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ABSTRACT

Combining Chain-of-Thought (CoT) with Reinforcement Learning (RL) improves
text-to-image (T2I) generation, yet the underlying interaction between CoT’s ex-
ploration and RL’s optimization remains unclear. We present a systematic entropy-
based analysis that yields three key insights: (1) CoT expands the generative ex-
ploration space, while RL contracts it toward high-reward regions; (2) final re-
ward is strongly negatively correlated with both the mean and variance of image-
token entropy, highlighting the need to reduce uncertainty and instability; and (3)
the entropy of the textual CoT directly governs downstream image quality, with
lower-entropy CoTs leading to better generations. Motivated by these findings, we
propose Entropy-Guided Group Relative Policy Optimization (EG-GRPO), a fine-
tuning strategy that reallocates optimization budget by uncertainty: low-entropy
tokens are excluded from reward-driven updates to preserve stability, while high-
entropy tokens receive an entropy bonus that encourages structured exploration
without collapse. Experiments on standard T2I benchmarks demonstrate that EG-
GRPO achieves state-of-the-art performance.

1 INTRODUCTION

Text-to-image (T2I) generation has progressed rapidly with large-scale pretraining and strong au-
toregressive and diffusion architectures (Chen et al., 2023; Labs, 2024; Wang et al., 2024), yet
two core challenges remain: (i) balancing exploration for diversity against exploitation for reward-
aligned fidelity, and (ii) ensuring generation stability under repeated sampling. Chain-of-Thought
(CoT) prompting promises richer semantic planning (Wei et al., 2022), while reinforcement learn-
ing (RL) directly optimizes task or preference rewards (Jiang et al., 2025). However, how CoT’s
exploratory behavior interacts with RL’s optimization in T2I, and how this interaction governs un-
certainty and stability, has not been systematically understood.

We analyze entropy dynamics in autoregressive T2I models that combine CoT with RL (via Group
Relative Policy Optimization, GRPO (Jiang et al., 2025)) and use Shannon entropy to quantify
token-level uncertainty in both modalities: textual CoT tokens and image tokens. Three empirical
findings emerge. First, CoT expands the exploration space, broadening the entropy distribution of
generated outputs, whereas RL contracts this space toward higher-reward regions. Second, final
reward exhibits a strong negative correlation with both the mean and the standard deviation of
image-token entropy, indicating that reducing uncertainty and instability is central to quality. Third,
the entropy of the textual CoT directly influences downstream image quality: lower-entropy CoTs
yield tighter, higher-reward clusters under stable sampling.

Guided by these findings, we propose Entropy-Guided Group Relative Policy Optimization (EG-
GRPO), a token-level modification of GRPO that reallocates gradient budget by uncertainty. Low-
entropy (high-confidence) tokens are excluded from reward-driven updates, retaining only the KL-
to-reference term to preserve stability and previously acquired knowledge. High-entropy tokens
receive an entropy bonus added to the advantage, encouraging structured exploration and accelerat-
ing uncertainty reduction where it matters. A batch-level calibration ties the bonus magnitude to the
mass saved on low-entropy tokens, keeping update scale close to GRPO, and the bonus vanishes at
GRPO equilibrium, preserving the stationary points of the base objective (Wang et al., 2025c).
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We evaluate EG-GRPO on T2I-CompBench (Huang et al., 2023) and WISE (Niu et al., 2025) using
a Janus-Pro autoregressive backbone in a discrete latent space (Chen et al., 2025) and a standard
reward pipeline combining human-preference scoring, object grounding, and VQA signals (Wu
et al., 2023; Liu et al., 2024; Wang et al., 2022). EG-GRPO attains state-of-the-art results, with
pronounced gains in compositional generalization (e.g., attribute binding and object relations). Ab-
lations that apply entropy guidance to only CoT tokens or only image tokens underperform the full
model, confirming the need to control uncertainty in both semantic planning and visual decoding.

The main contributions of our paper can be summarized as follows:

• We provide a quantitative account of the CoT–RL interaction through entropy dynamics: CoT
expands exploration, RL contracts toward high-reward regions; reward is strongly negatively cor-
related with entropy mean and std; and textual CoT entropy governs downstream image quality.

• We introduce an entropy-guided, token-level refinement of GRPO that protects confident tokens
via KL-only updates and focuses optimization on uncertain tokens via an entropy bonus, with
calibrated budget and equilibrium-vanishing properties.

• On T2I-CompBench and WISE, EG-GRPO achieves state-of-the-art performance and reduces
uncertainty and instability in line with the analysis.

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION MODEL

Text-to-image generation has been advanced along two major paradigms: autoregressive modeling
and diffusion-based approaches. On the autoregressive side, Parti (Yu et al., 2022) demonstrates
that large-scale transformer models can achieve impressive compositional generation by predicting
image tokens sequentially. Fluid (Fan et al., 2024) further explores continuous tokens and gener-
ation order, showing improved efficiency and quality. STAR (Ma et al., 2024) introduces a scale-
wise autoregressive framework that progressively generates images from coarse to fine scales, while
JetFormer (Tschannen et al., 2024) directly models raw images and text in a unified autoregres-
sive manner without discrete tokenization. More recently, NextStep-1 (Team et al., 2025) scales
continuous-token autoregressive generation to 14B parameters, achieving strong performance in
both image synthesis and editing. In parallel, diffusion models have become dominant for high-
quality synthesis. VQ-Diffusion (Gu et al., 2022) combines vector-quantized representations with
diffusion for discrete latent modeling, and ERNIE-ViLG 2.0 (Feng et al., 2023) extends this to large-
scale multilingual text-to-image generation. UPainting (Li et al., 2022) introduces cross-modal guid-
ance to unify simple and complex scenarios, while RPG (Yang et al., 2024) enhances controllability
via recaptioning, planning, and region-based diffusion. These works illustrate the complementary
strengths of autoregressive and diffusion frameworks in advancing the controllability, fidelity, and
scalability of text-to-image generation.

2.2 CHAIN OF THINKING AND REINFORCEMENT LEARNING

Recent works have explored integrating Chain-of-Thought (CoT) reasoning with reinforcement
learning (RL) to improve text-to-image generation. Visual-CoG (Li et al., 2025) introduces
stage-aware RL with intermediate rewards across semantic planning, refinement, and evaluation,
while ReasonGen-R1 (Zhang et al., 2025b) and T2I-R1 (Jiang et al., 2025) incorporate rationale-
augmented data and bi-level reasoning chains optimized via GRPO. PromptEnhancer (Wang et al.,
2025b) further demonstrates that CoT-based prompt rewriting with RL can enhance image quality
without modifying the generator, and verification-based methods also inject preference alignment
during synthesis (Zhang et al., 2025a). Beyond explicit CoT, RL has been applied for alignment
in diffusion models, such as comparing DPO and GRPO (Tong et al., 2025), subject-driven pref-
erence optimization (Miao et al., 2024), and DPOK fine-tuning with KL regularization (Fan et al.,
2023). Related multimodal reasoning approaches, including ImageGen-CoT (Liao et al., 2025) and
reflective CoT for retrieval (Wu et al., 2024), highlight the broader potential of structured reasoning.
Combining CoT and RL provides a promising avenue for enhancing controllability, interpretability,
and human alignment in text-to-image generation. While SimpleAR (Wang et al., 2025a) and Gal-
lici & Borde (2025) demonstrate the efficacy of standard GRPO for high-fidelity and style-aligned
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autoregressive generation, our approach introduces an entropy-guided mechanism to reallocate the
optimization budget at the token level dynamically.

3 PRELIMINARIES

We begin by formalizing autoregressive text-to-image generation, introducing Shannon entropy as a
measure of generative uncertainty, and reviewing Group Relative Policy Optimization (GRPO) for
model refinement.

3.1 AUTOREGRESSIVE GENERATION IN DISCRETE LATENT SPACE

Autoregressive text-to-image models operate in a discrete latent space. An image I is first encoded
into tokens z = (z1, z2, . . . , zL) via a pre-trained tokenizer such as VQ-VAE. The conditional like-
lihood given a text prompt c factorizes autoregressively:

p(z | c) =
L∏

i=1

p(zi | z<i, c). (1)

A policy πθ parameterized by θ models these conditionals. At step i, the policy outputs a categorical
distribution πθ(· | z<i, c) over the vocabulary V , from which zi is sampled. The final image is
reconstructed by decoding the full sequence z.

3.2 ENTROPY AS PREDICTIVE UNCERTAINTY

For each step i, the policy distribution admits a Shannon entropy:

H(πθ(· | z<i, c)) = −
∑
j∈V

pj log pj , (2)

where pj denotes the probability of token j. Low entropy reflects confident, often high-fidelity pre-
dictions with reduced diversity, whereas high entropy reflects uncertainty, encouraging exploration
and diverse generations at the cost of possible incoherence.

3.3 GROUP RELATIVE POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) refines generative policies using relative rewards with-
out requiring a value function. For a prompt c, the policy πθ samples G candidate sequences

{o(i)}Gi=1 ∼ πθ(· | c), o(i) = (o
(i)
1 , . . . , o

(i)

T (i)). (3)

Each sequence receives a reward r(i), which is normalized within the group:

µ = 1
G

G∑
i=1

r(i), σ =

√√√√ 1
G

G∑
i=1

(r(i) − µ)2, A(i) = r(i)−µ
max{σ,ε} . (4)

Broadcasting A(i) to all tokens yields the training objective

LGRPO(θ) = − 1
G

G∑
i=1

1
T (i)

T (i)∑
t=1

A(i) log πθ(o
(i)
t | c, o(i)<t) + β DKL(πθ ∥πref), (5)

where β ≥ 0 controls a KL regularizer toward a reference policy. This group-based normaliza-
tion yields scale-invariant advantages and stable updates, making GRPO well-suited for aligning
autoregressive generators with task-specific rewards.

4 ANALYSIS OF ENTROPY DYNAMICS IN TEXT-TO-IMAGE GENERATION

To investigate the role of uncertainty in text-to-image generation, we analyze generative entropy as
a quantitative indicator of model behavior. Our study focuses on disentangling how CoT and RL
fine-tuning affect entropy within the pipeline. By examining their individual and combined effects,
we clarify how these techniques balance exploration and exploitation, and how the resulting entropy
dynamics define the optimization objective for high-quality visual synthesis.

3
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Figure 1: Comparison of different text-to-image generation methods: (a) autoregressive text-to-image gener-
ation, (b) CoT, and (c) with CoT and GRPO optimization.

4.1 THE DICHOTOMY OF EXPLORATION AND EXPLOITATION: COT VS. RL

We begin our analysis by examining the distinct yet complementary roles of Chain-of-Thought
(CoT) prompting and reinforcement learning (RL) fine-tuning. For each textual prompt, we gen-
erate multiple image candidates under three settings: the baseline model (Janus-Pro), the baseline
augmented with CoT reasoning (Janus-Pro+CoT), and a GRPO-finetuned variant built upon Janus-
Pro+CoT (T2I-R1). To investigate their differences, we assess each generated image by jointly
measuring its output mean entropy and reward score, and visualize the resulting distributions in a
two-dimensional space.
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Figure 2: Entropy–reward distributions of different
methods. CoT (Janus-Pro+CoT) expands the exploratory
space with more diverse outputs, while GRPO fine-tuning
(T2I-R1) contracts it toward higher-reward regions, yield-
ing more stabilized, high-quality generations.

As illustrated in Figure 2, the introduction of
CoT significantly broadens the entropy dis-
tribution of the generated images. It shows
that CoT expands the model’s exploratory
space, enabling it to generate a more diverse
set of outputs. This expanded space contains
both low- and high-reward samples, indicat-
ing that CoT itself does not guarantee qual-
ity but rather increases the range of gener-
ative possibilities. Conversely, the applica-
tion of Group Relative Policy Optimization
(GRPO), which results in the T2I-R1, leads to
a notable contraction and leftward shift of the
entropy distribution. This demonstrates that
the model learns to exploit the vast space un-
locked by CoT, converging towards a much
narrower, lower-entropy region that consis-
tently yields higher rewards. This reveals a
complementary relationship: CoT serves to
expand the exploratory landscape, while
RL acts as a refinement mechanism to ex-
ploit this landscape and guide the model
towards stable, high-quality regions.

4.2 UPSTREAM INFLUENCE: HOW COT’S TEXTUAL ENTROPY GOVERNS IMAGE QUALITY

Since Chain-of-Thought serves as the entry point of exploration, we further examine how the intrin-
sic uncertainty of the textual CoT affects downstream image generation. To isolate this effect, we
focus on a subset of samples where image generation remains stable, defined as those with entropy
variance below a small threshold of 0.011 across multiple runs. This filtering minimizes confound-
ing factors due to unstable sampling, allowing us to probe the impact of CoT entropy directly.

As shown in Figure 3 (Left), we observe a clear negative correlation between the mean entropy
of the textual CoT and the average reward of the resulting images. Intuitively, high-entropy CoTs
correspond to less coherent or more uncertain reasoning traces, which tend to degrade visual quality.
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Prompt: The skater is doing tricks on the halfpipe.

Figure 3: Left: Reward vs. CoT entropy (stable cases, Image Entropy Std < 0.011). Higher CoT entropy
correlates with lower image reward. Right: Reward distributions across different CoTs for the same prompt.
Images from the same CoT cluster together, with certain CoTs consistently yielding lower rewards.

In contrast, low-entropy CoTs provide more confident and consistent reasoning, ultimately leading
to higher-reward generations. This analysis is grounded on the stable subset, ensuring that the
observed trend is not an artifact of sampling instability.

To further dissect this phenomenon, we visualize the reward distributions of images conditioned on
different CoTs for the same prompt (Figure 3, Right). Each distinct CoT forms a compact cluster
in the reward space, highlighting its consistent influence on generation outcomes. Notably, certain
CoTs repeatedly produce clusters with lower average rewards, suggesting that the quality bottleneck
is determined upstream, at the textual reasoning stage. These findings demonstrate a direct trans-
mission of uncertainty from text to image: the entropy of CoT reasoning acts as a critical upstream
factor that governs the attainable quality of visual outputs.

4.3 THE LEARNED OBJECTIVE: MINIMIZING UNCERTAINTY AND INSTABILITY FOR
HIGHER REWARDS

We next investigate how the fully RL-trained model internalizes entropy control to optimize for re-
ward. For each prompt–CoT pair, multiple images are generated, and their entropy statistics are
aggregated. Specifically, the mean entropy characterizes the global level of uncertainty in the gen-
erative process, while the standard deviation (std) captures the degree of instability across different
runs.

Empirical results reveal a consistent negative correlation between reward and standard deviation of
entropy (Figure 4, Left). This indicates that generative instability is inherently detrimental: mod-
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Figure 4: Left: Reward vs. entropy std. Higher instability (larger std) consistently lowers reward. Middle:
Relation between entropy std (x-axis) and the negative correlation of reward–entropy mean (y-axis). Greater
instability strengthens the negative correlation. Right: Reward vs. entropy mean under high-variance cases
(std > 0.03). Large std implies exploratory generation where RL has not converged; in this regime, reducing
mean entropy is especially beneficial.
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els that produce more consistent entropy trajectories across samples yield higher-quality outputs.
Beyond this first-order observation, we further examine how instability modulates the role of un-
certainty. Figure 4 (Middle) demonstrates that the negative correlation between mean entropy and
reward becomes progressively stronger as std increases. In other words, instability amplifies the
adverse impact of uncertainty, rendering mean entropy a more decisive factor under high-variance
conditions.

To isolate this effect, we analyze the high-variance regime (std > 0.03), where the image token
generation remains exploratory and the RL policy has not yet converged. As shown in Figure 4
(Right), in such cases, lowering mean entropy proves particularly effective in improving reward.
This finding suggests that, when the model operates in an unstable exploratory state, suppressing
overall uncertainty is a critical pathway toward higher-quality generations.

These analyses indicate that the RL agent implicitly optimizes a compound objective: simulta-
neously minimizing overall uncertainty (mean entropy) and reducing instability across runs
(entropy std).

5 ENTROPY-GUIDED GROUP RELATIVE POLICY OPTIMIZATION

Building on Section 4, we introduce a token-level optimization scheme that preserves GRPO’s
group-relative structure while reallocating updates toward uncertain parts of the generation pro-
cess. Entropy-Guided GRPO (EG-GRPO) applies to both textual CoT and image tokens and adds
an entropy-based bonus only where uncertainty is high.

5.1 DESIGN PRINCIPLES FROM ENTROPY ANALYSIS

Section 4 showed that: (i) CoT broadens exploration while RL contracts it toward high-reward re-
gions; (ii) rewards are negatively correlated with both the mean and the variance of token entropies;
and (iii) textual (CoT) entropy causally influences downstream image quality. We adopt three prin-
ciples:

1. Focus on uncertainty. Allocate more update mass to high-entropy tokens to reduce insta-
bility where it matters.

2. Protect confidence. On the lowest-entropy tokens, set the reward-driven advantage to zero
so that only the KL-to-reference acts, preventing drift on confident regions.

3. Stay reward-driven. Retain the GRPO group-relative objective; entropy contributes an
additive per-token bonus at high entropy without replacing advantage.

5.2 REVISITING GRPO AND TOKEN BROADCAST

For prompt c, policy πθ samples G sequences {o(i)}Gi=1 with rewards {r(i)} normalized to group-
relative advantages A(i). GRPO optimizes

LGRPO(θ) = − 1

G

G∑
i=1

1

T (i)

T (i)∑
t=1

A(i) log πθ

(
o
(i)
t | c, o(i)<t

)
+ β DKL

(
πθ ∥πref

)
. (6)

This broadcasts the same coefficient A(i) to all tokens of sequence i, ignoring per-token uncertainty
and potentially wasting gradient budget on already-confident tokens.

5.3 ENTROPY-GUIDED TOKEN SELECTION

Let H(i)
t ≜ H

(
πθ(· | c, o

(i)
<t)

)
be the Shannon entropy at token t of sequence i, and define the

normalized entropy H̄
(i)
t ≜ H

(i)
t / log |V| ∈ [0, 1]. For each sequence i and each modality m ∈

{text, image} independently,1 compute per-sequence percentiles and define

S(i,m)
hi = top-50% by H̄

(i)
t , S(i,m)

lo = bottom-20%, S(i,m)
mid = remaining.

1We rank and threshold entropies on textual CoT and image tokens separately, consistent with Section 4.
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Introduce masks M (i)
t , U

(i)
t ∈ {0, 1}:

M
(i)
t = I[t /∈ S(i,m)

lo ], U
(i)
t = I[t ∈ S(i,m)

hi ],

so M
(i)
t = 0 removes reward-driven updates on low-entropy tokens, and U

(i)
t = 1 marks high-

entropy tokens to receive a bonus.

Budget view. Let plo, pmid, phi be the fractions of tokens in S(i,m)
lo ,S(i,m)

mid ,S(i,m)
hi (phi = 0.5,

plo = 0.2, pmid = 0.3). GRPO’s per-sequence coefficient budget is B(i)
GRPO ≜ 1

T (i)

∑T (i)

t=1 |A(i)| =
|A(i)|. Under EG-GRPO,

B
(i)
EG ≜

1

T (i)

T (i)∑
t=1

∣∣M (i)
t A(i) + U

(i)
t λ sg[H̄

(i)
t ]

∣∣, (7)

with λ ≥ 0 and stop-gradient sg[·]. Zeroing low-entropy updates saves roughly plo|A(i)| of mass
and reinvests it on high-entropy tokens through the additive bonus λ sg[H̄(i)

t ].
Proposition 1 (Per-batch budget balance). For a batch B, choose

λ⋆ ≜ κ ·

∑
i∈B

∣∣A(i)
∣∣ · 1

T (i)

∑
t∈S(i,m)

lo

1∑
i∈B

1
T (i)

∑
t∈S(i,m)

hi

sg[H̄
(i)
t ]

with κ ∈ (0, 1]. (8)

Then EB[B
(i)
EG] ≈ κ · EB[B

(i)
GRPO]. A detailed derivation and calibration discussion are deferred

to Appendix B.1. Setting κ = 1 yields batch-level budget neutrality in the calibrated upper-bound
sense.

Fixed-point neutrality. Because λ⋆ scales with
∑

i |A(i)|, the bonus vanishes at GRPO equilib-
rium where group-relative advantages cancel. See Appendix B.2 for a formal proof.

Corollary 5.1 (Preserving GRPO stationary points). If A(i) ≡ 0 for all i and λ = λ⋆ with κ = 1,
then λ⋆ = 0 and Ã

(i)
t ≡ 0 for all t; EG-GRPO reduces to the KL regularizer and preserves the

stationary point.

5.4 ENTROPY-BIASED ADVANTAGE

We modify the broadcasted coefficient at token t of sequence i by

Ã
(i)
t = M

(i)
t A(i) + U

(i)
t λ sg

[
H̄

(i)
t

]
, (9)

where M
(i)
t removes reward-driven updates on the lowest-entropy 20% tokens and U

(i)
t adds an

entropy bonus on the highest-entropy 50% tokens. The EG-GRPO loss is

LEG-GRPO(θ) = − 1

G

G∑
i=1

1

T (i)

T (i)∑
t=1

Ã
(i)
t log πθ

(
o
(i)
t | c, o(i)<t

)
+ β DKL

(
πθ ∥πref

)
. (10)

β and the reference-policy KL are unchanged; low-entropy tokens are therefore governed solely by
KL when M

(i)
t = 0.

Reward-shaping view. Define a token-level pseudo-reward r̃
(i)
t ≜ r

(i)
grp ·M (i)

t + λ sg[H̄
(i)
t ] ·U (i)

t ,

where r
(i)
grp induces A(i). Then E

[
∇θ log πθ(o

(i)
t | ·) r̃(i)t

]
is an unbiased policy-gradient estimator

for an augmented objective whose baseline component is GRPO.

5.5 WHY EG-GRPO REDUCES UNCERTAINTY AND PRESERVES KNOWLEDGE

(A) Targeted entropy reduction. For small steps, the update at token t is proportional to
Ã

(i)
t ∇θ log πθ(o

(i)
t | ·). On high-entropy tokens, Ã(i)

t = A(i) + λ sg[H̄
(i)
t ] strengthens positive

updates and attenuates negative ones, lowering entropy where it is largest under softmax parameter-
izations.
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(B) Stability on confident tokens. When M
(i)
t = 0, reward-driven gradients vanish and only

KL-to-reference remains, protecting confident regions from drift and preserving learned knowledge.

(C) Proximity to GRPO equilibrium. With λ = λ⋆ and κ = 1, the batch-wise coefficient budget
matches GRPO (Appendix B.1), and the bonus disappears at equilibrium (Appendix B.2), reallocat-
ing update mass without altering stationary points.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

Training Details. Following (Jiang et al., 2025), we train our policy on the same 6,786 text
prompts drawn from T2I-CompBench (Huang et al., 2023), which contain only textual descriptions
without paired images. The prompts are accompanied by structured object–attribute annotations
that were automatically extracted using GPT-4o mini in prior work (Jiang et al., 2025). The policy
backbone is initialized from Janus-Pro-7B (Chen et al., 2025). Optimization uses a learning rate of
1 × 10−6 and a KL coefficient β = 0.01. For the reward pipeline, we combine HPS (Wu et al.,
2023) as the human-preference estimator, GroundingDINO (Liu et al., 2024) as the object detector,
and GIT (Wang et al., 2022) as the VQA model. The object–relation module (ORM) is implemented
by finetuning LLaVA-OneVision-7B following the procedure of Guo et al. (2025).

Benchmark. To assess the effectiveness of our approach, we rely on two established evaluation
suites: T2I-CompBench (Huang et al., 2023) and WISE (Niu et al., 2025). T2I-CompBench provides
6,000 prompts designed to test compositional generalization. The benchmark covers three broad
categories: attribute binding, object relations, and complex compositions, which are further split into
six sub-categories, such as color/shape/texture bindings, spatial and non-spatial relations, and multi-
object compositions. In contrast, WISE focuses on knowledge-intensive reasoning. It contains 1,000
prompts spanning cultural commonsense, spatial–temporal reasoning, and natural science, requiring
the model to infer what specific entity or situation should appear in the image. For WISE, since
the corresponding reasoning instructions from prior work (Jiang et al., 2025) were not released, we
reimplemented them ourselves and provide the exact templates in the Appendix C for transparency.
For both benchmarks, we otherwise follow the official evaluation protocols.

6.2 MAIN RESULTS

Model T2I-CompBench WISE

Color Shape Texture Culture Spatio-temporal Science

PixArt-α (Chen et al., 2023) 66.90 49.27 64.77 45.00 50.00 46.30
SD-v1.5 (Rombach et al., 2022) 37.58 37.13 41.86 34.00 33.50 26.00
FLUX.1-dev (Labs, 2024) 74.07 57.18 69.22 48.00 59.00 45.00
Emu3 (Wang et al., 2024) 75.44 57.06 71.64 34.00 45.00 37.70
Show-o (Xie et al., 2024) 56.00 41.00 46.00 28.00 45.00 37.30
Janus-Pro-7B (Chen et al., 2025) 63.59 35.28 49.36 30.00 37.00 34.70
T2I-R1∗ (Jiang et al., 2025) 81.86 57.35 75.40 47.00 55.50 43.67
EG-GRPO (Ours) 84.85 62.61 78.13 48.00 55.00 44.00

Table 1: Comparison of models across T2I-CompBench and WISE. Spatio-temporal is the average
of Time and Space; Science is the average of Biology, Physics, and Chemistry. ∗Results for T2I-R1
are reproduced under the same experimental settings for fair comparison.

As shown in Table 1, EG-GRPO achieves the strongest results on T2I-CompBench, surpassing all
baselines in Color (84.85), Shape (62.61), and Texture (78.13), with particularly notable gains on
Shape binding. On WISE, EG-GRPO improves over T2I-R1 in Culture (48.00 vs. 47.00) while
maintaining comparable performance in Spatio-temporal (55.00 vs. 55.50) and Science (44.00 vs.
43.67). These consistent improvements demonstrate that entropy-guided updates effectively en-
hance compositional reasoning and robustness while preserving the stability of knowledge learned
by the base model.
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6.3 ABLATION STUDY

Model Color Shape Texture

EG-GRPO 84.85 62.61 78.13

w/ only sem 81.87 56.79 75.02
w/ only tok 84.08 61.80 77.88
w/o All 81.86 57.35 75.40

Table 2: Ablation results of EG-GRPO. We com-
pare the full method with variants that apply en-
tropy guidance only to textual CoT tokens (w/
only sem), only to image tokens (w/ only tok), or
not at all (w/o All).

Table 2 summarizes the effect of applying entropy
guidance on different token types. The full EG-
GRPO model, which adds entropy bonuses to both
textual CoT tokens and image tokens, achieves the
best overall performance. Restricting entropy guid-
ance to only CoT tokens (w/ only sem) or only image
tokens (w/ only tok) leads to weaker results, indi-
cating that both modalities benefit from uncertainty
reduction. The baseline without entropy guidance
(w/o All) performs worst, confirming that the pro-
posed entropy-aware updates are essential for im-
proved compositional generalization.

6.4 ANALYSIS OF ENTROPY

T2I-R1(text)

EG-GRPO(text)

T2I-R1(image)

EG-GRPO(image)
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Figure 5: Entropy distributions of EG-GRPO vs. T2I-
R1: left for textual CoT tokens, right for image tokens.

The cylindrical vase with its rectangular openings and cubic floral arrangement
added a pop of color to the diamond coffee table.

a fabric hat and a fluffy sweater

The glass perfume bottle and metallic atomizer spray the leather fragrance on
the fabric scarf.

a leather chair and a glass window

a yellow daisy and a purple violet

A small brown kitchen with white wood floor.

Figure 6: Qualitative case study of our method on diverse
prompts. These results are randomly sampled.

Figure 5 shows the entropy distributions of
EG-GRPO and T2I-R1 on textual CoT tokens
(left) and image tokens (right). EG-GRPO re-
duces both the mean and variance of entropy,
with a stronger effect on image tokens, indi-
cating that our method concentrates updates
on uncertain regions and yields more confi-
dent yet stable predictions without sacrificing
diversity.

6.5 CASE STUDY

As shown in Figure 6, our method con-
sistently produces high-quality generations
across a wide range of prompts. It captures
fine-grained attributes such as colors and tex-
tures with higher fidelity, preserves coherent
spatial layouts in complex scenes, and main-
tains stability when composing multiple ob-
jects. These results confirm that entropy-
guided optimization enhances both the accu-
racy and consistency of text-to-image gener-
ation.

7 CONCLUSION

We studied entropy dynamics in text-to-
image generation, showing that CoT ex-
pands exploration while reinforcement learn-
ing contracts it toward stable, high-reward re-
gions. Both the mean and variance of en-
tropy strongly predict image quality, motivat-
ing our Entropy-Guided GRPO (EG-GRPO).
By protecting low-entropy tokens and focus-
ing updates on high-entropy ones, EG-GRPO
balances stability with structured exploration.
Experiments on T2I-CompBench and WISE
confirm its state-of-the-art performance and
reduced instability, underscoring uncertainty
control as a key principle for advancing text-
to-image generation.
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A THE USE OF LARGE LANGUAGE MODELS

In this work, we employed GPT-5 to assist with the polishing of English text. The model was used
primarily for improving readability, clarity, and fluency of the written content, ensuring that the final
manuscript meets high academic standards.

B PROOFS AND DERIVATIONS FOR EG-GRPO

B.1 DETAILED PROOF OF PROPOSITION 1 (PER-BATCH BUDGET BALANCE)

Setup and notation. For sequence i, write a(i) ≜ |A(i)| ≥ 0, s(i) ≜ sign(A(i)) ∈ {±1}, and
h
(i)
t ≜ H̄

(i)
t ∈ [0, 1]. With the low/mid/high partitions from Section 5.3, EG-GRPO’s per-sequence

budget can be written as

B
(i)
EG = (1− plo) a

(i) +
1

T (i)

∑
t∈S(i,m)

hi

( ∣∣ s(i)a(i) + λh
(i)
t

∣∣− a(i)
)
. (11)

Lemma 1 (Symmetric sign averaging). For any a ≥ 0 and b ≥ 0,

1

2

(
|a+ b|+ |−a+ b|

)
= max(a, b).

Proof. If b ≥ a, then |a + b| = a + b and |−a + b| = b − a, so the average is b. If b < a, then
|a+ b| = a+ b and |−a+ b| = a− b, so the average is a.

Exact decomposition. Taking expectation over s(i) (assumed approximately symmetric due to
group-normalization), Lemma 1 yields

Es(i)
[
|s(i)a(i) + λh

(i)
t |

]
= max

(
a(i), λh

(i)
t

)
. (12)

Plugging into equation 11 and using (x− a)+≜max(0, x− a),

Es(i)
[
B

(i)
EG

]
= (1− plo) a

(i) +
1

T (i)

∑
t∈S(i,m)

hi

(
λh

(i)
t − a(i)

)
+︸ ︷︷ ︸

δ(i)(λ)

. (13)

Averaging over the batch B gives

EB
[
B

(i)
EG

]
= (1− plo)EB[a

(i)] + EB
[
δ(i)(λ)

]
. (14)

Here δ(i)(λ) is nondecreasing in λ and equals zero at λ = 0.

Target equation for exact κ-scaling. If one desires EB[B
(i)
EG] = κEB[a

(i)], then equation 14 is
equivalent to ∑

i∈B

1

T (i)

∑
t∈S(i,m)

hi

(
λh

(i)
t − a(i)

)
+
= (κ− 1 + plo)

∑
i∈B

a(i). (15)

The left-hand side is continuous, nondecreasing in λ, hence admits a (numerically) unique solution
for any κ ∈ (0, 1].

Closed-form calibration (upper-bound match). For an implementable closed form, use (x −
a)+ ≤ x with x = λh

(i)
t :

δ(i)(λ) ≤ λ · 1

T (i)

∑
t∈S(i,m)

hi

h
(i)
t

︸ ︷︷ ︸
H

(i)
hi

.
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Substituting this into equation 14 yields the upper bound

EB[B
(i)
EG] ≤ (1− plo)EB[a

(i)] + λEB[H
(i)
hi ]. (16)

Matching the upper bound to κEB[a
(i)] leads to the batch-calibrated choice

λ⋆ ≜ κ ·

∑
i∈B a(i) · 1

T (i)

∑
t∈S(i,m)

lo

1∑
i∈B

1
T (i)

∑
t∈S(i,m)

hi

h
(i)
t

= κ ·
∑

i∈B |A(i)| · |S(i,m)
lo |
T (i)∑

i∈B
1

T (i)

∑
t∈S(i,m)

hi

sg[H̄
(i)
t ]

, (17)

which is exactly equation 8. This calibration equates “saved” low-entropy budget with “reinvested”
high-entropy mass in an upper-bound sense; see Remarks below.

Remarks on calibration accuracy. (i) Define the nonnegative discrepancy

ε(i)(λ) ≜ λH
(i)
hi − δ(i)(λ) =

1

T (i)

∑
t∈S(i,m)

hi

min(λh
(i)
t , a(i)).

It vanishes as λh(i)
t ≫a(i) for most high-entropy tokens, and is statistically damped by batch aver-

aging. (ii) For exact κ-scaling, one may solve equation 15 via a 1D root finder; we keep equation 8
for simplicity and stability. (iii) With κ = 1, equation 8 delivers batch-level budget neutrality in the
calibrated upper-bound sense; empirically it closely tracks neutrality while avoiding per-step root
solving.

Conclusion. Combining equation 14–equation 16 with the calibration above yields EB[B
(i)
EG] ≈

κEB[B
(i)
GRPO], as stated in Proposition 1.

B.2 PROOF OF COROLLARY 5.1 (FIXED-POINT NEUTRALITY)

Suppose A(i) ≡ 0 for all i in a batch. Then a(i) = 0, and the numerator of equation 8 vanishes,
yielding λ⋆ = 0 for any κ ∈ (0, 1]. By equation 9, Ã(i)

t ≡ 0 for all tokens t, so the loss equation 10
reduces to the reference-policy KL term. Hence any GRPO stationary point remains stationary under
EG-GRPO, proving the corollary.

B.3 OPTIONAL EXACT PER-BATCH SCALING (IMPLEMENTATION NOTE)

If precise κ-scaling is required, solve the monotone equation equation 15 for λ by bisection or
Newton’s method. This guarantees EB[B

(i)
EG] = κEB[B

(i)
GRPO] exactly per batch, at the cost of a 1D

search.
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C INSTRUCTION FOR WISE

WISE Instruction

You are asked to write a concise text description to guide the generation of an image based
on this prompt: “{}”. Provide a brief, precise visualization of all elements in the prompt.
Your description should:
1. Include every object mentioned.
2. Specify visual attributes (color, number, shape, texture) if given.
3. Clarify spatial or relational positioning if specified.
4. Be concise (≤50 words) but include the most common features and states inferred from
real-world knowledge.
5. Apply real-world knowledge (cultural, religious, temporal, spatial, biological, physical, or
chemical reasoning) and select only the single most relevant aspect that naturally enhances
the original prompt to infer context (e.g., season, appearance, identity, cultural usage, or
natural state) and reflect it in the objects. Use direct, widely accepted interpretations; include
cultural or religious meanings only when they are common real-world associations. Avoid
abstract or purely metaphorical interpretations.
6. Emphasize the current state of each object individually, as inferred from its environment
or context. Reason separately for each object, considering temporal, cultural, or physical
factors, and prioritize states logically implied by the prompt.
7. If multiple objects are present, reason from each object’s inherent physical or chemical
properties and their interactions with the environment and with all other objects. Ensure that
the inferred state, behavior, and interaction of every single object is logically correct and
consistent with real-world rules, and clearly describe all differences and interactions relative
to each other.
8. Ensure realism and aesthetic quality: all objects and interactions must follow real-world
rules and appear visually consistent and appealing.
9. Do not omit objects explicitly mentioned, or add ones not specified or logically inferred.
10. Always preserve and emphasize the original objects and scene as the primary focus.
11. Always output a complete natural language description, never an image or symbolic
shorthand.

D COMPUTATIONAL EFFICIENCY AND CONVERGENCE
ANALYSIS

To address concerns regarding the computational overhead of the proposed EG-GRPO, specifically
the token-level entropy computation, percentile thresholding, and batch-level bonus recalibration,
we conducted a rigorous benchmarking comparison of our method against the baseline T2I-R1.

D.1 WALL-CLOCK TIME AND MEMORY OVERHEAD

We measured the training step time and peak GPU memory usage on NVIDIA A100 GPUs under
identical experimental settings. As shown in Table 3, EG-GRPO introduces negligible overhead.

Metric T2I-R1 (Baseline) EG-GRPO (Ours) Overhead
Step Time (s) 50.20 50.88 +1.35%
GPU Memory (GB) 30.79 31.17 +0.38 GB

Table 3: Computational overhead comparison between T2I-R1 and EG-GRPO. The overhead intro-
duced by our entropy-guided mechanism is marginal in both time and memory.

The minimal increase in wall-clock time (∼ 1.35%) suggests that the complexity of entropy opera-
tions (O(L·V ) for sequence length L and vocabulary size V ) is trivial compared to the computational
cost of the model’s forward and backward passes. Importantly, this overhead ratio is expected to de-
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crease further as model scale increases (e.g., larger hidden dimensions), as the entropy calculation
depends only on the output logits and not the model depth or parameter count.

D.2 CONVERGENCE EFFICIENCY

While the per-step cost is marginally higher, EG-GRPO exhibits significantly better sample effi-
ciency. We compared the reward progression of both models over the same number of training
steps. As detailed in Table 4, EG-GRPO consistently achieves higher rewards earlier in the training
process.

Step 100 200 400 600 800
Reward (T2I-R1) 2.1105 2.1130 2.1208 2.1339 2.1340
Reward (EG-GRPO) 2.1411 2.1836 2.1968 2.2075 2.2117

Table 4: Convergence comparison: Reward scores at different training steps. EG-GRPO achieves
higher performance consistently, indicating a superior time-to-convergence ratio.

This superior convergence efficiency outweighs the slight computational overhead, making EG-
GRPO a more practical choice for large-scale training.

E ANALYSIS ON DIVERSITY

In this section, we address the trade-off between entropy reduction and generative diversity. While
entropy is a measure of uncertainty, reducing it raises the question of whether the model’s creative
expressivity and output diversity are negatively impacted. To investigate this, we employ the Vendi
Score (Friedman & Dieng, 2023), a reference-free metric designed to quantify diversity in machine
learning models.

Dynamics of Diversity during RL. The RL naturally contracts the exploration space to focus on
high-reward regions. As shown in Table 5, our analysis of the GRPO training dynamics confirms
this expected behavior: as the model optimizes for reward-aligned fidelity from Step 100 to 800, the
diversity naturally shows a slight decrease.

Step 100 200 400 600 800

Diversity (Vendi Score) 2.7305 2.7233 2.7212 2.7151 2.7159

Table 5: Evolution of diversity during the GRPO training process. As the model converges to-
wards high-reward regions, a slight reduction in diversity is observed, reflecting the exploration-
exploitation trade-off.

Preserving Diversity at Similar Quality. Crucially, our method targets instability rather than
semantic diversity. To verify this, we compared EG-GRPO against the baseline (T2I-R1) on a
filtered subset of generated samples where both models achieved similar quality scores (defined
as |∆Quality| < 0.1). The quality score is an aggregate of BLIP-2 (Li et al., 2023), LAION-
Aesthetics (Beaumont et al., 2022), and PickScore (Kirstain et al., 2023).

Metric EG-GRPO (Ours) T2I-R1 (Baseline)
Quality Mean 13.86 13.85
Diversity (Vendi Score) 2.593 2.592

Table 6: Comparison of Diversity (Vendi Score) between EG-GRPO and T2I-R1 on a subset of
samples with similar quality scores. Our method maintains diversity comparable to the baseline.

As shown in Table 6, EG-GRPO maintains a Vendi Score (2.593) virtually identical to the baseline
(2.592) under the same quality constraints. This indicates that the Entropy Bonus (Section 5.3)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

successfully preserves valid exploration pathways while suppressing “bad” uncertainty that leads to
instability, rather than collapsing the model into a single mode.

F QUALITATIVE DIVERSITY CASES

To qualitatively compare the diversity differences between T2I-R1 and EG-GRPO, we generate 20
samples for each of three identical prompts and concatenate them for side-by-side visualization, as
shown in Figure 7.

Figure 7: Comparison of generation diversity for T2I-R1 (left) and EG-GRPO (right).
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