance x given model parameters θ̂ is

Hk(x|θ̂) = min
s

{|s| : f(s, θ̂) = x}, (6)

where f is a computational model (imagine a decoder) that can take as input x and θ. The exact def-
inition of Kolmogorov complexity is not computable in general. In practice, it can be approximated
via arithmetic coding as

Hk(x|θ̂) ≈ − log p(x|θ̂), (7)

where p(x|θ̂) is the predictive probability assigned to x by the trained model. This allowed Morris
et al. (2025) to study instance-level memorization, although still focusing on measures computed at
the final layer of the model.

Connecting to entropy profiles. Our approach provides a complementary perspective. Instead
of measuring memorization only at the final layer, we estimate it at every layer when we analyze
entropy profiles. To see this connection, recall that in Morris et al. (2025) the term Hk(x|θ̂) is
approximated by − log p(x|θ̂), where p(x|θ̂) is the model’s predictive distribution for instance x. In
our notation, this probability corresponds to a component of the vector yi

j , the softmax-normalized
output obtained for token tj after block i. Averaging this quantity with respect to the distribution
p(x|θ̂) yields an estimate of H(X|θ̂). If we further assume that the distribution Θ̂ induced by
the training algorithm is sufficiently concentrated around the trained model, this becomes close to
H(X|Θ̂), the conditional entropy of the data given the trained model distribution.

Now, rather than computing this value only for the full model, we do so for every intermediate
truncation. Let Θ̂i denote the sub-model obtained by retaining only the first i layers of the trained
transformer and applying an early exit. The corresponding conditional entropies are

H(X|Θ̂i), i = 1, . . . , N, (8)

and the sequence {H(X|Θ̂i)}Ni=1 constitutes the entropy profile. This is equivalent to

H(X|Θ̂i) = H(X)− I(X, Θ̂i), (9)

i.e. the negative mutual information between the dataset and the truncated model up to a constant
H(X), which is equal for all layers.

This perspective suggests that entropy profiles can be interpreted as measuring how memorization is
distributed across depth. Crucially, our empirical results show that this allocation does not follow a
simple monotonic trend, as one might have expected a priori. Instead, it varies in a systematic way
depending on model family, task, format, and confidence, revealing non-trivial patterns of informa-
tion storage that had not been documented before.

E MINIMAL IMPLEMENTATION

To maximize reproducibility and transparency, we provide a minimal implementation of our frame-
work. While our full codebase includes optimizations and utility functions to streamline analysis
across models and datasets, the core idea behind Entropy-Lens is conceptually simple and can be
expressed in just a few lines of code.

This section presents a compact example that computes the entropy profile of generated tokens using
an off-the-shelf language model. Despite its brevity, this snippet captures the essence of our method:
extracting intermediate representations, mapping them to vocabulary distributions, and computing
their entropies.

E.1 MINIMAL ENTROPY PROFILE EXTRACTION

The code in listing 1 demonstrates how to compute an entropy profile for a single prompt us-
ing a standard decoder-only transformer. It relies only on model forward passes and the use of
logit-lens-style decoding. No gradients or fine-tuning are required, but only forward access to
intermediate hidden states and the output head.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 from transformers import AutoTokenizer, AutoModelForCausalLM
2 import torch
3
4 # Load GPT-2 and set up
5 tokenizer = AutoTokenizer.from_pretrained('gpt2')
6 model = AutoModelForCausalLM.from_pretrained('gpt2', device_map="auto").eval()
7 tokenizer.pad_token = tokenizer.eos_token
8
9 # Define entropy computation

10 ln, U = model.transformer.ln_f, model.lm_head
11 entropy = lambda x: -torch.sum(x * torch.log(x + 1e-15), dim=-1)
12
13 # Prepare input
14 input_text = 'The concept of entropy'
15 inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
16
17 # Generate with hidden states
18 outputs = model.generate(inputs,
19 do_sample=True,
20 max_new_tokens=32,
21 output_hidden_states=True,
22 return_dict_in_generate=True,
23 pad_token_id=tokenizer.pad_token_id
24)
25
26 # Stack hidden activations and compute entropy signature
27 activations = torch.vstack([
28 torch.vstack(h).permute(1, 0, 2) for h in outputs.hidden_states
29])
30 entropy_signature = entropy(U(ln(activations)).softmax(dim=-1))

Listing 1: A minimal Python implementation of Entropy-Lens using Huggingface models and
Pytorch.

19

	Introduction
	Related Work
	Background
	Information theory
	The Transformer
	Instruct models

	Method
	Experiments
	Entropy profiles identify model families
	Entropy profiles identify task types
	Entropy profiles correlates with correct task execution
	Three regimes of Rényi entropy
	Entropy profiles identify text format

	Conclusions
	Limitations and Future Work

	Appendix Structure
	Additional Experiments
	Entropy-Lens for Vision Transformers
	Entropy profiles from different blocks

	Evaluation Details
	Model family classification
	Prompt templates for TinyStories tasks
	Prompt templates for MMLU correctness classification
	Prompt Construction for the Topic-Format Dataset
	Experimental and hardware setup

	Theoretical Considerations
	Entropy and Memorization

	Minimal Implementation
	Minimal Entropy Profile Extraction

