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ABSTRACT

Transformers have demonstrated strong performance in time series forecasting,
yet they often fail to capture the intrinsic structure of temporal data, making them
susceptible to real-world noise and anomalies. Unlike in vision or language, the
local geometry of temporal patterns is a critical feature in time series forecasting,
but it is frequently disrupted by corruptions. In this work, we address this gap with
two key contributions. First, we propose Local Geometry Attention (LGA), a novel
attention mechanism theoretically grounded in local Gaussian process theory. LGA
adapts to the intrinsic data geometry by learning query-specific distance metrics,
enabling it to model complex temporal dependencies and enhance resilience to
noise. Second, we introduce TSRBench, the first comprehensive benchmark for
evaluating forecasting robustness under realistic, statistically-grounded corruptions.
Experiments on TSRBench show that LGA significantly reduces performance
degradation, consistently outperforming both Transformer and linear model. These
results establish a foundation for developing robust time series models that can be
deployed in real-world applications where data quality is not guaranteed. Our code
is available at: https://anonymous.4open.science/r/LGA-5454.

1 INTRODUCTION

Transformer architectures have revolutionized deep learning across various domains since their
introduction (Vaswani et al., 2017). Their success in natural language processing (Devlin et al., 2019)
and computer vision (Dosovitskiy et al., 2020) has extended to time series analysis, where models
like PatchTST (Nie et al., 2023) have set new performance benchmarks.

However, time series data have unique characteristics that challenge standard Transformers. Unlike
text or images, time series often exhibit complex temporal dependencies and non-uniform local data
distributions, creating a structured "attention geometry" (Si et al., 2024; Lavin & Ahmad, 2015).
Standard attention mechanisms, which treat all inputs uniformly, may fail to adapt to these local
statistical variations, seasonal patterns, and anomalies, leading to suboptimal performance and a lack
of robustness (Schmidl et al., 2022; Cheng et al., 2024).

Furthermore, while robustness to input corruptions is a well-established evaluation standard in other
fields, with benchmarks like ImageNet-C (Hendrycks & Dietterich, 2019), a comparable framework
for time series forecasting is notably absent. This gap is critical, as real-world time series are
frequently contaminated by issues like sensor failures and transmission noise, yet existing research
has largely focused on synthetic adversarial attacks rather than realistic data degradation (Liu et al.,
2023; Cheng et al., 2024). These limitations highlight a dual need: attention mechanisms that adapt
to local temporal structure and principled benchmarks to assess their robustness.

To address these challenges, we make two primary contributions:

• We propose Local Geometry Attention (LGA), a novel attention mechanism designed
to adapt to the intrinsic data geometry of time series. Theoretically grounded in local
Gaussian process theory, LGA learns query-specific distance metrics to compute attention
scores, enabling it to model complex local data structures without imposing strong global
assumptions.

• We introduce TSRBench, a comprehensive benchmark for evaluating time series forecasting
robustness. TSRBench provides statistically grounded methods for injecting two canonical
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Figure 1: The core principles of Local Geometry Attention (LGA) illustrated on a 2D toy dataset. In
(a), for two different data distributions, the attention score surface generated from each query point
(Query Point 1 and Query Point 2) correctly captures the unique local geometry of its respective
cluster. (b) demonstrates robustness of LGA: while standard attention (red surface) is distracted by
the anomaly and assigns it a high score, LGA (blue surface) correctly identifies it as an anomaly and
maintains focus on the main data distribution.

corruption types—spikes and level shifts—with controllable severity levels, addressing a
critical gap in principled robustness evaluation for time series.

• We demonstrate practical effectiveness and robustness of LGA through extensive experi-
ments. As illustrated in Figure 1, LGA successfully identifies distinct data distributions and
ignores anomalies, unlike standard attention. Our full empirical evaluation on the TSRBench
benchmark further shows that LGA consistently and significantly mitigates performance
degradation under various realistic corruptions.

We validate our approach through extensive experiments on standard forecasting datasets. The results
demonstrate that LGA significantly mitigates performance degradation under corruption compared to
existing baselines, highlighting the importance of designing both robust attention mechanisms and
principled evaluation tools for time series forecasting.

2 RELATED WORK

Theoretical Approaches for Attention. Transformers (Vaswani et al., 2017) have become the
dominant architecture in natural language processing (Devlin et al., 2019; Brown et al., 2020; Raffel
et al., 2020) and vision (Dosovitskiy et al., 2021; Liu et al., 2021; Touvron et al., 2021), and have
recently been extended to time series analysis (Wu et al., 2021; Zhang & Yan, 2023; Nie et al.,
2023). Attention is a fundamental component of Transformer architectures, and recent studies have
offered several theoretical interpretations of its structure. Bui et al. (2024) interpret attention as cross-
covariance between correlated Gaussian processes to enable asymmetric uncertainty-aware attention.
Similarly, Chen & Li (2023) proposes Sparse Gaussian process Attention (SGPA), which replaces
the standard dot-product with a symmetric kernel, allowing Bayesian inference via the GP posterior.
Han et al. (2023) propose robust kernel density estimation (RKDE), which mitigates the influence
of outlier keys in the computation of attention scores. They employ the Median-of-Means (MoM)
principle (Jerrum et al., 1986; Humbert et al., 2022) into RKDE to further improve computational
efficiency. Nielsen et al. (2024) constructs hyper-ellipsoidal neighborhoods around queries to increase
attention weights in contextually important directions. However, these approaches either rely on
global kernel assumptions or do not explicitly capture the local geometric structure of the data.
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Robustness benchmarks under Realistic Corruptions. Robustness benchmarks are critical
for evaluating model performance under contaminated inputs. In computer vision, ImageNet-C
(Hendrycks & Dietterich, 2019) set a standard by testing models against various common corruptions
at multiple severity levels. Similar efforts exist in natural language processing (McCoy et al., 2020;
Nie et al., 2020). In contrast, the time series domain has largely focused on robustness against syn-
thetic adversarial attacks (Liu et al., 2023; Lin et al., 2024), which target model-specific vulnerabilities
but may not reflect naturally occurring data degradation.

Recent studies, however, emphasize the importance of evaluating models against realistic corruptions
that mirror real-world phenomena (Cheng et al., 2024). Real-world time series often exhibit both
minor point-wise disturbances and structured anomalies that signal meaningful, event-driven changes,
such as random spikes from sensor limitations or sustained level shifts from hardware malfunctions
(Si et al., 2024; Schmidl et al., 2022). Despite the need, a standardized benchmark for such realistic
corruptions in time series remains a significant gap, underscoring the need for a systematic framework
to evaluate model robustness under diverse operational conditions.

3 LOCAL GEOMETRY ATTENTION

4 2 0 2

2

0

2

Keys (period=3)
Queries (period=3)

Figure 2: Key-query embed-
dings in PatchTST showing natu-
ral clustering of periodic patterns.

We propose Local Geometry Attention (LGA), a novel approach
that adapts to the intrinsic geometric structure of time series data.
Unlike standard attention mechanisms that use dot product sim-
ilarity in Euclidean space, LGA computes attention scores using
query-specific distance metrics derived from Gaussian process
theory. This approach captures the local geometric structure of
the data manifold, enabling more effective attention mechanisms
that reflect the inherent geometry of periodic temporal patterns,
as illustrated in Figure 2, where similar periodic patterns naturally
form clusters.

In this section, we build LGA from the ground up. We start
by developing its theoretical foundation in three parts: we first
establish a local kernel-covariance formulation to capture data
geometry in Section 3.1; we then connect this to local Gaussian processes to estimate data density
in Section 3.2; and finally, we derive the geometry-aware attention scoring function in Section 3.3.
With the theory established, Section 3.4 then presents the practical implementation, detailing how
this theoretically-grounded function is efficiently approximated for use in modern architectures.

3.1 LOCAL GEOMETRY ESTIMATION VIA KERNEL-COVARIANCE

To capture the local geometric structure of time series data, we employ local Gaussian processes
instead of traditional global Gaussian processes. We first establish a local kernel-covariance formula-
tion that naturally extends to a local Gaussian process framework, providing a principled foundation
for modeling the intrinsic geometry of time series and informing our attention mechanism.

Local Kernel–covariance. First, we define linear mappings that project an input x ∈ Rn into key
and query representations, k ∈ Rd and q ∈ Rd, respectively. For a set of inputs {x1, . . . , xT } and a
target point x∗, we obtain key vectors {k1, . . . ,kT } and a query vector q∗.

We then define a feature mapping ϕ : Rd →W based on the difference between keys and the query:
ϕ(ki) = ki − q∗. The design matrix Φ is constructed as:

Φ(x∗) = [ϕ(k1), · · · , ϕ(kT )]
⊤
.

The local kernel-covariance matrix for the target point x∗ is formed as a weighted sum of outer
products:

Σ(x∗) = Φ(x∗)
⊤W(x∗)Φ(x∗) =

T∑
i=1

ωi(x∗) (ki − q∗)(ki − q∗)
⊤. (1)

Here, W(x∗) is a T × T diagonal matrix with weights ωi(x∗) on its diagonal. These weights are
computed using a kernel function K, which measures the similarity between each key ki and the

3
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query q∗:

ωi(x∗) =
K(ki,q∗)∑T
j=1K(kj ,q∗)

.

In our implementation, we use a Gaussian kernel for K:

K(ki,q∗) = exp
(
−∥ki − q∗∥2/2h2

)
,

where h is the bandwidth parameter. More generally, K can be any kernel function, such as the
compactly supported tri-cube or Epanechnikov kernels. Our local kernel-covariance matrix, as defined
in Equation (1), thus employs decaying kernel weights to approximate the inverse metric tensor on
the data manifold. As demonstrated by Berry & Sauer (2016), this formulation effectively captures
the local geometry of the underlying manifold.

3.2 DENSITY ESTIMATION WITH LOCAL GAUSSIAN PROCESSES

Now consider a local Gaussian process regression model where all observed outputs are zero (yi = 0
for all i), based on the local kernel covariance centered at a target point x∗. The model takes the form:

y = f(x) + ε, where f(x) ∼ GP(0, k(x, x′)) (2)

Here, the noise term ε is assumed to be i.i.d. Gaussian, ε ∼ N (0, σ2), and k(x, x′) is the GP
covariance kernel.

For a target point x∗ (which maps to query q∗), the local GP model is established. The predictive
distribution for the latent function value at a new point x (which maps to key k) has a zero mean.
Reusing the feature map ϕ(k) = k− q∗, the predictive variance is given by:

σ2
q∗
(k) = ϕ(k)⊤G(x∗)ϕ(k) = (k− q∗)

⊤G(x∗)(k− q∗) (3)

where the matrix G(x∗) is defined as:

G(x∗) = σ2[Σ(x∗) + σ2I]−1. (4)

Crucially, the predictive variance is smaller in regions dense with data points (keys) and larger in
sparse regions (Williams & Rasmussen, 2006; Kim & Lee, 2007). This means the negative predictive
variance, −σ2

q∗
(k), can serve as a surrogate for the data density around q∗ as experienced by k.

This insight allows us to use the variance function as a principled, data-driven way to measure the
similarity between points on the data manifold. We provide a formal theoretical justification for
this approach in the Appendix A.2. Building on this connection, we next reformulate the attention
mechanism itself.

3.3 GEOMETRY-AWARE ATTENTION SCORING

Building upon this local Gaussian process framework, we reformulate the attention score using the
negative predictive variance. The similarity score between a query q and a key k is defined as:

score(q,k) = −(k− q)⊤G(q)(k− q) (5)

where G(q) is the local geometry matrix estimated at the query’s location. This score function
computes the negative squared Mahalanobis distance, where the metric is adapted to the local data
geometry. The softmax function then produces the final attention weights.

This geometry-aware scoring function forms the core of our Local Geometry Attention (LGA)
mechanism. By leveraging the local geometric information encoded in the matrix G(q), our approach
moves beyond simple Euclidean similarity to better capture relationships between time series elements
along the data manifold. This leads to more effective attention allocation for complex temporal
patterns, as demonstrated in Figure 3.

Connection to Riemannian Geometry. The proposed geometry-aware attention scoring in Equa-
tion (5) also has a strong theoretical interpretation within the framework of Riemannian geometry.
On a data manifoldM equipped with a Riemannian metric tensor G, the distance between two points
q,k ∈ M is given by the geodesic distance, dist(q,k) = infγ

∫ 1

0

√
γ′(t)⊤G(γ(t))γ′(t) dt, where

4
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Figure 3: Effectiveness of LGA on a real-world time series with corruptions. The input series in (a)
is corrupted with noise. (b) shows that while standard attention is distracted by these noisy regions,
LGA successfully diminishes their influence. This robust handling of noise enables LGA to achieve a
superior MSE of 0.533, compared to 0.616 from standard attention.

the infimum is taken over all smooth paths γ connecting q and k. While computationally intractable,
for a key k in a small neighborhood of a query q, the squared geodesic distance can be approximated
by a first-order Taylor expansion:

dist(q,k)2 ≈ (k− q)⊤G(q)(k− q).

This expression reveals that the local Riemannian geometry induces a Mahalanobis distance. Con-
sequently, our proposed attention score, score(q,k) = −(k− q)⊤G(q)(k− q), can be interpreted
as the negative squared geodesic distance approximation. In this view, the matrix G(q) derived
from our local Gaussian process framework in Equation (4) serves as an empirical estimate of the
local Riemannian metric tensor at the query point, allowing the attention mechanism to adapt to the
intrinsic curvature of the data manifold.

This formulation provides a theoretically sound, geometry-aware attention mechanism. However, the
direct computation of the metric tensor G(q) for every query, which requires access to the full set
of keys as per Equation (4), is computationally prohibitive for large-scale models. Addressing this
computational challenge requires an efficient implementation.

3.4 IMPLEMENTATION OF LOCAL GEOMETRY ATTENTION

To make Local Geometry Attention (LGA) computationally feasible, we train a small network, fθ, to
directly approximate the metric tensor G(q) from a given query vector q:

G(q) ≈ fθ(q) (6)
This is motivated by the insight that a position of query on the data manifold implicitly defines its
local geometric structure. As universal function approximators, neural networks are well-suited
to learn this mapping. For each attention head, we employ a separate network fθh to predict its
corresponding metric tensor.

To ensure the network fθ generalizes well, we train it on two sets of query vectors: (1) a subset Sreal
randomly sampled from the actual query vectors that appear during training, and (2) a set Sgen of
randomly generated vectors designed to explore a broader region of the representation space. For
efficiency, we approximate the target metric tensor Gtrue (computed via Equation (4)) as a diagonal
matrix. This is a practical trade-off that assumes independence between local feature dimensions to
ensure computational tractability.

The networks are then trained to minimize the mean squared error between their prediction and the
true metric tensor. The total loss is a weighted sum over all layers L and heads H:

LG =
1

L ·H

L∑
l=1

H∑
h=1

 1

|Sh,lreal|

∑
q∈Sh,l

real

L(Gtrue(q), fθl
h
(q)) +

1

|Sgen|
∑

q∈Sgen

L(Gtrue(q), fθl
h
(q))

 (7)
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Figure 4: Visualization of synthetic corruptions on the ETTm1 dataset. (a) Original time series
without any corruption. (b) Time series with spike corruptions. (c) Time series with level shift
corruptions. (d) Time series with a combination of corruptions, demonstrating how our TSRBench
creates challenging test cases for time series models.

This pre-learning strategy decouples the expensive geometry estimation from training and inference
of the model. Consequently, the local geometric structure can be rapidly approximated, making LGA
practical for modern deep learning models. The complete algorithm is detailed in Appendix B.

4 CORRUPTED TIME SERIES BENCHMARK: TSRBENCH

To address the gap in standardized robustness evaluation for time series, we introduce TSRBench,
a new benchmark designed to assess model performance against realistic, statistically-grounded
corruptions. Unlike adversarial attacks, TSRBench focuses on corruptions reflecting naturally
occurring data degradation, such as sensor limitations or external shocks (Si et al., 2024; Schmidl
et al., 2022).

While evaluation on real-world datasets with genuine anomalies is ideal, it presents challenges for the
specific task of forecasting robustness. A fair evaluation requires the ground truth of the test set to be
clean, which necessitates precise, time-aligned anomaly labels to exclude corrupted periods from
the loss calculation. However, most real-world forecasting benchmarks lack such labels, making it
impossible to reliably isolate the effects of input corruptions on future predictions. Our TSRBench
addresses this critical gap by providing a controlled environment where corruptions are systematically
injected into the input, while the ground truth for the forecasting horizon remains clean. This enables
a principled and reproducible assessment of model robustness that is difficult to achieve otherwise.

Our benchmark introduces two canonical corruption types: spikes and level shifts (Wang et al., 2021;
Lavin & Ahmad, 2015), which model phenomena like transient bursts and sustained deviations.
This provides a more realistic test than common augmentation like jittering (Iglesias et al., 2023).
To support a systematic evaluation, we adopt statistically grounded noise injection methods with
controllable severity levels (Siffer et al., 2017; Wunderlich & Sklar, 2023).

Local Corruption Functions. Given an original time series X ∈ RT , we generate two types of
corruptions: spikes, εspike, and level shifts, εshift. The timing of these corruption events is governed
by a Poisson process with rate λ, reflecting the random arrival of discrete perturbations.

Each corruption type is defined by an amplitude parameter h and duration parameters (d1, d2, or
d). For a corruption event starting at time τ , the spike function εspike

τ (s) simulates an asymmetric
exponential spike, while the level shift function εshift

τ (s) models a flat shift. These are defined as
follows:

εspike
τ (s) =

h
spike
τ · exp

(
− ln(β)

d1
(s− τ − d1)

)
if τ ≤ s < τ + d1

hspike
τ · exp

(
ln(β)
d2

(s− τ − d1)
)

if τ + d1 ≤ s ≤ τ + d1 + d2

εshift
τ (s) = hshift

τ for τ ≤ s < τ + d

(8)

Here, the duration parameters (d1, d2, d) are sampled from a geometric distribution with parameter p,
and the sharpness is fixed at β = 10−4. Crucially, the corruption amplitudes (hspike

τ , hshift
τ ) are not

arbitrary. They are calibrated based on time-varying statistical thresholds determined by a significance

6
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level q. This process, which uses the DSPOT algorithm (Siffer et al., 2017) to model extreme values,
ensures that the injected corruptions represent statistically significant but realistic deviations from
the normal behavior of signal. The complete generation algorithm is detailed in the Appendix G.1
(Algorithm 2).

Each final corrupted signal is formed by summing the noise instances from all events:

εspike(t) =
∑
τ∈T

εspike
τ (t), and εshift(t) =

∑
τ∈T

εshift
τ (t) (9)

where T is the set of starting times for corruption events. Figure 4 visualizes examples of these
corruptions.

Table 1: Parameter settings defining the five corruption severity levels. From level 1 to 5, the
expected corruption frequency (λ) and duration (p) increase, while the amplitude significance level
(q) decreases. They collectively intensifying the corruption.

Params. Description 1 2 3 4 5
λ Expected frequency of corruptions 0.002 0.004 0.004 0.008 0.008
p Expected duration of each corruption 6 9 12 12 15
q Significance level of amplitude 0.0016 0.0016 0.0004 0.0004 0.0001

Corruption Severity Levels. To comprehensively evaluate model robustness, we designed five
severity levels that represent gradually increasing data degradation. The corrupted time series is
generated by adding the synthesized corruptions to the original signal as described.

We control the severity of corruptions at each level using a parameter triplet (λ, p, q), which re-
spectively regulate the frequency, expected duration, and amplitude significance of the anomalies.
The specific values for each level, summarized in Table 1, were established through extensive ex-
perimentation to create a progressive scale of difficulty, from Level 1 (mild) to Level 5 (frequent,
prolonged, and high-magnitude corruption). We conducted extensive experiments with various
parameter configurations to determine these settings, which are presented in Appendix G.2.

Table 2: Performance comparison of PatchLGA, PatchTST, and TimeMixer across different datasets
under combined corruptions. Results show average performance across forecasting horizons {96,
192, 336, 720}. We report MSE and MAE at varying severity levels 0-5 (0 = original data). Lower
values are better, with the best results highlighted in bold.

Dataset ETTm1 ETTm2 Weather
Model PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Se
ve

ri
ty

0 0.351 0.379 0.352 0.382 0.360 0.390 0.257 0.316 0.256 0.317 0.259 0.322 0.227 0.265 0.225 0.264 0.227 0.266
1 0.359 0.385 0.359 0.389 0.366 0.396 0.264 0.326 0.264 0.328 0.265 0.330 0.238 0.284 0.239 0.284 0.242 0.288
2 0.372 0.397 0.375 0.402 0.385 0.409 0.276 0.335 0.277 0.338 0.279 0.341 0.264 0.313 0.266 0.314 0.275 0.320
3 0.519 0.468 0.614 0.507 0.594 0.499 0.304 0.355 0.308 0.360 0.310 0.364 0.301 0.338 0.306 0.339 0.326 0.350
4 0.617 0.526 0.695 0.558 0.716 0.560 0.356 0.395 0.361 0.400 0.373 0.409 0.361 0.389 0.369 0.384 0.441 0.421
5 0.734 0.577 0.839 0.613 0.837 0.613 0.421 0.428 0.431 0.434 0.459 0.450 0.454 0.423 0.491 0.423 0.576 0.464

Dataset ETTh1 ETTh2 Electricity
Model PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Se
ve

ri
ty

0 0.415 0.428 0.415 0.429 0.436 0.445 0.337 0.385 0.343 0.387 0.351 0.393 0.161 0.255 0.160 0.254 0.165 0.259
1 0.416 0.430 0.416 0.430 0.437 0.447 0.338 0.387 0.343 0.389 0.352 0.394 0.168 0.264 0.169 0.265 0.172 0.268
2 0.420 0.435 0.421 0.436 0.441 0.451 0.345 0.397 0.349 0.397 0.363 0.406 0.179 0.276 0.184 0.279 0.184 0.280
3 0.471 0.465 0.474 0.468 0.498 0.483 0.358 0.407 0.362 0.407 0.384 0.420 0.193 0.288 0.201 0.293 0.201 0.293
4 0.547 0.510 0.550 0.513 0.572 0.526 0.382 0.425 0.391 0.427 0.416 0.443 0.226 0.317 0.232 0.321 0.237 0.323
5 0.712 0.580 0.724 0.588 0.733 0.596 0.404 0.436 0.427 0.445 0.459 0.465 0.284 0.352 0.290 0.358 0.312 0.361
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5 EXPERIMENTS

We empirically evaluate the robustness of LGA using our proposed TSRBench on six standard
forecasting datasets: Weather,1 Electricity,2 and ETT (Zhou et al., 2021) (ETTh1, ETTh2, ETTm1,
ETTm2). We integrate LGA into the PatchTST architecture (Nie et al., 2023), referred to as PatchLGA,
by replacing its standard Scaled-Dot Product (SDP) attention. We compare PatchLGA against the
original PatchTST and other strong baselines, including TimeMixer (Wang et al., 2024), CATS (Kim
et al., 2024), and iTransformer (Liu et al., 2024), to assess its effectiveness across various model
types.

5.1 LONG-TERM TIME SERIES FORECASTING RESULTS UNDER REALISTIC CORRUPTIONS

We evaluate forecasting models on TSRBench across six corruption levels (0-5) with an input length
of 512. Table 11 summarizes the results for combined spike and level shift corruptions, averaged
over four forecasting horizons. First, the results at Severity 0 serve as a crucial baseline to ensure
that our proposed robust attention mechanism does not degrade performance on the original, clean
data. This confirms that integrating LGA does not compromise the inherent forecasting capability of
model on clean data. As corruption severity increases, PatchLGA consistently shows the most robust
performance. Its advantage becomes more pronounced at higher severity levels; for example, at level
5, PatchLGA achieves a 12.3% MSE reduction on ETTm1 and is 21.2% lower than TimeMixer on
the large Weather dataset. These results confirm the effectiveness of modeling local geometry for
enhancing robustness, especially when data quality cannot be guaranteed.

5.2 COMPARISON WITH ALTERNATIVE ROBUST ATTENTION METHODS

We evaluated robust attention mechanisms on time series forecasting with corruptions. Our proposed
LGA consistently outperforms both standard attention and other robust attention variants including
MoM (Han et al., 2023) and Elliptical attention (Nielsen et al., 2024).

Table 3: Averaged MSE comparison on
ETTm1 for LGA, SDP, MoM, and Ellip-
tical attention. Lower values indicate bet-
ter performance, with the best result for
each severity level highlighted in bold.

Model PatchTST
Severity SDP MoM Ellip. LGA

1 0.359 0.375 0.360 0.359
2 0.375 0.397 0.374 0.372
3 0.614 0.670 0.722 0.519
4 0.695 0.871 0.755 0.617
5 0.839 1.016 0.880 0.734

0.2 0.4 0.6 0.8
Speed (s/iter)

0.50

0.55

0.60

0.65

0.70

M
SE

MOM
16.0 GiB

Elliptical
3.1 GiB

LGA (ours)
4.6 GiB

SDP
3.0 GiB

Figure 5: Comparison of MSE, training
speed, and memory usage. Attention closer
to the lower-left corner achieves better trade-
offs between accuracy and efficiency.

As shown in Table 3, while robust attention mechanisms successful in vision and language tasks
underperform compared to standard attention when applied to corrupted time series data, our LGA
specifically designed for temporal structure exhibits the smallest performance degradation under
corruption. Unlike Elliptical attention, which trades speed for memory efficiency without robustness
gains (Fig. 5), LGA effectively leverages local geometry in time series while seeing a moderate
increase in memory usage, yet maintaining a training speed comparable to standard attention.

5.3 ROBUSTNESS ANALYSIS ACROSS ATTENTION MECHANISMS

We conducted experiments to evaluate the effectiveness of LGA across various types of attention
strategies. In time series transformers, two primary attention approaches exist: temporal attention,

1https://www.bgc-jena.mpg.de/wetter/
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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which focuses on relationships between time steps within each variable, and channel attention, which
emphasizes relationships between different variables at each time step.

Table 4: Comparison of attention mechanisms on ETTm1 under 5 severity levels. Values show
MSE averaged across forecasting horizons {96, 192, 336, 720}. Bold values indicate the better
performance for each experiment.

Model PatchTST CATS iTransformer
Noise Type Combined Level Shift Spike Combined Level Shift Spike Combined Level Shift Spike
Attn Type LGA SDP LGA SDP LGA SDP LGA SDP LGA SDP LGA SDP LGA SDP LGA SDP LGA SDP

Se
ve

ri
ty

1 0.359 0.359 0.359 0.359 0.352 0.352 0.345 0.345 0.344 0.345 0.340 0.338 0.425 0.429 0.423 0.427 0.411 0.413
2 0.372 0.375 0.370 0.374 0.353 0.353 0.362 0.364 0.359 0.361 0.342 0.340 0.459 0.465 0.455 0.462 0.413 0.414
3 0.519 0.615 0.506 0.608 0.362 0.364 0.662 0.779 0.634 0.765 0.349 0.355 0.783 0.801 0.756 0.771 0.434 0.440
4 0.617 0.695 0.602 0.691 0.367 0.369 0.972 0.986 0.923 0.965 0.357 0.366 1.000 1.027 0.949 0.970 0.453 0.465
5 0.734 0.839 0.718 0.848 0.372 0.374 1.037 1.102 1.003 1.084 0.358 0.366 1.266 1.309 1.202 1.229 0.469 0.485

As shown in Table 4, LGA enhances robustness across diverse attention architectures. PatchTST,
with its temporal self-attention, consistently achieves the most significant performance gains. While
CATS shows a notable peak improvement of up to 17.1%, its gains are less consistent, likely because
its cross-attention operates on linearly embedded noisy inputs. iTransformer displays modest but
stable improvements because it applies a linear embedding to the entire time series, which disrupts
the local geometry created by temporal periodic patterns. These results validate that LGA is a
broadly applicable technique for improving model robustness, demonstrating its benefit for temporal
self-attention, cross-attention, and channel-wise attention.

5.4 IMPACT OF INPUT LENGTH ON ROBUSTNESS UNDER REALISTIC CORRUPTIONS

To investigate the relationship between temporal context and model robustness, we evaluated
PatchLGA, PatchTST, and TimeMixer by varying input sequence lengths under corrupted con-
ditions. The results in Figure 6 demonstrate superior capability of PatchLGA to leverage long
historical contexts for accurate forecasting in the presence of noise.

192 336 512 720 1024
Input Length

0.50

0.55

0.60

0.65

Av
g.

 M
SE

(a) H = 96

192 336 512 720 1024
Input Length

0.50

0.55

0.60

0.65

0.70

0.75

(b) H = 192

192 336 512 720 1024
Input Length

0.50

0.55

0.60

0.65

0.70

0.75

0.80

(c) H = 336

192 336 512 720 1024
Input Length

0.55

0.60

0.65

0.70

0.75

0.80

0.85 PatchLGA
PatchTST
TimeMixer

(d) H = 720

Figure 6: Performance comparison of different models on ETTm1 across varying input lengths under
corruption. The y-axis shows average MSE (lower is better) for forecasting different horizons H ,
while the x-axis represents input sequence length.

Across all forecasting horizons, PatchLGA (red line) shows a consistent and significant reduction in
MSE as the input sequence length increases, achieving the lowest MSE in nearly all experimental
settings. This highlights its strong benefit in utilizing extended temporal data to mitigate the impact
of corruptions. In contrast, while PatchTST (green line) also benefits from longer sequences, its
performance remains inferior to PatchLGA. The linear model, TimeMixer (blue line), fails to
capitalize on increased context, with its performance stagnating or degrading. In conclusion, these
results provide compelling evidence that PatchLGA is effectively designed to enhance forecasting
accuracy by effectively processing long, noisy input sequences, underscoring its suitability for
real-world applications.

6 CONCLUSION

We introduced Local Geometry Attention (LGA), an attention mechanism grounded in local Gaussian
process theory that adapts to the intrinsic geometry of time series data. To validate its effectiveness,
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we also developed TSRBench, the first standardized benchmark for evaluating models against realistic
corruptions. Our experiments confirm that geometry-aware approach of LGA provides a substantial
robustness advantage over strong baselines, especially under severe conditions. While our efficient
matrix approximation can be explored further, this work provides a powerful new framework and a
critical evaluation tool for developing forecasting models ready for real-world deployment.
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A MATHEMATICAL SUPPLEMENT TO SECTION 3.2

This supplement provides a detailed theoretical foundation for our proposed Local Geometry Attention
(LGA). We begin by framing our approach within the context of locally weighted regression with
generalized basis functions, which naturally leads to the local kernel-covariance matrix. We then
present a theoretical bound on the predictive variance of our Local Gaussian Process model, justifying
its use as a reliable surrogate for data density.

A.1 LOCAL BASIS FUNCTION REGRESSION

Locally weighted regression, or loess, is a non-parametric method that fits simple models to localized
subsets of data. This approach is highly effective for ordered data, like time series, as it can capture
complex patterns without assuming a global model structure. A prime example is the Seasonal-
Trend decomposition based on Loess (STL) algorithm, widely used for its robustness in time series
decomposition.

Our work extends this framework by using the difference between key and query embeddings as
generalized, data-driven basis functions. For each target point x∗ (which maps to a query vector q∗),
we solve a separate weighted least squares problem:

min
β(q∗)

T∑
i=1

K(ki,q∗)
[
yi − (ki − q∗)

⊤β(q∗)
]2
, (10)

where {ki}Ti=1 are the key vectors corresponding to the input data. The term (ki − q∗) serves as our
basis function, and the weight K(ki,q∗) is determined by a Gaussian kernel:

K(ki,q∗) = exp
(
−∥ki − q∗∥2/2h2

)
. (11)

Let B(q∗) be the T ×d regression matrix whose i-th row is (ki−q∗)
⊤, and let W(x∗) be the T ×T

diagonal matrix of normalized weights ωi(x∗):

ωi(x∗) =
K(ki,q∗)∑T
j=1K(kj ,q∗)

. (12)

The solution to the weighted least squares problem is β̂(q∗) = Σ(x∗)
−1B(q∗)

⊤W(x∗)y, where
Σ(x∗) is the local kernel-covariance matrix identical to Equation (1):

Σ(x∗) = B(q∗)
⊤W(x∗)B(q∗) =

T∑
i=1

ωi(x∗)(ki − q∗)(ki − q∗)
⊤.

The covariance of the estimated parameters β̂(q∗), assuming observation noise with covariance
Σobs, is given by Σβ = (B⊤WB)−1(B⊤WΣobsW

⊤B)(B⊤W⊤B)−1. If we make a simplifying
assumption that the weights are chosen as the inverse of the observation covariance, W ≈ Σ−1

obs, this
expression simplifies to Σβ ≈ (B⊤WB)−1 = Σ(x∗)

−1. This connection motivates using the local
kernel-covariance matrix Σ(x∗) within a probabilistic framework, which we term a "Local Gaussian
Process" as it effectively constructs a GP conditioned on a localized data neighborhood.

A.2 THEORETICAL BOUND ON PREDICTIVE VARIANCE

Theorem 1. Let P be a fixed but unknown probability distribution over a spaceH, with no atomic
components and support contained within the unit ball. For the predictive variance function (3) of
our Local Gaussian Process, let σ̂2 = maxk∈{ki} σ

2
q∗
(k) denote the maximum predictive variance

over a data sequence of size T . Then, for any ε > 0, with probability at least 1− δ, the following
inequality holds:

P
(
k : σ2

q∗
(k) > σ̂2 + 2ε

)
≤ 2

T

(
ρ+ log

(
T 2

2δ

))
,

for some ρ = O(log(T )).
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Proof. The derivation is based on the method in Kim & Lee (2007), adapted to our framework. The
predictive variance is given by:

σ2
q∗
(k) = (k− q∗)

⊤G(x∗)(k− q∗), (13)

whereG(x∗) = σ2[Σ(x∗)+σ
2I]−1. We define a weighted feature mapping ψ(ki) =

√
ωi(x∗)(ki−

q∗) and a design matrix Ψ whose i-th row is ψ(ki)
⊤. The local kernel-covariance matrix is then

Σ(x∗) = Ψ⊤Ψ.

Using the Sherman-Woodbury-Morrison formula, the predictive variance can be expressed as:

σ2
q∗
(k) = k̃(k,k)− k̃⊤

k (K̃+ σ2I)−1k̃k,

where the weighted kernel is k̃(k,k′) = ψ(k)⊤ψ(k′), K̃ is the Gram matrix with entries k̃(ki,kj),
and k̃k is a vector with entries k̃(ki,k).

The function h(k) := k̃⊤
k (K̃+ σ2I)−1k̃k can be shown to be linear in a transformed feature space.

Let C = K̃+ σ2I and w = Ψ⊤C−1Ψ. Then,

h(k) = ψ(k)⊤wψ(k) = tr
(
ψ(k)ψ(k)⊤w

)
.

By defining a new feature map Ψ2(k) = Vec(ψ(k)ψ(k)⊤), we can write h(k) = w⊤Ψ2(k), making
it linear. Thus, σ2

q∗
(k) = k̃(k,k) − h(k) is also linear in this feature space (assuming k̃(k,k) is

constant or slowly varying).

Applying the theoretical results from Smola & Schölkopf (1998); Schölkopf et al. (2001), we obtain
that, with probability at least 1− δ, and letting σ̂2

m = mink∈{ki} h(k) = k̃ − σ̂2, for all ε > 0, we
have:

P
{
k : σ2

q∗
(k) > σ̂2 + 2ε

}
≤ 2

T

(
ρ+ log

(
T 2

2δ

))
,

where

ρ =
c1 log(c2ε̂

2T )

ε̂2
+Dε̂ log

(
e

(
(2T − 1)ε̂

Dε̂
+ 1

))
+ 2,

and the constants and terms are defined as follows:

c1 = 4c2, c2 =
ln(2)

c2
, c = 103, ε̂ =

ε

∥w∥
, Dε̂ = D({ki}, g, k̃ − σ̂2).

This finding indicates that the variance function of a Local Gaussian Process serves as a reliable
surrogate for capturing the support (or high density regions) of a high-dimensional data distribution.
Notably, the estimated support set retains computational tractability even in high-dimensional regimes.

B IMPLEMENTATION DETAILS OF LGA

This section provides a detailed description of our Local Geometry Attention (LGA) implementation.
While the theoretical foundation in Section 3.2 involves computationally intensive operations, we
introduce an efficient approximation that maintains the core benefits of geometry-aware attention
while being tractable for large-scale time series forecasting. The complete algorithm is presented in
Algorithm 1.

B.1 IMPLEMENTATION OF fθ

As described in Section 3.4, we employ a neural network fθ to approximate the metric tensor
G(q). The network architecture is a simple feedforward design. For each head h, the input query
vector is projected from its head dimension Dh to a higher-dimensional space DG, passed through a
non-linearity, and projected back to Dh to produce the diagonal components of the metric tensor:

fθh(q) = Softplus(Wh
2 (GELU(Wh

1 (q)))) (14)
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Algorithm 1 Local Geometry Attention (LGA)

Require: Query Q ∈ RB×LQ×D, Key K ∈ RB×LK×D, Value V ∈ RB×LK×D

Require: Model dimension D, number of heads H , head dimension Dh = D/H , noise variance σ2

Ensure: Output tensor ∈ RB×LQ×D

1: function LGA(Q,K,V)
2: Step 1: Linear projection and reshape to multi-head format
3: qs ←WQ(Q), reshape to (B,LQ, H,Dh)
4: ks ←WK(K), reshape to (B,LK , H,Dh)
5: vs ←WV (V), reshape to (B,LK , H,Dh)
6: Step 2: Predict metric tensor
7: Apply fθh to qs[:, :, h, :] for each head h
8: G ∈ RB×LQ×H×Dh ▷ Stack predictions across heads
9: if training then

10: Step 3: Estimate true metric and update prediction networks
11: Gtrue ← ESTIMATETRUEMETRIC(qs.detach(),ks.detach())
12: Update {fθh}Hh=1 using LG = 1

H

∑H
h=1 ∥G[:, :, h, :]−Gtrue[:, :, h, :]∥2

13: end if
14: Step 4: Compute attention scores and aggregate values
15: S← MAHALANOBISSCORE(qs,ks,G.detach()) ▷ (B,LQ, H, LK)
16: A← softmax(S) along last dimension ▷ (B,LQ, H, LK)
17: O← Avs ▷ Weighted sum: (B,LQ, H,Dh)
18: Step 5: Reshape and output projection
19: Reshape O to (B,LQ, H ·Dh) and apply WO

20: return output ∈ RB×LQ×D

21: end function
22: function MAHALANOBISSCORE(q,k,G)
23: Efficiently computes Sij = −(kj − qi)

⊤diag(Gi)(kj − qi) for all pairs
24: Cross term: C← (q⊙G)k⊤ ▷ (B,LQ, H, LK)
25: Quadratic term: Q← G(k⊙ k)⊤ ▷ (B,LQ, H, LK)
26: S← 2C−Q
27: return S ∈ RB×LQ×H×LK

28: end function
29: function ESTIMATETRUEMETRIC(q,k)
30: Sample queries and keys:
31: Sample Ns indices from batch dimension
32: qreal ← q[sampled] ∈ RNs×LQ×H×Dh

33: qrand ∼ U(−5, 5)Ns×LQ×H×Dh

34: qs ← concat(qreal,qrand) ∈ R2Ns×LQ×H×Dh

35: ks ← k[sampled] ∈ RNs×LK×H×Dh

36: Compute Gaussian kernel weights:
37: For each query-key pair, compute squared distance: d2ij = ∥qi − kj∥2
38: ωij ← softmaxj(−d2ij · scale) ▷ Normalize over keys: (2Ns, LQ, LK , H)
39: Compute weighted local covariance:
40: For each dimension d: Σi,d =

∑LK

j=1 ωij · (qi,d − kj,d)
2 ▷ (2Ns, LQ, H,Dh)

41: Compute inverse covariance:
42: Gtrue ← (Σ+ σ2)−1 ▷ Element-wise inversion: (2Ns, LQ, H,Dh)
43: return Gtrue
44: end function
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whereWh
1 ∈ RDh×DG andWh

2 ∈ RDG×Dh are learnable weight matrices. We use separate networks
for each head to capture distinct geometric patterns. The GELU activation enables the learning of
complex mappings, and the final Softplus activation ensures the positive definiteness of the metric
tensor by guaranteeing its diagonal elements are positive.

The hyperparameter DG controls the expressiveness of the geometric approximation. As detailed in
the main paper, we typically set DG to be 8 times the head dimension Dh. For a model with L layers
and H heads per layer, the total number of parameters introduced by our metric prediction networks
is 2 · L ·H ·Dh ·DG. This represents a modest increase in model size but significantly enhances its
ability to adapt to local data geometry.

B.2 EFFICIENT SCORE COMPUTATION

The computation of the LGA score, −(k− q)⊤G(q)(k− q), can be optimized for efficiency. Since
we approximate G(q) as a diagonal matrix, the quadratic form expands to:

(k− q)⊤G(q)(k− q) = k⊤G(q)k− 2q⊤G(q)k+ q⊤G(q)q (15)

When these scores are fed into a softmax function, any term that is constant for a given query q
across all keys k can be dropped, as the softmax is invariant to constant shifts. The term q⊤G(q)q is
one such constant. Therefore, we can simplify the computation to:

score(q,k) = −k⊤G(q)k+ 2q⊤G(q)k (16)

This simplification, combined with the diagonal approximation of G(q), significantly reduces the
computational overhead. Since the metric tensor is learned by fθ and not explicitly estimated during
inference, these optimizations make LGA both theoretically sound and computationally efficient for
practical applications.

B.3 COMPUTATIONAL COMPLEXITY AND EFFICIENCY ANALYSIS

To provide a hardware-agnostic comparison of computational cost, we analyzed the theoretical
Floating Point Operations (FLOPs) for the proposed LGA compared to the standard Scaled Dot-
Product (SDP) attention. The analysis was conducted under the experimental setting used for the
ETTm1 dataset (B = 128, N = 64, H = 16, D = 8).

Hardware-Agnostic FLOPs Comparison. We provide a granular breakdown of operations to
quantify the overhead of LGA.

• Standard SDP: The cost is dominated by linear projections (8BNC2) and the attention
score computation (4BHN2D).

• LGA: The additional cost stems from the metric prediction network (4BNHDdG) and the
Mahalanobis score calculation (6BHN2D). During training, an auxiliary cost for metric
learning is incurred (6NsHN

2D), where Ns = 256 is a fixed sample size.

Table 5 summarizes the total GigaFLOPs (G). Training FLOPs are approximated as 3× Forward
FLOPs for linear layers to account for backward passes.

Table 5: Theoretical FLOPs comparison between Standard SDP and LGA.

Module Inference (G) Training (G)
Self-Attention (SDP) 9.748 28.890
LGA (Ours) 12.640 44.862

Full Transformer Block Analysis. While LGA incurs an overhead in the attention module specif-
ically, its impact is significantly diluted when considering the full Transformer block (Attention
+ Feed-Forward Network), as the FFN dominates the computational budget. Table 6 presents the
relative overhead.
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Table 6: Relative overhead analysis of LGA compared to Standard SDP.

Setting Module Scope Standard SDP LGA (Ours) Overhead

Inference Attention Only 9.748 G 12.640 G +29.7%
Full Block (Attn + FFN) 24.78 G 27.67 G +11.7%

Training Attention Only 28.890 G 44.862 G +55.3%
Full Block (Attn + FFN) 73.99 G 89.96 G +21.6%

As shown, the effective overhead on the full model inference is only 11.7%. This confirms that
LGA offers practical efficiency, providing robust geometry-aware modeling with a manageable
computational cost.

C ABLATION STUDY ON METRIC TENSOR IMPLEMENTATIONS

In this section, we evaluate the design choices for the metric tensor G(q) in our Local Geometry-
Aware (LGA) attention. We compare our proposed learned diagonal metric against two alternatives:
(1) a full empirical metric computed on-the-fly, and (2) a learned full metric. We justify our choice
through computational complexity analysis, theoretical stability analysis, and empirical ablation.

C.1 COMPUTATIONAL COMPLEXITY ANALYSIS

To evaluate the practical efficiency of our proposed method, we provide a detailed theoretical
complexity analysis of the three LGA variants. Table 7 summarizes the Floating Point Operations
(FLOPs) for both inference and training phases, calculated based on the hyperparameters used in our
ETTm1 experiment.

We analyze the structural sources of computational cost for each variant as follows:

• LGA-Diag-Learn (Ours): This variant incurs minimal computational overhead by parame-
terizing the metric tensor as a diagonal vector d ∈ RD. The metric learning MLP projects
features from dimension D to D, keeping the parameter count low. Consequently, the
generalized Mahalanobis distance computation simplifies to a weighted Euclidean distance,
maintaining a complexity of O(N2D), which is identical to standard dot-product attention.

• LGA-Full-Emp: This approach computes the full empirical covariance matrix Σ ∈ RD×D

and its inverse on-the-fly for every query. This introduces significant arithmetic complexity,
specifically O(N2D2) for the covariance calculation and O(ND3) for the matrix inversion
per head. As the hidden dimension D increases, this cubic scaling makes the empirical
variant computationally prohibitive for real-time applications.

• LGA-Full-Learn: Instead of online inversion, this variant predicts the full D ×D metric
matrix directly using a neural network. While this avoids the O(D3) inversion cost during
inference, the output dimension of the metric MLP grows quadratically (D2). This quadratic
expansion significantly increases the number of parameters in the MLP and the FLOPs
required for the forward pass, making it considerably heavier than the diagonal approach.

Quantitative Comparison. As presented in Table 7, our quantitative analysis confirms the efficiency
advantage of the diagonal parameterization. The LGA-Diag-Learn (Ours) requires only 12.64
GFLOPs for inference, whereas the full-metric variants consume 26.19 to 31.22 GFLOPs. This
indicates that the full-metric approaches are approximately 2.0× to 2.5× more computationally
expensive than our proposed method. Therefore, LGA-Diag-Learn achieves the most favorable
trade-off between computational efficiency and modeling capability.

C.2 THEORETICAL ANALYSIS: ROBUSTNESS AND STABILITY

We justify our design choice by analyzing two critical aspects: (1) the robustness of the learned
metric against inference noise compared to the empirical one, and (2) the spectral stability of the
diagonal parameterization compared to the full matrix.
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Table 7: Computational complexity comparison (GFLOPs) based on the ETTm1 experimental setting.
The relative cost is calculated with respect to the inference FLOPs of our proposed method (LGA-
Diag-Learn).

Method Inference Training Relative Cost (Infer.)
LGA-Diag-Learn (Ours) 12.64 44.86 1.0×
LGA-Full-Empirical 31.22 89.70 ≈ 2.5×
LGA-Full-Learned 26.19 111.50 ≈ 2.1×

C.2.1 ROBUSTNESS AGAINST INFERENCE NOISE: MANIFOLD GENERALIZATION

A fundamental design choice is whether to compute the metric on-the-fly (Empirical) or learn it via a
neural network.

The empirical metric Gemp(q) ≈ Σ̂−1 is computed solely from the local context of the current
inference window. If the input xtest is corrupted by noise (e.g., spikes or shifts), the covariance
calculation Σ̂ directly incorporates this noise structure. Consequently, the metric adapts to the
corruption rather than the underlying signal, preventing the attention mechanism from distinguishing
between useful patterns and noise.

In contrast, the Learned Metric is parameterized by a neural network and trained over multiple epochs.
Although the training data itself may contain noise, the optimization process minimizes the loss
over the entire dataset. This forces the network to average out sporadic noise and converge to the
consistent, underlying geometric structure of the data—effectively learning the “average manifold.”
During inference, the network applies this learned structural prior. Even if the specific input window
is heavily corrupted, the network projects it onto the learned manifold, predicting a metric that reflects
the expected geometry of the signal rather than the transient noise. This generalization capability
explains why the learned variant consistently outperforms the empirical one in noisy scenarios
(Table 8).

C.2.2 SPECTRAL INSTABILITY OF FULL-MATRIX LEARNING

While learning the metric is advantageous, learning a fullD×D matrix introduces severe optimization
instability. We analyze this by examining the discrepancy between the training objective and the
geometric stability required for attention.

Proposition 1 (Instability of Quadratic Form under Frobenius Loss). The neural network learns
the metric G∗ by minimizing the Frobenius norm of the error E = Ĝ−G∗. However, the attention
score depends on the quadratic form x⊤Ĝx. The relative error in this distance is bounded by:

max
∥x∥=1

|x⊤Ex|
x⊤G∗x

≤ ∥E∥2
λmin(G∗)

. (17)

In time series modeling, the local intrinsic dimension is often low, implying that the optimal metricG∗

has a large condition number (small λmin). Equation (5) demonstrates that even a small regression
error ∥E∥2—which yields a low training loss—can cause a massive explosion in the relative distance
error when the query-key difference x aligns with the minor principal components.

Proposition 2 (Stability of Diagonal Parameterization). For the diagonal metric Ĝ =
diag(ĝ1, . . . , ĝD), the optimization problem decouples into D independent scalar regressions. The
quadratic form becomes a weighted sum:

x⊤Ĝx =

D∑
i=1

ĝix
2
i . (18)

Here, the error ei = ĝi − g∗i only affects the distance contribution of the i-th feature. Unlike the full
matrix case, there is no “rotation” of the error into the sensitive eigenspaces of other dimensions.
The relative error is strictly controlled component-wise, acting as a robust geometric regularizer that
ensures stable convergence even when the target manifold is ill-conditioned.
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C.3 EMPIRICAL COMPARISON

To empirically validate our theoretical deductions, we evaluated the performance of the three metric
tensor implementations on the ETTm1 dataset in Table 8). The results consistently demonstrate the
superiority of LGA-Diag-Learn, which achieves the lowest error rates across all severity levels. By
decoupling feature dimensions, the diagonal approach effectively balances geometric adaptivity with
optimization stability, successfully capturing the underlying average manifold structure.

In contrast, the full-matrix variants fail to realize their theoretical potential. The LGA-Full-Empirical
suffers from manifold distortion, as it computes covariances from noisy inference batches, thereby
incorporating the corruption structure into the metric. Even more detrimentally, the LGA-Full-Learned
exhibits the worst performance, confirming our analysis of spectral instability; the inherent difficulty
of regressing a high-dimensional, ill-conditioned inverse covariance target leads to optimization
failure. These findings confirm that the diagonal parameterization offers the most robust trade-off
between expressivity and stability for time series forecasting under corruption.

Table 8: Ablation Study on Metric Tensor Implementation (ETTm1). We compare our proposed
method (LGA-Diag-Learn) against the Full-Empirical (computed on-the-fly) and Full-Learned vari-
ants across different corruption types (Combined, Level Shift, Spike). LGA (Diag, Learn) consistently
outperforms the full-matrix variants while maintaining lower computational cost. The Full-Learned
variant suffers from optimization instability, leading to higher errors.

Scenario Combined Noise Level Shift Spike Noise
Method Diag, Learn Full, Emp Full, Learn Diag, Learn Full, Emp Full, Learn Diag, Learn Full, Emp Full, Learn
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Se
ve

ri
ty

1 0.359 0.386 0.364 0.390 0.362 0.393 0.359 0.385 0.363 0.389 0.362 0.392 0.352 0.380 0.358 0.385 0.356 0.387
2 0.372 0.397 0.380 0.403 0.376 0.403 0.370 0.395 0.378 0.401 0.375 0.402 0.353 0.381 0.359 0.385 0.357 0.388
3 0.519 0.468 0.552 0.485 0.681 0.522 0.506 0.461 0.542 0.478 0.688 0.522 0.362 0.387 0.370 0.395 0.365 0.393
4 0.617 0.526 0.656 0.545 0.755 0.573 0.602 0.516 0.643 0.536 0.766 0.573 0.367 0.393 0.379 0.402 0.371 0.398
5 0.734 0.577 0.768 0.593 0.867 0.619 0.718 0.568 0.759 0.586 0.886 0.622 0.372 0.397 0.380 0.404 0.376 0.401

D EXPERIMENTAL SETTINGS

D.1 DATASETS

We assessed our approach using six widely recognized time series forecasting datasets: Weather,3
Electricity,4 and ETT (Zhou et al., 2021) (ETTh1, ETTh2, ETTm1, ETTm2). These datasets were
selected for their diverse periodic patterns and challenging real-world prediction characteristics. Their
inherent variability and natural irregularities make them particularly suitable for evaluating robustness
under our spike and level shift corruptions, as these datasets already contain patterns similar to those
found in noisy real-world scenarios. While the traffic dataset is commonly used in benchmarks, we
excluded it due to its extremely high dimensionality (862 features). Since PatchTST employs channel
independence, different dimensions share manifold representations, making the high-dimensional
nature of traffic inherently challenging for unified manifold learning approaches. Complete dataset
specifications are provided in Table 9. All datasets are sourced from Wu et al. (2021).

Table 9: Details of 6 real-world datasets.

Datasets Features Frequency Samples Domain
Weather 21 10-min 52,696 Weather

Electricity 321 Hourly 17,544 Electricity
ETTh1 7 Hourly 17,420 Temperature
ETTh2 7 Hourly 17,420 Temperature
ETTm1 7 15-min 69,680 Temperature
ETTm2 7 15-min 69,680 Temperature

3https://www.bgc-jena.mpg.de/wetter/
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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D.2 HYPERPARAMETER SETTINGS

All experiments are conducted with 2 Intel(R) Xeon(R) Gold 6226R CPUs @ 2.90GHz and 4 NVIDIA
RTX 4090 24GB GPUs and 1 NVIDIA H100 80GB GPU. We conducted all experiments by following
the original settings of PatchTST (Nie et al., 2023), as detailed in Table 10. In addition, we fixed the
random seed to 2021 (Nie et al., 2023) to enhance experimental reproducibility. For most datasets,
the input length was set to 512 to thoroughly evaluate how effectively our proposed LGA method
embeds periodic patterns over extended temporal horizons. However, for the ETTh1 and ETTh2
datasets, we adopted an input length of 336, as this was reported to yield stable performance in the
original PatchTST paper. For a comprehensive evaluation, we examined multiple forecasting horizons
(96, 192, 336, and 720 time steps). The feed-forward network architecture follows standard practice,
expanding the dimension to 256 before reduction, with GELU activation functions applied between
linear transformations.

The synthetically generated query set, Sgen, is created based on our empirical observation that
the components of the real query vectors (Sreal) typically ranged between approximately -5 and 5.
Therefore, we generated the vectors in Sgen by sampling each component from a uniform distribution,
U(−5, 5), to ensure the network is exposed to a diverse yet relevant region of the representation
space.

Regarding baseline models, for TimeMixer (Wang et al., 2024) experiments, we applied the publicly
available hyperparameter settings that were originally optimized for input length 96, as these settings
demonstrated sufficiently strong performance even when applied to our longer input length of 512.
Similarly, for the experiments presented in Fig. 6, which examines performance across various input
lengths, we maintained these consistent hyperparameter configurations throughout all comparisons.
For CATS (Kim et al., 2024), we strictly adhered to the original hyperparameter settings as published
in the original paper.

For the iTransformer (Liu et al., 2024) implementation, we noted that publicly available hyperpa-
rameters were optimized solely for a 96-length input. As our primary goal was to conduct a fair
comparison between the standard SDP attention and our proposed LGA, we adhered to these original
settings for all iTransformer experiments. This configuration consists of a 2-layer architecture with
an embedding dimension of 128.

Table 10: Hyperparameter settings of PatchTST with an input sequence length of 512.

Datasets Layers Embedding Size # of Heads Batch Size σ2 Input Length
Weather∗ 3 128 16 128 10−2 512

Electricity∗ 3 128 16 32 10−2 512
ETTh1 3 16 4 128 10−2 336
ETTh2 3 16 4 128 10−2 336
ETTm1 3 128 16 128 10−2 512
ETTm2 3 128 16 128 10−2 512

* For weather and electricity, σ2 = 1 when H=720.

E FURTHER EXPERIMENTS ON LGA

To supplement the primary findings presented in the main text, we conducted further experiments
to validate the key design choices of our proposed methodology and to demonstrate its practical
effectiveness on real-world data.

E.1 STABILITY ANALYSIS AND DETAILED PERFORMANCE

In the main text, we demonstrated the superior robustness of LGA based on average performance
metrics. Here, we provide a comprehensive breakdown of these results to validate the training stability
and reliability of our proposed method. Table 11 presents the MSE and MAE across six benchmark
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datasets, reporting the mean and standard deviation computed over three independent runs with
different random seeds.

A critical observation from these detailed results is the stability of the learning process. As indicated
by the standard deviations (denoted by the ± values), PatchLGA consistently exhibits lower variance
across different initialization seeds compared to the baselines, particularly under high severity levels
(Severity 4-5). While standard attention mechanisms (PatchTST) often show increased performance
fluctuation when exposed to severe noise, LGA maintains a tight confidence interval. This suggests
that the local geometry prior acts as an effective regularizer, guiding the model towards robust
convergence regardless of random initialization. Consequently, LGA not only improves forecasting
accuracy but also ensures predictable and reliable deployment in real-world scenarios where data
quality is inconsistent.

Table 11: Performance comparison of PatchLGA and PatchTST across six datasets under combined,
level shift, and spike corruptions. Results are averaged across forecasting horizons {96, 192, 336,
720} and reported as Mean ± Std over 3 random seeds. This detailed breakdown highlights not only
the superior accuracy (lower MSE/MAE) but also the training stability (lower Std) of LGA compared
to the baseline.

ETTm1 PatchLGA PatchTST
Model Combined Level Shift Spike Combined Level Shift Spike
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Se
ve

ri
ty

0 0.3531 ± 0.0022 0.3815 ± 0.0024 0.3531 ± 0.0022 0.3815 ± 0.0024 0.3531 ± 0.0022 0.3815 ± 0.0024 0.3535 ± 0.0017 0.3834 ± 0.0011 0.3535 ± 0.0017 0.3834 ± 0.0011 0.3535 ± 0.0017 0.3834 ± 0.0011
1 0.3601 ± 0.0019 0.3877 ± 0.0020 0.3598 ± 0.0020 0.3869 ± 0.0020 0.3538 ± 0.0022 0.3823 ± 0.0024 0.3607 ± 0.0015 0.3901 ± 0.0010 0.3605 ± 0.0016 0.3897 ± 0.0009 0.3540 ± 0.0017 0.3839 ± 0.0011
2 0.3737 ± 0.0022 0.3985 ± 0.0016 0.3718 ± 0.0021 0.3971 ± 0.0019 0.3547 ± 0.0023 0.3828 ± 0.0023 0.3762 ± 0.0013 0.4026 ± 0.0005 0.3749 ± 0.0012 0.4018 ± 0.0007 0.3547 ± 0.0017 0.3848 ± 0.0010
3 0.5141 ± 0.0050 0.4683 ± 0.0010 0.5022 ± 0.0041 0.4614 ± 0.0012 0.3627 ± 0.0018 0.3892 ± 0.0019 0.5969 ± 0.0198 0.5006 ± 0.0071 0.5897 ± 0.0200 0.4952 ± 0.0071 0.3655 ± 0.0013 0.3927 ± 0.0009
4 0.6110 ± 0.0075 0.5261 ± 0.0023 0.5960 ± 0.0068 0.5160 ± 0.0020 0.3678 ± 0.0017 0.3950 ± 0.0016 0.6807 ± 0.0217 0.5532 ± 0.0080 0.6763 ± 0.0232 0.5484 ± 0.0086 0.3706 ± 0.0014 0.3978 ± 0.0006
5 0.7265 ± 0.0098 0.5768 ± 0.0029 0.7122 ± 0.0089 0.5677 ± 0.0030 0.3723 ± 0.0013 0.3982 ± 0.0014 0.8232 ± 0.0270 0.6084 ± 0.0084 0.8312 ± 0.0297 0.6073 ± 0.0091 0.3761 ± 0.0016 0.4021 ± 0.0008

ETTm2 PatchLGA PatchTST
Model Combined Level Shift Spike Combined Level Shift Spike
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Se
ve

ri
ty

0 0.2575 ± 0.0002 0.3158 ± 0.0002 0.2575 ± 0.0002 0.3158 ± 0.0002 0.2575 ± 0.0002 0.3158 ± 0.0002 0.2553 ± 0.0007 0.3157 ± 0.0009 0.2553 ± 0.0007 0.3157 ± 0.0009 0.2553 ± 0.0007 0.3157 ± 0.0009
1 0.2643 ± 0.0004 0.3253 ± 0.0002 0.2636 ± 0.0006 0.3242 ± 0.0003 0.2583 ± 0.0003 0.3170 ± 0.0003 0.2633 ± 0.0011 0.3266 ± 0.0010 0.2625 ± 0.0009 0.3255 ± 0.0011 0.2562 ± 0.0008 0.3169 ± 0.0008
2 0.2762 ± 0.0002 0.3349 ± 0.0005 0.2742 ± 0.0001 0.3324 ± 0.0003 0.2596 ± 0.0001 0.3188 ± 0.0004 0.2757 ± 0.0009 0.3362 ± 0.0013 0.2736 ± 0.0008 0.3338 ± 0.0012 0.2577 ± 0.0010 0.3189 ± 0.0010
3 0.3034 ± 0.0004 0.3547 ± 0.0003 0.2993 ± 0.0006 0.3506 ± 0.0003 0.2616 ± 0.0001 0.3214 ± 0.0004 0.3068 ± 0.0014 0.3584 ± 0.0015 0.3029 ± 0.0009 0.3546 ± 0.0013 0.2601 ± 0.0009 0.3216 ± 0.0013
4 0.3567 ± 0.0020 0.3950 ± 0.0008 0.3513 ± 0.0026 0.3903 ± 0.0010 0.2640 ± 0.0002 0.3247 ± 0.0006 0.3598 ± 0.0020 0.3987 ± 0.0016 0.3563 ± 0.0013 0.3949 ± 0.0011 0.2622 ± 0.0010 0.3246 ± 0.0016
5 0.4233 ± 0.0040 0.4286 ± 0.0017 0.4155 ± 0.0048 0.4225 ± 0.0020 0.2672 ± 0.0004 0.3279 ± 0.0006 0.4294 ± 0.0032 0.4324 ± 0.0021 0.4246 ± 0.0022 0.4275 ± 0.0015 0.2659 ± 0.0014 0.3281 ± 0.0016

Weather PatchLGA PatchTST
Model Combined Level Shift Spike Combined Level Shift Spike
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Se
ve

ri
ty

0 0.2271 ± 0.0004 0.2656 ± 0.0005 0.2271 ± 0.0004 0.2656 ± 0.0005 0.2271 ± 0.0004 0.2656 ± 0.0005 0.2254 ± 0.0004 0.2647 ± 0.0006 0.2254 ± 0.0004 0.2647 ± 0.0006 0.2254 ± 0.0004 0.2647 ± 0.0006
1 0.2391 ± 0.0012 0.2848 ± 0.0009 0.2382 ± 0.0012 0.2828 ± 0.0011 0.2280 ± 0.0004 0.2681 ± 0.0005 0.2401 ± 0.0009 0.2860 ± 0.0018 0.2392 ± 0.0012 0.2841 ± 0.0017 0.2266 ± 0.0001 0.2673 ± 0.0005
2 0.2644 ± 0.0012 0.3137 ± 0.0014 0.2617 ± 0.0011 0.3093 ± 0.0014 0.2298 ± 0.0006 0.2709 ± 0.0007 0.2680 ± 0.0022 0.3165 ± 0.0025 0.2661 ± 0.0025 0.3131 ± 0.0027 0.2288 ± 0.0004 0.2703 ± 0.0007
3 0.3015 ± 0.0031 0.3398 ± 0.0021 0.2974 ± 0.0033 0.3331 ± 0.0021 0.2321 ± 0.0006 0.2740 ± 0.0009 0.3111 ± 0.0049 0.3443 ± 0.0042 0.3083 ± 0.0055 0.3392 ± 0.0045 0.2308 ± 0.0001 0.2736 ± 0.0007
4 0.3623 ± 0.0036 0.3908 ± 0.0021 0.3522 ± 0.0034 0.3776 ± 0.0021 0.2345 ± 0.0004 0.2840 ± 0.0007 0.3787 ± 0.0104 0.3904 ± 0.0057 0.3697 ± 0.0120 0.3801 ± 0.0071 0.2334 ± 0.0008 0.2833 ± 0.0015
5 0.4547 ± 0.0038 0.4256 ± 0.0026 0.4373 ± 0.0034 0.4086 ± 0.0026 0.2387 ± 0.0007 0.2898 ± 0.0009 0.5062 ± 0.0174 0.4311 ± 0.0075 0.4868 ± 0.0191 0.4167 ± 0.0091 0.2365 ± 0.0009 0.2880 ± 0.0015

ETTh1 PatchLGA PatchTST
Model Combined Level Shift Spike Combined Level Shift Spike
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Se
ve

ri
ty

0 0.4158 ± 0.0010 0.4293 ± 0.0009 0.4158 ± 0.0010 0.4293 ± 0.0009 0.4158 ± 0.0010 0.4293 ± 0.0009 0.4137 ± 0.0027 0.4279 ± 0.0020 0.4137 ± 0.0027 0.4279 ± 0.0020 0.4137 ± 0.0027 0.4279 ± 0.0020
1 0.4168 ± 0.0009 0.4307 ± 0.0008 0.4166 ± 0.0010 0.4305 ± 0.0009 0.4161 ± 0.0009 0.4296 ± 0.0008 0.4145 ± 0.0026 0.4294 ± 0.0021 0.4145 ± 0.0026 0.4290 ± 0.0020 0.4138 ± 0.0026 0.4281 ± 0.0022
2 0.4215 ± 0.0011 0.4358 ± 0.0009 0.4209 ± 0.0010 0.4347 ± 0.0008 0.4160 ± 0.0011 0.4302 ± 0.0010 0.4193 ± 0.0030 0.4348 ± 0.0020 0.4189 ± 0.0028 0.4333 ± 0.0020 0.4141 ± 0.0027 0.4291 ± 0.0022
3 0.4732 ± 0.0034 0.4667 ± 0.0015 0.4682 ± 0.0032 0.4622 ± 0.0014 0.4202 ± 0.0010 0.4336 ± 0.0009 0.4740 ± 0.0049 0.4668 ± 0.0029 0.4690 ± 0.0049 0.4621 ± 0.0027 0.4187 ± 0.0032 0.4326 ± 0.0022
4 0.5508 ± 0.0052 0.5119 ± 0.0020 0.5352 ± 0.0054 0.5018 ± 0.0023 0.4298 ± 0.0011 0.4407 ± 0.0010 0.5503 ± 0.0048 0.5122 ± 0.0027 0.5352 ± 0.0044 0.5024 ± 0.0030 0.4295 ± 0.0039 0.4402 ± 0.0024
5 0.7185 ± 0.0115 0.5826 ± 0.0031 0.6878 ± 0.0114 0.5658 ± 0.0033 0.4424 ± 0.0013 0.4499 ± 0.0012 0.7239 ± 0.0073 0.5857 ± 0.0041 0.6982 ± 0.0075 0.5705 ± 0.0050 0.4438 ± 0.0050 0.4503 ± 0.0026

ETTh2 PatchLGA PatchTST
Model Combined Level Shift Spike Combined Level Shift Spike
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Se
ve

ri
ty

0 0.3395 ± 0.0023 0.3860 ± 0.0022 0.3395 ± 0.0023 0.3860 ± 0.0022 0.3395 ± 0.0023 0.3860 ± 0.0022 0.3370 ± 0.0074 0.3837 ± 0.0036 0.3370 ± 0.0074 0.3837 ± 0.0036 0.3370 ± 0.0074 0.3837 ± 0.0036
1 0.3403 ± 0.0024 0.3887 ± 0.0027 0.3400 ± 0.0025 0.3877 ± 0.0025 0.3398 ± 0.0024 0.3870 ± 0.0022 0.3377 ± 0.0069 0.3856 ± 0.0033 0.3373 ± 0.0070 0.3847 ± 0.0034 0.3374 ± 0.0073 0.3845 ± 0.0036
2 0.3485 ± 0.0038 0.3987 ± 0.0037 0.3490 ± 0.0034 0.3977 ± 0.0032 0.3392 ± 0.0028 0.3879 ± 0.0029 0.3436 ± 0.0058 0.3938 ± 0.0026 0.3446 ± 0.0066 0.3937 ± 0.0029 0.3361 ± 0.0065 0.3844 ± 0.0033
3 0.3640 ± 0.0063 0.4108 ± 0.0050 0.3636 ± 0.0054 0.4084 ± 0.0044 0.3408 ± 0.0035 0.3902 ± 0.0035 0.3568 ± 0.0054 0.4040 ± 0.0026 0.3574 ± 0.0065 0.4032 ± 0.0031 0.3372 ± 0.0062 0.3862 ± 0.0031
4 0.3877 ± 0.0055 0.4276 ± 0.0039 0.3820 ± 0.0051 0.4230 ± 0.0035 0.3462 ± 0.0040 0.3938 ± 0.0034 0.3854 ± 0.0047 0.4240 ± 0.0026 0.3803 ± 0.0059 0.4196 ± 0.0031 0.3425 ± 0.0065 0.3901 ± 0.0032
5 0.4143 ± 0.0092 0.4413 ± 0.0054 0.4083 ± 0.0086 0.4363 ± 0.0051 0.3476 ± 0.0048 0.3957 ± 0.0040 0.4203 ± 0.0058 0.4423 ± 0.0033 0.4142 ± 0.0072 0.4370 ± 0.0035 0.3429 ± 0.0061 0.3912 ± 0.0027

Electricity PatchLGA PatchTST
Model Combined Level Shift Spike Combined Level Shift Spike
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Se
ve

ri
ty

0 0.1614 ± 0.0007 0.2559 ± 0.0006 0.1614 ± 0.0007 0.2559 ± 0.0006 0.1614 ± 0.0007 0.2559 ± 0.0006 0.1600 ± 0.0003 0.2541 ± 0.0004 0.1600 ± 0.0003 0.2541 ± 0.0004 0.1600 ± 0.0003 0.2541 ± 0.0004
1 0.1686 ± 0.0007 0.2645 ± 0.0007 0.1677 ± 0.0006 0.2632 ± 0.0009 0.1623 ± 0.0007 0.2574 ± 0.0006 0.1691 ± 0.0003 0.2648 ± 0.0004 0.1681 ± 0.0003 0.2634 ± 0.0004 0.1613 ± 0.0004 0.2560 ± 0.0003
2 0.1795 ± 0.0007 0.2765 ± 0.0007 0.1766 ± 0.0005 0.2728 ± 0.0009 0.1641 ± 0.0009 0.2598 ± 0.0005 0.1828 ± 0.0010 0.2788 ± 0.0008 0.1803 ± 0.0012 0.2752 ± 0.0010 0.1633 ± 0.0004 0.2589 ± 0.0003
3 0.1928 ± 0.0010 0.2879 ± 0.0010 0.1887 ± 0.0008 0.2828 ± 0.0010 0.1654 ± 0.0006 0.2613 ± 0.0006 0.1993 ± 0.0010 0.2923 ± 0.0009 0.1963 ± 0.0017 0.2873 ± 0.0010 0.1651 ± 0.0004 0.2610 ± 0.0005
4 0.2252 ± 0.0015 0.3166 ± 0.0014 0.2164 ± 0.0013 0.3072 ± 0.0016 0.1693 ± 0.0007 0.2662 ± 0.0005 0.2321 ± 0.0010 0.3212 ± 0.0004 0.2272 ± 0.0025 0.3132 ± 0.0004 0.1693 ± 0.0003 0.2664 ± 0.0005
5 0.2817 ± 0.0043 0.3504 ± 0.0028 0.2698 ± 0.0044 0.3388 ± 0.0031 0.1731 ± 0.0005 0.2704 ± 0.0005 0.2929 ± 0.0032 0.3579 ± 0.0005 0.2877 ± 0.0055 0.3482 ± 0.0004 0.1746 ± 0.0001 0.2721 ± 0.0004

E.2 ADDITIONAL EXPERIMENTS ON OTHER MODELS

To demonstrate the broad applicability of our method beyond standard Transformer architectures,
we extended our evaluation to Samformer (Ilbert et al., 2024), a state-of-the-art model distinguished
by its linear complexity and channel-wise attention mechanism. In this experiment, we analyzed
four model variants on the ETTm1 dataset: the original Samformer, Samformer with LGA, and
their respective “Patch” versions where the input time series is processed via patch embedding. The
detailed results across all forecasting horizons and corruption severity levels are summarized in Table
12.

The experimental results highlight a critical interaction between the model’s structural bias and the
input representation. A notable finding is the severe vulnerability introduced by patching in linear
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Table 12: Detailed performance comparison of Samformer Ilbert et al. (2024) and PatchSamformer
variants on the ETTm1 dataset with input length 512 under combined corruptions. PatchSamformer
denotes the application of patch embedding to the Samformer architecture. While patching induces
significant vulnerability to noise in the linear Samformer model (SDP), LGA successfully stabilizes
the architecture, achieving the lowest error rates across varying severity levels.

ETTm1 H 96 192 336 720
Mod. Atten. Metric 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Sa
m

fo
rm

er LGA MSE 0.319 0.336 0.510 0.659 0.802 0.354 0.369 0.522 0.655 0.767 0.378 0.393 0.533 0.653 0.755 0.429 0.442 0.564 0.675 0.755
MAE 0.363 0.378 0.456 0.532 0.593 0.382 0.394 0.469 0.539 0.591 0.393 0.405 0.477 0.543 0.592 0.422 0.432 0.499 0.560 0.600

SDP MSE 0.327 0.348 0.534 0.680 0.860 0.357 0.373 0.527 0.660 0.796 0.383 0.399 0.540 0.648 0.776 0.433 0.448 0.589 0.700 0.804
MAE 0.366 0.382 0.470 0.546 0.619 0.383 0.396 0.474 0.544 0.602 0.397 0.410 0.482 0.543 0.598 0.426 0.437 0.510 0.569 0.617

Pa
tc

h
Sa

m
fo

rm
er LGA MSE 0.332 0.350 0.459 0.577 0.715 0.363 0.376 0.469 0.586 0.673 0.380 0.392 0.489 0.576 0.656 0.433 0.443 0.533 0.613 0.685

MAE 0.367 0.381 0.437 0.500 0.561 0.383 0.394 0.448 0.513 0.557 0.396 0.405 0.455 0.505 0.547 0.424 0.431 0.482 0.529 0.566

SDP MSE 0.373 0.410 0.852 1.171 1.465 0.371 0.401 0.779 0.978 1.240 0.403 0.432 0.931 1.154 1.444 0.438 0.459 0.786 0.952 1.100
MAE 0.407 0.430 0.599 0.708 0.783 0.408 0.427 0.580 0.656 0.723 0.423 0.441 0.628 0.711 0.776 0.436 0.450 0.586 0.654 0.688

architectures. As observed in the “PatchSamformer + SDP” results, applying patch embedding to
Samformer leads to catastrophic performance degradation under realistic corruptions. For instance,
at the shortest horizon (H = 96) with Severity 5, the MSE soars to 1.465. We attribute this
instability to the architectural design of Samformer; unlike conventional Transformers, it does not
incorporate a non-linear Feed-Forward Network (FFN) after the attention block. Consequently, the
high-dimensional linear projections inherent to patching appear to amplify input noise without the
filtering or buffering effects typically provided by non-linear layers, making the model hypersensitive
to corruptions.

However, replacing the standard attention with LGA in this vulnerable architecture completely
reverses the degradation. The “PatchSamformer + LGA” variant not only recovers from the failure
observed in the SDP counterpart but also achieves the highest robustness among all compared models.
For example, at the longest forecasting horizon (H = 720) under maximum corruption (Severity
5), LGA reduces the MSE from 1.100 (SDP) to 0.685, significantly outperforming even the original
Samformer baseline (0.804). This empirical evidence suggests that the local geometry prior of LGA
acts as a potent regularizer, effectively stabilizing the attention mechanism and preventing overfitting
to noise, even in high-dimensional feature spaces that lack non-linear protection. These findings
confirm that LGA is a versatile and critical component for enhancing robustness across diverse
architectural paradigms.

E.3 EVALUATION ON SYNTHETIC BENCHMARKS

To rigorously validate the robustness of PatchLGA under theoretically controlled conditions, we
conducted additional experiments utilizing the synthetic benchmark framework proposed by Janßen
et al. Janßen et al. (2025). Unlike TSRBench, which injects corruptions into real-world data, this
framework generates purely synthetic multivariate time series with parameterizable frequency and
noise characteristics.

E.3.1 EXPERIMENTAL SETUP

Following the protocol in Janßen et al. (2025), we generated synthetic datasets across 7 distinct
frequency bands, ranging from ‘Very Low’ to ‘Very High’. For each frequency band, we constructed
a multivariate dataset by combining three signal types (Sine, Smooth Square, and Smooth Sawtooth)
with five distinct noise types (White, Brownian, Impulse, Trend-dependent, and Seasonal-dependent)
under four SNR levels.

Consistent with our main experiments, the models were trained with an input sequence length of 512.
We evaluated the forecasting performance across four prediction horizons H ∈ {96, 192, 336, 720}.
This setup allows us to assess the model’s capability to recover intrinsic signal geometry from noisy
inputs across varying temporal scales.

E.3.2 RESULTS

Table 13 presents the detailed performance comparison between PatchLGA and the PatchTST
baseline.
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Table 13: MSE comparison of PatchLGA and PatchTST on the synthetic benchmark by Janßen et al.
(2025). Models were trained with an input length of 512 and evaluated across four prediction horizons
H ∈ {96, 192, 336, 720}. PatchLGA demonstrates superior accuracy (lower MSE) compared to the
baseline across most frequency bands.

Freq. Very High High Mid-High Mid Low-Mid Low Very Low
Attn Type SDP LGA SDP LGA SDP LGA SDP LGA SDP LGA SDP LGA SDP LGA

H
or

iz
on

96 0.070 0.070 0.106 0.102 0.114 0.111 0.098 0.098 0.091 0.090 0.082 0.080 0.143 0.138
192 0.070 0.070 0.105 0.101 0.114 0.111 0.098 0.098 0.091 0.090 0.082 0.080 0.143 0.138
336 0.068 0.068 0.101 0.097 0.111 0.108 0.089 0.089 0.083 0.083 0.085 0.083 0.140 0.136
720 0.062 0.062 0.090 0.086 0.108 0.105 0.072 0.072 0.066 0.066 0.097 0.095 0.128 0.124

The results indicate that PatchLGA consistently outperforms or matches PatchTST across different
frequency characteristics and forecasting horizons. Notably, (Janßen et al., 2025) highlight that models
typically degrade in the‘Very Low’ frequency band because the lookback window may not capture
complete periodic cycles. In this challenging regime, PatchLGA achieves a distinct improvement
(e.g., reducing MSE from 0.143 to 0.138 at H = 96), suggesting that LGA’s manifold learning
capability effectively captures intrinsic geometric structures even when temporal periodicity is locally
ambiguous. Furthermore, LGA maintains superiority in ‘High’ frequency bands, demonstrating its
versatility in handling rapid fluctuations contaminated by complex noise.

Combining these findings with our TSRBench results, we conclude that LGA offers robust perfor-
mance in both real-world data with injected anomalies (TSRBench) and theoretically controlled
synthetic environments (Janßen et al. (2025)), validating its generalizability.

E.4 VISUALIZATION OF ATTENTION GEOMETRY

To intuitive understand how LGA handles corruptions discussed in the main text, we visualize the
attention score distribution in the latent space. We utilize Principal Component Analysis (PCA) to
project the key and query vectors from a representative attention head into 2D space. The experiment
was conducted on the ETTm1 dataset under Severity Level 5 corruption.
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(a) Standard Dot-Product (SDP) Attention
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(b) Local Geometry Attention (LGA)

Figure 7: PCA visualization of attention scores under corruption. The dark-colored “Corrupted”
points correspond directly to the red-shaded noisy regions shown in Figure 3. The size of each point
represents the attention score magnitude. (a) SDP assigns high attention weights (large dots) to these
noisy regions, being distracted by their magnitude. (b) LGA assigns negligible weights (tiny dots) to
the same red-shaded noisy regions, effectively suppressing them due to their location in low-density
areas of the manifold.
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As observed in Figure 7, standard SDP attention (a) is prone to distraction by outliers, assigning them
large weights. In contrast, LGA (b) successfully suppresses these outliers, assigning them minimal
attention weights due to their distance from the high-density data manifold.

E.5 IMPACT OF QUERY SET SELECTION ON PERFORMANCE

We conduct an ablation study to validate our choice of using a combined query set (Sboth) for training
the metric prediction network, as detailed in Section 3.4. As shown in Table 14, using the combined
set of real and synthetic queries consistently outperforms using either set alone, especially under
severe corruption. This result confirms that a broader query coverage is crucial for robustly learning
the local geometry of the data manifold.

Table 14: Ablation study on the query set selection for ETTm1, showing average MSE and MAE
across all forecasting horizons. Lower values are better, with the best results highlighted in bold.

Severity 1 2 3 4 5
Query Set Sboth Sgen Sreal Sboth Sgen Sreal Sboth Sgen Sreal Sboth Sgen Sreal Sboth Sgen Sreal

MSE 0.359 0.358 0.360 0.372 0.371 0.374 0.519 0.524 0.525 0.617 0.630 0.626 0.734 0.752 0.744
MAE 0.385 0.387 0.386 0.397 0.398 0.398 0.468 0.473 0.471 0.526 0.534 0.531 0.577 0.586 0.582

E.6 VALIDATION ON REAL-WORLD ANOMALOUS DATA AND THE NECESSITY OF A
PRINCIPLED BENCHMARK

To complement the results from our TSRBench, we conducted an additional experiment on a dataset
containing genuine, unscripted anomalies. This validation aims to demonstrate that the robustness
of LGA extends beyond controlled, synthetic corruptions to the unpredictable nature of real-world
operational data.

For this purpose, we used the AWSCloudWatch dataset from the widely-recognized Numenta
Anomaly Benchmark (NAB) (Lavin & Ahmad, 2015). This univariate time series represents AWS
EC2 server CPU utilization and includes labeled periods of naturally occurring anomalous behavior.
For the experiment, we used the same hyperparameter settings as the ETTm1 experiments, with an
input sequence length of 1024 and a forecasting horizon of 96.

Table 15: Performance on the AWS CloudWatch dataset. The lower MAE indicates superior
performance on real-world anomalous data.

Model MAE
PatchTST 7.97
PatchLGA (Ours) 6.22

The results in Table 15 show that PatchLGA significantly outperforms the baseline, achieving a 22%
reduction in MAE. This provides strong empirical evidence that local geometry-aware approach of
LGA is highly effective in mitigating the impact of genuine, real-world anomalies.

However, it is important to highlight that conducting such validation for forecasting robustness is
often infeasible with most publicly available datasets. A fair and rigorous evaluation requires several
critical conditions to be met:

• Availability of precise anomaly labels: To verify that a model is robustly forecasting the
"normal" underlying pattern, the evaluation metric (e.g., MSE, MAE) must be calculated on
a ground truth that excludes the anomalous periods. Most forecasting benchmarks do not
provide such granular labels.

• No time lag in anomaly labels: Even when labels are available, a time lag between the
actual anomaly occurrence and its timestamp in the data makes it impossible to accurately
identify which input segments are corrupted and which future segments should be excluded
from evaluation. This limitation renders most anomaly detection datasets unsuitable for this
specific validation purpose.
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These strict requirements underscore the challenge of using "in-the-wild" datasets for reproducible
robustness research. In such scenarios, our TSRBench becomes particularly useful as it enables a
controlled and systematic evaluation of robustness. By providing clean training data and systemati-
cally corrupted test sets with known corruption boundaries, TSRBench allows for a comprehensive
robustness assessment that would be difficult, if not impossible, to achieve with purely real-world
datasets where the nature, extent, and precise timing of corruptions are unknown and uncontrolled.

F ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

In Section 5, we provided averaged MSE results across forecasting horizons to demonstrate the
robustness of PatchLGA compared to baseline models.This section presents the complete experimental
results across all datasets, forecasting horizons, and corruption scenarios. These detailed results
not only validate our main findings but also provide deeper insights into how different architectures
respond to various levels and types of corruptions under specific forecasting conditions.

F.1 DETAILED PERFORMANCE ANALYSIS OF LONG-TERM FORECASTING UNDER REALISTIC
CORRUPTIONS

We provide the full results of Section 5.1 for each dataset (ETTm1, ETTm2, Weather, ETTh1, ETTh2,
and Electricity) across all forecasting horizons in Table 16, and 17. These detailed results expand on
the average performance presented in Table 11.

The complete dataset results demonstrate several important patterns. While PatchLGA generally
outperforms baselines across most corruption types, the performance differences vary by corruption
type. For level shifts, PatchLGA consistently shows superior robustness across most datasets and
forecasting horizons. For spike corruptions, all models demonstrate relatively less performance
degradation compared to other corruption types, with both PatchLGA and PatchTST maintaining
reasonable robustness. However, the most significant finding appears in combined corruption scenar-
ios (both spikes and level shifts occurring simultaneously). In these realistic cases, PatchTST and
TimeMixer often exhibit performance degradation considerably exceeding what would be expected
from the individual corruption types alone, suggesting a compounding effect. PatchLGA, in contrast,
maintains more consistent performance even under these challenging combined corruptions.

F.2 EXTENDED EVALUATION OF ATTENTION MECHANISM ROBUSTNESS

In this section, we provide a more detailed analysis of the effectiveness of LGA across different
attention mechanisms. Table 18 presents the complete performance results across all forecasting
horizons and severity levels for three representative attention mechanisms: self-temporal attention
(PatchTST), cross-temporal attention (CATS), and self-channel attention (iTransformer).

The detailed results in Table 18 confirm and extend our primary findings. A consistent trend across all
architectures is that the performance gains from LGA become increasingly pronounced as corruption
severity increases. For lower severity levels (1-2), the improvements are often modest, but as
corruptions intensify (levels 3-5), the ability of LGA to adapt to the local data geometry provides a
clear and substantial advantage. The analysis reveals distinct patterns based on the attention type:

• Self-Temporal Attention (PatchTST): This mechanism consistently demonstrates the
greatest performance improvements when enhanced with LGA. The benefits are particularly
significant for longer forecasting horizons under severe corruption. For example, at severity
level 5 with a 336-step forecasting horizon, LGA reduces the MSE by 16.1% compared to
standard SDP attention (from 0.818 to 0.686).

• Cross-Temporal Attention (CATS): LGA also enhances the robustness of cross-attention,
although the improvements are less uniform than in the self-attention case. For instance, at
a 720-step horizon with severity level 5, LGA improves the MSE by 21.5% (from 1.255 to
0.985). This aligns with our main analysis that operating on linearly embedded noisy inputs
can sometimes limit the consistency of performance gains.

• Self-Channel Attention (iTransformer): For this mechanism, LGA offers modest but
stable improvements, particularly under high-severity corruption. The linear embedding
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Table 16: Full experimental result on ETTm1, ETTm2, weather with 512 input lengths.

ETTm1 Combined Level Shift Spike
Model PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer

H Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96

1 0.297 0.353 0.304 0.357 0.307 0.363 0.297 0.352 0.304 0.356 0.306 0.363 0.289 0.345 0.293 0.346 0.300 0.357
2 0.314 0.368 0.326 0.377 0.335 0.383 0.312 0.366 0.325 0.376 0.332 0.380 0.289 0.346 0.294 0.348 0.303 0.359
3 0.527 0.456 0.625 0.497 0.619 0.490 0.511 0.447 0.616 0.490 0.602 0.481 0.302 0.354 0.310 0.361 0.314 0.368
4 0.657 0.530 0.743 0.566 0.769 0.558 0.641 0.519 0.746 0.563 0.742 0.544 0.309 0.363 0.318 0.369 0.323 0.375
5 0.820 0.594 0.944 0.636 0.953 0.629 0.802 0.584 0.954 0.634 0.924 0.615 0.316 0.368 0.326 0.375 0.329 0.379

19
2

1 0.341 0.376 0.342 0.378 0.342 0.380 0.340 0.376 0.341 0.378 0.341 0.380 0.333 0.370 0.335 0.372 0.337 0.376
2 0.354 0.388 0.357 0.391 0.358 0.393 0.351 0.386 0.355 0.390 0.356 0.391 0.334 0.371 0.336 0.373 0.338 0.377
3 0.504 0.462 0.581 0.491 0.537 0.474 0.491 0.455 0.574 0.486 0.525 0.467 0.343 0.378 0.346 0.380 0.346 0.384
4 0.603 0.521 0.661 0.542 0.643 0.527 0.587 0.511 0.657 0.538 0.625 0.517 0.348 0.384 0.349 0.385 0.351 0.390
5 0.722 0.573 0.812 0.601 0.740 0.574 0.707 0.564 0.823 0.601 0.725 0.565 0.353 0.387 0.354 0.389 0.355 0.392

33
6

1 0.372 0.392 0.370 0.397 0.381 0.407 0.372 0.391 0.370 0.397 0.381 0.407 0.366 0.387 0.364 0.392 0.376 0.403
2 0.385 0.402 0.383 0.408 0.396 0.418 0.383 0.400 0.382 0.407 0.395 0.417 0.368 0.388 0.365 0.393 0.377 0.403
3 0.502 0.465 0.630 0.519 0.600 0.511 0.490 0.458 0.624 0.514 0.590 0.506 0.375 0.394 0.375 0.400 0.383 0.409
4 0.586 0.516 0.692 0.563 0.709 0.567 0.570 0.506 0.688 0.559 0.692 0.558 0.379 0.399 0.379 0.405 0.390 0.415
5 0.686 0.564 0.818 0.611 0.829 0.622 0.670 0.554 0.831 0.612 0.814 0.614 0.383 0.402 0.382 0.408 0.395 0.418

72
0

1 0.425 0.421 0.420 0.424 0.436 0.432 0.425 0.420 0.420 0.424 0.435 0.431 0.420 0.417 0.416 0.421 0.430 0.427
2 0.436 0.429 0.433 0.432 0.449 0.441 0.435 0.428 0.432 0.431 0.447 0.439 0.421 0.417 0.416 0.421 0.431 0.428
3 0.543 0.488 0.622 0.519 0.620 0.524 0.533 0.482 0.616 0.514 0.605 0.515 0.427 0.423 0.425 0.426 0.442 0.436
4 0.623 0.536 0.684 0.562 0.745 0.587 0.609 0.526 0.673 0.554 0.722 0.575 0.431 0.427 0.430 0.430 0.447 0.442
5 0.709 0.578 0.782 0.604 0.828 0.626 0.694 0.568 0.785 0.601 0.806 0.614 0.435 0.430 0.435 0.433 0.452 0.444

ETTm2 Combined Level Shift Spike
Model PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer

H Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96

1 0.177 0.269 0.178 0.270 0.181 0.273 0.176 0.267 0.177 0.269 0.180 0.272 0.168 0.258 0.167 0.257 0.173 0.263
2 0.194 0.283 0.193 0.283 0.196 0.286 0.191 0.280 0.191 0.281 0.194 0.283 0.169 0.260 0.169 0.260 0.174 0.265
3 0.232 0.308 0.236 0.311 0.234 0.313 0.228 0.304 0.233 0.307 0.229 0.307 0.171 0.263 0.171 0.263 0.176 0.269
4 0.302 0.358 0.304 0.359 0.305 0.362 0.297 0.353 0.302 0.356 0.296 0.355 0.175 0.267 0.175 0.267 0.180 0.273
5 0.396 0.399 0.400 0.401 0.409 0.410 0.388 0.393 0.398 0.396 0.394 0.400 0.179 0.270 0.180 0.270 0.185 0.277

19
2

1 0.231 0.305 0.232 0.308 0.234 0.309 0.230 0.304 0.231 0.307 0.233 0.309 0.224 0.296 0.224 0.297 0.228 0.301
2 0.244 0.316 0.246 0.319 0.248 0.321 0.242 0.313 0.244 0.316 0.247 0.318 0.226 0.298 0.226 0.300 0.229 0.302
3 0.273 0.337 0.280 0.343 0.281 0.346 0.269 0.332 0.276 0.339 0.278 0.342 0.228 0.301 0.228 0.303 0.231 0.305
4 0.327 0.379 0.336 0.386 0.344 0.393 0.321 0.374 0.332 0.382 0.339 0.389 0.230 0.304 0.230 0.306 0.233 0.307
5 0.395 0.414 0.411 0.422 0.437 0.438 0.387 0.407 0.406 0.417 0.427 0.432 0.234 0.308 0.234 0.310 0.236 0.311

33
6

1 0.283 0.338 0.280 0.339 0.287 0.347 0.282 0.338 0.279 0.338 0.287 0.346 0.279 0.331 0.275 0.331 0.284 0.339
2 0.294 0.347 0.292 0.348 0.302 0.357 0.292 0.344 0.289 0.346 0.300 0.355 0.280 0.333 0.276 0.332 0.285 0.340
3 0.317 0.364 0.318 0.368 0.335 0.382 0.312 0.360 0.313 0.364 0.332 0.379 0.282 0.335 0.279 0.335 0.286 0.343
4 0.363 0.402 0.364 0.406 0.409 0.432 0.358 0.397 0.359 0.401 0.408 0.431 0.284 0.339 0.280 0.338 0.286 0.343
5 0.419 0.432 0.421 0.435 0.505 0.476 0.411 0.426 0.414 0.430 0.502 0.474 0.287 0.342 0.284 0.342 0.287 0.346

72
0

1 0.366 0.390 0.368 0.394 0.360 0.393 0.365 0.389 0.367 0.393 0.359 0.392 0.362 0.384 0.362 0.386 0.356 0.387
2 0.374 0.396 0.376 0.400 0.370 0.400 0.372 0.394 0.374 0.398 0.368 0.398 0.363 0.386 0.364 0.388 0.357 0.388
3 0.392 0.411 0.399 0.418 0.391 0.415 0.388 0.407 0.394 0.414 0.387 0.412 0.365 0.388 0.366 0.391 0.360 0.391
4 0.431 0.441 0.441 0.450 0.435 0.447 0.425 0.436 0.435 0.445 0.432 0.444 0.367 0.391 0.368 0.394 0.359 0.392
5 0.475 0.466 0.491 0.477 0.485 0.475 0.466 0.460 0.482 0.471 0.480 0.470 0.370 0.394 0.372 0.397 0.361 0.395

Weather Combined Level Shift Spike
Model PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer

H Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96

1 0.165 0.224 0.167 0.224 0.161 0.217 0.164 0.221 0.165 0.222 0.160 0.215 0.150 0.204 0.150 0.202 0.149 0.201
2 0.197 0.256 0.202 0.259 0.189 0.244 0.195 0.251 0.199 0.254 0.187 0.240 0.153 0.208 0.153 0.206 0.150 0.203
3 0.244 0.285 0.256 0.288 0.240 0.272 0.241 0.278 0.252 0.281 0.235 0.267 0.155 0.211 0.155 0.210 0.152 0.206
4 0.309 0.343 0.323 0.338 0.349 0.336 0.306 0.333 0.310 0.324 0.333 0.323 0.161 0.224 0.160 0.221 0.155 0.214
5 0.407 0.378 0.453 0.378 0.509 0.381 0.401 0.366 0.429 0.359 0.483 0.365 0.166 0.230 0.164 0.227 0.158 0.219

19
2

1 0.209 0.264 0.209 0.263 0.206 0.262 0.208 0.262 0.208 0.261 0.205 0.260 0.196 0.245 0.198 0.247 0.192 0.244
2 0.239 0.296 0.234 0.292 0.239 0.293 0.236 0.291 0.232 0.288 0.236 0.289 0.197 0.248 0.200 0.249 0.194 0.246
3 0.278 0.321 0.279 0.321 0.294 0.325 0.273 0.314 0.276 0.316 0.288 0.319 0.200 0.252 0.201 0.252 0.196 0.249
4 0.340 0.374 0.358 0.370 0.400 0.392 0.330 0.360 0.346 0.359 0.383 0.378 0.204 0.263 0.203 0.261 0.199 0.258
5 0.417 0.403 0.512 0.418 0.544 0.437 0.402 0.385 0.487 0.403 0.516 0.419 0.209 0.269 0.206 0.266 0.202 0.263

33
6

1 0.257 0.301 0.259 0.303 0.260 0.306 0.256 0.299 0.258 0.301 0.259 0.304 0.248 0.285 0.246 0.284 0.247 0.288
2 0.277 0.326 0.287 0.334 0.292 0.339 0.275 0.323 0.285 0.331 0.289 0.335 0.249 0.288 0.248 0.287 0.248 0.290
3 0.307 0.350 0.323 0.359 0.339 0.369 0.303 0.344 0.320 0.354 0.333 0.363 0.251 0.290 0.251 0.291 0.250 0.292
4 0.358 0.396 0.375 0.398 0.443 0.437 0.347 0.383 0.367 0.388 0.421 0.420 0.253 0.299 0.252 0.298 0.253 0.303
5 0.448 0.431 0.486 0.434 0.565 0.479 0.428 0.414 0.471 0.421 0.531 0.459 0.257 0.304 0.255 0.303 0.258 0.309

72
0

1 0.322 0.347 0.321 0.346 0.343 0.366 0.322 0.345 0.320 0.345 0.342 0.363 0.316 0.336 0.312 0.334 0.325 0.342
2 0.342 0.372 0.339 0.370 0.382 0.403 0.339 0.367 0.337 0.367 0.378 0.398 0.318 0.338 0.314 0.336 0.326 0.345
3 0.376 0.397 0.365 0.390 0.431 0.434 0.372 0.390 0.361 0.385 0.424 0.426 0.320 0.341 0.316 0.338 0.328 0.347
4 0.435 0.442 0.419 0.430 0.572 0.518 0.421 0.426 0.408 0.417 0.551 0.501 0.319 0.348 0.315 0.346 0.332 0.360
5 0.545 0.479 0.512 0.462 0.685 0.558 0.516 0.458 0.489 0.444 0.655 0.538 0.321 0.353 0.317 0.349 0.335 0.365
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Table 17: Full experimental result on ETTh1, ETTh2, electricity with 512 input lengths.

ETTh1 Combined Level Shift Spike
Model PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer

H Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96

1 0.373 0.399 0.370 0.397 0.376 0.402 0.372 0.399 0.370 0.396 0.376 0.402 0.371 0.397 0.368 0.394 0.374 0.400
2 0.380 0.406 0.377 0.404 0.383 0.410 0.379 0.405 0.376 0.402 0.383 0.408 0.371 0.398 0.368 0.395 0.374 0.401
3 0.440 0.441 0.444 0.441 0.443 0.445 0.434 0.436 0.438 0.436 0.438 0.440 0.376 0.402 0.375 0.400 0.378 0.405
4 0.499 0.478 0.505 0.480 0.512 0.486 0.484 0.468 0.492 0.472 0.496 0.476 0.383 0.408 0.385 0.407 0.387 0.411
5 0.669 0.547 0.700 0.557 0.687 0.559 0.636 0.530 0.676 0.544 0.652 0.540 0.399 0.417 0.407 0.418 0.401 0.421

19
2

1 0.417 0.425 0.414 0.425 0.434 0.440 0.417 0.424 0.414 0.424 0.434 0.440 0.415 0.423 0.413 0.423 0.432 0.438
2 0.422 0.430 0.421 0.431 0.438 0.444 0.422 0.429 0.420 0.430 0.438 0.444 0.415 0.423 0.414 0.424 0.432 0.439
3 0.467 0.459 0.474 0.465 0.480 0.470 0.463 0.455 0.469 0.460 0.476 0.466 0.418 0.426 0.419 0.428 0.434 0.441
4 0.533 0.500 0.536 0.504 0.538 0.506 0.521 0.491 0.526 0.498 0.527 0.500 0.425 0.432 0.427 0.434 0.441 0.445
5 0.693 0.568 0.720 0.586 0.678 0.570 0.668 0.554 0.707 0.577 0.653 0.556 0.436 0.440 0.440 0.444 0.450 0.452

33
6

1 0.427 0.432 0.434 0.437 0.464 0.463 0.427 0.432 0.434 0.437 0.464 0.463 0.427 0.432 0.433 0.437 0.463 0.462
2 0.431 0.436 0.437 0.442 0.469 0.467 0.430 0.435 0.437 0.440 0.467 0.465 0.427 0.432 0.434 0.438 0.464 0.463
3 0.476 0.465 0.480 0.469 0.542 0.507 0.471 0.460 0.474 0.464 0.529 0.499 0.432 0.436 0.438 0.441 0.474 0.469
4 0.554 0.513 0.558 0.516 0.619 0.553 0.540 0.503 0.543 0.507 0.591 0.537 0.440 0.442 0.447 0.448 0.489 0.479
5 0.717 0.584 0.712 0.586 0.796 0.631 0.689 0.568 0.685 0.570 0.745 0.605 0.450 0.451 0.458 0.456 0.508 0.492

72
0

1 0.446 0.463 0.445 0.463 0.475 0.480 0.446 0.463 0.446 0.463 0.475 0.480 0.447 0.463 0.446 0.463 0.475 0.480
2 0.448 0.467 0.449 0.467 0.476 0.483 0.448 0.466 0.448 0.466 0.476 0.482 0.446 0.463 0.446 0.464 0.475 0.481
3 0.500 0.496 0.499 0.497 0.527 0.510 0.495 0.493 0.494 0.493 0.521 0.506 0.450 0.466 0.450 0.467 0.480 0.483
4 0.601 0.549 0.600 0.551 0.620 0.558 0.579 0.537 0.578 0.538 0.597 0.546 0.466 0.476 0.467 0.477 0.497 0.493
5 0.768 0.621 0.765 0.622 0.770 0.623 0.730 0.601 0.727 0.603 0.728 0.603 0.479 0.486 0.481 0.488 0.512 0.503

ETTh2 Combined Level Shift Spike
Model PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer

H Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96

1 0.284 0.344 0.277 0.338 0.292 0.348 0.283 0.343 0.276 0.337 0.291 0.348 0.282 0.341 0.275 0.336 0.289 0.347
2 0.291 0.353 0.287 0.350 0.304 0.361 0.291 0.352 0.286 0.348 0.302 0.360 0.282 0.342 0.275 0.337 0.290 0.348
3 0.305 0.363 0.306 0.362 0.326 0.376 0.304 0.361 0.303 0.360 0.322 0.373 0.282 0.343 0.277 0.339 0.293 0.350
4 0.334 0.385 0.343 0.389 0.358 0.401 0.329 0.380 0.336 0.384 0.352 0.396 0.287 0.347 0.282 0.343 0.294 0.353
5 0.367 0.401 0.386 0.411 0.402 0.423 0.362 0.396 0.378 0.404 0.394 0.417 0.287 0.348 0.282 0.344 0.295 0.354

19
2

1 0.347 0.388 0.358 0.394 0.351 0.387 0.347 0.388 0.358 0.393 0.351 0.387 0.346 0.387 0.359 0.393 0.351 0.386
2 0.354 0.397 0.362 0.401 0.361 0.398 0.354 0.397 0.364 0.401 0.360 0.397 0.346 0.387 0.357 0.392 0.352 0.387
3 0.364 0.406 0.373 0.410 0.381 0.411 0.365 0.405 0.375 0.410 0.377 0.409 0.347 0.388 0.358 0.394 0.354 0.389
4 0.387 0.423 0.405 0.430 0.412 0.433 0.384 0.421 0.402 0.427 0.408 0.430 0.350 0.391 0.362 0.397 0.354 0.390
5 0.406 0.433 0.437 0.446 0.451 0.453 0.403 0.430 0.432 0.442 0.445 0.449 0.350 0.392 0.362 0.398 0.355 0.391

33
6

1 0.334 0.389 0.359 0.400 0.359 0.406 0.334 0.388 0.359 0.400 0.359 0.405 0.334 0.387 0.360 0.400 0.358 0.405
2 0.341 0.399 0.358 0.404 0.369 0.418 0.343 0.399 0.363 0.406 0.370 0.417 0.332 0.387 0.355 0.398 0.358 0.405
3 0.350 0.408 0.365 0.412 0.390 0.433 0.352 0.407 0.372 0.414 0.388 0.431 0.333 0.389 0.355 0.400 0.359 0.408
4 0.373 0.423 0.387 0.426 0.428 0.456 0.369 0.420 0.387 0.424 0.420 0.450 0.339 0.393 0.364 0.405 0.365 0.413
5 0.387 0.430 0.414 0.440 0.470 0.477 0.384 0.427 0.415 0.439 0.458 0.469 0.340 0.394 0.363 0.405 0.368 0.416

72
0

1 0.387 0.429 0.379 0.423 0.405 0.436 0.386 0.428 0.379 0.422 0.405 0.436 0.388 0.429 0.380 0.423 0.406 0.437
2 0.396 0.439 0.388 0.432 0.416 0.447 0.397 0.438 0.389 0.432 0.417 0.446 0.387 0.429 0.378 0.423 0.405 0.437
3 0.412 0.452 0.405 0.444 0.438 0.461 0.412 0.449 0.406 0.443 0.437 0.459 0.388 0.432 0.379 0.424 0.406 0.440
4 0.433 0.468 0.428 0.462 0.466 0.480 0.424 0.460 0.422 0.457 0.458 0.475 0.395 0.436 0.385 0.429 0.412 0.443
5 0.457 0.481 0.470 0.485 0.514 0.505 0.447 0.473 0.462 0.479 0.503 0.498 0.396 0.438 0.386 0.430 0.414 0.445

Electricity Combined Level Shift Spike
Model PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer PatchLGA PatchTST TimeMixer

H Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96

1 0.138 0.234 0.138 0.234 0.141 0.238 0.137 0.233 0.137 0.233 0.139 0.237 0.130 0.226 0.130 0.225 0.133 0.230
2 0.149 0.247 0.151 0.249 0.153 0.251 0.146 0.243 0.148 0.245 0.150 0.247 0.132 0.229 0.132 0.228 0.135 0.233
3 0.163 0.260 0.166 0.262 0.170 0.265 0.159 0.254 0.163 0.257 0.165 0.259 0.134 0.230 0.134 0.230 0.136 0.234
4 0.199 0.292 0.201 0.294 0.210 0.297 0.191 0.282 0.194 0.285 0.201 0.287 0.138 0.236 0.138 0.235 0.140 0.240
5 0.261 0.328 0.266 0.333 0.282 0.336 0.251 0.316 0.258 0.322 0.268 0.323 0.142 0.241 0.142 0.240 0.144 0.244

19
2

1 0.154 0.251 0.156 0.253 0.160 0.255 0.153 0.249 0.155 0.252 0.159 0.253 0.148 0.244 0.149 0.244 0.154 0.247
2 0.165 0.263 0.168 0.266 0.172 0.267 0.162 0.259 0.166 0.263 0.169 0.264 0.150 0.246 0.151 0.247 0.156 0.250
3 0.178 0.274 0.181 0.278 0.188 0.281 0.174 0.269 0.177 0.273 0.184 0.276 0.151 0.248 0.152 0.249 0.157 0.251
4 0.211 0.303 0.209 0.306 0.227 0.312 0.201 0.294 0.202 0.297 0.219 0.303 0.155 0.253 0.156 0.254 0.160 0.256
5 0.267 0.337 0.256 0.338 0.301 0.352 0.255 0.325 0.246 0.326 0.289 0.341 0.159 0.257 0.161 0.259 0.164 0.260

33
6

1 0.171 0.269 0.172 0.269 0.179 0.274 0.171 0.267 0.171 0.268 0.178 0.273 0.165 0.262 0.164 0.261 0.173 0.267
2 0.182 0.281 0.185 0.283 0.192 0.287 0.179 0.277 0.183 0.280 0.189 0.284 0.167 0.264 0.166 0.263 0.175 0.270
3 0.196 0.292 0.202 0.297 0.210 0.301 0.191 0.287 0.199 0.293 0.206 0.296 0.168 0.266 0.167 0.265 0.176 0.272
4 0.229 0.321 0.231 0.324 0.246 0.331 0.220 0.311 0.225 0.317 0.238 0.323 0.172 0.271 0.172 0.270 0.180 0.276
5 0.288 0.356 0.287 0.361 0.326 0.372 0.276 0.344 0.278 0.351 0.313 0.361 0.176 0.275 0.176 0.276 0.184 0.280

72
0

1 0.208 0.301 0.209 0.303 0.210 0.303 0.207 0.300 0.208 0.301 0.209 0.302 0.203 0.295 0.200 0.294 0.205 0.297
2 0.219 0.313 0.232 0.320 0.220 0.314 0.217 0.309 0.230 0.316 0.218 0.311 0.204 0.298 0.203 0.297 0.206 0.299
3 0.235 0.325 0.253 0.336 0.234 0.325 0.231 0.320 0.254 0.331 0.231 0.321 0.206 0.299 0.206 0.300 0.207 0.301
4 0.264 0.350 0.285 0.362 0.265 0.351 0.255 0.342 0.282 0.356 0.258 0.343 0.209 0.303 0.212 0.306 0.210 0.305
5 0.320 0.385 0.352 0.402 0.338 0.386 0.308 0.374 0.350 0.394 0.327 0.376 0.213 0.307 0.220 0.313 0.214 0.309
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applied to the entire time series, as noted in our main discussion, disrupts some temporal
local geometry, making the gains less pronounced than with PatchTST. For example, at the
720-step horizon under severity 5, LGA still provides a 4.0% reduction in MSE (from 1.439
to 1.382).

These comprehensive results further validate our conclusion that while LGA is a broadly applicable
technique that enhances robustness across all tested attention mechanisms, its integration with
self-temporal attention provides the most consistent and substantial improvements for time series
forecasting under realistic corruptions.

Table 18: Detailed performance comparison of different attention mechanisms on the ETTm1 dataset
with input length 512 under combined corruptions.

ETTm1 H 96 192 336 720
Mod. Atten. Metric 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Pa
tc

hT
ST LGA MSE 0.297 0.314 0.527 0.657 0.820 0.341 0.354 0.504 0.603 0.722 0.372 0.385 0.502 0.586 0.686 0.425 0.436 0.543 0.623 0.709

MAE 0.353 0.368 0.456 0.530 0.594 0.376 0.388 0.462 0.521 0.573 0.392 0.402 0.465 0.516 0.564 0.421 0.429 0.488 0.536 0.578

SDP MSE 0.304 0.326 0.625 0.743 0.944 0.342 0.357 0.581 0.661 0.812 0.370 0.383 0.630 0.692 0.818 0.420 0.433 0.622 0.684 0.782
MAE 0.357 0.377 0.497 0.566 0.636 0.378 0.391 0.491 0.542 0.601 0.397 0.408 0.519 0.563 0.611 0.424 0.432 0.519 0.562 0.604

C
A

T
S LGA MSE 0.290 0.313 0.624 0.972 1.138 0.325 0.340 0.635 0.960 1.055 0.357 0.370 0.614 0.856 0.971 0.410 0.423 0.774 1.100 0.985

MAE 0.341 0.358 0.454 0.563 0.616 0.365 0.377 0.478 0.582 0.624 0.390 0.400 0.492 0.577 0.624 0.424 0.432 0.560 0.665 0.647

SDP MSE 0.289 0.313 0.687 0.862 1.026 0.327 0.347 0.778 0.949 1.146 0.355 0.368 0.711 0.889 0.979 0.410 0.426 0.940 1.242 1.255
MAE 0.344 0.362 0.487 0.559 0.614 0.368 0.383 0.521 0.587 0.645 0.389 0.400 0.526 0.591 0.630 0.422 0.433 0.620 0.724 0.722

iT
ra

ns
. LGA MSE 0.357 0.391 0.718 0.946 1.222 0.408 0.440 0.800 1.051 1.336 0.455 0.493 0.864 1.105 1.367 0.506 0.541 0.894 1.126 1.382

MAE 0.389 0.412 0.508 0.598 0.683 0.413 0.434 0.533 0.626 0.707 0.442 0.464 0.562 0.654 0.732 0.471 0.490 0.586 0.672 0.746

SDP MSE 0.358 0.390 0.690 0.899 1.166 0.394 0.425 0.751 0.965 1.229 0.453 0.488 0.853 1.095 1.401 0.511 0.558 0.910 1.149 1.439
MAE 0.387 0.409 0.498 0.585 0.667 0.403 0.424 0.516 0.603 0.683 0.436 0.457 0.557 0.656 0.740 0.472 0.494 0.591 0.680 0.761

F.3 COMPREHENSIVE EVALUATION OF INPUT LENGTH IMPACT ON FORECASTING
ROBUSTNESS

We examined how varying input sequence length affects forecasting performance under corrupted
conditions. Here, we present a more detailed analysis with complete results across all input lengths,
forecasting horizons, and severity levels for the ETTm1 dataset with combined corruptions. Table
19 provides comprehensive performance metrics for PatchLGA, PatchTST, and TimeMixer with
input lengths ranging from 192 to 1024 timesteps. These detailed results allow us to examine the
complex relationship between input context, forecasting horizon, and model architecture under
various corruption intensities.

At short input lengths (e.g., 192), TimeMixer is competitive with or occasionally outperforms the trans-
former models at low corruption severities (level 1), particularly for the shortest forecasting horizon
(H=96). However, as input length increases, the transformer models, especially PatchLGA, demon-
strate progressive and significant performance improvements, while the performance of TimeMixer
tends to stagnate or even deteriorate at longer input lengths (e.g., 720 and 1024). With an input length
of 512, PatchLGA consistently outperforms both alternatives across all forecasting horizons and
severity levels, establishing it as the most robust model at this context size. For the longest forecasting
horizon (720), the impact of input length becomes even more critical. With a 192-timestep input
at severity level 5, PatchLGA achieves an MSE of 1.140. When the input length is increased to
512 timesteps, the MSE improves to 0.709, a substantial 37.8% reduction. This demonstrates that
long-range dependencies, effectively captured by LGA, become increasingly important for distant
forecasting, especially under severe corruptions.

These findings have important implications for deploying forecasting models in real-world scenarios.
While linear models may be adequate for short-term forecasting with limited historical data and
minimal corruption, transformer models with LGA provide substantial benefits when longer historical
context is available, particularly under challenging corruption conditions.

F.3.1 COMPREHENSIVE COMPARISON WITH ALTERNATIVE ROBUST ATTENTION METHODS

Table 20 presents the detailed comparison between LGA and other robust attention mechanisms across
all forecasting horizons and severity levels on the ETTm1 dataset with combined corruptions. The
results reveal that LGA outperforms the alternative approaches in the vast majority of settings, with
its advantage being particularly notable at higher corruption severities. For short-term forecasting
(96 horizon) at severity level 5, LGA achieves an MSE of 0.820. This represents a substantial
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Table 19: Detailed performance comparison across different input sequence lengths (192, 336, 512,
720, 1024) on the ETTm1 dataset with combined corruptions.

ETTm1 H 96 192 336 720
Input Model Metric 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

19
2

PatchLGA MSE 0.315 0.339 0.579 0.757 0.924 0.349 0.369 0.621 0.811 0.971 0.375 0.392 0.719 0.939 1.065 0.436 0.460 0.767 0.982 1.140
MAE 0.357 0.376 0.462 0.541 0.601 0.380 0.396 0.486 0.567 0.626 0.398 0.413 0.516 0.606 0.658 0.439 0.455 0.550 0.631 0.695

PatchTST MSE 0.313 0.342 0.713 0.889 1.134 0.350 0.379 0.818 1.020 1.273 0.383 0.408 0.852 1.061 1.286 0.440 0.464 0.878 1.090 1.336
MAE 0.355 0.380 0.496 0.576 0.652 0.380 0.402 0.536 0.623 0.695 0.402 0.420 0.557 0.650 0.717 0.436 0.452 0.583 0.673 0.737

TimeMixer MSE 0.312 0.342 0.667 0.857 1.072 0.351 0.379 0.785 1.037 1.238 0.376 0.401 0.733 0.881 1.107 0.439 0.463 0.748 0.886 1.085
MAE 0.358 0.380 0.483 0.564 0.635 0.386 0.407 0.526 0.619 0.692 0.400 0.417 0.521 0.591 0.662 0.439 0.453 0.546 0.609 0.678

33
6

PatchLGA MSE 0.299 0.318 0.589 0.778 0.939 0.336 0.352 0.596 0.775 0.863 0.371 0.387 0.659 0.846 0.912 0.424 0.439 0.656 0.800 0.883
MAE 0.351 0.369 0.466 0.553 0.620 0.375 0.390 0.489 0.570 0.613 0.397 0.411 0.519 0.603 0.638 0.428 0.439 0.532 0.598 0.633

PatchTST MSE 0.309 0.338 0.689 0.852 1.115 0.343 0.367 0.762 0.925 1.165 0.378 0.402 0.752 0.889 1.138 0.430 0.459 0.951 1.092 1.329
MAE 0.358 0.382 0.512 0.591 0.675 0.380 0.399 0.536 0.613 0.685 0.404 0.422 0.555 0.624 0.700 0.434 0.452 0.621 0.689 0.748

TimeMixer MSE 0.307 0.337 0.681 0.870 1.076 0.343 0.365 0.660 0.804 0.977 0.373 0.392 0.658 0.822 0.975 0.428 0.441 0.624 0.744 0.840
MAE 0.357 0.380 0.498 0.582 0.658 0.378 0.395 0.499 0.562 0.628 0.400 0.415 0.521 0.596 0.657 0.423 0.433 0.512 0.571 0.615

51
2

PatchLGA MSE 0.297 0.314 0.527 0.657 0.820 0.341 0.354 0.504 0.603 0.722 0.372 0.385 0.502 0.586 0.686 0.425 0.436 0.543 0.623 0.709
MAE 0.353 0.368 0.456 0.530 0.594 0.376 0.388 0.462 0.521 0.573 0.392 0.402 0.465 0.516 0.564 0.421 0.429 0.488 0.536 0.578

PatchTST MSE 0.304 0.326 0.625 0.743 0.944 0.342 0.357 0.581 0.661 0.812 0.370 0.383 0.630 0.692 0.818 0.420 0.433 0.622 0.684 0.782
MAE 0.357 0.377 0.497 0.566 0.636 0.378 0.391 0.491 0.542 0.601 0.397 0.408 0.519 0.563 0.611 0.424 0.432 0.519 0.562 0.604

TimeMixer MSE 0.307 0.335 0.619 0.769 0.953 0.342 0.358 0.537 0.643 0.740 0.381 0.396 0.600 0.709 0.829 0.436 0.449 0.620 0.745 0.828
MAE 0.363 0.383 0.490 0.558 0.629 0.380 0.393 0.474 0.527 0.574 0.407 0.418 0.511 0.567 0.622 0.432 0.441 0.524 0.587 0.626

72
0

PatchLGA MSE 0.305 0.323 0.495 0.601 0.731 0.336 0.350 0.489 0.583 0.682 0.376 0.388 0.491 0.571 0.661 0.426 0.435 0.526 0.603 0.681
MAE 0.358 0.373 0.450 0.514 0.570 0.377 0.388 0.461 0.518 0.563 0.395 0.404 0.464 0.516 0.560 0.422 0.429 0.485 0.533 0.573

PatchTST MSE 0.304 0.324 0.519 0.615 0.761 0.340 0.355 0.525 0.603 0.706 0.365 0.380 0.587 0.657 0.745 0.419 0.431 0.562 0.627 0.711
MAE 0.358 0.373 0.463 0.521 0.581 0.379 0.390 0.472 0.523 0.569 0.397 0.406 0.503 0.550 0.587 0.423 0.430 0.500 0.544 0.583

TimeMixer MSE 0.332 0.358 0.705 0.940 1.079 0.344 0.364 0.590 0.707 0.831 0.371 0.384 0.540 0.639 0.741 0.456 0.468 0.636 0.745 0.853
MAE 0.380 0.399 0.549 0.650 0.697 0.384 0.398 0.490 0.546 0.603 0.396 0.406 0.483 0.536 0.586 0.449 0.456 0.536 0.590 0.641

10
24

PatchLGA MSE 0.309 0.326 0.471 0.569 0.688 0.355 0.368 0.487 0.578 0.681 0.370 0.381 0.488 0.571 0.652 0.415 0.423 0.513 0.592 0.666
MAE 0.360 0.373 0.448 0.510 0.560 0.385 0.396 0.463 0.520 0.568 0.394 0.403 0.465 0.518 0.557 0.419 0.426 0.482 0.532 0.569

PatchTST MSE 0.303 0.325 0.604 0.696 0.871 0.340 0.355 0.539 0.613 0.718 0.367 0.381 0.560 0.629 0.716 0.410 0.419 0.552 0.620 0.699
MAE 0.359 0.377 0.503 0.560 0.620 0.381 0.392 0.489 0.541 0.582 0.398 0.406 0.497 0.544 0.579 0.420 0.426 0.501 0.546 0.579

TimeMixer MSE 0.322 0.347 0.594 0.703 0.853 0.359 0.375 0.573 0.664 0.778 0.399 0.417 0.633 0.753 0.884 0.454 0.465 0.645 0.794 0.878
MAE 0.371 0.388 0.485 0.543 0.606 0.392 0.404 0.489 0.540 0.595 0.416 0.428 0.527 0.588 0.644 0.448 0.455 0.544 0.618 0.651

28.6% improvement over MoM and a 4.2% improvement over Elliptical attention. This advantage is
pronounced for medium-term horizons. For instance, on the 336 horizon at severity level 5, the MSE
of LGA (0.686) is 37.1% lower than MoM and 11.6% lower than Elliptical attention . For long-term
forecasting (720 horizon), while the competition is closer, LGA still demonstrates clear benefits. At
severity level 3, for example, MSE of LGA (0.543) is significantly better than SDP and Elliptical
attention, although slightly higher than MoM in this specific case.

These comprehensive results confirm our findings that while robust attention mechanisms like MoM
and Elliptical attention succeed in vision and language tasks, they do not transfer as effectively
to time series forecasting. LGA, specifically tailored for capturing local geometry of temporal
structures, yields superior robustness while maintaining computational efficiency comparable to
standard attention.

Table 20: Detailed performance comparison of different robust attention methods on the ETTm1
dataset with input length 512 under combined corruptions.

ETTm1 H 96 192 336 720
Mod. Atten. Metric 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Pa
tc

hT
ST

LGA MSE 0.297 0.314 0.527 0.657 0.820 0.341 0.354 0.504 0.603 0.722 0.372 0.385 0.502 0.586 0.686 0.425 0.436 0.543 0.623 0.709
MAE 0.353 0.368 0.456 0.530 0.594 0.376 0.388 0.462 0.521 0.573 0.392 0.402 0.465 0.516 0.564 0.421 0.429 0.488 0.536 0.578

SDP MSE 0.304 0.326 0.625 0.743 0.944 0.342 0.357 0.581 0.661 0.812 0.370 0.383 0.630 0.692 0.818 0.420 0.433 0.622 0.684 0.782
MAE 0.357 0.377 0.497 0.566 0.636 0.378 0.391 0.491 0.542 0.601 0.397 0.408 0.519 0.563 0.611 0.424 0.432 0.519 0.562 0.604

Ellip. MSE 0.301 0.319 0.587 0.678 0.856 0.342 0.354 0.596 0.626 0.800 0.368 0.380 0.659 0.682 0.776 0.429 0.444 1.044 1.033 1.090
MAE 0.356 0.372 0.480 0.537 0.601 0.379 0.390 0.493 0.525 0.589 0.395 0.404 0.522 0.552 0.589 0.434 0.443 0.650 0.676 0.692

MoM MSE 0.325 0.359 0.700 0.941 1.149 0.354 0.378 0.725 0.961 1.130 0.387 0.407 0.722 0.961 1.091 0.435 0.443 0.535 0.620 0.696
MAE 0.375 0.399 0.530 0.640 0.714 0.392 0.409 0.542 0.645 0.706 0.409 0.423 0.548 0.652 0.702 0.424 0.430 0.485 0.538 0.571

G NOISE GENERATION AND PARAMETER SELECTION

This section provides detailed information on our implementation of corruption functions and
the experimental process to select appropriate noise parameters. While the main paper presented
the theoretical foundation, here we explain the practical implementation details and the empirical
validation of parameter settings.
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G.1 IMPLEMENTATION OF CORRUPTION FUNCTIONS

We implement realistic corruptions for time series data through a systematic process that combines
Poisson event generation with extreme value theory for threshold estimation. Algorithm 2 presents
the complete procedure for injecting both level shift and spike corruptions into time series data. We
fix the random seed to 2025 across all experiments to ensure reproducible results.

Algorithm 2 TSRBench Corruption Injection

Require: Time series X ∈ RT , corruption rate λ, duration parameter p, amplitude parameter q
Ensure: Corrupted time series: Xshift, Xspike, Xcombined

1: Initialize: T ← length(X), εshift, εspike ← 0T

Step 1. Generate corruption events and compute thresholds
2: T ′ ← 2T − 1 ▷ Extended time interval
3: N ∼ Poisson(λ · T ′) ▷ Number of events
4: T ← {τ1, τ2, . . . , τN} where τi ∼ U [0, T ′]
5: T ← {τ ∈ T : τ ≥ T} − T ▷ Keep second half, shift to [0, T ]
6: upper_threshold, lower_threshold← GETTHRESHOLDS(X, q)

Step 2-1. Level shift corruption injection
7: for each τ ∈ T do
8: p′ ← 1

p−1 ▷ Geometric parameter
9: d ∼ Geometric(p′) + 1 ▷ Shift duration

10: if ISBIDIRECTIONAL then ▷ Bidirectional SPOT variants

11: hshift
τ ←

{
min(upper_threshold[τ : τ + d]−X[τ : τ + d]) if RANDOM() < 0.5

max(lower_threshold[τ : τ + d]−X[τ : τ + d]) otherwise
12: else
13: hshift

τ ← min(upper_threshold[τ : τ + d]−X[τ : τ + d])
14: end if
15: εshift[τ : min(τ + d, T )]← hshift

τ
16: end for

Step 2-2. Spike corruption injection
17: for each τ ∈ T do
18: d1 ∼ Geometric( 2p ), d2 ∼ Geometric( 2p ) ▷ Rising/decay durations
19: if ISBIDIRECTIONAL then ▷ Bidirectional SPOT variants

20: hspike
τ ←

{
upper_threshold[τ + d1]−X[τ + d1] if RANDOM() < 0.5

lower_threshold[τ + d1]−X[τ + d1] otherwise
21: else
22: hspike

τ ← upper_threshold[τ + d1]−X[τ + d1]
23: end if
24: β ← 10−4 ▷ Sharpness parameter

25: ε← hspike
τ ·

exp
(
− ln(β)

d1
· (s− τ − d1)

)
if s < τ + d1

exp
(

ln(β)
d2
· (s− τ − d1)

)
otherwise

26: εspike[τ : min(τ + d1 + d2, T )]← ε
27: end for

Step 3. Generate corrupted time series
28: Xshift ← X + εshift

29: Xspike ← X + εspike

30: εcombined(t)←
{
εshift(t) if |εshift(t)| > |εspike(t)|
εspike(t) otherwise

∀t ∈ [1, T ]

31: Xcombined ← X + εcombined

32: return Xshift, Xspike, Xcombined

The GETTHRESHOLDS function in the Algorithm 2 requires detailed explanation, as it implements
the DSPOT (Drift SPOT) algorithm (Siffer et al., 2017) to estimate extreme value thresholds. DSPOT
extends the SPOT algorithm by explicitly accounting for distributional drift in time series data. Given

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d 
M

SE
 (0

=C
le

an
, 1

=M
ax

 N
oi

se
)

L0
L1

L2

L3

L4

L5

(a) Severity Spectrum

L1 L2 L3 L4 L5

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Va
lu

e 
of

 

L1 L2 L3 L4 L5
4

6

8

10

12

14

16

Va
lu

e 
of

 p

p

L1 L2 L3 L4 L5

10 4

10 3

Va
lu

e 
of

 q
 (l

og
)

q

(b) Evolution of Noise Parameters (λ, p, q)

Figure 8: Selection and Analysis of Severity Levels. (a) The severity spectrum obtained by sorting
the normalized MSE of all 37 parameter configurations. From this full spectrum, we selected five
representative levels (L1–L5, marked in red) that provide a comprehensive coverage of the difficulty
range with distinct performance steps. (b) The evolution of noise parameters corresponding to the
selected levels. The injection frequency (λ) and segment length (p) strictly increase, while the
transition probability (q, log-scale) decreases. This confirms that the increasing severity is driven by
a systematic intensification of the noise mechanism rather than random permutations.

a significance level q, the algorithm computes time-varying thresholds zq(t) = inf{z : P (X(t) >
z) < q} that represent the critical values for identifying extreme events at each time point.

The DSPOT algorithm operates by:

1. Initializing with a burn-in period to establish baseline statistics

2. Iteratively updating Generalized Pareto Distribution (GPD) parameters as new data arrives

3. Computing upper and lower thresholds based on the estimated tail distributions

4. Adapting to potential distributional changes through drift detection mechanisms

For our implementation, we maintain consistent DSPOT hyperparameters across all datasets to ensure
fair comparison and reproducibility. The algorithm returns both upper and lower thresholds that
are used to determine realistic corruption magnitudes for level shifts and spikes, ensuring that the
generated corruptions reflect statistically extreme but realistic deviations from normal behavior.

G.2 PARAMETER SELECTION PROCESS

Finding appropriate noise parameters for realistic corruptions requires both theoretical justification
and empirical validation. Although the theoretical foundation of our noise model is established in
Section 4, experimental verification is necessary to determine which parameter settings effectively
induce progressively increasing severity across diverse data distributions.

To this end, we conducted a comprehensive grid search over 36 different parameter combinations
(varying λ, p, and q) alongside a clean baseline. We evaluated the original PatchTST on six benchmark
datasets (ETTh1, ETTh2, ETTm1, ETTm2, Electricity, and Weather) to measure the performance
impact of each configuration. Figure 8(a) illustrates the “Severity Spectrum,” where we sorted all
configurations based on their average impact on model performance (Normalized MSE) across all
datasets. This aggregated spectrum reveals the full range of difficulty levels our noise model can
generate, independent of specific dataset characteristics.

From this continuous spectrum, we identified five representative severity levels (L1–L5) based on the
following criteria:

• Comprehensive Coverage: The selected levels are distributed across the spectrum to cover
distinct difficulty tiers, ensuring that the benchmark evaluates robustness under diverse
conditions ranging from mild to extreme.

• Physically Interpretable Evolution: As shown in Figure 8(b), we ensured that the chosen
levels correspond to a consistent physical intensification of the noise. Specifically, the
injection frequency (λ) strictly increases from 0.002 to 0.008, and the transition probability
(q) decreases logarithmically. This monotonicity guarantees that the degradation in model
performance is a direct result of the progressively challenging noise mechanics.
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Table 1 summarizes the final parameter sets derived from this process, which are used for all
subsequent robustness evaluations. Also, we provide the results of these experiments on the ETTm1
dataset in Table 21, 22, and 23.
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Table 21: Performance comparison between PatchLGA and PatchTST on the ETTm1 dataset with
both level shift and spike corruptions, using input length 512. PatchLGA replaces standard self-
attention with LGA, consistently showing improved robustness across all scenarios.

Combined PatchLGA PatchTST
λ 0.002 0.004 0.008 0.002 0.004 0.008

H p q MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96

6
1.6 · 10−4 0.297 0.353 0.305 0.361 0.326 0.379 0.304 0.357 0.316 0.370 0.336 0.387
4 · 10−5 0.330 0.372 0.403 0.408 0.466 0.451 0.370 0.396 0.474 0.446 0.534 0.488
1 · 10−5 0.346 0.381 0.441 0.425 0.502 0.469 0.399 0.408 0.540 0.470 0.590 0.510

9
1.6 · 10−4 0.302 0.356 0.314 0.368 0.344 0.393 0.309 0.361 0.326 0.377 0.353 0.401
4 · 10−5 0.357 0.385 0.468 0.435 0.566 0.494 0.409 0.413 0.553 0.475 0.650 0.533
1 · 10−5 0.383 0.397 0.529 0.458 0.620 0.519 0.452 0.429 0.647 0.505 0.727 0.562

12
1.6 · 10−4 0.305 0.359 0.320 0.373 0.357 0.404 0.312 0.364 0.331 0.381 0.366 0.410
4 · 10−5 0.383 0.397 0.527 0.456 0.657 0.530 0.435 0.424 0.625 0.497 0.743 0.566
1 · 10−5 0.420 0.412 0.611 0.487 0.732 0.561 0.490 0.444 0.741 0.533 0.844 0.602

15
1.6 · 10−4 0.307 0.361 0.324 0.377 0.366 0.413 0.314 0.365 0.333 0.384 0.374 0.418
4 · 10−5 0.407 0.406 0.577 0.473 0.730 0.558 0.463 0.434 0.674 0.514 0.829 0.596
1 · 10−5 0.455 0.425 0.681 0.510 0.820 0.594 0.530 0.457 0.809 0.554 0.944 0.636

19
2

6
1.6 · 10−4 0.341 0.376 0.347 0.383 0.360 0.395 0.342 0.378 0.350 0.387 0.363 0.398
4 · 10−5 0.365 0.393 0.416 0.422 0.459 0.452 0.381 0.403 0.459 0.443 0.489 0.468
1 · 10−5 0.376 0.399 0.443 0.434 0.485 0.466 0.401 0.412 0.513 0.463 0.526 0.485

9
1.6 · 10−4 0.345 0.380 0.354 0.388 0.374 0.406 0.346 0.382 0.357 0.391 0.376 0.409
4 · 10−5 0.384 0.403 0.462 0.443 0.531 0.488 0.410 0.417 0.522 0.469 0.579 0.508
1 · 10−5 0.403 0.412 0.507 0.461 0.570 0.507 0.444 0.431 0.602 0.496 0.636 0.532

12
1.6 · 10−4 0.347 0.382 0.358 0.392 0.385 0.415 0.349 0.384 0.361 0.395 0.387 0.418
4 · 10−5 0.403 0.412 0.504 0.462 0.603 0.521 0.434 0.427 0.581 0.491 0.661 0.542
1 · 10−5 0.431 0.425 0.567 0.487 0.653 0.544 0.483 0.446 0.684 0.524 0.733 0.570

15
1.6 · 10−4 0.350 0.383 0.361 0.395 0.391 0.421 0.352 0.385 0.364 0.398 0.394 0.424
4 · 10−5 0.420 0.420 0.544 0.479 0.663 0.547 0.456 0.437 0.627 0.508 0.730 0.570
1 · 10−5 0.457 0.436 0.621 0.508 0.722 0.573 0.516 0.458 0.746 0.545 0.812 0.601

33
6

6
1.6 · 10−4 0.372 0.392 0.380 0.398 0.389 0.408 0.370 0.397 0.378 0.404 0.390 0.414
4 · 10−5 0.391 0.405 0.434 0.431 0.468 0.457 0.418 0.426 0.499 0.468 0.534 0.495
1 · 10−5 0.399 0.410 0.455 0.441 0.489 0.469 0.434 0.433 0.554 0.487 0.555 0.505

9
1.6 · 10−4 0.376 0.394 0.385 0.402 0.401 0.417 0.374 0.400 0.383 0.408 0.402 0.424
4 · 10−5 0.405 0.413 0.468 0.448 0.526 0.487 0.453 0.442 0.569 0.496 0.620 0.534
1 · 10−5 0.419 0.421 0.502 0.463 0.558 0.505 0.483 0.454 0.648 0.521 0.662 0.551

12
1.6 · 10−4 0.378 0.396 0.388 0.405 0.411 0.426 0.377 0.402 0.387 0.411 0.412 0.432
4 · 10−5 0.419 0.421 0.502 0.465 0.586 0.516 0.481 0.454 0.630 0.519 0.692 0.563
1 · 10−5 0.438 0.431 0.548 0.485 0.627 0.537 0.522 0.471 0.727 0.548 0.749 0.585

15
1.6 · 10−4 0.380 0.398 0.391 0.407 0.418 0.431 0.380 0.404 0.390 0.413 0.418 0.437
4 · 10−5 0.431 0.427 0.533 0.478 0.638 0.540 0.502 0.463 0.669 0.533 0.749 0.586
1 · 10−5 0.456 0.439 0.590 0.503 0.686 0.564 0.553 0.483 0.777 0.565 0.818 0.611

72
0

6
1.6 · 10−4 0.425 0.421 0.432 0.426 0.440 0.434 0.420 0.424 0.429 0.429 0.437 0.437
4 · 10−5 0.442 0.433 0.482 0.457 0.513 0.481 0.447 0.440 0.504 0.471 0.536 0.495
1 · 10−5 0.449 0.438 0.502 0.467 0.530 0.492 0.457 0.446 0.538 0.484 0.546 0.501

9
1.6 · 10−4 0.428 0.423 0.436 0.429 0.451 0.442 0.423 0.426 0.433 0.432 0.448 0.445
4 · 10−5 0.454 0.440 0.513 0.474 0.568 0.509 0.469 0.451 0.559 0.495 0.612 0.530
1 · 10−5 0.466 0.447 0.543 0.487 0.593 0.523 0.491 0.461 0.615 0.514 0.630 0.540

12
1.6 · 10−4 0.430 0.424 0.438 0.431 0.460 0.449 0.426 0.428 0.437 0.435 0.458 0.453
4 · 10−5 0.466 0.447 0.543 0.488 0.623 0.536 0.492 0.462 0.622 0.519 0.684 0.562
1 · 10−5 0.482 0.456 0.584 0.506 0.656 0.553 0.522 0.475 0.699 0.544 0.714 0.575

15
1.6 · 10−4 0.432 0.426 0.440 0.433 0.466 0.454 0.429 0.430 0.439 0.437 0.464 0.458
4 · 10−5 0.477 0.452 0.570 0.500 0.670 0.558 0.511 0.470 0.661 0.534 0.744 0.586
1 · 10−5 0.497 0.463 0.620 0.522 0.709 0.578 0.549 0.485 0.753 0.564 0.782 0.604
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Table 22: Performance comparison between PatchLGA and PatchTST on the ETTm1 dataset with
level shift corruptions, using input length 512. PatchLGA replaces standard self-attention with LGA,
consistently showing improved robustness across all scenarios.

Level Shift PatchLGA PatchTST
λ 0.002 0.004 0.008 0.002 0.004 0.008

H p q MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96

6
1.6 · 10−4 0.297 0.352 0.303 0.360 0.325 0.378 0.304 0.356 0.316 0.369 0.336 0.387
4 · 10−5 0.326 0.370 0.394 0.403 0.454 0.443 0.370 0.394 0.472 0.443 0.538 0.488
1 · 10−5 0.341 0.377 0.430 0.418 0.491 0.463 0.399 0.407 0.544 0.470 0.597 0.512

9
1.6 · 10−4 0.300 0.355 0.312 0.366 0.342 0.391 0.308 0.360 0.325 0.376 0.353 0.400
4 · 10−5 0.353 0.382 0.455 0.427 0.552 0.484 0.407 0.411 0.547 0.470 0.653 0.531
1 · 10−5 0.377 0.393 0.512 0.450 0.607 0.511 0.449 0.426 0.644 0.502 0.737 0.563

12
1.6 · 10−4 0.303 0.357 0.317 0.370 0.354 0.401 0.311 0.363 0.329 0.379 0.365 0.409
4 · 10−5 0.378 0.393 0.511 0.447 0.641 0.519 0.432 0.421 0.616 0.490 0.746 0.563
1 · 10−5 0.413 0.407 0.592 0.477 0.716 0.552 0.485 0.440 0.737 0.528 0.853 0.601

15
1.6 · 10−4 0.305 0.359 0.320 0.373 0.363 0.409 0.313 0.364 0.331 0.381 0.374 0.416
4 · 10−5 0.401 0.402 0.560 0.463 0.707 0.545 0.459 0.430 0.664 0.504 0.830 0.592
1 · 10−5 0.446 0.419 0.661 0.499 0.802 0.584 0.523 0.451 0.807 0.547 0.954 0.634

19
2

6
1.6 · 10−4 0.340 0.376 0.345 0.382 0.358 0.393 0.341 0.378 0.349 0.386 0.363 0.398
4 · 10−5 0.361 0.390 0.408 0.417 0.448 0.445 0.380 0.401 0.457 0.440 0.487 0.466
1 · 10−5 0.372 0.395 0.435 0.428 0.475 0.460 0.400 0.411 0.516 0.463 0.531 0.486

9
1.6 · 10−4 0.344 0.379 0.351 0.386 0.371 0.403 0.345 0.381 0.355 0.390 0.376 0.408
4 · 10−5 0.380 0.399 0.452 0.437 0.518 0.480 0.409 0.415 0.517 0.465 0.578 0.506
1 · 10−5 0.398 0.408 0.495 0.454 0.559 0.500 0.442 0.428 0.602 0.494 0.645 0.533

12
1.6 · 10−4 0.346 0.380 0.356 0.390 0.382 0.412 0.348 0.383 0.359 0.394 0.386 0.417
4 · 10−5 0.398 0.408 0.491 0.455 0.587 0.511 0.432 0.425 0.574 0.486 0.657 0.538
1 · 10−5 0.424 0.420 0.552 0.479 0.639 0.535 0.480 0.442 0.684 0.522 0.742 0.570

15
1.6 · 10−4 0.349 0.382 0.358 0.393 0.389 0.418 0.351 0.384 0.362 0.396 0.394 0.423
4 · 10−5 0.415 0.415 0.530 0.470 0.643 0.536 0.454 0.434 0.618 0.501 0.725 0.565
1 · 10−5 0.449 0.430 0.605 0.499 0.707 0.564 0.512 0.454 0.746 0.541 0.823 0.601

33
6

6
1.6 · 10−4 0.372 0.391 0.378 0.397 0.387 0.406 0.370 0.397 0.377 0.404 0.390 0.414
4 · 10−5 0.388 0.403 0.427 0.426 0.457 0.449 0.416 0.424 0.499 0.466 0.532 0.493
1 · 10−5 0.395 0.407 0.446 0.436 0.479 0.462 0.432 0.431 0.561 0.488 0.560 0.505

9
1.6 · 10−4 0.375 0.394 0.383 0.400 0.399 0.415 0.374 0.400 0.382 0.407 0.402 0.424
4 · 10−5 0.402 0.410 0.459 0.443 0.513 0.478 0.452 0.440 0.566 0.492 0.618 0.531
1 · 10−5 0.414 0.417 0.490 0.457 0.546 0.496 0.481 0.452 0.652 0.521 0.673 0.552

12
1.6 · 10−4 0.378 0.395 0.386 0.403 0.409 0.423 0.377 0.402 0.386 0.410 0.412 0.431
4 · 10−5 0.415 0.417 0.490 0.458 0.570 0.506 0.478 0.452 0.624 0.514 0.688 0.559
1 · 10−5 0.432 0.426 0.533 0.477 0.613 0.528 0.519 0.468 0.730 0.547 0.761 0.586

15
1.6 · 10−4 0.380 0.396 0.388 0.405 0.415 0.429 0.380 0.404 0.388 0.412 0.419 0.437
4 · 10−5 0.426 0.423 0.519 0.471 0.619 0.529 0.500 0.461 0.660 0.526 0.745 0.582
1 · 10−5 0.448 0.434 0.573 0.494 0.670 0.554 0.550 0.480 0.778 0.563 0.831 0.612

72
0

6
1.6 · 10−4 0.425 0.420 0.431 0.425 0.438 0.432 0.420 0.424 0.428 0.428 0.435 0.436
4 · 10−5 0.439 0.430 0.476 0.453 0.503 0.473 0.444 0.438 0.500 0.467 0.527 0.489
1 · 10−5 0.445 0.434 0.494 0.462 0.520 0.484 0.453 0.443 0.537 0.481 0.541 0.496

9
1.6 · 10−4 0.427 0.422 0.435 0.428 0.449 0.440 0.423 0.426 0.432 0.431 0.447 0.444
4 · 10−5 0.451 0.437 0.506 0.468 0.556 0.501 0.466 0.449 0.555 0.491 0.603 0.523
1 · 10−5 0.461 0.443 0.533 0.481 0.582 0.515 0.487 0.458 0.614 0.511 0.630 0.536

12
1.6 · 10−4 0.430 0.423 0.437 0.430 0.458 0.447 0.426 0.428 0.436 0.434 0.457 0.452
4 · 10−5 0.462 0.443 0.533 0.482 0.609 0.526 0.488 0.459 0.616 0.514 0.673 0.554
1 · 10−5 0.476 0.451 0.571 0.499 0.643 0.544 0.518 0.471 0.699 0.542 0.714 0.572

15
1.6 · 10−4 0.431 0.425 0.438 0.431 0.464 0.452 0.429 0.429 0.437 0.435 0.464 0.457
4 · 10−5 0.471 0.448 0.558 0.493 0.652 0.547 0.507 0.467 0.653 0.528 0.731 0.579
1 · 10−5 0.490 0.457 0.605 0.514 0.694 0.568 0.545 0.482 0.749 0.559 0.785 0.601
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Table 23: Performance comparison between PatchLGA and PatchTST on the ETTm1 dataset with
spike corruptions, using input length 512. PatchLGA replaces standard self-attention with LGA,
consistently showing improved robustness across all scenarios.

Spike PatchLGA PatchTST
λ 0.002 0.004 0.008 0.002 0.004 0.008

H p q MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96

6
1.6 · 10−4 0.289 0.345 0.289 0.345 0.290 0.347 0.293 0.346 0.293 0.347 0.294 0.348
4 · 10−5 0.291 0.347 0.296 0.350 0.301 0.356 0.296 0.349 0.301 0.354 0.306 0.358
1 · 10−5 0.293 0.348 0.297 0.351 0.302 0.356 0.297 0.350 0.301 0.354 0.306 0.359

9
1.6 · 10−4 0.289 0.345 0.289 0.346 0.291 0.348 0.293 0.346 0.294 0.348 0.295 0.350
4 · 10−5 0.292 0.348 0.298 0.352 0.305 0.359 0.298 0.351 0.305 0.357 0.311 0.363
1 · 10−5 0.294 0.349 0.300 0.353 0.306 0.360 0.299 0.352 0.307 0.357 0.312 0.364

12
1.6 · 10−4 0.289 0.345 0.290 0.346 0.292 0.350 0.293 0.347 0.294 0.348 0.296 0.351
4 · 10−5 0.293 0.349 0.302 0.354 0.309 0.363 0.301 0.353 0.310 0.361 0.318 0.369
1 · 10−5 0.296 0.351 0.304 0.356 0.312 0.365 0.303 0.356 0.314 0.362 0.320 0.370

15
1.6 · 10−4 0.289 0.345 0.291 0.347 0.293 0.350 0.293 0.347 0.295 0.350 0.297 0.352
4 · 10−5 0.294 0.349 0.304 0.357 0.314 0.366 0.303 0.355 0.316 0.365 0.324 0.374
1 · 10−5 0.297 0.352 0.308 0.359 0.316 0.368 0.307 0.358 0.320 0.368 0.326 0.375

19
2

6
1.6 · 10−4 0.333 0.370 0.334 0.371 0.335 0.372 0.335 0.372 0.335 0.372 0.336 0.373
4 · 10−5 0.336 0.372 0.339 0.375 0.344 0.380 0.337 0.373 0.341 0.377 0.344 0.379
1 · 10−5 0.337 0.373 0.340 0.376 0.345 0.380 0.338 0.374 0.342 0.377 0.345 0.380

9
1.6 · 10−4 0.333 0.370 0.334 0.371 0.335 0.373 0.335 0.372 0.336 0.373 0.336 0.374
4 · 10−5 0.336 0.373 0.341 0.376 0.346 0.382 0.338 0.374 0.343 0.378 0.346 0.382
1 · 10−5 0.338 0.374 0.342 0.377 0.347 0.383 0.339 0.375 0.344 0.379 0.347 0.383

12
1.6 · 10−4 0.333 0.371 0.335 0.372 0.335 0.373 0.335 0.372 0.336 0.373 0.337 0.374
4 · 10−5 0.337 0.374 0.343 0.378 0.348 0.384 0.339 0.375 0.346 0.380 0.349 0.385
1 · 10−5 0.339 0.375 0.345 0.379 0.350 0.385 0.341 0.377 0.348 0.382 0.351 0.386

15
1.6 · 10−4 0.333 0.371 0.335 0.372 0.335 0.373 0.335 0.372 0.337 0.374 0.337 0.375
4 · 10−5 0.338 0.375 0.345 0.380 0.351 0.386 0.341 0.376 0.349 0.383 0.353 0.387
1 · 10−5 0.341 0.376 0.347 0.382 0.353 0.387 0.344 0.379 0.352 0.385 0.354 0.389

33
6

6
1.6 · 10−4 0.366 0.387 0.367 0.388 0.368 0.389 0.364 0.392 0.364 0.392 0.365 0.393
4 · 10−5 0.369 0.389 0.372 0.392 0.376 0.396 0.366 0.394 0.370 0.396 0.373 0.399
1 · 10−5 0.370 0.390 0.373 0.393 0.378 0.397 0.367 0.395 0.371 0.397 0.374 0.400

9
1.6 · 10−4 0.367 0.387 0.368 0.388 0.369 0.390 0.364 0.393 0.365 0.393 0.366 0.394
4 · 10−5 0.370 0.390 0.373 0.392 0.378 0.397 0.367 0.395 0.372 0.398 0.376 0.402
1 · 10−5 0.371 0.391 0.375 0.394 0.380 0.399 0.369 0.396 0.373 0.398 0.376 0.402

12
1.6 · 10−4 0.367 0.387 0.368 0.388 0.369 0.390 0.365 0.393 0.365 0.393 0.366 0.394
4 · 10−5 0.371 0.390 0.375 0.394 0.379 0.399 0.368 0.396 0.375 0.400 0.379 0.405
1 · 10−5 0.372 0.392 0.377 0.395 0.381 0.401 0.371 0.398 0.377 0.401 0.379 0.405

15
1.6 · 10−4 0.367 0.388 0.369 0.389 0.368 0.390 0.365 0.393 0.366 0.394 0.365 0.394
4 · 10−5 0.372 0.391 0.377 0.395 0.381 0.400 0.370 0.396 0.378 0.403 0.382 0.408
1 · 10−5 0.374 0.393 0.379 0.397 0.383 0.402 0.373 0.399 0.381 0.404 0.382 0.408

72
0

6
1.6 · 10−4 0.420 0.417 0.421 0.417 0.422 0.418 0.416 0.421 0.416 0.421 0.417 0.421
4 · 10−5 0.423 0.419 0.425 0.421 0.429 0.425 0.419 0.422 0.422 0.424 0.427 0.427
1 · 10−5 0.424 0.420 0.426 0.422 0.431 0.426 0.420 0.423 0.424 0.425 0.429 0.429

9
1.6 · 10−4 0.420 0.417 0.421 0.417 0.422 0.419 0.416 0.421 0.416 0.421 0.418 0.422
4 · 10−5 0.423 0.419 0.426 0.421 0.430 0.426 0.419 0.423 0.423 0.425 0.428 0.428
1 · 10−5 0.425 0.420 0.428 0.423 0.432 0.428 0.421 0.424 0.425 0.426 0.431 0.430

12
1.6 · 10−4 0.420 0.417 0.421 0.417 0.422 0.419 0.416 0.421 0.417 0.421 0.418 0.422
4 · 10−5 0.424 0.420 0.427 0.423 0.431 0.427 0.420 0.423 0.425 0.426 0.430 0.430
1 · 10−5 0.426 0.421 0.429 0.424 0.434 0.429 0.422 0.425 0.427 0.428 0.433 0.432

15
1.6 · 10−4 0.421 0.417 0.422 0.418 0.422 0.419 0.416 0.421 0.417 0.421 0.418 0.422
4 · 10−5 0.425 0.420 0.429 0.424 0.433 0.428 0.421 0.424 0.427 0.428 0.432 0.431
1 · 10−5 0.427 0.422 0.432 0.426 0.435 0.430 0.423 0.426 0.430 0.430 0.435 0.433
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H VISUALIZATION OF TSRBENCH

To provide a comprehensive visual understanding of TSRBench, we present a series of visualizations
that illustrate the effects of different corruption types across various severity levels and datasets.
These visualizations serve as a qualitative complement to the quantitative results presented in the
main paper. Figures 9, 10, 11, 12, 13, and 14 display examples of time series data from our six
benchmark datasets (ETTh1, ETTh2, ETTm1, ETTm2, Weather, and Electricity) under realistic
corruptions at varying severity levels. Each figure shows level shift corruptions (left column) and
spike corruptions (right column), demonstrating how these corruptions manifest differently across
diverse time series data types.

As the severity level increases from 1 to 5, we can observe the progressive intensification of both
corruption types. For spike corruptions, higher severity levels not only produce spikes with greater
amplitudes but also increase their frequency throughout the time series. This creates challenging
scenarios where models must distinguish between legitimate data points and anomalous spikes that
occur more frequently and with larger magnitudes. Level shift corruptions, meanwhile, exhibit
two key patterns as severity increases: first, the magnitude of the shifts becomes more pronounced,
creating larger deviations from the original signal; second, the duration of these shifts becomes
notably wider, meaning the corrupted signal remains in an altered state for longer periods. This
temporal extension of corruption is particularly challenging for forecasting models that rely on
consistent patterns.

These visualizations highlight the statistically grounded nature of our corruption generation process.
Rather than arbitrary or manual corruption placement, TSRBench simulates realistic corruptions that
preserve the underlying data distribution while introducing controlled perturbations. This approach
allows for systematic evaluation of model robustness under conditions that closely resemble real-
world scenarios where data quality cannot be guaranteed. The progressive severity scale enables
researchers to assess not only whether models are robust to corruptions but also to quantify at which
corruption intensity their performance begins to degrade significantly, providing valuable insights for
deploying these models in practical applications.

I USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, a Large Language Model (LLM) was utilized as a general-purpose
writing-assistance tool. The role of the LLM was limited to improving the quality of the prose,
including enhancing clarity, correcting grammatical errors, and refining sentence structure to ensure
the manuscript was articulate and readable.
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Figure 9: ETTh1 dataset with level shift corruptions (left) and spike corruptions (right) across severity
levels 1-5. Each row represents a different severity level, demonstrating the progressive intensification
of realistic corruptions in the time series data.
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Figure 10: ETTh2 dataset with level shift corruptions (left) and spike corruptions (right) across
severity levels 1-5. Each row represents a different severity level, demonstrating the progressive
intensification of realistic corruptions in the time series data.
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Figure 11: ETTm1 dataset with level shift corruptions (left) and spike corruptions (right) across
severity levels 1-5. Each row represents a different severity level, demonstrating the progressive
intensification of realistic corruptions in the time series data.
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Figure 12: ETTm2 dataset with level shift corruptions (left) and spike corruptions (right) across
severity levels 1-5. Each row represents a different severity level, demonstrating the progressive
intensification of realistic corruptions in the time series data.
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Figure 13: Weather dataset with level shift corruptions (left) and spike corruptions (right) across
severity levels 1-5. Each row represents a different severity level, demonstrating the progressive
intensification of realistic corruptions in the time series data.
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Figure 14: Electricity dataset with level shift corruptions (left) and spike corruptions (right) across
severity levels 1-5. Each row represents a different severity level, demonstrating the progressive
intensification of realistic corruptions in the time series data.
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