
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ATTENTION AS A COMPASS: EFFICIENT EXPLORATION
FOR PROCESS-SUPERVISED RL IN REASONING MOD-
ELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) has shown remarkable success in enhancing the
reasoning capabilities of Large Language Models (LLMs). Process-Supervised RL
(PSRL) has emerged as a more effective paradigm compared to outcome-based
RL. However, existing PSRL approaches suffer from limited exploration efficiency,
both in terms of branching positions and sampling. In this paper, we introduce a
novel PSRL framework (AttnRL), which enables efficient exploration for reasoning
models. Motivated by preliminary observations that steps exhibiting high attention
scores correlate with reasoning behaviors, we propose to branch from positions with
high values. Furthermore, we develop an adaptive sampling strategy that accounts
for problem difficulty and historical batch size, ensuring that the whole training
batch maintains non-zero advantage values. To further improve sampling efficiency,
we design a one-step off-policy training pipeline for PSRL. Extensive experiments
on multiple challenging mathematical reasoning benchmarks demonstrate that our
method consistently outperforms prior approaches in terms of performance and
sampling and training efficiency.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress in recent years (OpenAI,
2023; Hurst et al., 2024; Anthropic, 2023), particularly in their reasoning capabilities (OpenAI,
2024; DeepSeek-AI et al., 2025). With the success of DeepSeek-R1 (DeepSeek-AI et al., 2025),
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an effective post-training
paradigm for further strengthening the reasoning abilities of LLMs (Shao et al., 2024; Zeng et al.,
2025; Luo et al., 2025; Yu et al., 2025; Liu et al., 2025d; Hu et al., 2025; He et al., 2025a; An et al.,
2025; Zhang et al., 2025a; Wang et al., 2025; Zheng et al., 2025a).

Common RLVR approaches, such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024)
and its variants (Yu et al., 2025; Liu et al., 2025d; Yue et al., 2025), assign uniform training signals to
all tokens within the same response, thereby overlooking fine-grained reasoning quality. In contrast,
Process-Supervised RL (PSRL) methods refine credit assignment with Monte Carlo (MC) sampling
to estimate step-level advantages (Hou et al., 2025; Guo et al., 2025; Yang et al., 2025b; Zheng et al.,
2025b; Li et al., 2025). However, existing PSRL methods suffer from several limitations: (1) they
segment responses by fixed token length or entropy, ignoring the semantic meaning of model outputs;
(2) they adopt uniform sampling across prompts and responses, leading to inefficient exploration; (3)
they typically rely on two-step sampling per update, which significantly increases computational cost.

To overcome these limitations, we introduce AttnRL, a novel PSRL framework that improves both
exploration and training efficiency. Our approach is motivated by the observation that attention scores
serve as a meaningful metrics for identifying important reasoning behaviors in the model output.
We therefore introduce an attention-based branching strategy for Monte Carlo sampling. To further
enhance efficiency, we design an adaptive sampling mechanism that prioritizes difficult problems
while filtering easier ones, and an adaptive batch sampling strategy that guarantees non-zero advantage
values across batches. The experimental results on mathematical reasoning tasks demonstrate that
AttnRL outperforms strong outcome-based and process-based baselines with great efficiency.

The contributions of this work can be summarized as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We analyze the relationship between attention scores and reasoning behaviors, and propose
attention-based branching method for PSRL.

• We develop an adaptive sampling mechanism that balances exploration across problems of
varying difficulty and ensure valid training batches without zero advantage values.

• Empirical results on six mathematical benchmarks demonstrate the superiority of our method
beyond the baselines in both performance and efficiency.

2 PRELIMINARIES

2.1 LLM REASONING AS A STEP-LEVEL MARKOV DECISION PROCESS

Following Sutton & Barto (2018); Zhang et al. (2025b), we formulate LLM reasoning as a Markov
Decision Process (MDP) defined by the tuple (S,A,P,R, γ), where S is the state space, A is the
action space, P : S × A 7→ S is the transition dynamics, R : S × A 7→ R is the reward function,
and γ ∈ [0, 1] is the discount factor. In the LLM setting with a prompt dataset D, the initial state is
s1 = q ∼ D. The state transition is deterministic, since the next state is formed by concatenating the
current state with the generated action: sk+1 = [sk, ak], where [·, ·] denotes string concatenation. For
process-level supervision of LLMs (Zhang et al., 2025b; Liu et al., 2025b), actions are defined at the
step level, where each action at corresponds to a semantically coherent segment such as a sentence or
a paragraph, rather than a single token. In this paper, we adopt this step-level MDP formulation.

2.2 OUTCOME-SUPERVISED AND PROCESS-SUPERVISED RL

Outcome-Supervised RL. Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is an
Outcome-Supervised RL (OSRL) method that eliminates the need for an explicit critic model by
estimating the advantage using the rewards {R1, · · · , RG} of G sampled rollouts {o1, · · · , oG}. The
normalized advantage is computed as Âi,t =

Ri−mean({Ri}G
i=1)

std({Ri}G
i=1)

. The GRPO objective is then given
by:

JGRPO(θ) = Eq∼D,{oi}G
i=1∼πθold (·|q) 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi,t

)
− βDKL(πθ∥πref)

) ,

(1)
where ri,t =

πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

is the importance sampling ratio, and β controls the strength of the KL
divergence penalty that regularizes the policy towards the reference policy πref.

Process-Supervised RL. For PSRL, the sampling process usually includes two stages: (1) Initial
Sampling: Sample multiple responses to the problem; (2) Monte Carlo Sampling: Select several
tokens as division points and rollout twice starting from these branching positions (Hou et al., 2025;
Guo et al., 2025; Yang et al., 2025b). In this paper, we follow the setting of TreeRL (Hou et al., 2025),
which proposes a tree-based advantage estimation method. For each node, the value is computed as
the average accuracy of its all children:

V (sk) =
1

|L(sk)|
∑

l∈L(sk)

1(l is correct), (2)

where L(sk) denotes the children of node sk. The final advantage is the summation of global
advantage (V (sk)− V (s1)) and local advantage (V (sk)− V (p(sk)):

Âi,k =
1√

|L(sk)|

(
V (sk)− V (s1)︸ ︷︷ ︸

global advantage

+V (sk)− V (p(sk))︸ ︷︷ ︸
local advantage

)
, (3)

where
√
|L(sk)| is used to reduce the optimization strength of the non-leaf steps to prevent overfit-

ting (Hou et al., 2025) and p(sk) is the parent node of sk. Then the policy is optimized using the loss
function in equation 1, which is the same as that of OSRL but differs at the advantage granularity.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.3 ATTENTION MECHANISM

Modern LLMs are typically decoder-only Transformer-based architectures (Vaswani et al., 2017;
Yang et al., 2024; 2025a), and the core operation inside each Transformer block is the (masked)
self-attention mechanism. For a given layer l and head h, the model first computes query Ql,h, key
Kl,h and value matrices. Then the attention score α is computed as:

αl,h = softmax

(
Ql,hKl,h⊤

√
dk

+ mask
)
, (4)

where dk is the per-head dimensionality. In vanilla causal attention, attention mask blocks access to
all future tokens by assigning them −∞, while past and current tokens remain unmasked with 0.

3 METHOD

In this section, we present AttnRL, an exploration-efficient method for process-supervised RL. We
begin by examining the role of massive attention values and how they can be leveraged to identify
branching points via attention scores to explore at important branches (Section 3.1). To enable
more efficient exploration, we propose an adaptive sampling strategy that avoids oversampling
easy problems and ensures each training batch contains only samples with non-zero advantage
(Section 3.2). Finally, we introduce our efficient training pipeline based on one-step off-policy
learning (Section 3.3).

3.1 BRANCHING AT MASSIVE ATTENTION VALUES

Prior work has demonstrated that massive attention values in self-attention mechanisms play a critical
role in contextual knowledge understanding (Jin et al., 2025), as they highlight tokens most relevant
for answering questions. Motivated by this insight, we investigate two key questions: (1) Do massive
attention values consistently appear in complex reasoning tasks? (2) What impact do these massive
attention values have, and how can they be effectively utilized in RL training?

3.1.1 MASSIVE ATTENTION VALUES IN LLMS

Step 1: Segmenting and computing step-level attention scores. Following prior work on process
supervision (Wang et al., 2024a; Liu et al., 2025b), we first segment the entire response into multiple
steps using two consecutive line breaks (“\n\n”), yielding Tk steps: o = (o1, o2, . . . , oTk

). Next,
we extract token-to-token attention scores via a single forward pass. By aggregating these scores
at the step level, we obtain step-to-step attention matrices αl,h ∈ RTk×Tk , where αl,h

j,k denotes the
attention weight of step j attending to step k at layer l and head h.

Step 2: Computing the Forward Context Influence (FCI) score. To quantify the influence of a
given step on subsequent tokens, we define the Forward Context Influence (FCI) score at layer l and
head h by summing the attention scores over the subsequent steps:

yl,hk =

Tk∑
j=k+∆

αl,h
j,k, (5)

where ∆ is a hyperparameter that restricts the scope to sufficiently distant parts of the response, set to
4 following Bogdan et al. (2025). We then aggregate across layers and heads by taking the maximum
value:

yk = max
l,h

{yl,hk }. (6)

The resulting FCI score yk captures the degree to which step k influences the downstream context at
the attention level. An illustrative visualization of steps with large FCI values is provided in Figure 1.
From this figure, we can see that most steps with high FCI scores or peak FCI values are related to
reasoning behaviors, such as planning and self-verification (Bogdan et al., 2025). The full response
are listed in Table 5 in Appendix C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35
Step Indices

0.00

0.02

0.04

0.06

0.08

0.10

FC
I S

co
re

Let me compute that.

Alternatively, maybe using ...Alright, so the next
step is ... Let's

Wait, let me verify that.
Maybe list ...

 ...

Number of terms = ...

Then, ...

Figure 1: The visualization of steps with high FCI scores. The words in red denote reasoning
behaviors.

3.1.2 THE EFFECTS OF STEPS WITH HIGH FCI SCORES

After identifying and qualitatively analyzing steps with high FCI scores, we conduct quantitative
experiments to examine the impact of disrupting attention values on performance. Specifically, we
select a step either (1) randomly from the top 20% of steps ranked by FCI scores (denoted as “Top
20%”) or (2) randomly from the remaining steps (denoted as “20%–100%”). For the chosen step,
we set its corresponding attention values to zero. We hypothesize that disrupting attention at key
steps (with high FCI scores) will cause greater performance degradation compared to disrupting other
steps. We test this hypothesis on AIME24 (MAA, 2024) using DS-R1-Distill-Qwen-1.5B, with each
problem sampled four times. The results shown in Figure 2(a) confirm that disrupting top 20% steps
leads to a significant drop in accuracy. Furthermore, we investigate the effect of disruption position.
We divide the disruption positions relative to the original response length into five uniform bins. As
shown in Figure 2(b), accuracy exhibits an increasing trend as the disruption position moves later in
the sequence, indicating that disruptions at earlier positions have a larger negative impact on final
performance.

Original 20% - 100% Top 20%
Disruption Type

0

5

10

15

20

25

30

Ac
cu

ra
cy

 o
n

AI
M

E2
4

(a) Accuracy of different disruption types

0.0 0.2 0.4 0.6 0.8
Disruption Position

4

6

8

10

12

Ac
cu

ra
cy

 o
n

AI
M

E2
4

(b) Accuracy of different disruption positions

Figure 2: Disruption results on AIME24.

3.1.3 ATTENTION-BASED TREE BRANCHING

Based on the analysis in Section 3.1.1 and 3.1.2, we have identified that steps with high FCI scores
are related to reasoning behaviors and have strong influences on the the reasoning performance. Now
we propose Attention-based Tree Branching (ATB), which builds the branches of the tree at steps
with high FCI scores.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Specifically, we compute the FCI score for each step using equation 6 after initial sampling to
enable effective exploration. We then select the top 20% of the steps with the highest FCI scores for
branching:

C = {k | k ≥ Quantile(y1, . . . , yTk
, ρ)}, (7)

where ρ = 0.2 is the quantile level. However, randomly selecting steps with high FCI scores as
branching points can be suboptimal, as misleading initial steps may lead the reasoning process in
incorrect directions and we have found that earlier steps have more influence on the final result.
Similar phenomenons have also been found in Wen et al. (2025), which identifies these as “Tunnel
Vision”. To mitigate this, we select the top N (N = 2 following Hou et al. (2025)) earliest steps from
C as branching points, ensuring that diverse reasoning paths are explored through attention-based
branching.

3.2 ADAPTIVE SAMPLING

3.2.1 DIFFICULTY-AWARE EXPLORATION

Attention-based Filtering. Previous PSRL approaches explore all problems uniformly (Hou et al.,
2025), which is highly inefficient. In particular, problems that are easy (i.e., achieving an accuracy of
100% at initial sampling) have a high probability (about 70% - 80%, shown in Figure 5(a)) of being
correct at both sampling stages, leading to limited learning opportunities.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
FCI Scores

0

2

4

6

8

10

12

14

16

De
ns

ity

Invalid (Initial)
Invalid (Initial + MC)
Invalid (Initial) + Valid (MC)
Mean Value

Figure 3: Average FCI scores of all
problems during the training process of
TreeRL on DeepScaleR dataset. “In-
valid” means that the advantage is zero
for all responses of that problem.

To address this, we propose an attention-based filtering
method to identify problems that are too easy to sample
an incorrect response. We compute the average massive
attention values for all problems in the DeepScaleR (Luo
et al., 2025) dataset. As shown in Figure 3, we empiri-
cally find that, for problems whose initial samples are all
correct, if they have lower attention values, they will tend
to have zero advantage values, indicating that all samples
are correct. Therefore, we filter out problems with low
attention values and only retain those with attention values
above the average attention values:

DMC = {q | 1

G

G∑
i=1

1

Ti,k

Ti,k∑
k=1

yi,k ≥ mean value}, (8)

where yi,k is the attention score for the k-th step in prob-
lem i.

Difficulty-aware Expansion. After attention-based fil-
tering, we expand different number of trees according to problem difficulty since it is more difficult
to rollout correct responses for hard problems. Let the difficulty score be zn = 1

G

∑
i 1(oi is correct).

Then the number of trees expanded for each problem M is determined by the difficulty score:

M = Round(exp(−zn)×M ′), (9)

where Round(·) denotes rounding to the nearest integer and M ′ denotes original tree numbers and is
set to 6 following Hou et al. (2025).

3.2.2 ADAPTIVE BATCH SAMPLING

After initial sampling and MC sampling, a large proportion of responses contribute nothing to training
because their advantages are zero (detailed in Figure 5(b)). To ensure that each training batch remains
effective, we introduce an adaptive batch size mechanism.

Let the target training batch size be B′, valid training batch size at step m be B′′
m, and the sampled

prompt batch size at step m be Bm. The sampling batch size at step m is updated as:

Bm+1 = Round(λBm + (1− λ)
B′

B′′
m

Bm), (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where λ is the weight balancing historical and current batch sizes. After MC sampling, responses with
zero advantages are discarded, ensuring that all samples in the final batch have non-zero advantages,
which improves training efficiency.

Our adaptive batch sampling differs from the dynamic sampling used in DAPO (Yu et al., 2025) in
two key ways: (1) It requires only a single round of prompt sampling and generation per training
step. (2) It avoids inefficiency from discarding valid responses when their number exceeds B′. As a
result, the actual batch size naturally fluctuates around the target B′ while maintaining high training
efficiency.

3.3 EFFICIENT TRAINING WITH ONE-STEP OFF-POLICY

Prior process-supervised RL methods typically require two sampling procedures per training iter-
ation (Hou et al., 2025; Yang et al., 2025b; Guo et al., 2025; Zheng et al., 2025b). This is highly
inefficient, as sampling often dominates the overall training time. To address this, we propose
a one-step off-policy learning framework for PSRL, inspired by recent advances in efficient RL
training (Noukhovitch et al., 2025; Fu et al., 2025; meituan search, 2025).

In our approach, only a single sampling operation is performed at each training step. Concretely, at
training step m, we conduct initial sampling for the (m+1)-th problem batch while simultaneously
performing MC sampling for the m-th problem batch. This design ensures that the initial sampling for
a batch occurs at step m−1, followed by its MC sampling at step m, thereby eliminating redundant
sampling. As a result, the overall sampling cost is substantially reduced, leading to improved training
efficiency. The full training pipeline of AttnRL is illustrated in Figure 7.

4 EXPERIMENTS

4.1 SETUP

Models and Baselines. Following Hou et al. (2025), we adopt two supervised fine-tuned models,
which are also reasoning models, as base models: DS-R1-Distill-Qwen-1.5B and DS-R1-Distill-
Qwen-7B (DeepSeek-AI et al., 2025). We compare against the following baselines: (1) GRPO (Shao
et al., 2024): A representative OSRL method without critic model training. (2) TreeRL (Hou et al.,
2025): The method is based on GRPO but differs that TreeRL samples with tree-based branching and
estimates advantage values at segment-level. (3) DeepScaleR-Preview-1.5B (Luo et al., 2025): A
strong RL-trained model with iterative context expansion at 1.5B scale.

Evaluation and Metrics. We evaluate all methods on six widely used mathematical reasoning
benchmarks: AIME24 (MAA, 2024), AIME25 (MAA, 2025), AMC23 (MAA, 2023), MATH-
500 (Lightman et al., 2024), Minerva Math (Lewkowycz et al., 2022), and OlympiadBench (He et al.,
2024). We report both Pass@1 and Pass@K, where K = 32 for AIME24, AIME25, and AMC23,
and K = 4 for the remaining benchmarks. Evaluation is performed with a maximum response length
of 32,768 tokens. For verification, we use a hybrid of DeepScaleR’s verifier and Math-Verify1 to
ensure correctness (He et al., 2025a).

Implementation Details. We train all methods using DeepScaleR-Preview-Dataset following Luo
et al. (2025); Liu et al. (2025c), which contains 40.3k mathematical reasoning problems. We set the
training batch size to 64, the PPO minibatch size to 32, and the learning rate to 1 × 10−6. For all
methods, we adopt token-level policy loss and apply Clip-Higher with εhigh = 0.28, following Yu
et al. (2025). We use KL loss with weight 0.001 following Liu et al. (2025a); Wang et al. (2025).
AttnRL is implemented based on TreeRL (Hou et al., 2025) and GRPO is used for policy optimization.
We set λ = 0.9 (a standard EMA value (Kingma, 2014)) and ρ = 0.2.

The training is conducted using verl (Sheng et al., 2025), and rollouts are generated using
vLLM (Kwon et al., 2023) with a maximum response length of 8,192 tokens, top-p of 1.0, and
temperature of 1.0 for both DS-R1-Distill-Qwen-1.5B and DS-R1-Distill-Qwen-7B. Experiments
for DS-R1-Distill-Qwen-1.5B are conducted on a single node with 8× NVIDIA H100 GPUs, and
experiments for DS-R1-Distill-Qwen-7B are run on three nodes, each with 8× NVIDIA H800 GPUs.

1https://github.com/huggingface/Math-Verify

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 MAIN RESULTS

Table 1: Evaluation results on mathematical benchmarks. The results of AttnRL are shaded and the
highest values are bolded.

Method AIME24 AIME25 AMC23 MATH-500 Minerva Olympiad Avg.
DS-R1-Distill-Qwen-1.5B 28.3 23.0 71.8 84.8 35.6 54.9 49.7

GRPO 36.9 27.2 77.7 88.4 39.5 60.4 55.0
DeepScaleR-Preview-1.5B 40.5 28.3 81.0 89.5 38.1 61.8 56.5
TreeRL 36.7 27.1 78.9 88.5 38.7 60.9 55.1
AttnRL 39.7 28.5 83.2 90.0 40.3 61.4 57.2

DS-R1-Distill-Qwen-7B 54.0 40.0 89.8 94.1 48.1 70.0 66.0
GRPO 54.9 39.6 90.8 94.3 48.6 69.7 66.3
TreeRL 55.4 40.0 92.2 94.3 49.0 70.7 66.9
AttnRL 59.3 42.5 92.5 95.4 49.3 73.3 68.7

AttnRL outperforms the base model. As shown in Table 1, AttnRL outperforms the base model
across all six benchmarks, achieving an average improvement of 7.5% for DS-R1-Distill-Qwen-1.5B.
AttnRL surpasses the base model significantly on AIME24 benchmark, achieving an improvement of
11.4% and 5.3% for 1.5B and 7B models, respectively2.

AttnRL outperforms PSRL and strong RLVR baselines. As reported in Table 1, AttnRL sur-
passes GRPO and TreeRL by an average of 1.9% and 1.8% across all benchmarks at 1.5B scale,
confirming its effectiveness. Moreover, AttnRL outperforms DeepScaleR-Preview-1.5B, which is
trained with a three-stage context extension (8K → 16K → 24K) over 1750 steps. In contrast,
AttnRL achieves superior results with only 500 steps at an 8K response length, highlighting both its
effectiveness and efficiency.

4.3 ABLATION STUDY

To evaluate the contribution of each component, we conduct an ablation study on the six mathematical
benchmarks using DS-R1-Distill-Qwen-1.5B. As shown in Table 2, incorporating ATB alone improves
performance over TreeRL by an average of 1.2%, while combining ATB with adaptive sampling
allows AttnRL to achieve the highest performance. Importantly, filtering out problems whose
responses are all correct after initial sampling results in a slight performance drop, as even “easy”
problems can produce incorrect responses under Monte Carlo sampling, providing valuable training
signals that enhance overall model performance.

Table 2: Results of ablation study on mathematical benchmarks. The results of AttnRL are shaded
and the highest values are bolded.

Method AIME24 AIME25 AMC23 MATH-500 Minerva Olympiad Avg.
TreeRL 36.7 27.1 78.9 88.5 38.7 60.9 55.1

w/first 2 step branching 35.6 28.9 79.5 89.4 38.7 60.5 55.4
w/ATB 39.1 27.2 81.4 89.2 40.1 61.0 56.3
w/ATB + ADS (w/o attention-based filtering) 38.4 29.1 81.0 89.8 38.7 61.2 56.4
w/ATB + ADS (w/o difficulty-aware expansion) 39.6 28.2 82.0 90.3 39.6 61.0 56.8
AttnRL 39.7 28.5 83.2 90.0 40.3 61.4 57.2

5 ANALYSIS

5.1 SAMPLING

How does ATB outperform entropy-based tree branching? The results in Table 2 show that
TreeRL w/ATB outperforms TreeRL, which branches at tokens with highest entropy values. To further

2The performance gain of 7B model is smaller than that of 1.5B model, which may because DeepScaleR-
Preview-Dataset is originally used to fine-tune DS-R1-Distill-Qwen-1.5B and is relatively easy for DS-R1-
Distill-Qwen-7B, which is stronger and has less room for improvement.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

understand the effects of ATB, we plot four sampling curves during training process in Figure 4. For
Figure 4(a) and (b), we visualize the solve all ratio (i.e., the ratio of problems whose outputs are all
correct) and solve none ratio (i.e., the ratio of problems whose outputs are all wrong) of MC sampling,
respectively. These two subfigures demonstrate that ATB enables more effective sampling at both
easy and hard problems. Figure 4(c) and (d) show the valid ratio (i.e., the ratio of problems whose
outputs are either not all correct nor all wrong) of MC sampling and both sampling, respectively. The
results also demonstrate the effectiveness of ATB.

0 200 400 600
Steps

0.15

0.20

0.25

0.30

Ra
tio

(a) Solve All Ratio (MC)

0 200 400 600
Steps

0.150

0.175

0.200

0.225

0.250

Ra
tio

(b) Solve None Ratio (MC)

0 200 400 600
Steps

0.55

0.60

0.65

0.70

Ra
tio

(c) Prompt Valid Ratio (MC)

0 200 400 600
Steps

0.55

0.60

0.65

0.70

0.75

Ra
tio

(d) Prompt Valid Ratio (Initial + MC)

TreeRL TreeRL w/ATB

Figure 4: The sampling statistics of ATB and entropy-based branching. The curves are smoothed
using EMA for better visualization.

Adaptive Sampling. To better understand the effects of our proposed adaptive sampling method,
we visualize the training curves related to the sampling process. The results in Figure 5(a) show
that our method significantly reduces the ratio of both samples of two sampling steps are correct
given the initial sampling results are correct, by filtering out prompts with low FCI scores (shown in
Figure 5(c)). Additionally, AttnRL benefits from maintaining a valid training batch by dynamically
adjust the prompt batch size (shown in Figure 5(d)), resulting in a training batch with all tokens
having non-zero advantage values (shown in Figure 5(b)).

0 200 400 600
Steps

0.2

0.4

0.6

(a) Invalid Once Twice Valid Ratio

0 200 400 600
Steps

0.6

0.7

0.8

0.9

1.0

(b) Valid Token Ratio Per Batch

0 200 400 600
Steps

0.0

0.2

0.4

0.6

(c) Prompt Filtered Ratio

0 200 400 600
Steps

75

100

125

150

175

(d) Prompt Batch Size

GRPO TreeRL Our Method w/ All Easy Problems Filtered Our Method

Figure 5: Curves related to sampling information statistics of all methods. The curves are smoothed
using EMA for better visualization.

5.2 TRAINING DYNAMICS AND EFFICIENCY

Training Dynamics. The training dynamics of GRPO, TreeRL, and AttnRL are visualized in
Figure 6. Figure 6(a) shows that the entropy curve of GRPO decreases along the training process,
while PSRL methods first decreases then increases. Compared with TreeRL, AttnRL shows higher
entropy, enabling more diverse exploration during training. Figure 6(b)-(c) show AttnRL learns faster
with less training steps and Figure 6(d) shows the response length of AttnRL is shorter than that of
TreeRL, demonstrating that AttnRL outperforms TreeRL at both final performance and reasoning
conciseness.

Training Efficiency. As shown in Table 3, the training efficiency of the introduced one-step off-
policy reduces the training time by 8% compared with original TreeRL implementation. AttnRL
outperforms TreeRL with less wall-clock training time, more valid tokens for training (i.e., to-
ken with non-zero advantage values), and better overall performance significantly under the same
computational resources. These strong efficiency improvements are achieved through especially at

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 200 400 600
Steps

0.75

0.80

0.85

0.90

(a) Entropy

0 200 400 600
Steps

0.40

0.45

0.50

0.55

0.60

(b) Reward

0 200 400 600
Steps

0.44

0.46

0.48

0.50

0.52

0.54

(c) Average Test Accuracy

0 200 400 600
Steps

4600

4800

5000

5200

5400

(d) Average Test Response Length

GRPO TreeRL Our Method

Figure 6: The training dynamics curves of all methods. The curves are smoothed using EMA for
better visualization.

our adaptive sampling mechanism, which samples a dynamic batch of problems, filters out some
low-value easy problems, and keeping a relatively stable size of batch with all samples useful for
training.

Table 3: Comparison of training efficiency among AttnRL and baselines. The results of AttnRL are
shaded and the best values are bolded.

Method Wall-clock Time # Valid Training Tokens Performance
GRPO 54.0 656.0M 55.0
TreeRL 67.7 274.6M 55.1
TreeRL w/one-step off-policy 62.2 269.1M 55.3
AttnRL 62.6 930.4M 56.9

6 RELATED WORK

6.1 REINFORCEMENT LEARNING FOR LLM

Reinforcement Learning has shown great success for enhancing the reasoning abilities of LLMs (Ope-
nAI, 2024; DeepSeek-AI et al., 2025). With the success of OpenAI o1 (OpenAI, 2024) and DeepSeek-
R1 (DeepSeek-AI et al., 2025), RLVR has become an efficient method for improving reasoning
abilities of LLMs (Yu et al., 2025; Liu et al., 2025d; Chu et al., 2025; Yue et al., 2025; He et al.,
2025a; Luo et al., 2025; Chen et al., 2025b; Liu et al., 2025a; Chen et al., 2025a; An et al., 2025;
Wang et al., 2025; Zheng et al., 2025a). These works focus on outcome-based rewards that are
inefficient for RL training, while our method focus on RL with process rewards.

6.2 PROCESS SUPERVISION FOR LLM

Process supervision has demonstrated superiority than outcome-based feedback in mathematical
reasoning, especially Process Reward Models (PRMs) (Uesato et al., 2022; Lightman et al., 2024;
Wang et al., 2024b). A line of works focus on token-level process rewards (Yuan et al., 2025; Cui
et al., 2025; Fei et al., 2025), using DPO-like rewards (Rafailov et al., 2023; 2024) for policy learning.
For PRM-based methods, a line of works (Wang et al., 2024b; Setlur et al., 2025; Cheng et al., 2025;
Zha et al., 2025; Ye et al., 2025) use discriminative PRMs for RL training, while another line of
works use generative PRMs (Zhao et al., 2025) to provide process rewards for RL training (Zou et al.,
2025; He et al., 2025b; Xie et al., 2025). To mitigate reward hacking and avoid training an online
PRM, some works use online Monte Carlo sampling to estimate process rewards (Kazemnejad et al.,
2025; Hou et al., 2025; Guo et al., 2025; Yang et al., 2025b; Zheng et al., 2025b; Li et al., 2025; Dong
et al., 2025). Our method belong to the category which leveraging MC sampling to estimate process
rewards. However, previous methods mainly focus on non-reasoning models and is inefficient from
the perspective of both branching points, sampling mechanism, and two-step generation, while our
work proposes effective and efficient methods of process supervision for reasoning models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 CONCLUSION

In this paper, we propose AttnRL for PSRL in reasoning models, which leverages attention in-
formation to find reasoning-related steps and branches at these positions for efficient exploration.
Additionally, we introduce adaptive sampling based on problem difficulty and maintaining valid
training batch size. Experimental results on mathematical reasoning benchmarks demonstrate the
effectiveness and efficiency of our method.

REPRODUCIBILITY STATEMENT

The implementation details of our method are discussed in Section 4 and Appendix A. The code of
our method will be shared in the officially suggested way that we will send a comment which includes
an anonymous link to the reviewers and ACs. The code will be fully open-sourced upon acceptance.

REFERENCES

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing Xu,
Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scaling
reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.githu
b.io/blog/2025/Polaris. Accessed: 2025-09-01.

Anthropic. Introducing claude, 2023. URL https://www.anthropic.com/index/intr
oducing-claude/. Accessed: 2025-09-01.

Paul C Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm reasoning
steps matter? arXiv preprint arXiv:2506.19143, 2025.

Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu,
Chao Wang, Cheng Zhu, et al. Minimax-m1: Scaling test-time compute efficiently with lightning
attention. arXiv preprint arXiv:2506.13585, 2025a.

Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Acereason-nemotron: Advancing math and code reasoning through reinforcement
learning. arXiv preprint arXiv:2505.16400, 2025b.

Jie Cheng, Ruixi Qiao, Lijun Li, Chao Guo, Junle Wang, Gang Xiong, Yisheng Lv, and Fei-Yue Wang.
Stop summation: Min-form credit assignment is all process reward model needs for reasoning.
arXiv preprint arXiv:2504.15275, 2025.

Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
reinforcement learning baseline for model reasoning. arXiv preprint arXiv:2504.02546, 2025.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng

10

https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris
https://www.anthropic.com/index/introducing-claude/
https://www.anthropic.com/index/introducing-claude/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen,
Jiazhen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization. arXiv
preprint arXiv:2507.19849, 2025.

Wu Fei, Hao Kong, Shuxian Liang, Yang Lin, Yibo Yang, Jing Tang, Lei Chen, and Xiansheng
Hua. Self-guided process reward optimization with redefined step-wise advantage for process
reinforcement learning. arXiv preprint arXiv:2507.01551, 2025.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for
language reasoning. arXiv preprint arXiv:2505.24298, 2025.

Yiran Guo, Lijie Xu, Jie Liu, Dan Ye, and Shuang Qiu. Segment policy optimization: Effective
segment-level credit assignment in rl for large language models. arXiv preprint arXiv:2505.23564,
2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench:
A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific
problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.211. URL https://aclanthology.org/2024.acl-long.
211/.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. arXiv preprint
arXiv:2505.22312, 2025a.

Tao He, Rongchuan Mu, Lizi Liao, Yixin Cao, Ming Liu, and Bing Qin. Good learners think their
thinking: Generative prm makes large reasoning model more efficient math learner. arXiv preprint
arXiv:2507.23317, 2025b.

Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. Treerl: Llm reinforcement
learning with on-policy tree search. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 12355–12369, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. URL https:
//aclanthology.org/2025.acl-long.604/.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

11

https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2025.acl-long.604/
https://aclanthology.org/2025.acl-long.604/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mingyu Jin, Kai Mei, Wujiang Xu, Mingjie Sun, Ruixiang Tang, Mengnan Du, Zirui Liu, and
Yongfeng Zhang. Massive values in self-attention modules are the key to contextual knowledge
understanding. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=1SMcxxQiSL.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. VinePPO: Refining credit assignment in RL training of
LLMs. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=Myx2kJFzAn.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, SOSP ’23, pp. 611–626, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL https://doi.or
g/10.1145/3600006.3613165.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language
models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems (NeurIPS), volume 35, pp. 3843–3857. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/202
2/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf.

Yizhi Li, Qingshui Gu, Zhoufutu Wen, Ziniu Li, Tianshun Xing, Shuyue Guo, Tianyu Zheng, Xin
Zhou, Xingwei Qu, Wangchunshu Zhou, Zheng Zhang, Wei Shen, Qian Liu, Chenghua Lin, Jian
Yang, Ge Zhang, and Wenhao Huang. Treepo: Bridging the gap of policy optimization and efficacy
and inference efficiency with heuristic tree-based modeling. arXiv preprint arXiv:2508.17445,
2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.n
et/forum?id=v8L0pN6EOi.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025a.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703, 2025b.

Wei Liu, Ruochen Zhou, Yiyun Deng, Yuzhen Huang, Junteng Liu, Yuntian Deng, Yizhe Zhang, and
Junxian He. Learn to reason efficiently with adaptive length-based reward shaping. arXiv preprint
arXiv:2505.15612, 2025c.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025d.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/DeepS
caleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-196
81902c1468005bed8ca303013a4e2, 2025. Accessed: 2025-09-01.

12

https://openreview.net/forum?id=1SMcxxQiSL
https://openreview.net/forum?id=Myx2kJFzAn
https://openreview.net/forum?id=Myx2kJFzAn
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

MAA. American mathematics contest 12 (amc 12), November 2023. URL https://artofp
roblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions.
Accessed: 2025-09-01.

MAA. American invitational mathematics examination (aime), February 2024. URL https:
//artofproblemsolving.com/wiki/index.php/2024_AIME_I. Accessed: 2025-
09-01.

MAA. American invitational mathematics examination (aime), February 2025. URL https:
//artofproblemsolving.com/wiki/index.php/2025_AIME_I. Accessed: 2025-
09-01.

meituan search. Recipe: One step off policy async trainer. https://github.com/volcengin
e/verl/tree/main/recipe/one_step_off_policy, 2025. Accessed: 2025-09-01.

Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal, and
Aaron Courville. Asynchronous RLHF: Faster and more efficient off-policy rl for language
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=FhTAG591Ve.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/learnin
g-to-reason-with-llms. Accessed: 2025-09-01.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q star: Your language model
is secretly a q-function. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=kEVcNxtqXk.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for LLM reasoning. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=A6Y7AqlzLW.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 1279–1297, New
York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400711961. doi:
10.1145/3689031.3696075. URL https://doi.org/10.1145/3689031.3696075.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https:
//proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547
dee91fbd053c1c4a845aa-Paper.pdf.

Jiakang Wang, Runze Liu, Fuzheng Zhang, Xiu Li, and Guorui Zhou. Stabilizing knowledge,
promoting reasoning: Dual-token constraints for rlvr. arXiv preprint arXiv:2507.15778, 2025.

13

https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://github.com/volcengine/verl/tree/main/recipe/one_step_off_policy
https://github.com/volcengine/verl/tree/main/recipe/one_step_off_policy
https://openreview.net/forum?id=FhTAG591Ve
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://openreview.net/forum?id=kEVcNxtqXk
https://openreview.net/forum?id=kEVcNxtqXk
https://openreview.net/forum?id=A6Y7AqlzLW
https://doi.org/10.1145/3689031.3696075
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen Zhu, Anjie Liu, Ziqin Gong, Yan Song, Lei
Chen, Lionel M Ni, et al. Openr: An open source framework for advanced reasoning with large
language models. arXiv preprint arXiv:2410.09671, 2024a.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439, Bangkok,
Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-l
ong.510. URL https://aclanthology.org/2024.acl-long.510/.

Hao Wen, Yifan Su, Feifei Zhang, Yunxin Liu, Yunhao Liu, Ya-Qin Zhang, and Yuanchun Li.
Parathinker: Native parallel thinking as a new paradigm to scale llm test-time compute. arXiv
preprint arXiv:2509.04475, 2025.

Guofu Xie, Yunsheng Shi, Hongtao Tian, Ting Yao, and Xiao Zhang. Capo: Towards enhancing llm
reasoning through verifiable generative credit assignment. arXiv preprint arXiv:2508.02298, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025a.

Zhicheng Yang, Zhijiang Guo, Yinya Huang, Xiaodan Liang, Yiwei Wang, and Jing Tang. Treerpo:
Tree relative policy optimization. arXiv preprint arXiv:2506.05183, 2025b.

Chenlu Ye, Zhou Yu, Ziji Zhang, Hao Chen, Narayanan Sadagopan, Jing Huang, Tong Zhang, and
Anurag Beniwal. Beyond correctness: Harmonizing process and outcome rewards through rl
training. arXiv preprint arXiv:2509.03403, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
Liu, and Hao Peng. Free process rewards without process labels. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
8ThnPFhGm8.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
advanced reasoning tasks. arXiv preprint arXiv:2504.05118, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S Boning, and Dina Katabi.
Rl tango: Reinforcing generator and verifier together for language reasoning. arXiv preprint
arXiv:2505.15034, 2025.

14

https://aclanthology.org/2024.acl-long.510/
https://openreview.net/forum?id=8ThnPFhGm8
https://openreview.net/forum?id=8ThnPFhGm8

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Kaiyan Zhang, Runze Liu, Xuekai Zhu, Kai Tian, Sihang Zeng, Guoli Jia, Yuchen Fan, Xingtai Lv,
Yuxin Zuo, Che Jiang, Ziyang Liu, Jianyu Wang, Yuru Wang, Ruotong Zhao, Ermo Hua, Yibo
Wang, Shijie Wang, Junqi Gao, Xinwei Long, Youbang Sun, Zhiyuan Ma, Ganqu Cui, Lei Bai, Ning
Ding, Biqing Qi, and Bowen Zhou. Marti: A framework for multi-agent llm systems reinforced
training and inference, 2025a. URL https://github.com/TsinghuaC3I/MARTI.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, Yu Fu, Xingtai Lv, Yuchen Zhang, Sihang Zeng, Shang Qu, Haozhan
Li, Shijie Wang, Yuru Wang, Xinwei Long, Fangfu Liu, Xiang Xu, Jiaze Ma, Xuekai Zhu, Ermo
Hua, Yihao Liu, Zonglin Li, Huayu Chen, Xiaoye Qu, Yafu Li, Weize Chen, Zhenzhao Yuan, Junqi
Gao, Dong Li, Zhiyuan Ma, Ganqu Cui, Zhiyuan Liu, Biqing Qi, Ning Ding, and Bowen Zhou. A
survey of reinforcement learning for large reasoning models. arXiv preprint arXiv:2509.08827,
2025b.

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian,
Biqing Qi, Xiu Li, et al. Genprm: Scaling test-time compute of process reward models via
generative reasoning. arXiv preprint arXiv:2504.00891, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025a.

Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li,
Zhoufutu Wen, Chenghua Lin, Wenhao Huang, et al. First return, entropy-eliciting explore. arXiv
preprint arXiv:2507.07017, 2025b.

Jiaru Zou, Ling Yang, Jingwen Gu, Jiahao Qiu, Ke Shen, Jingrui He, and Mengdi Wang. Reasonflux-
prm: Trajectory-aware prms for long chain-of-thought reasoning in llms. arXiv preprint
arXiv:2506.18896, 2025.

15

https://github.com/TsinghuaC3I/MARTI

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

Training Pipeline. The one-step off-policy sampling and training pipeline is shown in Figure 7.

m-th
batch

1st
batch

1st
batch

Initial
Sampling

Training

MC
Sampling

1st
batch

2nd
batch

m-th
batch

m+1-th
batch

Prompt Batch Training Batch (Initial samples + MC Samples of m-th Step)One Generation Process

...

...

...

...

...

...

1st
batch

1st
batch

1st
batch

2nd
batch

2nd
batch

2nd
batch

...

...

...

m-th
batch

m-th
batch

m-th
batch

...

...

...

Training Process Training Process

One-Step Off-Policy Training (Ours) Previous Method

Figure 7: Training pipeline of AttnRL. Our method (left) only needs one-time generation per training
iteration, while previous methods (right) require to sample twice and are inefficient.

Evaluation. For evaluation, we use the prompt listed in Table 4, following Luo et al. (2025).

Table 4: Prompt Template.

{problem} Let’s think step by step and output the final answer within \boxed{}.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 FULL TEST CURVES

The test curves of six mathematical benchmarks are shown in Figure 8.

0 200 400 600
Steps

0.225

0.250

0.275

0.300

0.325

0.350

0.375

(a) AIME24 (Avg@32)

0 200 400 600
Steps

0.22

0.24

0.26

0.28

(b) AIME25 (Avg@32)

0 200 400 600
Steps

0.625
0.650
0.675
0.700
0.725
0.750
0.775
0.800

(c) AMC23 (Avg@32)

0 200 400 600
Steps

0.80

0.82

0.84

0.86

0.88

(d) MATH-500 (Avg@4)

0 200 400 600
Steps

0.34

0.36

0.38

0.40

(d) Minerva (Avg@4)

0 200 400 600
Steps

0.450

0.475

0.500

0.525

0.550

0.575

0.600

(e) Olympiad (Avg@4)

GRPO TreeRL Our Method

Figure 8: Test curves of GRPO, TreeRL, and our method on six benchmarks.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C CASES

The full response of Figure 1 is listed in Table 5 and steps with high FCI scores are shown in red.

Table 5: Full response.

Okay, so I need to figure out how many positive three-digit integers are divisible by both 11
and 5. Hmm, let’s see. I remember that if a number is divisible by both 11 and 5, it must be
divisible by their least common multiple, right? But wait, I should double-check that because
sometimes numbers share common factors, so maybe I need the least common multiple
correctly.
First, let me recall that 11 is a prime number, and 5 is also a prime number. Since they are both
prime and different, the least common multiple (LCM) of them should just be their product. So,
LCM(11, 5) = 11 * 5 = 55. That means we’re looking for three-digit numbers divisible by 55.
Alright, so the next step is to find out how many three-digit numbers are divisible by 55. Let’s
figure out the smallest and largest three-digit numbers that are divisible by 55. The smallest
three-digit number is 100, and the largest is 999.
I need to find the smallest three-digit number that’s divisible by 55. So, let me divide 100 by 55
to see if it’s a whole number. 55 * 1 = 55, 55 * 2 = 110. So, 55 * 2 = 110 is the first number
above 100 that is divisible by 55. Is that right? Let me divide 100 by 55 to find how many
times 55 goes into 100. 100 / 55 is approximately 1.818. So, yes, the first multiple is 55 * 2 =
110. But 110 is the first three-digit number?
Wait, hold on. What’s 55 * 1? That would be 55, which is not a three-digit number. So, we
have to start at 55 * 2. So, the first multiple is 110, which is 55 * 2. But do we need to check if
55 * 1 is two-digit, which it is, so yes, we have to skip that.
Now, for the upper limit, the largest three-digit number is 999. So, let’s divide 999 by 55 to get
how many times 55 goes into 999. So, 999 / 55 is equal to approximately 18.16. So, 55 * 18 =
990, and 55 * 19 = 1045. Wait, 1045 is a four-digit number, which is too big. So, the largest
multiple within three digits is 990, which is 55 * 18.
Wait, no—actually, 55 times 18 is 990, which is still less than 999. So, 18 is okay. Wait, but 55
* 19 is 1045, which is more than 999, so 990 is indeed the largest three-digit multiple.
So, our sequence of three-digit numbers divisible by 55 goes from 110 up to 990, with a
common difference of 55 each time. So, to find the number of terms in this sequence, we can
use the formula for the number of terms in an arithmetic sequence:
Number of terms = (Last term - First term) / Common difference + 1
So plugging in the numbers:
First term, a1 = 110
Last term, an = 990
Common difference, d = 55
So, (990 - 110) / 55 + 1.
Let me compute that.
First, calculate the difference: 990 - 110 = 880.
Then, divide by 55: 880 / 55 = 16.
Then, add 1: 16 + 1 = 17.
Therefore, there are 17 three-digit numbers divisible by both 11 and 5.
Wait, let me verify that. Maybe list a few and count.
Starting from 110,
110 (1st term) 165 (2nd term) 220 (3rd term) 275 (4th term) 330 (5th term) 385 (6th term) 440
(7th term) 495 (8th term) 550 (9th term) 605 (10th term) 660 (11th term) 715 (12th term) 770
(13th term) 825 (14th term) 880 (15th term) 935 (16th term) 990 (17th term)
Hmm, so that’s 17 terms. Looks correct. So, the number is 17.
Alternatively, maybe using the formula with the general term:
The n-th term of the sequence is given by a_n = a1 + (n - 1)d.
So, since the last term is 990, let’s set 990 = 110 + (n - 1)*55.
Subtract 110: 880 = (n -1)*55.
Divide by 55: 880 /55 = 16.
So, n -1 =16. Therefore, n=17.
Yes, same result. Seems solid.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Therefore, the number of positive three-digit integers divisible by both 11 and 5 is 17.
Final Answer
The number of positive three-digit integers divisible by both 11 and 5 is 17 . </think>
To determine how many positive three-digit integers are divisible by both 11 and 5, we first
find the least common multiple (LCM) of 11 and 5. Since 11 and 5 are both prime, their LCM
is 11× 5 = 55. Therefore, we need to find the three-digit integers divisible by 55.
The smallest three-digit number divisible by 55 is found by dividing 100 by 55, which gives
approximately 1.818. The next whole number is 2, so the smallest term is 55× 2 = 110.
The largest three-digit number is 999. Dividing this by 55 gives approximately 18.16. The
largest whole number is 18, so the largest term is 55× 18 = 990.
To find the number of terms in this sequence, we use the formula for the number of terms in an
arithmetic sequence:

Number of terms =
(

Last term − First term
Common difference

)
+ 1

Substituting the values, we get:

Number of terms =
(
990− 110

55

)
+ 1 =

(
880

55

)
+ 1 = 16 + 1 = 17

Thus, the number of positive three-digit integers divisible by both 11 and 5 is 17 .

D THE USE OF LARGE LANGUAGE MODELS

In this paper, LLMs are only used to polish the draft of some paragraphs, improving the clarity of
the sentences. The key ideas, figures, and experiments are all from the human authors’ contributions
without the help of LLMs.

E ADDITIONAL DETAILS ON PROCESS-SUPERVISED RL
In this section, we provide additional preliminaries about process-supervised RL, especially
TreeRL (Hou et al., 2025).

Tree Constuction in TreeRL. TreeRL contains two-step sampling processes, including initial
sampling and Monte Carlo sampling. For initial sampling, TreeRL samples 6 responses for each
prompt. Starting from the prompt, we now have a tree with depth 1 and 6 leaf nodes. Then, TreeRL
branches at the 2 tokens with the highest entropy for each response and sample 2 times at each
branching point. After the branching, the tree has a depth of 3 and 30 leaf nodes (6 responses + 6
responses × 2 branching points × 2 samples). The responses at these leaf nodes are used for process
reward estimation and policy training.

18

	Introduction
	Preliminaries
	LLM Reasoning as a Step-Level Markov Decision Process
	Outcome-Supervised and Process-Supervised RL
	Attention Mechanism

	Method
	Branching at Massive Attention Values
	Massive Attention Values in LLMs
	The Effects of Steps with High FCI Scores
	Attention-based Tree Branching

	Adaptive Sampling
	Difficulty-aware Exploration
	Adaptive Batch Sampling

	Efficient Training with One-Step Off-Policy

	Experiments
	Setup
	Main Results
	Ablation Study

	Analysis
	Sampling
	Training Dynamics and Efficiency

	Related Work
	Reinforcement Learning for LLM
	Process Supervision for LLM

	Conclusion
	Experimental Details
	Additional Experimental Results
	Full Test Curves

	Cases
	The Use of Large Language Models
	Additional Details on Process-Supervised RL

