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MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with
Diverse Human Preferences

Anonymous Authors1

Abstract

Reinforcement Learning from Human Feedback
(RLHF) aligns language models to human pref-
erences by employing a singular reward model
derived from preference data. However, the sin-
gle reward model overlooks the rich diversity of
human preferences inherent in data collected from
multiple users. In this work, we first derive an
impossibility result of alignment with single re-
ward RLHF, thereby highlighting its insufficiency
in representing diverse human preferences. Next,
we propose to learn a mixture of reward mod-
els via an expectation-maximization algorithm
and solve a MaxMin alignment objective inspired
by the Egalitarian principle in social choice the-
ory to better honor diverse human preferences.
We present comprehensive experimental results
on small-scale (GPT-2) and large-scale language
(with Tulu2-7B)) and show the efficacy of the
proposed approach in the presence of diversity
among human preferences. We remark that our
findings in this work are not only limited to lan-
guage models but also extend to reinforcement
learning in general.

1. Introduction

The alignment problem, central to developing and fine-
tuning current large language models (LLMs), represents
a crucial challenge in artificial intelligence, especially in
ensuring these models operate in harmony with human val-
ues and preferences (Wang et al., 2023; Christian, 2020).
Reinforcement learning from human feedback (RLHF) has
emerged as a pivotal approach to alignment problems, specif-
ically aligning LLM (Wang et al., 2023; Ouyang et al.,
2022b; Stiennon et al., 2022a; Ouyang et al., 2022a). RLHF
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operates in three steps (a) supervised fine-tuning, (2) reward
learning, and (3) RL fine-tuning. Step 2 learns a reward
function that is expected to represent the preference feed-
back of the human population. However, there has been
minimal emphasis on accurately representing the diversity
of human preferences and the broad spectrum of user popu-
lations. As highlighted by Aroyo & Welty (2015); Aroyo
et al. (2023a;b), “the notion of ‘one truth’ in crowdsourc-
ing responses is a myth” and we need to account for the
diversity in opinions and preferences.

Despite the criticality, most of the latest RLHF approaches
ignore the consideration of the diversity in human prefer-
ence feedback by aligning the language model with a single
reward (Wang et al., 2023; Christian, 2020; Stiennon et al.,
2022a; Ouyang et al., 2022a). The assumption of a single
ground truth reward is restrictive and can potentially subdue
the preferences or opinions of minority groups, leading to
societal biases (Figure 1). To mitigate this issue, some of the
recent research proposes to learn multiple reward functions,
which can then be aggregated in arbitrary manners (Bakker
et al., 2022). On the other hand, (Ovadya, 2023) adopts
a consensus-based method for aggregating human repre-
sentations by emphasizing specific principles (Bai et al.,
2022b; Kovač et al., 2023), which might result in the under-
representation of marginalized groups (Ramé et al., 2023).
Another line of research focuses on the aspect of designing
multi-policy strategies by fine-tuning personalized language
models towards individual rewards (Jang et al., 2023; Ramé
et al., 2023; Ji et al., 2023a).

As mentioned above, the recent literature has brought atten-
tion to the challenge of aligning single utility RLHF with
diverse preferences. However, a thorough understanding of
how the diversity within human sub-populations influences
the overall alignment objective remains elusive. Conse-
quently, this prompts us to pose the following question: Is a
single reward RLHF pipeline sufficient to align with diverse
human preferences?

In this work, we present negative results for the above ques-
tion in this work by demonstrating the impossibility of align-
ment using single reward RLHF (Theorem 1). We introduce
a notion of diversity between human subpopulations due

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

MaxMin Approach to Align with Diverse Human Preferences

to the differences in preference distributions and establish
lower bounds on the alignment performance of single re-
ward RLHF. However, this impossibility result naturally
raises another important question:

What strategies can we design (or what methods can we
adopt) to align with diverse human preferences?

In response to this question, we draw inspiration from the
Egalitarian rule (Sen, 2017) and aim to maximize the social
utility objective for alignment. We summarize our contribu-
tions as follows.

(1) An impossibility result of alignment with single
reward-based RLHF. We first introduce the notation of
diversity (Definition 1) and then derive lower bounds on the
reward model suboptimality (Lemma 1) in terms of diversity
in human sub-population preference distributions. Finally,
we establish a lower bound (Theorem 1) on the alignment
gap due to the diversity in the human preference feedback.
True to our knowledge, our work is the first to report such a
result in the RLHF literature.

(2) Max-Min RLHF alignment with diverse user prefer-
ences. We propose to learn a mixture of preference distribu-
tions through the application of multiple reward functions
using the Expectation-Maximization (EM) algorithm (Al-
gorithm 2). Upon obtaining multiple reward functions spe-
cific to different human sub-populations, we introduce the
MaxMin-RLHF algorithm as a strategy to align language
models with social utility objectives (Algorithm 1).

(3) A comprehensive empirical study. We present a de-
tailed empirical analysis of our proposed concepts on two
language models: GPT-2 and Tulu-7B. Initially, we pro-
vide empirical evidence highlighting the impossibilities of
alignment with single reward RLHF, followed by demon-
strating the feasibility and effectiveness of MaxMin-RLHF
in achieving social utility objectives. Our approach out-
performs existing methodologies, showcasing significant
performance improvements.

2. Preliminaries

Let us start by defining a language model mathematically.
We denote a vocabulary set as V and a language model by
a mapping πθ (parameterized by θ). A language model πθ
takes a sequence of tokens (called prompt) as input denoted
by x := {x1, x2, · · · , xN}, where each token xi ∈ V . The
prompt x ∈ X , whereX is the set of prompts, is fed as input
to the language model, and it generates output response
y ∼ πθ(· | x).

RLHF pipeline. We start by considering the RLHF pipeline

in Ziegler et al. (2019), which has also been adopted in
subsequent works (Stiennon et al., 2022c; Bai et al., 2022a;
Ouyang et al., 2022b). It consists of three steps detailed as
follows:

Step 1: Supervised Fine-tuning (SFT): In this phase, a
generic pre-trained LM is fine-tuned with supervised learn-
ing on a high-quality dataset for the downstream task(s) of
interest, such as dialogue, instruction following, summariza-
tion, etc., to obtain a model πref.

Step 2: Reward Modelling: In the second phase, the SFT
model is queried with prompts x ∈ X to produce pairs of
responses (y1,y2) ∼ πθ(· | x) which are then presented
to human labelers for preference evaluation, and y1, y2

denotes the preferred and dispreferred response, respectively.
The preference distribution under the Bradley-Terry (BT)
preference model (Bradley & Terry, 1952) is written as

p∗(y1≻y2 | x)=
exp (r∗(y1,x))

exp (r∗(y1,x)) + exp (r∗(y2,x))
,

(1)
where r∗(y,x) is the latent reward model. With a static
dataset D = {x(i),y

(i)
1 ,y

(i)
2 }

N
i=1 sampled from p∗, we can

learn a parameterized reward model rϕ(y,x) via maximum
likelihood estimation. Framing the problem as a binary
classification, we have the negative log-likelihood loss:

LR(rϕ,D)=−E(x,y1,y2)∼D[log σ(rϕ(y1,x)−rϕ(y2,x))]
(2)

where σ is the logistic function.

Step 3: RL Fine-Tuning: In the final step, the optimal
policy π∗

rϕ
under the reward rϕ is obtained by solving the

KL-regularized reward maximization problem given by

max
π

Ex∼P,y∼π(· | x)[rϕ(y,x)− βDKL[π(·|x)||πref(·|x)]],
(3)

where, β > 0 controls the deviation from the base reference
policy πref.

3. An Impossibility Result for Single Reward
RLHF with Diverse Preferences

In this section, we mathematically prove the impossibility
of aligning language models with diverse human prefer-
ences with the single reward RLHF framework. We start
by discussing the motivation and mathematical definition of
diversity in human preferences in Section 3.1, then connect
the reward learning step of the RLHF pipeline with diver-
sity in Section 3.2, and then finally prove the impossibility
of language model alignment in Section 3.3 by connecting
Step 3 of RLHF pipeline with human preference diversity.
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MaxMin Approach to Align with Diverse Human Preferences

Figure 1: This figure highlights the drawbacks of a single reward-based current state-of-the-art alignment framework called
Reinforcement Learning from Human Feedback (RLHF) (Christian, 2020). In this figure, we demonstrate a setting where,
due to the inherent presence of majority and minority user groups who provide human feedback, single reward-based RLHF
alignment would align the language model towards the majority group while completely ignoring the minority use group
preferences. We provide a theoretical justification in Section 3 and empirical evidence in Section 5.

3.1. Diversity in Human Preferences

The main shortcoming of state-of-the-art alignment ap-
proaches arises from the underlying assumption that human
preferences are derived from a single latent reward model
r∗(y, x) (cf. (2)), which fails to account for the inherent
diversity among the human sub-populations (see Figure 2).
As discussed in Section ??, one of the key reasons for the
diverse human preferences is the varied socio-demographic
and socio-cultural backgrounds of human sub-populations
(Aroyo et al., 2023b;a). For example, population groups
with diverse demographic markers such as race, ethnicity,
age groups, genders, etc., have highly varied preferences as
highlighted in (Aroyo et al., 2023b;a; Denton et al., 2021a).
Such diversity inevitably leads to natural sub-groups of
populations among humans. Modeling this diversity in pref-
erences for the fine-tuning of language models in RLHF is
crucial, which, to the best of our knowledge, is currently
missing from the literature.

Sub-population Preference Distributions: Let us consider
the human population providing the preference feedback
represented byH. We can write the preference distribution
(Stiennon et al., 2022a; Ouyang et al., 2022a) as

p∗(y1 ≻ y2 | x) (4)
= Eh∈H[I(h prefers y_1 over y_2|x)],

where p∗(y1 ≻ y2 | x) is the probability of preferring y1

over y2 for any given pair (y1,y2) corresponding to prompt
x. In (4), the expectation is over a finite set of humans
h ∈ H. We next introduce the concept of human subpopula-
tions as a hidden random variable, denoted as u with distri-
bution η, to account for the inherent diversity within the pop-
ulation. Specifically, u represents the human subpopulation
defined over a finite discrete set U := {H1,H2, · · · ,H|U|},

such that H =
⋃|U|
u=1Hu. The cardinality of the set U rep-

resents the number of sub-populations/groups present in the
total human population H. Therefore, similar to (4), we
can define a human-subpopulation or group-specific prefer-
ence distribution for a given pair of responses (y1,y2) and
prompt x as

p∗u(y1 ≻ y2 | x) (5)
= Eh∈Hu

[I(h prefers y_1 over y_2|x)],

for all groups in U . Next, we define the preference diversity
among the human population in Definition 1 as follows.

Definition 1 (Diversity in Human Preferences). Con-
sider a human population H, composed of |U| sub-
population groups where H =

⋃|U|
u=1Hu, and a sub-

population-specific preference p∗u as defined in (5), we
define the diversity of sub-population group Hi with
respect to other groupHj as

Diverity (i, j) := TV(p∗i , p
∗
j ), (6)

where TV denotes the total variation distance between
two preference distributions.

By utilizing the definition of sub-population groups in U ,
we can express the preference in (4) as

p∗(y1 ≻ y2 | x) =
|U|∑
u=1

[ ∑
h∈Hu

Ih(z) · q(h|u)
]
· η(u)

=

|U|∑
u=1

p∗u(z) · η(u), (7)

where z := (y1 ≻ y2 | x) is a shorthand notation and
q(·) denotes the distribution over the humans H. Here,

3
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scores

(a) Sentiment (Minority)

scores

(b) Sentiment (Majority)

(c) Conciseness (Minority) (d) Conciseness (Majority)

scores scores

Figure 2: (Diversity in Preferences.) This figure illus-
trates the diversity in preferences among two distinct human
groups using the IMDB movie review dataset (Maas et al.,
2011). We categorize these groups as ‘majority’ and ‘minor-
ity.’ (a) and (c) display minority sentiment and conciseness
preferences. We note that the minority group strongly favors
concise responses (as seen in the blue curve in (c)), while
showing indifference towards sentiment (as indicated by
overlapping curves in (a)). In contrast, (b) and (d) depict
that the majority clearly prioritizes positive sentiment (as
evidenced by a significant gap between chosen and rejected
trajectories in (b)), while displaying little concern for con-
ciseness (as indicated by overlapping curves in (d)).

p∗u(zh) =
∑
h∈Hu

Ih(z) · q(h|u) is the sub-population spe-
cific preference distribution (cf. (5)) and η(·) represents the
marginal probability distribution of sub-populationHu and
quantifies the probability of occurrence of sub-population
Hu to provide feedback for pair z. We can think of η(·) as
a weighting function that quantifies the relative importance
of each sub-population (sayHu) within the full population
H reflecting their contributions to the aggregate preference
distribution p∗. Thus, from the expansion in (7), it is evi-
dent that the preference distribution under consideration is a
weighted sum of sub-population specific preference distribu-
tion, weighted by η(u). We remark that distributions q and
η are crucial to rigorously characterize the alignment perfor-
mance of different approaches, which is not considered in
the existing literature (Christian, 2020; Bai et al., 2022a).

3.2. Reward Mismatch Due to Diversity

From equations (1) and (2), we note that the existing RLHF
approach focuses on learning the ground-truth single reward

parameter ϕ∗ to represent the preference distribution p∗ by
minimizing the cross-entropy loss (cf. (2)) given by

LR(rϕ,D) =− E(x,y1,y2)∼D

[
p∗(y1 ≻ y2 | x) log pϕ(≻)

+ p∗(y1 ≺ y2 | x) log pϕ(≺)
]
, (8)

The assumption of single ground-truth reward (correspond-
ing to p∗) which is violated due to the existence of diverse
sub-populations with separate preference distributions, as
discussed in Section 3.1. This would lead to an implicit ag-
gregation as shown in (7) and the equivalent MLE objective
in (8) can be re-written as :

LR(rϕ,D)=−E(x,y1,y2)∼D

[
Eu[p∗u(y1≻y2 |x)] log pϕ(≻)

+ Eu[p∗u(y1 ≺ y2 | x)] log pϕ(≺)
]
. (9)

Now, expanding upon the cross-entropy objective, we note
(see Lemma 3 for details) that the objective in (9) essentially
reduces to minimizing the Kullback-Leibler (KL) diver-
gence KL(

∑|U|
u=1 η(u)p

∗
u(z)||pϕ) and the objective is mini-

mized at pϕ∗ =
∑|U|
u=1 η(u)p

∗
u. This implies that by mini-

mizing the loss function in (9), when we try to learn a single
ϕ∗ to recover p∗, an implicit averaging happens over the
preferences of human subpopulation groups they belong to,
which plays a critical role in the sub-optimality in reward
learning summarized in Lemma 1.

Lemma 1. Let ϕ∗ denotes the reward parameter, which
models p∗ (cf. 1) and ϕ∗u models the human sub-
population groupHu ∈ U specific p∗u, it holds that

∥ϕ∗ − ϕ∗u∥︸ ︷︷ ︸
Reward mismatch

≥ 1

2D
·

|U|∑
k=1

η(k) · Diverity (u, k),

where η denotes the weights distribution across human
sub-population groups, D denotes the upper bound
on the feature representation ∥ψ(y,x)∥≤ D for all
(x,y), and diversity as defined in Definition 1.

Proof Sketch. Here we describe the proof sketch of Lemma
1 with a detailed proof provided in Appendix D. We begin
with the definition of sub-optimality in the learned reward
for a subpopulation group u as ∆r

u := ϕ̂MLE − ϕ∗u where
ϕ̂MLE which is the approximation to the true parameter ϕ∗.
However, we know in the limit of infinite data, ϕ̂MLE con-
verges to ϕ∗ and hence we focus on the sub-optimality gap
due to diversity as ∥ϕ∗u−ϕ∗∥. Using the Lipschitzness of the
preference probability distribution under the Bradley-Teryy
preference model (derived in Lemma 2 in Appendix) we
lower-bound the sub-optimality gap by 1

2DTV (pϕ∗
u
, pϕ∗)

and finally expanding upon the definition of p∗ as shown in
(7), we get the final result.

4
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MaxMin Approach to Align with Diverse Human Preferences

Remark. Lemma 1 indicates that the current RLHF-based
reward learning paradigm (Christian, 2020; Bai et al., 2022a;
Rafailov et al., 2023) will suffer sub-optimality due to diver-
sity amongst the humans, which is highly likely in practice
(Aroyo et al., 2023b). Lemma 1 implies that the degree to
which the learned reward parameter diverges from optimal-
ity for a given subgroup is influenced by two key factors:
the distinctiveness of that subgroup’s preferences compared
to all the other subgroups, and the relative weight assigned
to the subgroup in the overall preference model.

3.3. An Impossibility Results of Alignment

To mathematically characterize the impossibility of aligning
the language model with diverse sub-population groups,
let us reconsider the RL fine-tuning optimization problem,
which is given by (step 3 in RLHF)

max
π

Frϕ(π), (10)

where we define Frϕ(π) := Ex∼P

[
Ey∼π(· | x)[rϕ(y,x)]−

βDKL[π(· | x)||πref(· | x)]
]
. Let us define π∗

RLHF :=

argmaxπ Frϕ∗ (π) where π∗
RLHF is the optimal aligned pol-

icy with single reward RLHF. On the other hand, we de-
fine a human sub-population specific optimal policy as
π∗

u := argmaxπ Frϕ∗
u
(π), where π∗

u is the optimal aligned
policy with individual subpopulation groupHu. We define
the alignment gap of RLHF model π∗

RLHF to a specific user
groupHu by

Align-Gap(πRLHF) := Frϕ∗
u
(π∗
u)− Frϕ∗

u
(πRLHF). (11)

We note that the alignment gap defined in (11) measures the
discrepancy between the reward returns by the single reward
RLHF model πRLHF and the optimal model π∗

u tailored for
Hu subpopulation evaluated under true reward function r∗u.
Next, we present our impossibility result in Theorem 1

Theorem 1 (An Impossibility Result). Let ϕ∗ denotes
the reward parameter, which models p∗ (cf. 1), ϕ∗u
denotes the human sub-population group Hu ∈ U
specific reward function to model p∗u, and alignment
gap is as defined in (11). Then, it holds that

Align-Gap ≥ λψLπ
16β2D2

·
|U|∑
k=1

η(k) · Diverity (u, k),

(12)

where η denotes the weights distribution across human
sub-population groups, D denotes the upper bound
on the feature representation ∥ψ(y,x)∥≤ D for all
(x,y), λψ denotes the minimum eigenvalue of the fea-
ture matrix, β is the regularization parameter of RLHF

Impossibility of Alignment with Single Reward RLHF

Sentiment score

Before Alignment 

Sentiment score

Conciseness score Conciseness score

After Alignment 

Figure 3: (Empirical Evidence of Impossibility). This
figure validates our theoretical results in Theorem 1 and pro-
vides empirical evidence of the impossibility of alignment
in single reward RLHF on preference dataset presented in
Figure 2. Here, the task is to align the LLM to generate
positive sentiment responses which are concise. We note
that the aligned language model can generate highly positive
sentiment sentences but completely ignores the requirement
of conciseness. This is happening because the humans who
prefer conciseness are in minority as compared to humans
who prefer positive sentiment score as described in Figure
2.

framework, and diversity as defined in Definition 1.

A detailed proof of Theorem 1 is provided in Appendix
E. We briefly describe the proof sketch of Theorem 1 as
follows.

Proof Sketch. We begin by considering the KL-regularized
alignment objective (cf. (3)). Utilizing the strong concavity
of the objective under the KL regularization and the ana-
lytical mapping from reward functions to optimal policies
(as used in DPO (Rafailov et al., 2023)), we first derive a
lower bound on the alignment gap as Align-Gap(πRLHF) ≥

1
2Lπβ2 ∥rϕ∗ − rϕ∗

u
∥2. Under the linear parametrization in

reward and utilizing the boundedness on the representation
space, we can lower-bound the alignment gap with the re-
ward sub-optimality and eventually the diversity coefficient.

Remark. Theorem 1 shows that high subpopulation diver-
sity inevitably leads to a greater alignment gap. In summary,
if a subgroup exhibits distinctive preferences or constitutes
a minority with a smaller representation, the resulting model

5
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Algorithm 1 MaxMin RLHF

1: Input: Preference datasetD, initial reward parametriza-
tion for each subpopulation u as ruϕ0

, initial policy pa-
rameter π0.

2: Reward Learning with EM: Utilize Algorithm 2 for
learning rewards with EM to learn ruϕ for all user sub-
population u

3: Max-Min Policy Iteration:
4: for t = 0 to T − 1 do
5: Choosing Minimum Utility Subpopulation:
6: umin ← argminHu∈U Fruϕ (πt)
7: Perform the PPO Update:
8: Update policy π towards maximizing the objective:
9: πi+1 ← PPO-update(Frϕ∗

u
(πt)− βDKL[πt||πref])

10: end for
11: Output: Policy πT aligned with socially fair preference

dataset

from single reward RLHF setting cannot accurately reflect
the sub-population’s specific preferences. We provide em-
pirical evidence of impossibility of alignment in Figure 5.

4. MaxMin-RLHF: One Possibility

From the statement of Theorem 1, it is clear that it is not
possible to align diverse human preferences with a single
reward RLHF. We start by noting that even if we can bypass
the sub-optimality in reward learning (cf. Lemma 1) by
learning multiple reward functions ϕ̂u for allHu, it doesn’t
resolve the eventually aim of language model alignment.
This is because our goal is to develop a single model π∗

that honors diverse user preferences without demonstrating
bias towards specific groups such as minorities. To achieve
that, we take motivation from the Egalitarian rule in social
choice theory (Sen, 2017), which states that society should
focus on maximizing the minimum utility of all individuals.
Hence, we write our proposed alignment objective which
maximizes the social utility as

π∗
F ∈ argmax

π
min
u∈U

Frϕ∗
u
(π)− βDKL[π||πref], (13)

where, Frϕ∗
u
(π) := Ex∼P,y∼π(· | x)[rϕ∗

u
(y,x)] (cf. (3))

represents the alignment objective for the uth sub-
population or group among set of humans.

MaxMin RLHF. If we have access to individual human
sub-population rewards, we can go directly to solve the op-
timization problem in (13) with the algorithm summarized
in Algorithm 1. But often, in practice, they are hardly avail-
able. To address this challenge,we consider an expectation-
maximization algorithm to learn a mixture of reward models
summarized in Algorithm 2 which learns the rϕu’s and the
|U| clusters. We summarize the EM algorithm for reward

Algorithm 2 Learning Rewards with EM Algorithm

1: Input: Preference data D, |U| clusters of users among
all humans in H =

⋃|U|
u=1Hu, pretrained {rϕu}

|U|
u=1,

loss function loss, convergence criteria
2: while not reach the convergence criteria do
3: for h ∈ H do
4: E-step (hard cluster assignment): assign h to the

u-th cluster s.t.

u = arg max
u∈1,···,|U|

∏
(x,y1,y2,h)∈D

w(ϕu,x,y1,y2)

where w(·) = exp(rϕu (y1,x))
exp(rϕu (y1,x))+exp(rϕu (y2,x))

5: end for
6: M-step: Update each ϕu, u = 1, · · · , |U| by mini-

mizing the negative log-likelihood loss (2) on the
assigned users’ data

7: end while

learning in Algorithm 2.

5. Experimental Results

In this section, we present a comprehensive empirical eval-
uation of the alignment impossibilities and our proposed
solutions for language models, structured into two distinct
subsections: Small Scale experiments (Sec. 5.1) for initial
proof of concept, and Large Scale experiments (Sec. 5.2)
for broader validation. We first demonstrate the practical
challenges of alignment (cf. Theorem 1), followed by show-
casing the efficacy of our MaxMin-RLHF strategy. This
approach illustrates that, with a focus on social welfare
objectives, alignment across diverse human preferences is
attainable.

5.1. Small Scale Experiments (with GPT-2): Sentiment
and Conciseness Alignment

Dataset. For the experiment in this section on controlled
sentiment generation, we categorized the humans into two
groups: majority (Group 1) and minority (Group 2). In
these sub-groups, Group 1 prefers responses with positive
sentiment, and Group 2 prefers brevity (conciseness) in
responses. We use the IMDb dataset as a basis for our in-
puts (Maas et al., 2011), the goal for the optimal policy
is to produce responses y that exhibit positive sentiment
(catering to Group 1) while remaining concise (catering to
Group 2). We generated two sets of preference pairs for
a controlled evaluation for each user group. For Group
1, we utilized a pre-trained sentiment classifier to ensure
p(positive | x, y1) > p(positive | x, y2) and similarly for
Group 2 we preferred shorter responses over longer ones.

6
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Figure 4: (Alignment with MaxMin RLHF). This figure
shows the performance of our proposed MaxMin RLHF al-
gorithm for the preference dataset described in Figure 2. The
task is to align a language model to generate positive sen-
timent responses that are concise (of shorter token length)
in nature. We note that MaxMin-RLHF aligned language
model can generate highly positive sentiment sentences and
satisfy the conciseness criteria. This shows alignment with
both the majority and minority preferences.

To illustrate the majority and minority group dynamics, we
control the proportion of the user groups in the preference
data (Group 1: 80% and Group 2 - 20%). For the exper-
iments in this subsection, we use GPT-2 (Radford et al.,
2019) as the base model.

Impossibility Results. To demonstrate our impossibility
results as stated in Theorem 1, we perform the three steps of
RLHF (described in (Christian, 2020; Ouyang et al., 2022b))
as prevalent currently with a single utility reward function
on the combined preference dataset. For SFT, we fine-tune
GPT-2 until convergence on reviews from the train split of
the IMDB dataset and use this GPT-2 backbone for both
the reward model and PPO training. The generations are
evaluated against the ground truth rewards r∗1 for positive
sentiment (majority group) and r∗2 for conciseness (minor-
ity group). It is evident from Figure 3 that the generated
responses are significantly biased toward the majority user
group’s preference who preference positive sentiment (note
high sentiment score (green curve, high score is better) after
alignment) while the preferences (concise responses) of the
minority user group were neglected (note high conciseness
score (red curve, lower score is better) after alignment),
resulting in more verbose generations than desired.

Proposed MaxMin RLHF. Our proposed algorithm can ef-
ficiently align to both group preferences as shown in Figure
4 thereby generating responses that are of positive sentiment
and concise and thus cater to both the majority and minor-
ity user groups mitigating the social disparity. We further
collectively present the average performance of MaxMin
RLHF with the single reward RLHF and baseline model in
Figure 5.

(a) Sentiment Alignment (b) Conciseness Alignment
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Figure 5: This figure shows the average performance in
terms of sentiments of the generated output and the concise-
ness alignment.We note that MaxMin RLHF is able to better
cater to both the alignment criteria as compared to single
reward RLHF as expected.

5.2. Large Scale Experments (with Tulu2-7B)

Datasets and Experimental Setup. We use the same
dataset as Jang et al. (2023) and 10k data points from GPT4-
Alpaca (Peng et al., 2023) are used as the instruction dataset
to generate rollouts, collect pairwise feedback data, and PPO
training. We utilize GPT-4 to simulate human annotators
with preference prompts described in Table 4 in Appendix
F. We divide the datasets into groups of human users. Each
group has 40 users, which are split into 30 users in training
data and 10 users in testing data. For the experiments in
this subsection, we use Tulu2-7B (Ivison et al., 2023) as the
base model. For each dataset, P1, P2, and P3, we mix the
training user groups to build the simulation dataset. We have
60 users in training data which are mixed from two different
groups with diverse preferences. The original distribution is
that users are evenly distributed in two clusters. Then, we
use the EM algorithm to train |U|= 2 reward models until
we converge. Update ϕu, u = 1, · · · , |U| by minimizing the
negative log-likelihood loss (2). Then, trained model is used
to assign clusters to users in testing data.

5.2.1. MAIN RESULTS

Impossibility of Single Reward Model. When the user
groups are biased (divided into majority and minority groups
based on the preference dataset), the single reward model
fails to capture the preferences of minority user groups.
We test on preference dataset P1A/P1B representing two
user groups and adjust the ratio of the number of users from
group P1A and group P1B. Table 1 summarizes the accuracy
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Ratio Total Majority Minority

1:1 0.686 0.668 0.704
2:1 0.608 0.728 0.488
6:1 0.588 0.724 0.452

10:1 0.568 0.716 0.42

Table 1: This table presents the test accuracy of the single
reward model training on the preference dataset and shows
its failure to align with the minority. The first column de-
notes the user group ratio in the dataset, the second column
shows the total accuracy, the third column shows the accu-
racy of the majority group, and the fourth column shows the
accuracy of the minority group.

for the majority group and minority group, as well as the
accuracy on the total data. Here, low accuracy means that
the alignment with the minority user group will be poor after
the PPO step since the reward model itself is not accurate.

Reward Learning with EM (Algorithm 2). Following the
procedures in the experiment setup, we get similar and good
results on all three datasets, as shown in Figure 6. From the
results in Figure 6, we note that after the fourth iteration,
all users are clustered correctly, meaning the mixture pref-
erence model successfully converges we successfully learn
diverse groups of users with diverse preferences.

MaxMin RLHF Alignment. We further test the
performance of our MaxMin-RLHF alignment
method and compare it with the single reward

Method P3A P3B Average

MaxMin 57.78 55.56 56.67
1:1 55.85 52.62 54.24
2:1 55.56 48.89 52.23
6:1 58.06 46.67 52.37
10:1 56.00 45.00 50.50

Table 2: Pairwise win rate (%)
on P3 dataset using GPT-4.

RLHF models trained on
biased datasets. Our
baselines include ratios
of 1, 2, 6, and 10,
the same setting as dis-
cussed for Table 1. Fol-
lowing Jang et al. (2023),
we use the same 50 in-
stances from Koala eval-
uation(Geng et al., 2023)
and test the model’s ability to generate answers in different
groups of users’ preferences. We run pairwise evaluations
by GPT-4 using AlpacaFarm codebase(Dubois et al., 2023)
and use the win rate to the base Tulu2-7B model as the met-
ric. Our results in Table 2 and Table 3 show that MaxMin
alignment keeps a high win rate while the models trained
by PPO with a single reward model on biased datasets will
have a relatively poor performance on the minority data
representing minority user groups.

6. Conclusions

In this work, we critically examine the limitations of the
single-reward RLHF framework, particularly its insuffi-

Method P1A P1B

MaxMin 57.50 60.00
1:1 56.00 51.97
2:1 57.78 44.00
6:1 54.81 48.00

10:1 55.11 45.08

Method P2A P2B

MaxMin 54.50 56.00
1:1 53.73 54.00
2:1 55.55 51.72
6:1 52.14 49.40

10:1 53.96 45.98

Table 3: Pairwise winrate (%) on P1-P2 using GPT-4.

ciency in addressing the diversity of human preferences,
leading to an impossibility result for alignment with diverse
preferences. To achieve a socially fair alignment in diverse
human preference settings, we introduce a novel approach
called MaxMin-RLHF, which learns a max-min policy over
a distribution of reward functions to achieve a more equi-
table model alignment. Our experiments demonstrate the
effectiveness of MaxMin-RLHF in producing socially fairer
outcomes, highlighting the need for more inclusive strate-
gies in RLHF methodologies.
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A. Notations

We define the various notations in this table first.

Notations Description
x prompt
X set of prompts
y output text generated by the LLM
πref direct supervised fine-tuning model, takes x as input and generates y as output

(y1, y2) output pair generated by LLM
h human
D dataset which has the data of the form (x, y1, y2)
ϕ reward model parameter
θ language model parameter
H set of human population

B. A detailed Context of Related Works

Reinforcement Learning from Human Feedback. RL methods, such as policy gradient, applied to train language models
for long-form generation (Cho et al., 2018). The current RLHF approaches (Stiennon et al., 2022b; Ziegler et al., 2020; Zhu
et al., 2023) involve training a reward model based on human preference feedback and then fine-tuning the language model
using proximal policy optimization (PPO) (Schulman et al., 2017). The PPO algorithm helps to learn a model that produces
responses that maximize the reward (Ouyang et al., 2022b; Bai et al., 2022a). Besides PPO, DPO (Direct Preference
Optimization, Rafailov et al. (2023)) directly trains the large language model using human preferences without training the
reward model. A self-play-based approach such as SPIN (Chen et al., 2024) is similar to DPO but has an iterative framework.
However, most of the existing alignment approaches only consider the average preference by human annotators and ignore
the inherent diversity among human preferences (Casper et al., 2023; Kaufmann et al., 2023). A number of theoretical
studies have analyzed the efficiency and benefits for reinforcement learning using preference data (Ji et al., 2023b; Zhang
et al., 2023; Li et al., 2023; ?). (Chakraborty et al., 2024) proposed a bilevel reinforcement learning framework for policy
alignment. Recently (Santurkar et al., 2023) created a dataset for evaluating the alignment of language models with 60 US
demographic groups over a wide range of topics and found substantial misalignment between a selanguage models and
those groups. It emphasizes the criticality of considering diversity while performing alignment.

Diversity in Human Preferences. Here, we briefly review the literature highlighting the reasons for diversity in the context
of LLMs. Diverse human preferences stem significantly from various factors related to social and cultural backgrounds
(Aroyo et al., 2023b;a; Denton et al., 2021a). The key factors contributing to this diversity include (i) socio-demographic
backgrounds, including race, ethnicity, age, and gender shape preferences. Gender differences, for example, influence
sensitivity to online content, with women facing more online harassment (Vogels, 2021). (ii) Personal bias and context
subjectivity, which affects the human preferences for controversial topics in interpreting language and divisive themes
(Denton et al., 2021b; Sandri et al., 2023)). (iii) Imperfect preferences, which arises due to variations in expertise, training,
or quality control leading to diverse preferences, with certain content inaccurately considered offensive by some groups
(Sandri et al., 2023). (iii) Linguistic ambiguity & missing context, could lead to diversity because of words or phrases with
multiple possible interpretations and without clear context (Sandri et al., 2023; Denton et al., 2021b; Sap et al., 2022).
These factors collectively underscore the complexity of aligning LLM outputs with the diverse preferences of human users,
demonstrating the importance of recognizing and addressing the multifaceted nature of user feedback.

C. Preliminary Results

We present the following preliminary results in the form of Lemma 2 and Lemma 3.

Lemma 2. The parametrized preference probability distribution pϕ(y1 ≻ y2 | x) = exp(rϕ(y1,x))
exp(rϕ(y1,x))+exp(rϕ(y2,x))

under
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MaxMin Approach to Align with Diverse Human Preferences

the Bradley -Terry model (Bradley & Terry, 1952) is Lipschitz with respect to parameter ϕ. This implies that

|pϕ − pϕ′ |≤ Lp∥ϕ− ϕ′∥, (14)

with Lp = 4D where D denotes the upper bound on the feature representation ∥ψ(y,x)∥≤ D for all (x,y).

Proof. Let us start from the definition of pϕ(y1 ≻ y2 | x) given by

pϕ(y1 ≻ y2 | x) =
exp(rϕ(y1,x))

exp(rϕ(y1,x)) + exp(rϕ(y2,x))
=

1

1 + exp(−(rϕ(y1,x)− (rϕ(y2,x))
. (15)

From the definition of the Bradley-Terry preference model from equation (1) with the linear parametrization of the reward
function as rϕ(y,x) = ⟨ϕ, ψ(y,x)⟩, we can write the equality in (15) as

pϕ(y1 ≻ y2 | x) =
1

1 + exp(−(⟨ϕ, ψ(y1,x)⟩ − ⟨ϕ, ψ(y2,x)⟩)))

=
1

1 + exp(−⟨ϕ, ψ′(y1,y2,x)⟩)
, (16)

where we define ψ′(y1,y2,x) := ψ(y1,x) − ψ(y2,x)⟩ for the ease of notation. Next, differentiating both sides in (16)
with respect to ϕ, we obtain

∇ϕpϕ(y1 ≻ y2 | x) = −ψ′(y1,y2,x) ·
exp(−⟨ϕ, ψ′(y1,y2,x)⟩)

(1 + exp(−⟨ϕ, ψ′(y1,y2,x)⟩))2

= −ψ′(y1,y2,x)

[
1

1 + exp(−⟨ϕ, ψ′(y1,y2,x)⟩)
− 1

(1 + exp(−⟨ϕ, ψ′(y1,y2,x)⟩))2

]
. (17)

Taking the norm on both sides and applying Cauchy-Schwartz inequality, we get

∥∇ϕpϕ(y1 ≻ y2 | x)∥ ≤ ∥ψ′(y1,y2,x)∥
[

1

1 + exp(−⟨ϕ, ψ′(y1,y2,x)⟩)
+

1

(1 + exp(−⟨ϕ, ψ′(y1,y2,x)⟩))2

]
≤ 2∥ψ′(y1,y2,x)∥. (18)

From the definition of ψ′(y1,y2,x) and the boundedness of the feature representations, we note that ∥ψ′(y1,y2,x)∥=
∥ψ(y1,x)− ψ(y2,x)⟩∥≤ 2D. Hence, we obtain the final bound

∥∇ϕpϕ(y1 ≻ y2 | x)∥ ≤ 4D. (19)

Hence proved.

Lemma 3. The cross-entropy loss minimization for reward learning in step 2 in the RLHF pipeline (cf. (2)) leads
to implicit weightage minimization among the user groups. Specifically, the loss function minimizes the distance to
distribution pϕ∗(z) =

∑|U|
u=1 η(u)p

∗
u(z), where η is the implicit distribution among user groups.

Proof of Lemma 3. From the equality in (7), we note that we can write p∗(y1 ≻ y2 | x) = Eu[p∗u(y1 ≻ y2 | x)]. With this
notation, the loss function for reward learning in (8) can be written as

LR(rϕ,D) = −E(x,y1,y2)∼D

[
Eu[p∗u(y1 ≻ y2 | x)] log pϕ(≻) + Eu[p∗u(y1 ≺ y2 | x)] log pϕ(≺)

]
, (20)

where the equation incorporates the individual user group’s optimal p∗u (we denote the corresponding individual optimal
reward parameter by ϕ∗u) in the likelihood objective. As a first step, let us decompose (20) as

LR(rϕ,D)

13
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=E(x,y1,y2)

[ |U|∑
u=1

[p∗u(y1 ≻ y2|x)η(u)] log pϕ(≻)−
|U|∑
u=1

[p∗u(y1 ≻ y2|x)η(u) log p∗u(y1 ≻ y2|x)]

+

|U|∑
u=1

[p∗u(y1 ≺ y2|x)η(u)] log pϕ(≺)−
|U|∑
u=1

[p∗u(y1 ≺ y2|x)η(u) log p∗u(y1 ≻ y2|x)]

+

|U|∑
u=1

p∗u(y1 ≻ y2|x)η(u) log p∗u(y1 ≻ y2|x) +
|U|∑
u=1

p∗u(y1 ≺ y2|x)η(u) log p∗u(y1 ≺ y2|x)

]
, (21)

where, we add and subtract
∑|U|
u=1[p

∗
u(y1 ≻ y2|x)η(u) log p∗u(y1 ≻ y2|x)] and

∑|U|
u=1[p

∗
u(y1 ≺ y2|x)η(u) log p∗u(y1 ≺

y2|x)] to get the final expression. After rearranging the terms in (21), we get

LR(rϕ,D) =− E(x,y1,y2)∼D

[ |U|∑
u=1

[p∗u(y1 ≻ y2|x)η(u)]
(
log pϕ(≻)− log p∗u(y1 ≻ y2|x)

)
(22)

+

|U|∑
u=1

[p∗u(y1 ≺ y2|x)η(u)]
(
log pϕ(≺)− log p∗u(y1 ≺ y2|x)

)

+

|U|∑
u=1

p∗u(y1 ≻ y2|x)η(u) log p∗u(y1 ≻ y2|x)

+

|U|∑
u=1

p∗u(y1 ≺ y2|x)η(u) log p∗u(y1 ≺ y2|x)

]

= −Ex,y1,y2

[ |U|∑
u=1

η(u)
(
p∗u(y1 ≻ y2|x) · log

pϕ(y1 ≻ y2|x)
p∗u(y1 ≻ y2|x)

+ p∗u(y1 ≺ y2|x) · log
pϕ(y1 ≺ y2|x)
p∗u(y1 ≺ y2|x)

)

+

|U|∑
u=1

p∗u(y1 ≻ y2|x)η(u) log p∗u(y1 ≻ y2|x) +
|U|∑
u=1

p∗u(y1 ≺ y2|x)η(u) log p∗u(y1 ≺ y2|x)

]
.

Next, by utilizing the definition of KL-divergence and entropy to get the final expression as follows

LR(rϕ,D) = E(x,y1,y2)∼D

[ |U|∑
u=1

η(u)KL(p∗u||pϕ) + η(u)H(p∗u)

]
. (23)

From the above objective in (23), we note that the objective is minimized for ϕ when
∑|U|
u=1 η(u)KL(p

∗
u||pϕ) = 0. To

proceed further, let us focus on the term
∑|U|
u=1 η(u)KL(p

∗
u||pϕ) from equation (23) as

|U|∑
u=1

η(u)KL(p∗u||pϕ) =
|U|∑
u=1

η(u)
∑
z

p∗u(z) log
p∗u(z)

pϕ(z)

=

|U|∑
u=1

η(u)
∑
z

p∗u(z) log p
∗
u(z)−

|U|∑
u=1

η(u)
∑
z

p∗u(z) log pϕ(z)

= −
|U|∑
u=1

η(u)H(p∗u)−
∑
z

log pϕ(z)

|U|∑
u=1

η(u)p∗u(z)︸ ︷︷ ︸
=p∗(z)

. (24)

From the definition of KL d in (7), it holds that

|U|∑
u=1

η(u)KL(p∗u||pϕ) = −
|U|∑
u=1

η(u)H(p∗u)−
∑
z

p∗(z) log pϕ(z). (25)

14
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Next, by adding and subtracting the term
∑

z p
∗(z) log p∗(z) in the right hand side of (25), we get

|U|∑
u=1

η(u)KL(p∗u||pϕ) = −
|U|∑
u=1

η(u)H(p∗u)−
∑
z

p∗(z) log pϕ(z) +
∑
z

p∗(z) log p∗(z)−
∑
z

p∗(z) log p∗(z) (26)

= −H(p∗)−
|U|∑
u=1

η(u)H(p∗u) + KL(p∗||pϕ).

Now, replacing this expression in the original implicit minimization objective in (23), we note that the minimization will be
achieved when pϕ∗(z) =

∑|U|
u=1 η(u)p

∗
u(z) for all z. Hence, the reward learning objective is implicitly learning a weighted

combination, which would lead to a significant gap in individual utilities, as discussed in the subsequent section.

D. Proof of Lemma 1

Proof. Let us reconsider the reward learning loss LR(rϕ,D) whose empirical version is minimized to obtain parameter
ϕ̂MLE which is the approximation to the true parameter ϕ∗ := argminϕ−E[

∑
z pϕ∗(z) log pϕ(z)]. As discussed in Sec. 3.2,

due to human user groups, a user group specific ϕ∗u will also exist. Our goal is to characterize the gap between ϕ̂MLE and ϕ∗u
defined as

∆r
u := ϕ̂MLE − ϕ∗u, (27)

where the optimal ϕ∗u for the user group u is given by

ϕ∗u := argmin
ϕ
−E[

∑
z

p∗u(z) log pϕ(z)]. (28)

Let us consider the idealistic setting of infinite data under which we know that MLE would converge to optimal ϕ∗ (Zhu
et al., 2023). Hence, to proceed further, let us add subtract ϕ∗ in the right-hand side of (27), we get

∆r
u = ϕ̂MLE − ϕ∗︸ ︷︷ ︸

=0

+ϕ∗ − ϕ∗u. (29)

To derive the lower bound on the reward suboptimality ∆r
u, we begin with the definition of the total variation distance as

TV (pϕ∗
u
, pϕ∗) =

1

2

∑
z

|pϕ∗
u
(z)− pϕ∗(z)|. (30)

From the Lipschitzness of the preference probability as derived in Lemme 2, we can write

TV (pϕ∗
u
, pϕ∗) ≤ 2D∥ϕ∗u − ϕ∗∥. (31)

From the lower bound in (30) and the expression in (29), we obtain

∥∆r
u∥≥

1

2D
TV (pϕ∗

u
, pϕ∗). (32)

Next, we expand on the term TV (pϕ∗
u
, pϕ∗). From the statement of Lemma 3, we note that pϕ∗(z) =

∑|U|
u=1 η(u)pϕ∗

u
(z),

hence we can write

TV (pϕ∗
u
, pϕ∗) =

∑
z

(pϕ∗
u
(z)− pϕ∗(z))

=
∑
z

(
pϕ∗

u
(z)−

|U|∑
k=1

η(k)pϕ∗
k
(z)

)
, (33)
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where we use k to denote a user group for ease of notation. Since
∑|U|
k=1 η(k) = 1, we can write

TV (pϕ∗
u
, pϕ∗) =

∑
z

( |U|∑
k=1

η(k)pϕ∗
u
(z)−

|U|∑
k=1

η(k)pϕ∗
k
(z)

)
. (34)

After interchanging the order of summation, we get

TV (pϕ∗
u
, pϕ∗) =

|U|∑
k=1

η(k)
(∑

z

(pϕ∗
u
(z)− pϕ∗

k
(z))

)

=

|U|∑
k=1

η(k) · TV (pϕ∗
u
, pϕ∗

k
). (35)

Using the equality in (35) into the right hand side of (32), we obtain

∥ϕ∗ − ϕ∗u∥≥
1

2D

|U|∑
k=1

η(k) · TV (pϕ∗
u
, pϕ∗

k
). (36)

From the Definition 1, we will get the final result. Hence proved.

E. Proof of Theorem 1

Proof. We can define the alignment gap of RLHF model π∗
RLHF to a specific user group u as

Align-Gap(πRLHF) := Frϕ∗
u
(π∗
u)− Frϕ∗

u
(πRLHF). (37)

We note that in this specific RLHF setting under the KL-based regularization, the objective −Frϕ(π) satisfies strong
convexity w.r.t π with strong convexity parameter µ = 1, hence it holds that

Align-Gap(πRLHF) ≥
1

2
∥π∗ − π∗

u∥2. (38)

Now utilizing that log(π(y/x)) is Lipschitz continuous with parameter Lπ = 1
c , under the condition that there exists some

c > 0 such that π(y|x) ≥ c for all x, y, we get

Align-Gap(πRLHF) ≥
1

2Lπ
∥log π∗ − log π∗

u∥2. (39)

From the results in (Rafailov et al., 2023), we can derive an analytical mapping from reward functions to optimal policies
for the KL-constrained reward maximization objective as denied in (10) as :

πr(y | x) =
1

Z(x)
πref(y | x) exp

(
1

β
r(y, x)

)
(40)

where πr is the optimal policy under the reward r and Z(x) is the partition function given as Z(x) =
∑
y πref(y |

x) exp
(

1
β r(y, x)

)
. Note that such an equivalence is specific to the RLHF problem under the Bradley Terry preference

model as shown in (Rafailov et al., 2023). Next, replacing equation (40) in the equation (39), we get

Align-Gap(πRLHF) ≥
1

2Lπβ2
∥rϕ∗ − rϕ∗

u
∥2 (41)

=
1

2Lπβ2
∥Ψ, ⟨ϕ∗ − ϕ∗u, ⟩∥2.

16
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MaxMin Approach to Align with Diverse Human Preferences

As stated in (16), under the linearly parametrized reward function, we have rϕ(y,x) = ⟨ϕ, ψ(y,x)⟩, where the pa-
rameter ϕ ∈ Rd and similarly ψ(y,x) ∈ Rd. Let (x, y) ∈ Rn and we denote the feature matrix Ψ ∈ Rn×d as[
ΨT = Ψ(y1, x1) Ψ(y2, x2) · · · Ψ(yn, xn)

]
, replacing in (41), we get the final expression. Next, expanding the

norm on the right hand side, we obtain

Align-Gap(πRLHF) ≥
1

2Lπβ2
(ϕ∗ − ϕ∗u)TΨTΨ(ϕ∗ − ϕ∗u). (42)

Next we lower-bound the matrix norm of ΨTΨ ∈ Rd×d with the minimum eigen value λψ as

Align-Gap(πRLHF) ≥
λψ

4Lπβ2
∥ϕ∗ − ϕ∗u∥2, (43)

where we obtain the lower bound in terms of the reward suboptimality. From the statement of Lemma 1, we can lower
bound the right hand side in (43) as follows

Align-Gap(πRLHF) ≥
λψ

4Lπβ2

1

4D2
· min
u′∈U

(TV(pϕ∗
u
, pϕ∗

u′ )
2) (44)

Hence proved.
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F. Additional Details of the Experiments

In this section, we provide additional details of the experiments in Section 5.

Table 4: Dataset Summary

User Group Preference Prompt

P1A Generate/Choose a response that can be easily understood by an elementary school student.
P1B Generate/Choose a response that only a PhD Student in that specific field could understand.
P2A Generate/Choose a response that is concise and to the point, without being verbose.
P2B Generate/Choose a response that is very informative, without missing any background information.
P3A Generate/Choose a response that is friendly, witty, funny, and humorous, like a close friend.
P3B Generate/Choose a response (that answers) in an unfriendly manner.

(a) Testing Distribution on Dataset P1A/P1B (b) Accuracy on Dataset P1A/P1B

Figure 6: Results on Dataset P1A/P1B.
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G. Additional Experiments in Robotics Navigation Tasks

In this section, we show that the proposed ideas are well extendable to reinforcement learning in general. We show the
performance of MaxMin alignment with single reward RLHF on simple gridworld navigation in Figure 7.

(a) Grid world (d) MaxMin RLHF (ours)(b) Single Reward RLHF 1
    

(c) Single Reward RLHF 2
      

Figure 7: (a) This figure shows a GridWorld navigation scenario where say a government supported vehicle which needs to
distribute goods among the two groups denoted by green and orange boxes. In the above figure, (b) shows the trajectory
when only green user preferences are considered to decide the vehicle path. (c) shows the trajectory when only green user
preferences are considered to decide the vehicle path. (d) shows the result for our proposed formulation, where our goal is to
maximize the social utility, which makes sure to develop a robust solution to satisfy all user preferences.
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