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Abstract: We introduce Latent Action Pretraining for general Action mod-
els (LAPA), the first unsupervised method for pretraining Vision-Language-
Action (VLA) models without ground-truth robot action labels. Existing Vision-
Language-Action models require action labels typically collected by human tele-
operators during pretraining, which significantly limits possible data sources and
scale. In this work, we propose a method to learn from internet-scale videos
that do not have robot action labels. We first train an action quantization model
leveraging VQ-VAE-based objective to learn discrete latent actions between im-
age frames, then pretrain a latent VLA model to predict these latent actions from
observations and task descriptions, and finally finetune the VLA on small-scale
robot manipulation data to map from latent to robot actions. Experimental re-
sults demonstrate that our method significantly outperforms existing techniques
that train robot manipulation policies from large-scale videos. Furthermore, it
outperforms the state-of-the-art VLA model trained with robotic action labels on
real-world manipulation tasks that require language conditioning, generalization
to unseen objects, and semantic generalization to unseen instructions. Training
only on human manipulation videos also shows positive transfer, opening up the
potential for leveraging web-scale data for robotics foundation model.

Keywords: Vision-Language-Action Models, Learning from Human Videos

1 Introduction

Vision-Language-Action Models (VLA) for robotics [1, 2] are trained by aligning large language
models with vision encoders, and then finetuning it on on diverse robot datasets [3]; this enables
generalization to novel instructions, unseen objects, and distribution shifts [4]. However, diverse
real-world robot datasets mostly require human teleoperation, which makes scaling difficult. In-
ternet video data, on the other hand, offers abundant examples of human behavior and physical
interactions at scale, presenting a promising approach to overcome the limitations of small, spe-
cialized robotic datasets [5]. However, it is challenging to learn from internet video data for two
major challenges: first, much of the raw data on the web lacks explicit action labels; second, the
data distribution from the web is fundamentally different from the embodiments and environments
of typical robotic systems [6]. We propose Latent Action Pretraining for General Action Models
(LAPA), an unsupervised approach to pretraining a robotic foundation model without the need for
ground-truth robot action labels.
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LAPA has two pretraining stages, followed by a fine-tuning stage to map the latent actions to real
robot actions. In the first pretraining stage, we use a VQ-VAE-based objective [7] to learn quantized
latent actions between raw image frames. Analogous to Byte Pair Encoding [8] used for language
modeling, this can be seen as learning to tokenize atomic actions without requiring predefined action
priors (e.g., end-effector positions, joint positions). In the second stage, we perform behavior cloning
by pretraining a Vision-Language Model to predict latent actions derived from the first stage based
on video observations and task descriptions. Finally, we fine-tune the model on a small-scale robot
manipulation dataset with robot actions to learn the mapping from the latent actions to robot actions.
In this work, we refer to both the proposed method and the resulting VLA models as LAPA.

We measure performance on diverse manipulation videos, including existing robot video datasets
(without utilizing ground-truth actions) and human manipulation datasets. Our results show that the
proposed method significantly outperforms baseline methods of training manipulation policies from
actionless videos, particularly in cross-environment and cross-embodiment scenarios. Furthermore,
on real-world manipulation tasks, our method leads to a new monolithic VLA model, outperforming
OPENVLA, the current state-of-the-art model Vision Language Action (VLA) model trained on a
diverse mixture of datasets with ground-truth actions. These results demonstrate the effectiveness
of learning unified quantized latent action representations across diverse robotic datasets featuring
different embodiments (shown in Section 4.8). We further demonstrate that LAPA remains effec-
tive even when pretrained on only human manipulation video, outperforming models pretrained
on Bridgev2, one of the largest open-sourced robotic datasets. We observe that LAPA effectively
captures environment-centric actions, including object and camera movements, which could be ben-
eficial for downstream tasks like navigation or dynamic, non-quasistatic tasks. We expect that our
method opens up the potential for building foundation models for robotics by pretraining on much
larger web-scale video data.

Our main contributions and findings are as follows: (1) We propose Latent Action Pretraining for
general Action models (LAPA), an unsupervised approach to pretraining a robotic foundation model
to encode robotic skills from web-scale video data. (2) Experiments on simulation and real-world
robot tasks show that our method not only significantly outperforms baseline methods for training
robotic manipulation policies from actionless video, but also leads to a VLA model that outper-
forms the current state-of-the-art VLA model trained with ground-truth actions (by +6.22%), while
achieving over 30x greater pretraining efficiency. (3) With LAPA, we qualitatively demonstrate that
it is possible to use the learned world and action prediction models to simulate full trajectories in
diverse environments, effectively building a neural simulation capable of performing closed-loop
evaluations entirely through neural inference.

2 Related Work

Vision-Language-Action Models Vision-Language Models (VLMs), trained on large-scale inter-
net datasets have shown strong capabilities in understanding and generating both text and mul-
timodal data [9, 10, 11, 12]. Leveraging this, recent advancements have introduced Vision-
Language-Action Models (VLAs), which extend VLMs by fine-tuning them with robotic action data
[1, 2, 13, 3]. Incorporating auxiliary objectives, such as visual traces [14], language reasoning paths
[4], or creating conversational-style instruction datasets [15], have further improved VLA perfor-
mance. However, these methods remain dependent on labeled action data. In contrast, our approach
reduces reliance on human-teleoperated data by requiring labeled actions only for fine-tuning.

Training Robot Policies From Videos Videos offer rich data for robot learning, but most lack
action labels [6]. Related work pretrains a vision encoder on egocentric human videos [16, 17,
18], or video generative models to generate future robot trajectories [19, 20]. Methods also extract
diverse features from human videos such as interactions [21], affordances [22, 23, 24, 25], or visual
traces [26, 27]. Some perform retargeting of human motions to robot actions [28, 29, 25, 30, 31, 32]
or motion capture systems [33]. Finally, some train inverse dynamics models (IDMs), optical flow,
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Figure 1: Overview of LAPA. (1) Latent Action Quantization: We first learn discrete latent actions in a fully
unsupervised manner using the VQ-VAE objective. (2) Latent Pretraining: The VLM is trained to predict latent
actions, essentially performing behavior cloning. After pretraining, we finetune the LAPA model on a small set
of action-labeled trajectories to map the latent space to the end effector delta action space.

or reinforcement learning models that predict actions from future state rollouts generated by world
models [34, 35, 36, 37, 38].

Latent Actions Previous works have employed latent actions across diverse scenarios. GE-
NIE [39] maps user inputs (ground-truth actions) to a latent space, allowing generative models
to create interactive environments. We adopt a similar latent action model but apply it to label ac-
tionless data for training a VLA to solve robotic tasks. Similarly, some works use latent actions
to pretrain and fine-tune policies for video games [40, 41, 42]. In contrast, we focus on learning
latent actions from real-world human motions for more complex, continuous robotic tasks. Un-
like other work that leverages latent actions by converting ground-truth actions into latent actions
[43, 44, 45, 46], our approach derives latent actions directly from observations.

3 LAPA: Latent Action Pretraining for general Action models

LAPA is divided into two stages: Latent Action Quantization and Latent Pretraining (Figure 1).

3.1 Latent Action Quantization

To learn latent actions in a fully unsupervised manner, we train a latent action quantization model
following Bruce et al. [39] with a few modifications. Our latent action quantization model is an
encoder-decoder architecture where the encoder takes the current frame xt and the future frame
xt+H of a video with a fixed window size H and outputs the latent action zt

5. The decoder is
trained to take the latent action zt and xt and reconstruct xt+H . Unlike Bruce et al. [39], we
use cross attention to attend zt given xt instead of additive embedding, which empirically leads
to capturing more semantically meaningful latent actions. Our quantization model is a variant of
C-ViViT tokenizer [47] where the encoder includes both spatial and temporal transformer while the
decoder only contains spatial transformer since our model uses only two image frames as input.
Further model details are provided in Appendix C.

Our latent action quantization training model is based on the VQ-VAE objective [48]. The VQ-VAE
objective enables the latent action zt to be discrete tokens (codebooks), making it easy for VLMs to
predict zt. The latent action is represented using s sequences from |C| codebook vocabulary space.
To avoid gradient collapse often observed in VQ-VAE, we utilize NSVQ [49] which replaces the
vector quantization error to a product of original error and a normalized noise vector. We also apply
codebook replacement technique from NSVQ during early training steps to maximize codebook
utilization. We utilize the encoder of our latent action quantization model as an inverse dynamics
model in the next stage of LAPA and the decoder for generating neural-based closed-loop rollouts.
Unlike previous works [39, 50], LAPA trains both a world model that generates rollouts from the
latent actions and a policy model that produces these latent actions through Latent Pretraining.

5Although Bruce et al. [39] conditioned on multiple past observations, we exclude previous frames due to
computational constraints. We leave prepending past observations as future work.
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3.2 Latent Pretraining

We use the encoder of the latent action quantization model as an inverse dynamics model to label all
xt, given xt+1, with zt. Then, we pretrain a VLM to predict the zt given the language instruction
of a video clip and the current image xt. Instead of using the existing language model head of the
VLM, we attach a separate latent action head of vocab size |C|. By default, we freeze only the vision
encoder and unfreeze the language model during training. Since latent pretraining does not rely on
ground truth actions, it opens the possibility of using any type of raw video paired with language
instructions. Also, in contrast to traditional action granularity used in robotics (e.g. end-effector
positions, joint positions, joint torques, etc.), our approach does not require any priors about the
action hierarchy/granularity and is learned in an end-to-end manner simply by being optimized to
best capture the ‘delta’ of consecutive observations in a given video dataset. We broadly refer to
models having gone through latent pretraining as LAPA.

3.3 Action Finetuning

VLAs that are pretrained to predict latent actions are not directly executable on real-world robots
since latent actions are not actual delta end-effector actions or joint actions. To map latent actions
to actual robot actions, we finetune LAPA on a small set of labeled trajectories that contain ground
truth actions (delta end-effector). For action prediction, we discretize the continuous action space
for each dimension of the robot so that the number of data points allocated for each bin is equal
following Kim et al. [2], Brohan et al. [1]. We discard the latent action head (a single MLP layer)
and replace it with a new action head to generate ground truth actions. As with latent pretraining,
we freeze the vision encoder and unfreeze all of the parameters of the underlying language model.

4 Experiments

In this section, we demonstrate the effectiveness of LAPA as a general-purpose pretaining method.
Specifically, we focus on answering the following questions: Q1. How does LAPA perform when
there are cross-task, cross-environment, and cross-embodiment gaps between pretaining and fine-
tuning? Q2. Can LAPA learn superior priors compared to using ground-truth actions during pre-
training in a multi-embodiment setting? Q3. Can we create a performant LAPA solely from raw
human manipulation videos?

4.1 Benchmarks and Environments

We evaluate LAPA across 9 task categories in 2 simulated environments and 3 real-world robotic
tasks.

Language Table [51] involves 2 DOF actions in 5 subtasks (Figure 8 (a)). SIMPLER [52] includes
4 tasks with a 7 DOF WidowX robot (Figure 8 (b)). Due to the lack of fine-tuning data, we collected
100 multi-task trajectories from successful rollouts. Real-World Tabletop Manipulation uses a 7
DOF Franka Emika Panda arm in three environments and a 14 DOF bi-manual robot in one (Figure
8 (c)). Pretraining data sources include Bridgev2 [53], Open-X [3], and Something Something
v2 [54]. For single-arm experiments, we fine-tune on three multi-instruction tasks: ‘Pick <object>
into Sink’, ‘Cover <object> with Towel’, and ‘Knock <object> Over’. For bi-manual tasks, the
goal is to ‘Put <object1> on the container and <object2> on the plate’. Each task includes 150
trajectories across 15 objects, with partial success criteria following Kim et al. [2].

4.2 Baselines

We use 7B Large World Model (LWM-Chat-1M) [11] as our underlying VLM. SCRATCH refers to
the baseline where we fine-tune the backbone VLM only on downstream tasks, serving as a compar-
ison to quantify the benefits of pretraining. UNIPI [34] employs a video diffusion model to generate
rollouts from language instructions during pretraining, avoiding action labels. For fine-tuning, an
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inverse dynamics model (IDM) is trained to extract ground-truth actions from adjacent frames. VPT
[38] trains an IDM on action-labeled data and uses it to label pseudo actions in raw videos, which
are then used for pretraining the VLM, similar to LAPA’s latent pretraining. ACTIONVLA serves as
an upper bound, using ground-truth action labels during pretraining with the same VLM backbone.
OPENVLA [2], pretrained on 970k real-world robot demonstrations from the Open X-Embodiment
Dataset, serves as the state-of-the-art baseline, and we fine-tune it on our downstream tasks.

4.3 Language Table Results

Table 1: Language Table Results. Average Success Rate (%) across the three different pretrain-finetune
combinations from the Language Table benchmark as described in Table 2.

In-domain (1k) Cross-task (7k) Cross-env (1k)
Seen Unseen Seen Unseen Seen Unseen

SCRATCH 15.6±9.2 15.2±8.3 27.2±13.6 22.4±11.0 15.6±9.2 15.2±8.3

UNIPI 22.0±12.5 13.2±7.7 20.8±12.0 16.0±9.1 13.6±8.6 12.0±7.5

VPT 44.0±7.5 32.8±4.6 72.0±6.8 60.8±6.6 18.0±7.7 18.4±9.7

LAPA 62.0±8.7 49.6±9.5 73.2±6.8 54.8±9.1 33.6±12.7 29.6±12.0

ACTIONVLA 77.0±3.5 58.8±6.6 77.0±3.5 58.8±6.6 64.8±5.2 54.0±7.0

In-Domain Performance First, we assess LAPA’s ability to learn from a small subset of in-
domain action label data by pretraining on 181k trajectories and finetuning on 1k action-labeled
trajectories (0.5%). As shown in Table 1, LAPA largely outperforms SCRATCH and narrows the
gap with ACTIONVLA despite not using action labels during pretraining. Additionally, LAPA sur-
passes UNIPI and VPT. Notably, while UNIPI handles simple tasks well, its diffusion model often
generates incorrect plans for longer-horizon tasks, aligning with Du et al. [55]. VPT, with the same
backbone VLM as LAPA, outperforms UNIPI, showing the superiority of the VLA model, but still
underperforms LAPA, highlighting the effectiveness of latent actions.

Cross-Task Performance We investigate whether LAPA’s broad skills can be retained after fine-
tuning on a specific task. Pretraining LAPA on 181k trajectories and finetuning on only separate
tasks (7k), we evaluate all 5 task categories, similar to the in-domain setup, to assess latent pretrain-
ing’s benefits for unseen tasks. When comparing LAPA and SCRATCH in Table 1 and Table 6, 7
in Appendix H.1, latent pretraining significantly benefits the separate task as well the other 4 task
categories, resulting in a significant boost in both seen and unseen setups. Like before, UNIPI is
constrained by its diffusion model’s planning limitations, while VPT performs strongly, even sur-
passing ACTIONVLA in the unseen setting. This is likely due to using more labeled data (7k vs.
1k), helping the IDM generate more accurate pseudo labels.

Cross-Environment Performance We further investigate if LAPA benefits downstream perfor-
mance when the pretraining and fine-tuning environments are different. We pretrain LAPA on 440k
real-world trajectories, and then finetune on 1k simulation trajectories, which can be seen as testing
on a setup where a real2sim gap is present (Figure 8 (a)). From Table 1, we observe that LAPA still
significantly outperforms SCRATCH, showing that latent pretraining leads to positive transfer even
on cross-environment setting. Notably, both UNIPI and VPT significantly underperforms LAPA,
showing that learning to predict latent actions is more robust to cross-environment transfer. VPT
only results in minor positive transfer, indicating that the IDM is not robust to environment shifts.

4.4 SIMPLER Results
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Figure 2: SIMPLER Re-
sults. Detailed results are
in Appendix H.2.

We pretrain our models on the Bridgev2 [53] dataset and fine-tune on 100
trajectories collected from the SIMPLER environment [52]. As shown
in Figure 2, UNIPI significantly underperforms all other baselines on the
SIMPLER Environment. We observe that, although the generated plans
from the diffusion models are quite accurate, the IDM lacks the capa-
bility to predict 7 DOF continuous actions accurately when given only
100 action-labeled trajectories. This implies the effectivness of using
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Figure 3: Real-world Tabletop Manipulation Results. We evaluate on a total of 54 rollouts for each model
encompassing unseen object combinations, unseen objects and unseen instructions. Average success rate (%)
are shown (detailed results provided in Appendix H.3).

VLAs in scenarios with insufficient action-labeled data. Similar to the results of Section 4.3, LAPA
outperforms baseline models that pretrain on actionless videos (UNIPI and VPT) and closes the per-
formance gap with ACTIONVLA, which is pretrained on all of the 60K action-labeled trajectories
from the Bridgev2 dataset. This highlights the effectiveness of LAPA, even when the complexity of
the action space increases.

4.5 Real-world Results

We pretrain our models on (1) Bridgev2 for cross-embodiment performance (WidowX to Franka
embodiment) and (2) Open X-Embodiment Dataset [3] to measure the effect of pretraining in a
multi-embodiment setting. Figure 3 shows the average success rate across the 3 tasks where each
task encompasses unseen object combination, object, and instruction settings. We provide detailed
results depending on the generalization type in Table 12 in Appendix H.3.

Bridgev2 Pretraining We compare models that were pretrained on the Bridgev2 dataset. Similar
to previous results, all models pretrained on Bridgev2 result in significant performance enhancement
compared to SCRATCH. Furthermore, by comparing LAPA which does not leverage action-labeled
trajectories during pretraining with models that use action-labeled trajectories during pretraining
(ACTIONVLA and OPENVLA), we observe an interesting finding: LAPA outperform VLAs that
use action labeled pretraining data on average success rate of the 3 tasks, unlike previous scenar-
ios where VLAs pretrained on the ground-truth actions were upper bounds. LAPA significantly
outperforms the other models in pick-and-place tasks; given that most tasks in Bridgev2 are pick-
and-place, we hypothesize that VLA models pretrained on ground truth action labels have overfitted
to the WidowX action space from the Bridgev2 dataset, hampering cross-embodiment adaptability
to action distribution shifts during fine-tuning. In contrast, LAPA avoids this issue by not relying on
ground truth action labels during pretraining.

Open-X Pretraining From Figure 3, we see that VLAs pretrained on the Open-X dataset out-
performs VLAs pretrained on the Bridgev2 dataset, showing that data scaling during pretraining
demonstrates positive transfer for downstream tasks [3]. This also suggests there could be signif-
icant further improvement when scaling the diversity and scale of the pretraining data, especially
with large web-scale video data. When comparing LAPA with OPENVLA, we see that LAPA sig-
nificantly outperforms OPENVLA on 2 out of 3 tasks (Figure 3). This highlights LAPA’s effective-
ness in a multi-embodiment setting by showcasing its ability to leverage a shared latent action space
during pretraining, akin to how language and image representations are utilized. In contrast, contem-
porary action pretraining methods may suffer from reduced positive transfer between datasets due to
the variability in action representation spaces across different embodiments and datasets. However,
for pick and place task, LAPA underperforms OPENVLA. We observe that most failures of LAPA
are due to early grasping. In fact, LAPA outperforms OPENVLA in reaching performance (83.33%
vs 66.67%) (Appendix H.3). This suggests that, although LAPA possesses stronger language condi-
tioning, there is room for improvement in skills such as grasping. Since grasping occurs only once
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or twice in each trajectory, the 150 labeled trajectories may not be sufficient for LAPA to accurately
predict grasp actions based on the physical characteristics of diverse objects.

To evaluate the cross-embodiment performance of LAPA pretrained with Open-X, we fine-tune
both LAPA and OpenVLA on a bimanual robot with a 14-DoF action space, which presents a more
challenging cross-embodiment scenario than the previous Bridgev2 pretraining experiments due
to a cross-embodiment gap as well as the increase of the action space dimensions (there are no
bimanual robot datasets in Open-X). Similar to the single-arm experiments, our evaluation covers
seen object combinations, unseen object combinations, unseen objects, and unseen instructions.
We observe that LAPA (30.21%), which does not use labeled action data during pretraining, slightly
outperforms OpenVLA (26.04%) on average, confirming LAPA’s cross-embodiment capability even
with the increase of the complexity of the action dimensions. However, the absolute performance
of both models remains relatively low, indicating much room for improvement. We believe that
incorporating bimanual human manipulation videos [16, 56] could enhance LAPA’s performance,
which we plan to explore in future work. Individual results are provided in Table 17.

4.6 Learning from Human Manipulation Videos
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Figure 4: Pretraining from Human Video Results. Average success rate (%) of LAPA and baselines pre-
trained on human manipulation videos where the embodiment and environment gap is extreme. We evaluate on
both simulation (left) and real-world robot setup (right).

In this section, we show results when we extend LAPA to human manipulation videos, which aligns
with the main motivation of this work. Unlike robot trajectories, human videos have two challenges:
human videos do not contain action labels, and the distribution of human videos is distinct from the
robot embodiment [6]. We try to investigate whether our method as well as baseline approaches
could address these challenges by pretraining on Something-Something V2 dataset [54] which con-
sists of 220K videos that includes human performing actions with everyday objects.

We first evaluate the performance of LAPA pretrained on human videos on SIMPLER. In addition
to SCRATCH, we also compare with UNIPI and VPT pretrained with the same human video dataset.
As shown in Figure 4a, LAPA outperforms SCRATCH, showing that although the distribution of the
pretraining data is distinct from the deployment setup, leveraging human videos for latent action
pretraining results in positive transfer. Also, consistent with the result of Section 4.4, LAPA shows
the best performance, implying that Latent Action Pretraining is robust to human to robot embodi-
ment shifts. Note that it is impossible to train ACTIONVLA because the human videos do not have
any robot action labels. We report the real-world robot experiments in Figure 4b. Surprisingly, we
can see that LAPA trained with human videos outperforms OPENVLA (Bridge) on average. Despite
the larger embodiment gap for LAPA (Human to robot vs. Robot to robot), it learns a better prior
for robot manipulation. This result highlights the potential of human videos from the web compared
to expensive robot manipulation data, which requires time-intensive teleoperation to collect.

4.7 Pretraining Efficiency

The benefit of LAPA extends beyond downstream task performance to include pretraining efficiency.
For pretraining LAPA (Open-X), the best-performing model, we use 8 H100 GPUs for 34 hours with
a batch size of 128 (total of 272 H100-hours). In contrast, OPENVLA required a total of 21,500
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A100-hours with a batch size of 2048. Despite being approximately 30-40 times more efficient for
pretraining, LAPA still outperforms OPENVLA. We believe this efficiency stems from two factors.
First, the training objective during LWM pretraining which corresponds to generating the next frame
in a video, enables the model to implicitly understand high-level actions in a video. Notably, AC-
TIONVLA (Bridge), which uses LWM as the backbone reaches optimal performance in significantly
fewer epochs (3 epochs) compared to OPENVLA (Bridge), which uses Prismatic as the backbone
(30 epochs). Second, the action space for LAPA is much smaller than that for OPENVLA (84 vs.
2567), making learning the perception-and-language to action generation problem easier to learn.
For all LAPA models (BridgeV2, Open-X, Human Videos), we observe that a single epoch of train-
ing is sufficient to achieve optimal performance.

4.8 Latent Action Analysis
[1,1,3,2] [3,2,0,1] [4,2,4,1] [5,1,2,7] [5,3,5,2] [6,7,0,2]

Down, Left Up Right, Rotate Down Left, Rotate Up, LeftActions

Figure 5: Latent Action Analysis. We condition the current observation x1 and quantized latent action to
the decoder of the latent action quantization model. We observe that each latent action can be mapped into
a semantic action. For example, latent action [1,1,3,2] corresponds to going down and left while [3,2,0,1]
corresponds to going up a little bit.

We qualitatively analyze the alignment of quantized latent actions with real continuous actions. For
interpretation, we condition the current image observation x1 and each latent action on the decoder
of the latent action quantization model, and present the reconstructed images. In Language Table,
we observe that each latent action corresponds to a distinct movement of the robot arm (shown
in Figure 12, 13 of Appendix G). Next, for human manipulation videos, we observe that camera
viewpoints also correspond to a latent action (shown in Figure 14 of Appendix G). We also analyze
the latent actions learned from the Open-X embodiment, which encompasses multiple embodiments,
tasks, and environments. As shown in Figure 5, even though the embodiment and environment
differ, conditioning on the same latent action results in a similar action in the reconstructed image.
This supports our previous claim that latent actions are learned in a shared representation space,
facilitating stronger positive transfer across diverse datasets.

We qualitatively analyze LAPA’s coarse-grained planning through a closed-loop rollout using a pre-
trained model without action finetuning. Since latent actions aren’t directly executable, we condition
the current observation x1 and LAPA’s predicted latent action with the decoder of the quantization
model. As shown in Figure 11 in Appendix, when instructed to ”take the broccoli out of the pot,”
LAPA generates robot trajectories that reach for the broccoli, grab it, and, as the arm moves away,
the broccoli disappears. This demonstrates LAPA’s potential as a general-purpose robotic world
model, predicting both actions and their outcomes.

5 Conclusion

In this paper, we introduce LAPA, a scalable pretraining method for building VLAs using actionless
videos. Across three benchmarks spanning both simulation and real-world robot experiments, we
show that our method significantly improves transfer to downstream tasks compared to existing
approaches. We also present a state-of-the-art VLA model that surpasses current models trained on
970K action-labeled trajectories. Furthermore, we demonstrate that LAPA can be applied purely on
human manipulation videos, where explicit action information is absent, and the embodiment gap is
substantial. We believe our work can be extended to build scalable robot foundation models.
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[49] M. H. Vali and T. Bäckström. Nsvq: Noise substitution in vector quantization for machine
learning. IEEE Access, 10:13598–13610, 2022. doi:10.1109/ACCESS.2022.3147670.

[50] D. Valevski, Y. Leviathan, M. Arar, and S. Fruchter. Diffusion models are real-time game
engines. arXiv preprint arXiv:2408.14837, 2024.

[51] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch, T. Armstrong, and P. Florence.
Interactive language: Talking to robots in real time. IEEE Robotics and Automation Letters,
pages 1–8, 2023. doi:10.1109/LRA.2023.3295255.

[52] X. Li, K. Hsu, J. Gu, K. Pertsch, O. Mees, H. R. Walke, C. Fu, I. Lunawat, I. Sieh, S. Kir-
mani, et al. Evaluating real-world robot manipulation policies in simulation. arXiv preprint
arXiv:2405.05941, 2024.

[53] H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-Estruch, A. W. He, V. My-
ers, M. J. Kim, M. Du, et al. Bridgedata v2: A dataset for robot learning at scale. In Conference
on Robot Learning, 2023.

[54] R. Goyal, S. Ebrahimi Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim, V. Haenel,
I. Fruend, P. Yianilos, M. Mueller-Freitag, et al. The” something something” video database
for learning and evaluating visual common sense. In Proceedings of the IEEE international
conference on computer vision, 2017.

[55] Y. Du, S. Yang, P. Florence, F. Xia, A. Wahid, brian ichter, P. Sermanet, T. Yu, P. Abbeel,
J. B. Tenenbaum, L. P. Kaelbling, A. Zeng, and J. Tompson. Video language planning. In The
Twelfth International Conference on Learning Representations, 2024.

[56] D. Damen, H. Doughty, G. M. Farinella, A. Furnari, J. Ma, E. Kazakos, D. Moltisanti,
J. Munro, T. Perrett, W. Price, and M. Wray. Rescaling egocentric vision: Collection, pipeline
and challenges for epic-kitchens-100. International Journal of Computer Vision (IJCV), 130:
33–55, 2022.

[57] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[58] R. Villegas, M. Babaeizadeh, P.-J. Kindermans, H. Moraldo, H. Zhang, M. T. Saffar, S. Castro,
J. Kunze, and D. Erhan. Phenaki: Variable length video generation from open domain textual
descriptions. In International Conference on Learning Representations, 2022.

[59] S. Belkhale, T. Ding, T. Xiao, P. Sermanet, Q. Vuong, J. Tompson, Y. Chebotar, D. Dwibedi,
and D. Sadigh. Rt-h: Action hierarchies using language. arXiv preprint arXiv:2403.01823,
2024.

[60] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. In International Conference on Learning Rep-
resentations, 2022.

[61] H. Kress-Gazit, K. Hashimoto, N. Kuppuswamy, P. Shah, P. Horgan, G. Richardson, S. Feng,
and B. Burchfiel. Robot learning as an empirical science: Best practices for policy evaluation.
arXiv preprint arXiv:2409.09491, 2024.

12

http://dx.doi.org/10.1109/ACCESS.2022.3147670
http://dx.doi.org/10.1109/LRA.2023.3295255


A Scaling Model, Data, and Latent Action Size
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Figure 6: Scaling Ablation Results of LAPA. We scale 3 dimensions of LAPA: model parameters (in millions),
data size (ratio among Bridgev2), and the latent action representation space, and show the downstream average
success rate (%) on the SIMPLER fine-tuning tasks.

Large Language Models (LLMs) have demonstrated scaling laws [57], where performance improves
with increases in model size, dataset size, and computational resources used for training. Similarly,
we attempt to analyze whether LAPA benefits from scaling across three dimensions: latent action
quantization model size, data size, and latent action representation space. For a controlled setup, we
apply our method to Bridgev2 and then fine-tune it on SIMPLER except for Language Table result
of Figure 6c.

As shown in Figure 6, scaling benefits LAPA across the three dimensions. Interestingly, we observe
that the optimal scale of the latent action space depends on the complexity of the action dimension
contained in the pretraining dataset. For example, increasing the latent action size for Language
Table pretraining eventually harms the performance after a certain point. Except for Language Table,
we maintain the generation space of LAPA at 84 throughout all of our main experiments. These
results imply that when scaling pretraining to Internet-scale videos that go beyond manipulation
videos, scaling LAPA in terms of model, dataset, and latent action space could improve performance,
especially to capture higher action dimensions such as whole-body locomotion and manipulation.

B Limitations

We still face certain limitations. First, LAPA underperforms compared to action pretraining when
it comes to fine-grained motion generation tasks like grasping. We believe that increasing the la-
tent action generation space could help address this issue. Second, similar to prior VLAs, LAPA
also encounters latency challenges during real-time inference. Adopting a hierarchical architecture,
where a smaller head predicts actions at a higher frequency, could potentially reduce latency and
improve fine-grained motion generation. Lastly, while we qualitatively demonstrate that our latent
action space captures camera movements (Figure 14), we have not yet explored the application of
LAPA beyond manipulation videos, such as those from self-driving cars, navigation, or landscape
scenes. We leave these explorations for future work. We hope that our work can help overcome the
data bottleneck in robotics and accelerate the development of generalist robot policies.

C Latent Action Quatization Model Details

We show model architecture details of our latent action quantization model in Figure 7. We utilize
the C-ViViT model architecture from Villegas et al. [58] to replicate the latent action model from
GENIE [39]. After latent model training, we utilize the z2 as the latent action label for x1. The
encoder can be seen as the inverse dynamics model and the decoder can be seen as the world model.

D Details on Experimental Setup

Language Table Experimental Setup Figure 8 (a) shows examples of the Language Table setup.
It includes 5 subtask categories: BlocktoBlock, BlocktoAbsolute, BlocktoBlockRelative, Block-
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Figure 7: Model architecture of our Latent Action Quantization Model.

Table 2: Pretraining and fine-tuning dataset for each environment. Cross-Env denotes cross-environment,
Cross-Emb denotes cross-embodiment, and Multi-Emb denotes multi-embodiment. For fine-tuning, MT de-
notes multi-task training and MI denotes tasks with diverse multi-instructions.

Environment Category Pretraining Fine-tuning
Dataset # Trajs Dataset # Trajs

LangTable
In-Domain Sim (All 5 tasks) 181k 5 Tasks (MT, MI) 1k
Cross-Task Sim (All 5 tasks) 181k 1 Task (MI) 7k
Cross-Env Real (All 5 tasks) 442k 5 tasks (MT, MI) 1k

SIMPLER In-Domain Bridgev2 60k 4 Tasks (MT) 100
Cross-Emb Something v2 200k 4 Tasks (MT) 100

Real-World
Cross-Emb Bridgev2 60k 3 tasks (MI) 450
Multi-Emb Open-X 970k 3 tasks (MI) 450
Cross-Emb Something v2 200k 3 tasks (MI) 450

toRelative, and Separate. For Language Table experiments, we train VLA-based models to generate
language directions (e.g. ‘move up’) before actual actions following Belkhale et al. [59], which
significantly improved the performance 6. For evaluation, we evaluate on 50 evaluation rollouts for
each subtask category where the initial locations of the objects are randomized for each evaluation.
Further details can be found in https://github.com/google-research/language-table.

SIMPLER Experimental Setup Figure 8 (B) shows examples of the SIMPLER setup. The SIM-
PLER environment does not provide any fine-tuning data for their evaluation pipeline, Thus, we first

6For 7 DOF robot experiments, we found the benefit of generating language directions to be marginal
compared to the increased inference cost. Therefore, we only generate delta end-effector actions on other
experiments.
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(a) LANGUAGE TABLE (b) SIMPLER (c) REAL

Figure 8: Experimental Setups. (a) shows an example from the 440k real-world trajectories (top) and the 181k
simulation trajectories (bottom) from the Language Table Benchmark. (b) shows the 4 different evaluation tasks
we use with the SIMPLER environment. (c) shows the three different tasks that we perform in the real-world.

train our underlying VLM on the Bridgev2 dataset and perform zero-shot rollout on the 4 tasks in
SIMPLER. Note that we use held-out trajectories differing in object orientation and position from
the evaluation setup. We filter 25 successful trajectories for each task (total of 100) and use them
as the fine-tuning dataset for all of our experiments. For evaluation, we evaluate on 24 rollouts
per task while randomizing the initial object locations. We consider Bridgev2 and SIMPLER to be
in-domain since they show a high correlation between real-world and simulation results with their
simulation benchmark. Further details can be found in https://github.com/simpler-env/SimplerEnv.

Real-world Tabletop Manipulation Experimental Setup Figure 8 (C) shows examples of the
real-world tabletop manipulation experimental setup. For the teleoperation of single arm robot ex-
periments, we use the polymetis robotic stack7 to collect 150 trajectories for each of the tasks. All
of the tasks require multi-instruction following capabilities since there are 3 objects in the scene and
the model has to condition on the task description to infer which object to interact with. Figure 9
shows samples of each task. For each task, we aim to quantify 3 distinct capabilities:

(1) We test the ability to infer the correct object from the task description between an unseen com-
bination of seen objects during fine-tuninig, (2) We test the ability to infer the correct object from
totally unseen objects during fine-tuning that may or may have not been observed during pretraining.
Specifically, the knocking tasks was conducted with real-world objects that were highly unlikely to
have been in any of the pertaining datasets. (3) We test the ability to infer the correct object (among
seen objects, unseen combinations) from a totally unseen instruction that requires semantic reason-
ing (e.g. Pick up a spicy object). For each evaluation criteria, 6 rollouts are performed for each
models, resulting in a total of 18 rollouts for each task category. Since there are three tasks, each
model is evaluated with 54 rollouts in the real-world. We provide the full list of all of the seen and
unseen objects used for each rollout in Table 13, 14, 15, and the total average success rates in Table
16.

Furthermore, for a fair comparison, we match the image resolution during training of all of our
models and use the exact same object initial positions for all of our evaluation, mostly on the same
day to minimize variability. For evaluation metrics, we adapt a partial success criteria for fine-
grained evaluation, following Kim et al. [2], which we describe in detail below.

Knock down the <object>.

For knocking, we give 0.5 partial score if the robot reaches to the correct object and 1 if the robot
knocks down the correct object.

7https://github.com/facebookresearch/polymetis

15

https://github.com/simpler-env/SimplerEnv
https://github.com/facebookresearch/polymetis


Cover the <object> with a towel.

For covering, we give 0.33 partial score if the robot picks up the towel correctly, 0.66 if the robot
reaches to the correct object or if the towel partially covers the object, and 1 if the correct object is
completely covered by the towel.

Pick up the <object> and put it in the sink.

For pick and place, we give 0.25 for reaching to the correct object, 0.5 for grasping the object, 0.75
for grasping and moving the object towards the sink, but failing to place the object in the sink, and
1 for placing the correct object in the sink.

Similar to single arm experiments, we collect 150 trajectories for bi-manual experiments. For the
bi-manual task, one of the arms should choose one between two plates depending on the language
instruction and put the chosen plate on the container. Next, the other arm should pick up a correct ob-
ject from three object candidates and put the object on the plate. For evaluation, we quantify (1) seen
combination of seen objects during fine-tuning, (2) unseen combinations of seen objects, (3) unseen
objects, (4) unseen instructions of seen objects. 6 rollouts are performed for each sub-category, re-
sulting in 24 rollouts for each model. We provide the full result in Table 17. For evaluation metrics,
we adapt a partial success criteria for fine-grained evaluation.

Put the <object1> on the container and <object2> on the plate.

For bi-manual task, we give 0.25 partial score if the robot reaches to the correct plate, 0.5 if the robot
puts the correct plate on the container successfully, 0.75 if the robot reaches to the correct object on
the right, and 1 if the robot successfully pick the object and place the object on top of the plate.

E Baseline Details

For UNIPI, we use diffusion model from [35] which can be trained on 4 A100 GPUs. For all exper-
iments, we train with 128 batch. We use the same inverse dynamics model as VPT during inference.
To mediate estimation errors between the predicted video plans and executed actions being accu-
mulated, we periodically conduct replanning by regenerating new video plans after executing two
actions. For finetuning, an inverse dynamics model (IDM) is trained to extract the ground truth ac-
tions given adjacent frames. For VPT, we use ResNet18 followed by an MLP layer for the inverse
dynamics model(IDM). The IDM is trained to predict an action when given two frames on a single
A6000 GPU using using Adam optimizer with a learning rate 1e-4. For OpenVLA (Bridge), we
pretrain on Bridgev2 for 30 epochs with a batch size of 1024. For OpenVLA (Open-X), we use the
pretrained checkpoint from Kim et al. [2]. For finetuning, we use LoRA finetuning [60] with batch
size of 32. We have observed that full-finetuning and lora finetuning leads to similar performance, so
we use LoRA finetuning as default for efficient fine-tuning. We finetune the model until the training
action accuracy reaches 95%. For ACTIONVLA and LAPA, we train with a batch size of 128 and
with image augmentation for real-world finetuning.

F Experimental Result Analysis

Table 3: Pretraining trajectories statistics for downstream tasks. Number of trajectories that are the same
task with evaluation task for each pretraining dataset: Bridgev2, Open-X, and Something Something V2 (Sthv2)
dataset.

Task Bridgev2 Open-X Sthv2

Knocking 2 7,969 6,655
Covering 898 5,026 6,824
Pick & Place 10,892 911,166 3,272

We further analyze the real-world robot results shown in Figures 3 and 4b, focusing on how the
task distribution in pretraining data impacts downstream performance. Table 3 presents the num-
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ber of trajectories corresponding to each evaluation task (Knocking, Covering, and Pick & Place)
across pretraining datasets (Bridgev2, Open-X, and Something Something V2 (Sthv2)), determined
through lexical matching. We expect future work to use other methods of analyzing the relationship
between pertaining and fine-tuning task distributions that capture semantics of the task rather than
simple lexical matching. We perform this analysis to get a sense of how the task distribution in the
pretraining data affects downstream task performance.

Knocking There are almost no knocking-related trajectories in Bridgev2. This scarcity may ex-
plain why models trained on Bridgev2 performed worse compared to those trained on Sthv2, despite
a larger embodiment gap in the Sthv2 dataset (Figure 4b).

Covering A similar trend is observed for the covering task. Given that the number of covering tra-
jectories in Bridgev2 is relatively small compared to the Sthv2 dataset, models trained on Bridgev2
occasionally underperform compared to LAPA trained on Sthv2.

Pick & Place For the pick and place task, the trend reverses. The number of pick and place tasks
in Sthv2 is relatively small compared to Bridgev2 and Open-X, which might explain why LAPA
trained on Sthv2 significantly underperforms models trained on Bridgev2 or Open-X. Based on
these results, we expect that pretraining on videos encompassing a wide range of skills will lead
to a more robust generalist policy compared to training on robot videos with narrower skill sets.
We also expect future research to provide a more in-depth analysis of the relationship between task
distribution in pretraining data and performance on downstream tasks.

We also present the win rate of LAPA (Open-X) against OpenVLA (Open-X). As illustrated in Fig-
ure 10, LAPA outperforms OpenVLA in 65.4% when disregarding the ties. When considering the
ties, LAPA outperforms OpenVLA in 31.5% of cases, while OpenVLA prevails in only 16.7%. In-
terestingly, they tie in 51.9% of the trials, suggesting that in about half the instances, both models
either fail or achieve a similar partial success score. Note that these evaluations were performed
while ensuring that the target and distractor objects were in identical initial locations during eval-
uation, alternating the models during evaluation. These results provide insight into the statistical
significance of the comparison, supporting the use of multiple metrics to ensure a more compre-
hensive evaluation of physical robot performance in real-world scenarios [61], not only the average
success-rate across all of the evaluation rollouts.

G Detailed Latent Action Analysis

We provide further qualitative analysis of LAPA. First, we analyze latent actions learned from Lan-
guage Table with vocabulary size of 8 and sequence length of 1. In Figure 12, we show that each
latent action corresponds to a semantic action (0: Move left and forward, 1: Move left and back,
2: Move right and back, 3: Move right slightly, 4: Move right, 5: Move back, 6: Do not move,
7: Move forward). We observe that increasing the latent action vocabulary size leads to capturing
a more fine-grained information. We analyze the relationship between latent actions with ground-
truth 2 DOF actions by mapping each instance into latent action space. As shown in Figure 13,
we observe that latent actions are well-clustered in the actual 2D action space, indicating that latent
actions are meaningful representations that are highly related to actual continuous actions.

We further analyze the latent actions learned from human manipulation videos using the Something-
Something V2 dataset. As illustrated in Figure 14, these latent actions capture not only hand move-
ments but also camera movements. Since the camera viewpoint varies throughout the videos in the
Something-Something V2 dataset due to the videos being egocentric, our latent action quantization
model also learns to represent camera movements. For instance, latent actions [3,5,2,7] and [5,6,7,6]
correspond to slight downward camera movement, [4,0,0,4] and [2,3,6,6] indicate rightward move-
ment, and [4,2,0,0] and [5,7,0,5] represent subtle upward camera shifts.
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H Detailed Experimental Results

H.1 Language Table

We provide the detailed results of the experiments performed on the Language Table benchmark
in Table 4, 5, 6, 7, 8, 9. For all of the tables in the appendix, we bold the best result among the
comparisons and underline the second best. Each value denotes the success rate (%). 50 evaluation
rollouts are performed for each task category, resulting in 250 total evaluation rollouts per model for
each table.

We also show the qualitative result of UNIPI where the diffusion model generates the correct plan
for simple and short-horizon tasks (e.g. separate tasks). However, the diffusion model generates the
wrong plan corresponding to the instruction when the task requires longer horizon planning (Figure
15).

Table 4: Language Table In-Domain Seen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 4.0 14.0 36.0 58.0 76.0
Block2Absolute 6.0 4.0 38.0 56.0 72.0
Block2BlockRelative 10.0 12.0 48.0 52.0 76.0
Block2Relative 6.0 10.0 26.0 48.0 70.0
Separate 52.0 72.0 70.0 96.0 90.0

AVG 15.6 22.4 43.6 62.0 76.8

Table 5: Language Table In-Domain Unseen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 8.0 4.0 26.0 50.0 62.0
Block2Absolute 10.0 6.0 42.0 48.0 58.0
Block2BlockRelative 2.0 6.0 20.0 28.0 48.0
Block2Relative 8.0 6.0 32.0 38.0 44.0
Separate 48.0 44.0 44.0 84.0 82.0

AVG 15.2 13.2 32.8 49.6 58.8

Table 6: Language Table Cross-Task Seen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 18.0 12.0 74.0 74.0 76.0
Block2Absolute 8.0 6.0 56.0 62.0 72.0
Block2BlockRelative 6.0 2.0 62.0 72.0 76.0
Block2Relative 24.0 16.0 72.0 60.0 70.0
Separate 80.0 68.0 96.0 98.0 90.0

AVG 27.2 20.8 72.0 73.2 76.8

Table 7: Language Table Cross-Task Unseen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 16.0 4.0 66.0 46.0 62.0
Block2Absolute 10.0 10.0 56.0 52.0 58.0
Block2BlockRelative 8.0 10.0 46.0 48.0 48.0
Block2Relative 12.0 4.0 52.0 38.0 44.0
Separate 66.0 52.0 84.0 90.0 82.0

AVG 22.4 16.0 60.8 54.8 58.8

H.2 SIMPLER

We provide detailed results of various models evaluated on SIMPLER environment. Table 10 shows
the setting where baseline models are pretrained on Bridgev2 and then finetuned on SIMPLER
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Table 8: Language Table Cross-Environment Seen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 4.0 4.0 16.0 26.0 66.0
Block2Absolute 6.0 4.0 8.0 16.0 58.0
Block2BlockRelative 10.0 8.0 6.0 20.0 62.0
Block2Relative 6.0 4.0 12.0 22.0 54.0
Separate 52.0 48.0 48.0 84.0 84.0
AVG 15.6 13.6 18.0 33.6 64.8

Table 9: Language Table Cross-Environment Unseen Results.
SCRATCH UNIPI VPT LAPA ACTIONVLA

Block2Block 8.0 2.0 2.0 30.0 38.0
Block2Absolute 10.0 6.0 4.0 14.0 48.0
Block2BlockRelative 2.0 6.0 2.0 10.0 50.0
Block2Relative 8.0 4.0 40.0 18.0 54.0
Separate 48.0 42.0 44.0 76.0 80.0
AVG 15.2 12.0 18.4 29.6 54.0

rollouts (100 videos). The results show detailed results for each task (stack green to yellow block,
put carrot on plate, put spoon on otowel, put eggplant in basket) and subtasks (grasping and moving).

We also provide detailed results of the setting where baseline models are pretrained on human ma-
nipulation videos (Something Something V2 dataset) and then finetuned on SIMPLER rollouts (100
videos) in Table 11. We only compare to UNIPI, VPT, and LAPA since ACTIONVLA could not be
trained without ground-truth action labels.

Table 10: SIMPLER results of Bridgev2 Pretraining. Success, Grasping, and Moving Rates (%) in SIM-
PLER environment. We pretrain UNIPI, VPT, and LAPA on Bridgev2 dataset without using ground-truth
action labels and ACTIONVLA on Bridgev2 using action labels. The main 4 tasks are: stack green to yellow
block, put carrot on plate, put spoon on towel, and put eggplant in basket. Best is bolded and second best is
underlined.

Success Rate SCRATCH UNIPI VPT LAPA ACTIONVLA

Stack G2Y 29.2 2.7 45.8 54.2 75.0
Carrot2Towel 29.2 2.7 37.5 45.8 58.0
Spoon2Plate 50.0 0.0 70.8 70.8 70.8
Eggplant2Bask 29.2 0.0 50.0 58.3 50.0
AVG 34.4 1.3 51.0 57.3 63.5
Grasping Rate
Grasp Green Block 66.6 20.8 62.5 62.5 87.5
Grasp Carrot 45.8 33.2 54.1 58.3 75.0
Grasp Spoon 70.8 22.2 79.2 83.3 83.3
Grasp Eggplant 62.5 16.0 70.8 83.3 75.0
AVG 61.4 23.1 66.7 71.9 80.2
Moving Rate
Move Green Block 58.3 29.1 58.3 66.6 91.6
Move Carrot 45.8 48.6 66.6 70.8 91.6
Move Spoon 70.8 34.6 79.2 83.3 79.2
Move Eggplant 87.5 58.0 70.8 87.5 91.6
AVG 65.6 42.6 68.7 77.1 88.5

H.3 Real-world

We provide the detailed result of real world evaluation depending on the generalization type: (1)
seen objects but unseen combinations, (2) unseen objects, and (3) seen objects but unseen instruc-
tions. The results are shown in Table 12. As shown in the table, LAPA (Open-X) outperforms
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Table 11: SIMPLER results of Human Manipulation Video Pretraining. Success, Grasping, and Moving
Rates (%) in SIMPLER environment. We pretrain UNIPI, VPT, and LAPA on Something-Something V2
dataset without using ground-truth action labels. The main 4 tasks are: stack green to yellow block, put carrot
on plate, put spoon on towel, and put eggplant in basket. Best is bolded and second best is underlined.

Success Rate VPT UNIPI LAPA

StackG2Y 50.0 0.0 50.0
Carrot2Towel 29.1 1.3 50.0
Spoon2Plate 37.5 1.3 50.0
Eggplant2Bask 66.6 0.0 58.3
AVG 45.8 0.7 52.1
Grasping Rate
Grasp Green Block 66.6 2.7 58.3
Grasp Carrot 45.8 31.7 62.5
Grasp Spoon 70.8 21.7 75.0
Grasp Eggplant 91.6 6.8 70.8
AVG 68.7 15.7 66.7

Moving Rate
Move Green Block 62.5 2.7 62.5
Move Carrot 58.3 37.5 70.8
Move Spoon 54.1 18.1 75.0
Move Eggplant 91.6 50.3 83.3
AVG 66.6 27.1 72.9

Table 12: Evaluation Results divided into eval types. We average the success rate across the 3 tasks depending
on what capability we are trying to quantify: (1) seen objects but unseen combinations, (2) unseen objects, and
new instructions requiring semantic reasoning. Best is bolded and second best is underlined.

Seen Obj. Unseen Seen Obj. AVGUnseen Combo Obj. Unseen Instr.

SCRATCH 18.0 20.3 25.4 21.2

ACTIONVLA (Bridge) 38.3 31.8 27.7 32.6
OPENVLA (Bridge) 35.6 34.6 22.1 30.8
LAPA (Bridge) 43.4 31.4 35.6 36.8

OPENVLA (Open-X) 46.2 42.1 43.4 43.9
LAPA (Open-X) 57.8 43.9 48.5 50.1
LAPA (Human Videos) 36.5 37.4 28.1 34.0

OpenVLA (Open-X) on all types of generalization settings. Also, LAPA (Human Videos) shows
good generalization performance, especially for unseen objects. We conjecture that this is because
Something Something V2 dataset interacts with much diverse objects compared to Bridgev2.

We also provide the full list of objects and the partial success recorded for each of the evaluation
rollout: Knocking (Table 13), Covering (Table 14), and Pick & Place (Table 15). The total average
success rate is provided in Table 16).
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Table 13: Knocking Task Results
OpenVLA LAPA OpenVLA ActionVLA LAPA Scratch LAPA
(OpenX) (OpenX) (Bridge) (Bridge) (Bridge) (Sthv2)

Seen
flamingo 0 0.5 0.5 0.5 0 0 0.5
pistachios 0.5 1 0.5 0 1 0 1
soft scrub 0 0 0 0 0.5 0 0.5
white cup 1 0 0 0.5 0.5 0.5 0
mustard 0 1 0 0 0 0 0
water bottle 1 1 0.5 0 0 0.5 0

SUM 2.5 3.5 1.5 1 2 1 2

Unseen
pringles 0.5 0.5 0.5 0 0 0 0
hersey’s chocolate syrup 0 0 0 0 0 0 0
popcorn 0 1 1 1 1 0 1
skittles 0 0 0 0 0 0 0
green board marker 0.5 0.5 0.5 0.5 0.5 0.5 0.5
paper towel 0 0 0 0 0 0 0

SUM 1 2 2 1.5 1.5 0.5 1.5

Seen Semantic
a drink that contains orange 0 0 0 0 0 0 0
food to eat with milk 0.5 0 0 0 0 0 0
a object used for cleaning 0 1 0 0 0 0 0
something to wash dishes 1 1 0 0.5 1 0.5 0
the nuts 1 1 0.5 1 1 0.5 1
rectangle object 1 1 0.5 0.5 0.5 0 1

SUM 3.5 4 1 2 2.5 1 2

Success Rate (Strict) 27.78% 44.44% 5.56% 11.11% 22.22% 0.00% 22.22%
Success Rate 38.89% 52.78% 25.00% 25.00% 33.33% 13.89% 30.56%
Reaching Success Rate 50.00% 61.11% 44.44% 38.89% 44.44% 27.78% 38.89%
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Figure 9: Real-world Tabletop Manipulation Examples.
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(a) Win rate (%) disregarding ties. (b) Win rate (%) with ties.

Figure 10: Pairwise win rate (%). We compare a pairwise win-rate of OpenVLA and LAPA across the 54
evaluation rollouts in the real-world. (a) shows the win-rate while ignoring the ties and (b) shows the ties
together with the individual wins.

x1 ̂x2

\hat{x}_2

̂x3 ̂x4 ̂x5 ̂x6 ̂x7 ̂x8

Figure 11: Closed loop rollout of LAPA. LAPA is conditioned on current image x1 and language instruction
of ‘take the broccoli out of the pot’. We generate rollout images by conditioning the decoder of Latent Action
Quantization Model with latent actions generated by LAPA.
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Forward 
& Left

Back 
& Left

Back 
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Right 
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Right Back Do not
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ForwardActions

Figure 12: Latent Action Analysis in Language Table. We condition the current observation x1 and quantized
latent action to the decoder of the latent action quantization model. We observe that each latent action can be
mapped into a semantic action. For example, latent action 0 corresponds to moving a bit left and forward and
corresponds to moving a bit left and back.

Figure 13: Correlation of latent action with ground-truth actions When we map latent actions to ground-
truth 2 DOF actions of Language Table, we observe that latent actions are well-clustered in the actual 2D action
space.
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[2,3,6,6] [3,5,2,7] [4,0,0,4] [4,2,0,0] [5,6,7,6] [5,7,0,5]

Camera View Right Down Right, Down Up Down Up, Left

Figure 14: Latent Action Analysis in Human Manipulation Videos. We condition the current observation x1

and quantized latent action to the decoder of the latent action quantization model. We observe that each latent
action can be mapped into a semantic action including camera movements. For example, latent action [3,5,2,7]
corresponds to moving the camera a bit down while [4,2,0,0] corresponds to moving the camera slightly up.

Figure 15: Success and Failure Cases of UNIPI. (Top) Given the instruction of ‘move the green block away
from the red cube and red pentagon’, the diffusion model of UNIPI successfully generates the plan. (Bottom)
Given the instruction of ‘put the blue moon toward the yellow block’, the diffusion model fails to generate the
correct plan.

24



Table 14: Covering Task Results
OpenVLA LAPA OpenVLA ActionVLA LAPA Scratch LAPA
(OpenX) (OpenX) (Bridge) (Bridge) (Bridge) (Sthv2)

Seen
icecream 0.33 0.33 0.33 0.33 0.33 0.33 0
strawberry 0.33 1 0.33 1 0.33 1 1
pepper 0.33 0 0.33 0.33 0.33 0.33 0.33
watermelon 0.33 0.33 0.33 0.33 0.33 0 0.33
blue lego block 0.66 1 1 1 1 0.33 0.33
pink duck 0.33 1 0.33 0.33 0.33 0 0.33

SUM 2.31 3.66 2.65 3.32 2.65 1.99 2.32

Unseen
donut 0.33 1 0.66 1 0.66 0.66 0.33
orange 0.33 0.33 1 0 0.33 1 1
mushroom 0.33 0.33 0.33 0.33 0.33 0.33 0.33
yellow lego block 0.33 1 1 0.33 0 0.33 0.33
peas 1 0 0.66 1 1 0.33 1
egg 0 1 0.33 0 0.66 0 1

SUM 2.32 3.66 3.98 2.66 2.98 2.65 3.99

Seen Semantic
drink 0.33 0 0.66 1 0.33 0.33 0.66
yellow object 0.66 0.66 0 0 0.33 0 0.33
fruit 0.33 0.33 0.33 0.33 0.33 0.33 0.33
vegetable 0.33 0.33 0 0.33 0.33 0.33 0.33
edible object 0.33 0.33 0.66 0 0.33 1 0.33
condiment 0.33 0.33 0.33 0 0.33 0.33 0.33

SUM 2.31 1.98 1.98 1.66 1.98 2.32 2.31

Success Rate (Strict) 5.56% 33.33% 16.67% 27.78% 11.11% 16.67% 22.22%
Success Rate 38.56% 51.67% 47.83% 42.44% 42.28% 38.67% 47.89%
Reaching Success Rate 16.66% 38.89% 38.89% 27.78% 22.22% 22.22% 27.78%
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Table 15: Pick & Place Sink Task Results
OpenVLA LAPA OpenVLA ActionVLA LAPA Scratch LAPA
(OpenX) (OpenX) (Bridge) (Bridge) (Bridge) (Sthv2)

Seen
milk 1 1 1 1 1 0 1
orange lego block 1 1 0 1 0 0 0
ketchup 0.25 0.25 0.25 0.25 0 0 0
corn 1 0.75 1 0.25 0.25 0.25 0.25
icecream 0.25 0 0 0 1 0 1
salt 0 0.25 0 1 0 0 0

SUM 3.5 3.25 2.25 3.5 2.25 0.25 2.25

Unseen
carrot 1 0.25 0 0.25 1 0.25 0.25
yellow paprika 1 1 0 0.25 0.25 0 1
yellow cube 1 0.5 0.25 0.5 0 0 0
salmon sushi 0 0.25 0 0.5 0 0 0
orange 1 0 0 0 0 0.25 0
blue cube 0.25 0.25 0 0 0 0 0

SUM 4.25 2.25 0.25 1.5 1.25 0.5 1.25

Seen Semantic
an object that is yellow 1 1 0 1 0.25 0 0
an object that is round 0 0.25 0 0 0 0.25 0
an object that is a fruit 1 1 1 1 0 1 0.75
an object that you can drink 0 0.25 0 0.5 0 0 0
an object that is a vegetable 0 0 0 0 0 0 0
an object that is an animal 0 0.25 0 0.25 0.25 0 0

SUM 2 2.75 1 2.75 0.5 1.25 0.75

Success Rate (Strict) 50.00% 27.78% 16.67% 27.78% 16.67% 5.56% 16.67%
Success Rate 54.17% 45.83% 19.44% 43.06% 22.22% 11.11% 23.61%
Reaching Success Rate 66.67% 83.33% 27.78% 72.22% 38.89% 27.78% 33.33%

Table 16: Summary of Total Success Rates (%)
OpenVLA LAPA OpenVLA ActionVLA LAPA Scratch LAPA
(OpenX) (OpenX) (Bridge) (Bridge) (Bridge) (Sthv2)

Total Success Rate 43.87% 50.09% 30.76% 36.83% 32.61% 21.22% 34.02%
Total Success Rate (Strict) 27.78% 35.19% 12.96% 22.22% 16.67% 7.41% 20.37%
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Table 17: Bi-manual Task Results (Seen and Unseen)
OpenVLA (Open-X) LAPA (Open-X)

Seen Object Combinations
purple, blue cup 0.25 0.25
gray, cupcake 0.25 0.75
gray, apple 0 0
purple, milk 0.25 0.75
gray, orange juice 0.5 0.25
purple, green cup 0.25 0.25

SUM 1.5 2.25

Unseen Object Combinations
purple, orange 0.75 0
purple, red block 0.25 0
purple, cupcake 0.25 0
gray, peach 0.25 0.5
gray, mustard 0 0
gray, spam 0.25 0.5

SUM 1.75 1

Unseen Objects
purple, pear 0.25 0.5
purple, mayonnaise 0.75 0.25
purple, yellow cup 0.5 0.5
plain white, tomato soup 0.25 0.75
plain white, wooden block 0.25 0.25
plain white, cheez it 0 0

SUM 2 2.25

Unseen Instructions
darker, fruit 0.25 0.5
darker, sweet dessert 0.5 0
darker, drink 0.25 0.5
lighter, rectangular object 0 0.25
lighter, roundest object 0 0.5
lighter, red object 0 0

SUM 1 1.75

Success Rate 26.04% 30.21%
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