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ABSTRACT

Many real-world applications are characterized by non-stationary distributions. In
this setting, independent expert models trained on subsets of the data can benefit
from each other and improve their generalization and forward transfer by sharing
knowledge. In this paper, we formalize this problem as a multi-agent continual
learning scenario, where agents are trained independently but they can communicate
by sharing the model parameters after each learning experience. We split the
learning problem into two phases: adaptation and consolidation. Adaptation is
a learning phase that optimizes the current task, while consolidation prevents
forgetting by combining expert models together, enabling knowledge sharing. We
propose Data-Agnostic Consolidation (DAC), a novel double knowledge distillation
method. The method performs distillation in the latent space via a novel Projected
Latent Distillation (PLD) loss. Experimental results show state-of-the-art accuracy
on SplitCIFAR100 even when a single out-of-distribution image is used as the only
source of data during consolidation.

1 INTRODUCTION

Real world data is characterized by non-stationary distributions. In this setting, continual learn-
ing (Lesort et al., 2020) is necessary to mitigate catastrophic forgetting(French, 1999) of past
experiences. In many applications there may even be multiple independent sources of data that cannot
be integrated in a single dataset due to privacy constraints. Let us consider a reference scenario
where a fleet of robots is deployed in different locations, forming a decentralized network of edge
devices. Each robot is an independent agent learning from a distinct environment, possibly with
limited connectivity with the others. In this application, sharing knowledge between the agents can
help to improve generalization and forward transfer. At the same time, we may not be allowed to
collect and share the raw data due to privacy constraints, such as data about agents’ interactions with
real users.

In this paper, we formalize this problem as a multi-agent continual learning scenario. The key novelty
compared to popular continual learning scenarios (van de Ven & Tolias, 2019) is the necessity to
share the knowledge between agents. Currently, the only method to exploit pretrained models is
to use them to initialize a continual learning model (Hayes & Kanan, 2020; Maltoni & Lomonaco,
2019), which means that it is not possible to integrate external knowledge once training is started.
Other frameworks, such as federated learning (Li et al., 2020), are designed to train a single model in
a distributed way, which is a different problem from sharing knowledge between independent agents.
Federated learning requires tight synchronization between the clients and a centralized server that
controls the training process. As a result, it is not possible to integrate the knowledge of independent
agents using popular federated learning methods or to allow each agent to train independently and in
a fully decoupled fashion.

The main challenge of this scenario is the problem of knowledge consolidation in the absence of the
original data. We therefore propose a novel method, called Data-Agnostic Consolidation (DAC), that
allows to distill knowledge from independent agents with a data-free double knowledge distillation.
The key idea of the method is that each continual learning step can be split into two separate phases,
adaptation and consolidation. We show that DAC learns successfully even when the original data
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Figure 1: In the sequential setting (left), expert models (top row) are initialized with the current
weights θCL

i−1. In the independent setting (right), expert models start from a common initialization θ0.
In both cases, the consolidated model (bottom row) is trained on external data Dood. The challenge
of these scenarios is to incorporate the knowledge of the experts into the main model without access
to any task data.

is used only in the adaptation phase. In fact, a very simple source of data, such as a single out-
of-distribution image, is sufficient. This is possible due to the use of heavy augmentations, in line
with recent advances for knowledge distillation (Beyer et al., 2022; Asano & Saeed, 2022). As a
consequence, it is possible to perform the adaptation locally on-device and the consolidation using
a remote server without sharing the data with the server. A problem with the double distillation is
that it is not possible to perform feature distillation because the two teachers compute two different
latent representations. DAC solves this problem via our novel Projected Latent Distillation loss. As
a result, DAC can distill the output and latent space of both teachers without trading off stability
or plasticity. The experimental results show that DAC allows to consolidate the knowledge from
independent agents even when they are trained on different tasks and only a single out-of-distribution
image is available.

The main contributions of the paper can be summarized as follows:

• a formal characterization of multi-agent continual learning. To the best of our knowl-
edge, this is the first work to formalize continual learning in a multi-agent setting and the
consolidation problem (Section 2);

• Data-Agnostic Consolidation, a novel strategy which performs a data-agnostic double
knowledge distillation in the output and latent space via Projected Latent Distillation
(Section 3);

• state-of-the-art results for task-aware SplitCIFAR100 (Table 1a, +3.9% on 10 Tasks);
• an extensive experimental analysis that shows the importance of heavy augmentations during

distillation and the benefit of separating adaptation and consolidation (Section 4).

2 MULTI-AGENT CONTINUAL LEARNING

In continual learning, an agent learns from a stream of experiences S = e1, . . . , en. In a supervised
setting, each experience ei provides a batch of samples Di = {⟨xm, ym, tm⟩}, where xm ∈ RX is
the input, ym ∈ Yi the target label, and tm ∈ N an optional task label. A trivial solution to this
problem would be to train a model on the joint dataset DJ = ∪n

i=1Di. However, due to resource and
privacy constraints, we assume that at time i we do not have access to data from previous experiences
ej , j < i. This popular setting is called exemplar-free (or data-free) continual learning (Smith et al.,
2021; Masana et al., 2020).

A continual learning agent fθ is a model trained sequentially on a stream S. In a multi-agent
environment we have multiple agents trained independently on different streams. Ideally, we would
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like to share the knowledge between agents via a simple communication mechanism. However, due to
privacy and bandwidth constraints, we are prohibited from sending the real samples or having frequent
communication between agents. In this paper, we focus on scenarios with a simple communication
mechanism where an agent sends its parameters only after training on a single experience. This is a
sparse and efficient communication mechanism since we send the model only once per experience.
We also separate the problem of knowledge adaptation from the problem of knowledge consolidation.

In knowledge adaptation, the model starts from an initialization θ0 and minimizes the loss L(Di). We
call the final result the expert model for Di to highlight the fact that the model encodes knowledge
about the experience, and we denote the expert’s parameters as θExp

i . In knowledge consolidation,
we want to combine the agent trained on S = e1, . . . , ei−1 with parameters θCL

i−1 with the expert
θExp
i . The resulting model fθCL

i
consolidates the knowledge of both models. As a further constraint,

we assume that during the consolidation phase we may not have access to the data Di. Therefore, we
will use an out-of-distribution dataset Dood to train the consolidated model.

In this paper, we study two different scenarios. In the sequential setting, we assume a edge-cloud
scenario, where at time i the edge device (expert) has access to experience ei, while the cloud server
(consolidated CL model) never sees any real data due to privacy constraints. The server sends the
current consolidated parameters θCL

i−1 to the edge device to initialize its model, which is trained on
ei. This is the knowledge adaptation step, where the edge device finetunes its parameters and has
full plasticity while ignoring any possible forgetting. At the end of the training step, the edge device
sends the new parameters θExp

i to the server. The server performs a knowledge consolidation step
to combine the new parameters with the previous ones θCL

i−1 and obtains θCL
i . During this step, the

server must balance new and past knowledge to avoid catastrophic forgetting. Notice that the main
challenge of our setup is the fact that the server will never see any original data and it will only
receive the parameters at the end of training.

In the independent setting, each agent learns independently from different subsets of the data and
communicates by sharing their parameters. In this work, we study a scenario where each agent
i is trained on a separate experience ei starting from a common initialization θ0. As a result, we
have a stream of trained experts fθExp

1
, . . . , fθExp

N
. We can train a consolidated model fθCL

i
on the

entire stream by sequentially consolidating the knowledge of the independent experts. Again, the
consolidated model does not have access to any training data.

Figure 1 shows the difference between the sequential and independent setting. Notice that the
independent scenario includes the possibility of reusing pretrained models or training the experts
in parallel. However, it is more challenging since the agents may be more diverse as a result of the
different initialization; in the sequential setting, instead, sequential initialization helps knowledge
consolidation, as we will see in Section 4.1.

3 DATA-AGNOSTIC CONSOLIDATION

As discussed above, we separate learning in a multi-agent environment into two problems: knowledge
adaptation and knowledge consolidation. We propose a method that solves each problem separately.
The separation helps to simplify the two problems and to achieve consolidation without the original
data. In Section 4, we will see that this explicit separation is beneficial even when original data is
available during consolidation.

Knowledge Adaptation aims for optimal plasticity and it is solved by finetuning the model on
the new experience ei by minimizing L(Di, θi), where θi are the expert parameters. Notice that the
loss is computed only on Di, ignoring previous experiences and therefore resulting in catastrophic
forgetting.

Knowledge Consolidation is a function matching problem where the objective function is the
model f∗

θCL
i

that combines the previous model fθCL
i−1

and the current expert fθExp
i

.

We propose Data-Agnostic Consolidation (DAC), a method for knowledge consolidation solving the
function matching problem via a double knowledge distillation (Section 3.1). At each iteration, DAC
samples from a source of data and uses heavy augmentations to increase its diversity (Section 3.2).
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Figure 2: Data-Agnostic Consolidation. The method uses double distillation in the output and latent
space, using heavily augmented samples as input.

Finally, DAC leverages a novel approach called Projected Latent Distillation (PLD) to distill the
latent spaces of the two teachers (Section 3.3).

In the remainder of this section, we assume that fθCL
i

, the current CL model, is a multi-head model,
with a separate linear head for each task k. We denote fk

θCL
i

the function computing the output for
task k. Since DAC uses multi-head models during consolidation, during inference we can use the
correct head if task labels are available. In task-agnostic scenarios, we can average (or concatenate, if
they predict different classes) the outputs of all the heads. A schematic view of the method is shown
in Figure 2.

3.1 KNOWLEDGE DISTILLATION AND FUNCTION MATCHING

At experience i, we want to consolidate a multi-head model fθCL
i−1

with i− 1 heads and a single-head
model fθExp

i
. The desired result is a multi-head model f∗

θCL
i

with i heads such that

f∗k
θCL
i

(x) = fk
θCL
i−1

(x), ∀k ∈ {1, . . . , i− 1},x ∈ RN (1)

f∗i
θCL
i

(x) = fθExp
i

(x), ∀x ∈ RN . (2)

Notice that the above definition is an exact solution, there is no noise or uncertainty in our target since
our goal is to replicate the two models exactly. In fact, we know the exact target for every possible
input. We can find fθCL

i
by stochastic gradient descent minimizing a double knowledge distillation

loss

LDKD(D) = LKD(D, f i
θCL
i

, fθExp
i

) +

i−1∑
k=1

LKD(D, fk
θCL
i

, fk
θCL
i−1

) (3)

where LKD(D, θS , θT ) is the KL-divergence computed on data D between the student θS and the
teacher θT . LDKD minimizes the error of each head separately. Since the target solution in Eq. 2 is
defined over the full RN domain, we do not necessarily need the original data but we need to define a
method to sample inputs from the entire space.

3.2 SAMPLING DATA FOR CONSOLIDATION

As explained before, one of the main challenges of multi-agent CL is that we do not have access to the
real data when performing the consolidation step. In a single-agent scenario, the current data Di will
be often available. However, in a multi-agent scenario we may not have Di due to privacy constraints.
Even in the single-agent scenario, if we perform the consolidation step in a separate server, we
may not have access to Di. Fortunately, it is not necessary to use the original data to optimize the
consolidation as described in Section 3.1. However, using random vectors in RN would be highly
inefficient. An alternative solution is to assume to have access to a small set of samples Dood, possibly
coming from different tasks. Following Asano & Saeed (2022) and Beyer et al. (2022), we use a large
set of stochastic augmentations to create a dataset of highly diverse samples from a small number of
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(a) Results on task-incremental SplitCIFAR100
after task 5 and 10. Baselines denoted by † are
taken from Masana et al. (2020)

SplitCIFAR100
5 Tasks 10 Tasks

Naive† 49.8 38.3
EWC† 60.2 56.7
PathInt† 57.3 53.1
MAS† 61.8 58.6
RWalk† 56.3 49.3
DMC† 72.3 66.7
LwM† 76.2 70.4
LwF† 76.7 76,6

DAC (city) 81.4±1.6 80.5±0.8

(b) Results on task-agnostic independent settings
for CORe50. Baselines denoted by † are taken
from Carta et al. (2022).

CORe50
Joint NI

Oracle† 85.7±0.2 –
Min. Entropy† – 61.3±1.8

Output Avg.† – 69.9±0.7

Parameter Avg.† – 2.0±0.0

Replay ED† 87.4±0.2 83.7±0.5

Model Inversion ED† 50.0±2.7 44.3±4.9

Data Impression ED† 52.9±2.0 43.2±2.3

Aux. Data ED† 81.8±0.2 44.5±2.9

DAC ("city") 84.9±0.2 40.9±3.0

Table 1: Average accuracy At on task-incremental SplitCIFAR100 (after tasks 5 and 10) and task-
agnostic CORe50 (last model).

images. At each timestep, we apply a large number of transformations such as jittering, rotation, crop,
resize, flip, CutMix (Yun et al., 2019). The resulting images will be heavily distorted but to solve the
knowledge distillation problem defined in Eq. 2 we do not need realistic images as long as we have
enough diversity, as we will show in Section 4. While the preprocessing pipeline can become the
bottleneck of the training process with such a large number of transformations, it is always possible
to trade-off memory to save computation by precomputing a large number of pre-processed images.

3.3 PROJECTED LATENT DISTILLATION

The knowledge distillation loss in Eq. 3 matches the outputs for each teacher’s head. However, we
would like to also match the latent space of the two teachers. This is more problematic because given
an input x, the outputs yk are computed by separate heads, and therefore have no interference, but
the hidden activations share the same units in the consolidated model (as shown in Figure 2). As a
result, for a specific hidden layer we have two different targets hCL

i−1 and hExp
i and a single activation

vector hCL
i for the student. Exact matching of the hidden state is not possible. To solve this issue,

we propose Projected Latent Distillation (PLD). The underlying intuition is that while we cannot
enforce an exact match, we can match the two hidden states up to a linear transformation. During the
consolidation phase, we optimize two linear transformations WExp and WCL that map the teachers’
hidden states to the student’s hidden states. The loss is then defined as

LPLD(hCL
i ,hCL

i−1,h
Exp
i ) = λ(||WExphCL

i − hExp
i ||22+ (4)

(i− 1)||WCLhCL
i − hCL

i−1||22), (5)

where hCL
i is the student, hCL

i−1 the previous CL model (already trained on i − 1 tasks) and hExp
i

the expert hidden states. The W matrices are initialized to the identity matrix and optimized during
the consolidation phase. The loss encourages the student model to also match the teachers’ hidden
states. Notice that the loss for the previous expert is multiplied by i − 1 to give the same weight
to each task. The same effect is present in the distillation in the output space defined by Eq. 3,
since we sum all the heads (one for each task). The total loss of DAC is L(D,hCL

i ,hCL
i−1,h

Exp
i ) =

LDKD(D) + λLPLD(hCL
i ,hCL

i−1,h
Exp
i ), where λ controls the ratio between the ouput and latent

distillation losses.

4 EXPERIMENTS

We show experimental results in the sequential and independent setting introduced in Section 2. We
use CIFAR100 (Krizhevsky) and CORe50 (Lomonaco & Maltoni, 2017) to create our benchmarks.
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(a) SplitCIFAR100.
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(b) CORe50-NI.

Figure 3: Task-specific and stream average accuracy on the training set during training.

The source code is implemented in Avalanche (Lomonaco et al., 2021) and publicly available1. More
details about the experiments can be found in the appendix.

We use SplitCIFAR100 in the task-incremental setting 10, and 20 tasks, where the stream is divided
into experiences of 10, and 5 classes, respectively. We use a slimmed ResNet18 as defined in
Lopez-Paz & Ranzato (2017). We also use CORe50 (Lomonaco & Maltoni, 2017), a task agnostic-
benchmark, in the joint and domain-incremental (NI) settings. CORe50 images have a 224× 224
resolution, which we rescale to 128× 128. We use a MobileNetv2 (Howard et al., 2017) pretrained
on ImageNet, as it is popular in the literature (Maltoni & Lomonaco, 2019).

All the results are the average of 5 runs on different seeds. Results are evaluated with the average
accuracy over the entire test stream. Given At,i as the task i accuracy for task i after training on task
t, the average accuracy At =

∑t
i=1 At,i. The default data source for DAC is a single image, "city".

This is a high resolution image of a japanese street (shown in the Appendix).

4.1 RESULTS

Results for SplitCIFAR100 in the task-aware sequential setting are shown in table 1a. We use the
results in (Masana et al., 2020) as baselines. Our results show state of the art performance on the 10
task setting. Despite the limited data source, a single out-of-domain image ("city"), DAC outperforms
LwF, which uses the real data Di for distillation. We argue that there are two properties of DAC
which justify this improvement. First, the use of heavy augmentations improves distillation even with
limited data, as already shown in (Beyer et al., 2022) and (Asano & Saeed, 2022) for offline training.
Furthermore, during the consolidation DAC weighs the current task and all the previous ones in the
same way by using the same loss for all tasks and summing them (Eq. 3, 5). Instead, LwF uses the
cross-entropy for the current task and the KL divergence for the previous ones, which makes it more
difficult to balance stability and plasticity (the well known stability-plasticity dilemma, (French,
1999)). Interestingly, DAC scales very well with the number of tasks in the 10 tasks setting, unlike
most of the other methods. We note that increasing the number of tasks makes the consolidation
problem harder but it also makes each task easier to solve because each task will have less classes.
We hypothesize that this issue is due to the poor stability-plasticity trade-off of most methods. We
evaluated DAC on the 20 task setting (5 classes per task), which results in the average test accuracy
of 86.2±1.0, even higher than the 10 task setting.

Experiments on CORe50 in the independent setting are shown in Table 1b. Notice that while our
method uses a multi-head, CORe50 is a task-agnostic benchmark. Therefore, we convert the final
multi-head model into a task-agnostic model by averaging the output of all the heads. CORe50 is also
a more challenging benchmark due to the higher image resolution (128× 128). We compare against
the methods in Carta et al. (2022), which perform knowledge distillation using synthetic data or the
entire ImageNet dataset. Overall, DAC obtains the best performance in the joint scenario, while Aux.
Data ED is better in the domain incremental (NI) scenario. Notice that Aux. Data ED uses ImageNet
(with more than 1 milion images) for distillation.

1Only after the review. An anonymized version is available as supplementary material.
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(a) CKA between the first and last experts of SplitCIFAR100 (10 Tasks) computed using the last task.
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(b) Accuracy on the expert’s task.
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(c) Task-agnostic linear probing on all tasks.

Figure 4: Accuracy of the experts on their own task and linear probing of the expert’s representation
finetuned on the entire CIFAR100 dataset.

Figure 3 shows the learning curves for SplitCIFAR100 (10 Tasks) and CORe50-NI. We notice that on
Split CIFAR100 the forgetting, i.e. the difference between the accuracy after training on task i and
the task at the end of training on the entire stream, is very low. This means that the consolidation
process works with minimal forgetting. On CORe50, we see more forgetting. We hypothesize that
training the consolidation for more epochs on CORe50 could reduce the gap.

COMPARISON BETWEEN SEQUENTIAL AND INDEPENDENT SCENARIO

At a first glance, the sequential and independent scenario may seem very similar. The only difference
between the two lies in the expert’s initialization. In the sequential setting, each agent is initialized
with the weights learned at time t − 1, while in the independent setting all the agents start from a
common initialization θ0. In particular, the model’s initialization affects the similarity between the
experts and therefore the difficulty of the consolidation problem.

In this section, we study how the two settings affect the expert’s accuracy with respect to 3 dimensions:
forward transfer, the generalization of the hidden representations to other tasks, and the representation
similarity between different experts. We also ablate the use of Projected Latent Distillation for
DAC to investigate its effect. We use the experts trained on SplitCIFAR100 (10 Tasks). In the
independent setting, experts are trained either with the same random initialization (ind-same) or a
different one (ind-random). In the sequential setting we compare DAC without latent distillation
(seq-no-latent), and the full DAC (seq-DAC).

We would like the initialization of the sequential setting to encourage forward transfer between the
CL model and the expert, i.e. the sequential initialization should improve the expert’s performance
compared to the independent setting. Figure 4 shows the accuracy of the 10 experts on the task they
have seen during training (left) and the average accuracy over all tasks for a task-agnostic linear
probe which uses the final layer’s representation, finetuned on all the tasks (right). Surprisingly, while
seq-no-latent obtains a higher accuracy than ind-same and ind-random on the linear
probing, the average expert’s accuracy on the task seen during training is actually lower. Therefore, it
seems that without latent distillation there is negative forward transfer. Instead, seq-DAC experts
are better than the ind-same experts, which means that the initialization favors a positive forward
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Table 2: Test accuracy of DAC with different data sources on SplitCIFAR100 (10 Tasks).

In-Domain Single Image Natural Accuracy

Current Data (Di) ✓ ✓ 84.2±0.5

ImageNet ✓ 84.8±0.6

city ✓ ✓ 80.5±0.8

animals ✓ ✓ 82.1±0.5

bridge ✓ ✓ 79.0±0.6

hubble ✓ 65.1±0.3

noise ✓ 10.7±0.5

transfer. The linear probe accuracy (Fig. 4c) on all tasks shows positive forward transfer for both
seq-no-latent and seq-DAC, albeit seq-DAC has a better performance.

In Figure 4a, we measure representation similarity with the CKA (Nguyen et al., 2022). The
figure shows the CKA between the first (Task 0) and last (Task 9) experts2. In general, the CKA
similarity is relatively high for the different configurations since they all share the same architecture
and are trained on similar data. Somewhat surprisingly, the similarity between seq-DAC experts
is lower than the similarity of seq-no-latent experts. In principle, we expected to find a
positive correlation between the representation similarity and the forward transfer. This appears
not to be the case since seq-DAC has better forward transfer but seq-no-latent shows closer
similarity. We hypothesize that the PLD loss encourages the consolidated model to learn more diverse
representations, decreasing the representation similarity over time but increasing the forward transfer
thanks to the richer representation.

COMPARISON BETWEEN DIFFERENT DATA SOURCES

We have already shown that a single image is already competitive with state of the art methods. In
this section, we study how different data source properties help the consolidation process (Table 2).
We use data sources taken from the real stream, single images vs full dataset, and natural images
against other domains and static noise. We use:

• city: high-resolution (around 2560× 1920, 1.85MB) image of a japanese market;
• animals: medium-resolution (600× 225, 338KB) poster with several animals;
• hubble: high-resolution image (2300× 2100, 6.90MB) from the Hubble telescope;
• bridge: Image of the San Francisco Golden Gate Bridge (1165× 585, 1.17MB);
• ImageNet: samples from ImageNet (using only CutMix);
• noise: static noise.

Images and samples are shown in Appendix B. In general, we notice that using a single image is
sufficient to reach a very high performance. However, there is still a large gap between the use of
real data (Di) and a single out-of-distribution image. It is important to notice that DAC helps even
when using the real data since we obtain an accuracy of 84.2 against the 65.8 of LwF. However, even
very different domains ("hubble") still work better than completely random data ("noise"). Finally,
diversity, given either by a large Dood or by heavy augmentations seems to be the most important
factor since using ImageNet (more than 1M images) is slightly better than using data from the current
task (5000 images).

4.2 ANALYSIS

We can summarize the main findings as follow:

Benefits of separate adaptation and consolidation phases. The consolidation problem becomes
easier once it’s separated from the adaptation, resulting in a higher accuracy, a better stability-
plasticity tradeoff, and better scaling w.r.t. the number of tasks. Notice all of these improvements are

2The CKA for the entire stream is shown in the appendix.
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shown even when DAC does not have access to the current data Di during consolidation, unlike all
the other methods (except DMC).

Sequential and independent scenario. The independent scenario is more difficult than the sequen-
tial one due to lower similarity between the experts and zero opportunity for forward transfer. In the
sequential setting, DAC shows positive forward transfer, but only when the PLD loss is used. This
result suggests that latent distillation helps to combine models with different representations and to
learn richer latent representations.

Data sources. Limited data sources, such as a single out-of-distribution image, show a good
performance due to the heavy augmentations. This opens up to the opportunity of offloading the
consolidation to a server without sharing the data.

5 RELATED WORKS

Recent work on knowledge distillation (KD) (Hinton et al., 2015) explores the possibility of distillation
with limited data. There exist several works on data-free KD, especially methods that try to create
synthetic images with generators (Liu et al., 2021). More relevant to our work, Baradad et al. (2021)
propose handcrafted noise and simple procedurally generated images, while Fang et al. (2021) creates
image by combining together slices of several images. Asano & Saeed (2022) shows the beneficial
effect of heavy augmentations and Beyer et al. (2022) additionally shows the benefit of long training
schedules.

In continual learning, many popular methods are based on knowledge distillation (Li & Hoiem, 2017;
Buzzega et al., 2020). Progress and Compress (Schwarz et al., 2018) uses an adaptation and and
compression step reminescent of our consolidation, but it still needs the original data. Gomez-Villa
et al. (2022) applies feature distillation in a continual self-supervised setting. In continual learning,
exemplar-free scenarios are very popular, especially in the class-incremental setting (DFCIL). This
scenario is different from our setting since the model still has access to Di (see also Appendix A).
Many strategies addresses DFCIL by using alternative sources of data. Carta et al. (2022) uses
synthetic data generated via model inversion, Zhang et al. (2020) uses external data, and Smith et al.
(2021) uses a data-free training process similar to GANs. Lee et al. (2019) can optionally use external
data for model calibration. Yu et al. (2022) and Dong et al. (2021) uses external data for semantic
segmentation and object detection, respectively, by exploiting the notion of background on these
tasks, which provide a neutral label, which makes them inapplicable for classification tasks. Among
all these strategies, only Carta et al. (2022) (ED, Table 1b) and Zhang et al. (2020) (DMC, Table 1a)
are fully applicable to our constrained scenario.

6 CONCLUSION

In this paper, we studied the problem of knowledge sharing between agents learning in non-stationary
environments. First, we formalized this problem as a multi-agent continual learning scenario. Then,
we highlighted how each learning step can be split into an adaptation and consolidation phase. We
proposed DAC as a general double distillation method. DAC uses heavy augmentations to achieve
competitive results with very limited data sources. Additionally, DAC uses PLD to distill the latent
space of the two teachers. The results show state-of-the-art performance and highlight how each of
the DAC components improves the final performance.

Multi-agent CL is still an open problem. We focused on the problem of knowledge consolidation
in this paper, but many other aspects are worth of study, such as increasing the communication
frequency, sending other forms of encoded knowledge instead of the parameters, or studying efficient
and sparse communication protocols between the agents.

To conclude, we would like to point out that improvements in the multi-agent setting can easily
transfer to the single-agent scenario, as it happened for DAC, which improved the state-of-the-art
performance on the task-incremental SplitCIFAR100. We hope that the research in multi-agent
scenarios will also help single-agent CL by providing important insights, such as the relationship
between adaptation and consolidation explored in this paper.
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REPRODUCIBILITY STATEMENT

We release our source code (anonymized in the supplementary material for the review, public on github
afterwards). All of our experiments use Avalanche (Lomonaco et al., 2021), a continual learning
library based on PyTorch (Paszke et al., 2019). We release all of the experiments’ configurations using
Hydra (Yadan, 2019)(hierarchical yaml configuration files), which means that each experiment in the
paper can be reproduced by running a main python script with the desired configuration, as detailed
in the README of the source code. Experimental details relevant for independent implementations
are available in the appendix.
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Table 3: Summary of the main properties of different scenario related to multi-agent continual
learning.

edge data
privacy

low computational
demands at the edge

low synchronization
overhead

Joint Training
Continual Learning ✓
Federated Learning ✓ ✓
Ours ✓ ✓ ✓

A COMPARISON BETWEEN RELATED LEARNING SCENARIOS

The multi-agent continual learning scenario present some similarities with other scenarios in the
literature. We provide a more detailed discussion of their differences here hoping to highlight their
difference:

single-agent CL : a single agent learning from a nonstationary stream of data. Knowledge sharing
is not necessary and current data is always available.

rehearsal-free CL : includes scenarios such as data-free class-incremental learning (DFCIL), where
a single agent learning from a nonstationary stream of data. Data from previous experiences
is unavailable due to privacy constraints or severe storage limitations. Knowledge sharing is
not necessary and current data is always available.

federated : client-server organization with a single centralized controller. All the clients are learning
the same task. The server has full control over the training process and the client synchronize
every few training iterations.

sequential multi-agent : Each agent learns a separate task and shares its knowledge with the others.
Training agent i starts after agent i+ 1 has completed its training.

independent multi-agent : Each agent is trained in parallel, starting from a common initialization.
Knowledge consolidation happens after all the agents have been trained.

In the multi-agent and federated settings, we assume that privacy between different entities must
be ensured, which means that agents do not share raw data with each other. Figure 5 shows the
training process of the four different scenarios assuming explicit adaptation and consolidation phases
as defined in Section 2. Table 3 summarizes the properties of the different scenario.
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Figure 5: Schematic comparison of different learning scenarios.
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B DATA SOURCES

In this section, we show samples from the images used for knowledge distillation. city: high-resolution
(around 2560x1920, 1.85MB) image of a japanese market;

animals: medium-resolution (600x225,
338KB) poster with several animals;

hubble: high-resolution image (2300x2100,
6.90MB) from the Hubble telescope;

animals: medium-resolution (600x225,
338KB) poster with several animals;

bridge: Image of the San Francisco Golden
Gate Bridge (1165x585, 1.17MB);

ImageNet: samples from ImageNet (without
augmentations);

noise: static noise.

C HYPERPARAMETERS

SplitCIFAR100: We use a slimmed ResNet18 as a backbone for both the teacher and consolidated
model. During the consolidation, we use Adam with learning rate set to 0.0001, with a batch size of
512 and 500′000 iterations. We use a temperature of 0.5 for distillation. For the PLD loss, we set
λ = 0.01 and apply the loss at layer4.0 and linear (logits).

CORe50: We use a MobileNet v2 pretrained on ImageNet as a backbone for both the teacher and
consolidated model. During the consolidation, we use Adam with learning rate set to 0.0001, with a
batch size of 128 and 100′000 iterations. We use a temperature of 1.0 for distillation. For the PLD
loss, we set λ = 100.0 and apply the loss at classifier (logits).

D CKA

In this section, we show the CKA, as described in Section 4.1, for the entire stream. We compute the
CKA between the first expert and the expert after experience i.

Figure 6: CKA for ind-same.
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Figure 7: CKA for ind-random.

Figure 8: CKA for seq-no-latent.

Figure 9: CKA for seq-DAC.
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