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Abstract

While Positive-Unlabeled (PU) learning is vital
in many real-world scenarios, its application to
graph data still remains under-explored. We un-
veil that a critical challenge for PU learning on
graph lies on the edge heterophily, which directly
violates the irreducibility assumption for Class-
Prior Estimation (class prior is essential for build-
ing PU learning algorithms) and degenerates the
latent label inference on unlabeled nodes during
classifier training. In response to this challenge,
we introduce a new method, named Graph PU
Learning with Label Propagation Loss (GPL).
Specifically, GPL considers learning from PU
nodes along with an intermediate heterophily re-
duction, which helps mitigate the negative impact
of the heterophilic structure. We formulate this
procedure as a bilevel optimization that reduces
heterophily in the inner loop and efficiently learns
a classifier in the outer loop. Extensive experi-
ments across a variety of datasets have shown that
GPL significantly outperforms baseline methods,
confirming its effectiveness and superiority.

1. Introduction
Positive-Unlabeled (PU) learning (Denis, 1998; De Comité
et al., 1999; Denis et al., 2005), where a binary classifier
is trained from positive and unlabeled samples, has made
remarkable progress on image (Kiryo et al., 2017; Niu et al.,
2016; Garg et al., 2021) and text (Li et al., 2016) data. Nowa-
days, there is burgeoning interest in extending PU learning
to graph-structured data due to the ubiquitous nature of
real-world contexts (Hu et al., 2020; Gaudelet et al., 2021;
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Veličković, 2023; Wu et al., 2024). For instance, in on-
line transaction networks, fraudsters are labeled as positive
nodes only upon being detected (Yoo et al., 2021), and a sim-
ilar case holds in pandemic graph prediction (Panagopoulos
et al., 2021) where only affected nodes are identified as pos-
itive, while the remaining nodes are actually label-agnostic.

However, most current approaches to PU learning are built
on the hypothesis that each sample is independently gen-
erated. Such a premise hinders these methods from read-
ily adapting to graph data where nodes are interdependent
by edges (Wu et al., 2022; Zhao et al., 2020). Our in-
vestigation reveals that a primary challenge in adapting
these approaches to graph data is the prevalence of het-
erophilic structure, where positive and negative nodes are
connected (Zhu et al., 2020; Zhang et al., 2019). Such het-
erophily widely existed in standard graph learning (Platonov
et al., 2023; Luan et al., 2022), intensifies when dealing with
only positive and unlabeled nodes of interest.

The heterophilic structure impedes two aspects of PU learn-
ing: (i) It results in the latent feature entanglement of pos-
itive and negative nodes due to heterophilic edges, which
directly challenges Class-Prior Estimation (CPE), i.e, esti-
mating the fraction of positive nodes among the unlabeled
nodes. CPE methods rely on the irreducibility assumption,
which holds that the patterns belonging to positive nodes
could not possibly be confused with patterns from negative
nodes. (Garg et al., 2021; Bekker & Davis, 2020; Ivanov,
2020). However, heterophilic structures violate this assump-
tion, yielding an overestimated class prior. (ii) The presence
of heterophilic structure complicates the latent label infer-
ence for unlabeled nodes. More precisely, the heterophilic
edges between different classes mislead the message passing
among same-class nodes, hindering the accurate inference
of latent labels for unlabeled nodes during the classifier
training process (termed as PU classification for simplic-
ity) (Garg et al., 2021; Yao et al., 2020). The adverse effect
to CPE and PU classification significantly challenges graph
PU learning when heterophilic structure exists.

In our paper, we present a Graph PU Learning with Label
Propagation Loss (GPL) method to alleviate the side effect
of heterophilic structures on PU learning. GPL mitigates the
impact of heterophilic edges by reducing their weights based
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on a proposed Label Propagation Loss (LPL). Specifically,
optimizing LPL results in strengthening the weights of ho-
mophilic edges, i.e, edges linking same-class nodes, while
simultaneously reducing the weights of heterophilic edges,
relying solely on the observed positive nodes. This approach
is effective because homophilic edges inherently support the
label propagation process, whereas heterophilic edges be-
tween different classes are counterproductive. Therefore, by
matching the given/predicted labels and the propagated la-
bels, we can reduce the impact of heterophilic edges, which
then promotes the accuracy of CPE and PU classification.

Taking LPL and the vanilla graph PU learning interactively
forms the basic idea of GPL: the diminished heterophilic
structure by LPL creates a conducive context for graph PU
learning. The classifier trained through graph PU learning,
in turn, helps refine this structure with the aid of more ac-
curate prediction labels. We formulate the optimization of
LPL and graph PU learning as an efficient bilevel optimiza-
tion, where the heterophily is reduced in the inner loop and
the classifier is learnt in the outer loop. In a nutshell, our
contributions can be summarized into the following points:

• We first identify the challenge of learning from PU
nodes with heterophilic structures. Through both the-
oretical analysis and empirical evidence, we formally
elucidate the difficulty encountered in CPE and PU
classification when the heterophilic structure exists.

• We propose an end-to-end GPL method, which consid-
ers the optimization of the graph structure to reduce
the negative impact of heterophilic edges on graph PU
learning. This reduction has been theoretically proved.
Besides, GPL leverages a bilevel algorithm, obviating
the need for a known class-prior and eliminating the
assumption of a homophily graph structure.

• We conduct extensive experiments on datasets ranging
from homophily to heterophily to demonstrate the su-
periority of our proposed framework over the baselines.
Furthermore, we provide comprehensive analyses of
the underlying mechanisms of our framework.

2. Preliminaries
2.1. Notation

We consider a set of positive (P) and negative (N) nodes
with indices i ∈ {1, 2, · · · , n}, represented by an observed
undirected graph G = (V, E), where V = {v1, . . . , vn}
denotes the node set and E = {eij} denotes the edge set.
The observed edges induce an adjacency matrix A ∈ Rn×n

where Aij = 1 if nodes i and j are connected by edges
eij and Aij = 0 otherwise. Moreover, each node vi has
an input feature vector denoted by xi ∈ RD where D is
the dimension, and a latent binary label yi ∈ {−1,+1}.
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Figure 1: Estimation error of our method and the baseline
estimator for Class-Prior Estimation, under varying het-
erophily ratio. The way to modify the graph structure with
different heterophily ratios is referred to (Ma et al., 2021).

Here, assume the P and N nodes are drawn from the P and
N class-conditional density [Pp(x,GAx ),Pn(x,GAx )] :=
[P(x,GAx |y = +1),P(x,GAx |y = −1)], where GAx =
({xj}j∈Nx ,Ax) denotes the ego-graph centered at node
x,Nx is the set of neighboring nodes (within a certain num-
ber of hops) in the ego-graph of x and Ax is its associated
adjacency matrix. In learning from positive and unlabeled
(U) nodes, we only know a fraction of P nodes, denoted as a
set P ∼ Pp(x,GAx ). The other V\P is unlabeled and repre-
sented as a set U ∼ P(x,GAx ). Given G with P and U , our
goal is to learn a binary classifier fw : (x,GAx )→ [0, 1] that
accurately approximates P(y = +1|x,GAx ) on U with the
trainable parameters w. Our formulation is fairly different
from existing PU learning works that assume i.i.d. inputs.

2.2. Motivation

Class-Prior Estimation (CPE) with Heterophily For-
mally, CPE plays the role of estimating the class prior
πp ∈ (0, 1) for PU learning methods (Yao et al., 2020; Garg
et al., 2021), given samples from the marginal distribution
P(x,GAx ) and samples from class-conditional distribution
Pp(x,GAx ) of P nodes. Specifically, P(x,GAx ) is mixture
of class-conditional distributions of P and N nodes, i.e,

P(x,GAx ) = πpPp(x,GAx ) + (1− πp)Pn(x,GAx ). (1)

To ensure the identifiability of πp, almost all CPE algorithms
assume Pn to be irreducible with respect to Pp (Blanchard
et al., 2010; Ivanov, 2020; Jain et al., 2016; Wu et al., 2023;
Liu & Tao, 2015). However, this assumption is based on
independent and identically distributed (i.i.d) data, which
is not applicable to graph data. Here, we use the following
theorem to specify the form of irreducible condition in our
graph PU learning setting and leave its complete proof in
Appendix A for reference.

Theorem 2.1 (Graph Irreducible Condition). In a graph,Pn

is irreducible with respect to Pp iff it satisfies the following
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Figure 2: The distributions of the predicted probabilities (of being positive) for unlabeled nodes when training a classifier
on positive and unlabeled CORA dataset, under varying heterophily ratios. The methodology employed to modify the
graph structure with different heterophily ratios can be referred to (Ma et al., 2021). We show that as the heterophily ratio
increases, the distribution of predicted probabilities of positives and negatives become less and less separable.

condition:

ess sup
i∈V

P(y = +1|xi,GAxi
) = 1, (2)

where ess sup is the essential supremum.

With theorem 2.1, the irreducible condition on a graph es-
sentially assumes that there exists one subset of nodes, along
with their connected neighbouring nodes from GAxi

, must all
belong to the P class with probability one. However, the
heterophilic structures in the graph suggest that P nodes are
likely to have N nodes as neighbours, and vice versa. This
characteristic violates the irreducible condition of the graph,
yielding an overestimated class prior. As demonstrated in
Figure 1, we can observe that the estimation error for the
class prior escalates with the increase in heterophilic struc-
ture, which thus recalls extra design for graph PU learning.

PU classification with Heterophily The typical approach
in PU classification is to distinguish P and N data from U
data, followed by training a classifier on estimated P and N
data (Garg et al., 2021; Xinrui et al., 2023). Ideally, with πp,
if we can distinguish all P and N data from the U data, then
we can expect to achieve a well-performed classifier, akin to
one trained using fully-supervised data. The core of graph
PU classification hinges on the distinguishing performance
from U nodes, which is complicated in the presence of
heterophilic structures. As in Figure 2, with an increasing
heterophilic ratio, the embeddings of P and N nodes from
the GNN classifier become more indistinct, making the
identification more challenging within the U nodes.

3. Methodology
Basically, a straightforward application of PU learning on
graph data can be formulated as follows:

Stage 1: π̂p = ECPE(A),

Stage 2: w∗ := argmin
w
LGNN(π̂p, w,A).

(3)

Here, w∗ represents the optimal parameter for a GNN classi-
fier. This parameter is derived by minimizing the loss using
the pre-estimated class prior π̂p, from an estimator ECPE(A)
with the adjacent matrix A. As previously discussed, this
process is intrinsically challenged by heterophilic structures
characterized in the adjacency matrix A. To address this,
we propose the Graph PU Learning with Label Propaga-
tion Loss (GPL) method, which different from the two-stage
form in Equation 3, has the following formulation:

min
w
LGNN(π̂p, w, Â)

s.t. π̂p = ECPE(Â)

Â = argmin
A
LLPL(A)(K),

(4)

where the heterophilic structure A will be optimized to Â
by the proposed Label Propagation Loss (LPL) in the next
subsection. Intuitively, Equation 4 explores to introduce an
intermediate heterophily reduction procedure to the vanilla
graph PU learning, which helps reduce the negative impact
in the aforementioned sections. In the following, we will
discuss the detailed design and the optimization process.

3.1. Reducing Heterophily with Label Propagation Loss

Despite the straightforward idea in Equation 4, it is actually
challenging in technique to directly reduce the heterophilic
structures, since there are no annotated negative nodes avail-
able in PU setting. This difficulty hinders the application of
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previous heterophily reduction methods (Zhang et al., 2019;
Huang et al., 2023). To address this issue, we incorporate
the idea of label propagation algorithm (LPA)1 that relies
solely on observed positive nodes, characterized as follows.

Let E(0) = [P(y = +1|xi,GAxi
),P(y = −1|xi,GAxi

)]
i∈V

be a vector of initial class-posterior probability for nodes in
the graph and the updating rule in LPA is

E(k) = αE(k−1) + (1− α)D−1AE(k−1),

E(k) = [P(y = +1|xi,GA
xi
)
(k)

,P(y = −1|xi,GA
xi
)
(k)

]
i∈V

= [E
(k)
i ]i∈V ,

(5)
where 0 < α < 1 is a parameter, k ∈ K is the label prop-
agation iteration times and D is the associated diagonal
degree matrix of A. We construct M ⊙A, where M is a
learnable positive mask matrix that represents edge weights.
Intuitively, in LPA, homophilic edges generally help pos-
itive nodes retain their positive labels, while heterophilic
edges can impede these nodes from maintaining their orig-
inal labels. As a result, the influence through heterophilic
edges on a given P node xa is inversely proportional to the
probability of xa being positively classified by LPA. This
point will be theoretically proved in our Theorem 4.2.

With the above discussion, we can use LPA as a surrogate
to reduce the heterophily, which we term as the Label Prop-
agation Loss (LPL) as follows,

Â = argmin
A
LLPL(A)(K)

= argmin
A

1

nP

∑
xi∈P

log(P(y = −1|xi,GAxi
)(K)).

(6)

The LPL technique is designed to minimize the likelihood of
P nodes being misclassified as negative by the LPA, which
effectively matches the given labels with the labels propa-
gated through the graph structure. Furthermore, the incorpo-
ration of predicted labels from a trained model, as detailed
in Equation 9, can further enhance this matching process.

3.2. Bilevel Training

With LPL, we can solve Equation 4 by bilevel optimization.
In the following, we will detail the procedures for CPE and
PU classification as well as a bilevel training schedule.

Class-Prior Estimator With multiple layers of graph
convolution, assume a GNN model transforms each node
to a positive posterior probability z ∈ [0, 1], i.e., z =
fw(x,GAx ), where w denotes the trainable parameters of
the GNN model fw. For a probability density function
Pθ and fw, a cumulative distribution function can be de-

1It is a classical algorithm that iteratively propagates estimated
labels of nodes across edges within observed graph structures.

Algorithm 1 Algorithm flow of GPL.

1: Input: Labeled positive training nodes P and unlabeled
training nodes U , Class prior estimate πp, Original ad-
jacent matrix A

2: Initialize a training GNN classifier fw with A
3: Â← A
4: for training iteration t = 1, 2 . . . E do
5: while k < K or not converge do
6: Â = argminÂ LLPL(Â)(k) (Equation 9)

// i.e., optimizing Â to reduce heterophilic edges
7: end while

π̂p = ECPE(Â) (Equation 7)
// i.e., estimating πp with optimized Â

Minimizing LGNN(π̂p, w, Â) (Equation 8)
// i.e., training fw with Â and π̂p

8: end for
9: Output:Trained GNN classifier fw

fined as QA
θ (z) =

∫
fw(x,GA

x )≥z
Pθ(x,GAx )dx, which cap-

tures the probability that the input (x,GAx ) is assigned a
value larger than z by the classifier fw in the transformed
space. For each probability density distribution Pp(x,GAx ),
Pn(x,GAx ) and Pu(x,GAx ), we can defineQA

p (z),QA
n (z)

and QA
u (z) respectively. The class prior can be estimated

with the optimized graph structure Â (after Equation 6):

π̂p = min
c∈[0,1]

QÂ
u (c)

QÂ
p (c)

= ECPE(Â). (7)

PU Classification Given a training set of P nodes P and
U nodes U with the estimated class prior π̂p, we begin by
ranking U according to their positive class-posterior prob-
ability P(yi = +1|xi,GAxi

),xi ∈ U . Then, in every epoch
of training, we define U \ Sπ̂p

as a (temporary) set of pro-
visionally N nodes, created by excluding the subset Sπ̂p .
This subset Sπ̂p consists of U nodes representing the top π̂p

fraction with the highest positive class-posterior probability.
Next, we update our GNN classifier by minimising the loss
with the Â:

LGNN(π̂p, w, Â) =
1

|P ∪ Sπ̂p |
∑

xi∈P∪Sπ̂p

L(fw(xi,GÂ
xi
),+1)

+
1

|U \ Sπ̂p |
∑

xi∈U\Sπ̂p

L(fw(xi,GÂ
xi
),−1).

(8)

Note that in PU classification, the identified P and N nodes
are not only utilized to train a binary classifier but also con-
tribute to our heterophily reduction. This dual functionality
is possible because the predicted labels of these identified
P and N nodes can be matched with the propagated labels,
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enabling the optimization of the graph structure. This ap-
proach parallels the use of original given labels, and thus
we enhance Equation 6 with the identified P and N nodes:

Â = argmin
A

LLPL(A)(K)

= argmin
A

(
1

nP∪Sπ̂p

∑
xi∈P∪Sπ̂p

logP(y = −1|xi,GA
xi
)(K)

+
1

nU\Sπ̂p

∑
xi∈U\Sπ̂p

logP(y = +1|xi,GA
xi
)(K)

)
.

(9)

Putting all things together, this entire procedure can be el-
egantly formulated as a bi-level optimization: In the inner
loop, the identified P and N nodes (initially comprising only
observed P nodes) are fixed while the graph structure is
optimized to maximize label propagation within the same
category. In the outer loop, while maintaining a constant
optimized graph structure and utilizing CPE, a binary clas-
sifier is strategically trained and helps to differentiate N
nodes from U nodes. We include the convergence of GPL
in Appendix C for completeness, which is an application of
standard bilevel optimization. Summary in Algorithm 1.

4. Theoretical Analysis
In this section, we delve into the theoretical properties of
GPL. We mainly target to answer the basic question about
Equation 4 in terms of LLPL, CPE and PU classification.

4.1. Why LLPL reduces the heterophilic structure?

We analyze our LPL with the concept of influence distir-
bution (Xu et al., 2018; Koh & Liang, 2017; Chen et al.,
2022). Specifically, we investigate how the output proba-
bility of a node xa changes when the initial probability of
another node xb is perturbed slightly through k iterations
of label propagation. When xa represents a positive node
and xb represents a negative node, we assess the influence
of xb on xa using label propagation applied to the graph
structure. This assessment allows us to quantify the extent
of the heterophilic structure between xb and xa, signify-
ing the presence of edges connecting positive and negative
nodes. We refer to this influence of one class of nodes on
another class of nodes as heterophily influence(HI), which
represents the existence of the heterophilic structure. Ac-
cording to (Koh & Liang, 2017; Xu et al., 2018; Wang &
Leskovec, 2020), the influence can be measured by the gra-
dient of the output probability of xa with respect to the
initial probability of xb. Thus, we have

Definition 4.1. (Heterophily influence with label propaga-
tion) The heterophily influence of a negative nodes xb on

positive nodes xa after k iterations of label propagation is:

HI((xa,GA
xa

), (xb,GA
xb
); k)

=
∂
∣∣∣P(ya = −1|xa,GA

xa
)(k) −P(ya = −1|xa,GA

xa
)(0)

∣∣∣
∂P(yb = −1|xb,GA

xb)
.

(10)

According to the definition provided above, we can obtain
the total heterophily influence on xa as follows:
Theorem 4.2. Considering a given positive node (xa,GAxa

),
the total heterophily influence of all other nodes on node
(xa,GAxa

) is proportional to the negatively class-posterior
probability of (xa,GAxa

) by label propagation:∑
xi∈V,xi ̸=xa

HI((xa,GA
xa

), (xi,GA
xi
); k)

:=
∣∣∣P(ya = −1|xa,GA

xa
)(k) −P(ya = −1|xa,GA

xa
)(0)

∣∣∣
∝ P(ya = −1|xa,GA

xa
)(k),

(11)

where P(ya = −1|xa,GAxa
)
(k) is negative class-posterior

probability of (xa,GAxa
) by k-iteration label propagation.

We give a detailed proof of Theorem 4.2 in Appendix B.
Generally, Theorem 4.2 indicates that, if the adjacency ma-
trix A minimizes the P(ya = −1|xa,GAxa

)
(k) through a

k-iteration label propagation, they also minimize the het-
erophily influence on a given positive node. Consequently,
we can make the adjacency matrix A trainable and learn to
minimize the heterophily influence for each observed posi-
tive node by adjusting A, which is equivalent to reducing
the heterophilic structures within the graph.

4.2. Why reducing the heterophilic structure boosts
CPE?

When estimating the CPE, we have

c∗ = arg min
c∈[0,1]

Qu(c)

Qp(c)
(12)

and Â = argminA LLPL(A)(K). We define the estimation
error for estimating class prior on the ordinary graph struc-
ture A as eA =

∣∣π̂A
p − πA

p

∣∣ and the estimation error for
estimating class prior on the optimized graph structure Â

as eÂ =
∣∣∣π̂Â

p − πÂ
p

∣∣∣. Then, we have the following lemma.

Lemma 4.3 (Theorem 1. of (Garg et al., 2021)). For
min(np, nu) ≥ 2 log(4/δ)

Qp(c∗)
and for every δ > 0, the mixture

proportion estimator π̂p satisfies with probability 1− δ:

|π̂p − πp| ≤
c

Qp(c∗)

√
log(4/δ)

nu
+

√
log(4/δ)

np


(13)

for some constant c ≥ 0.
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Furthermore, according to the Lemma 4.3, we have the the-
orem on estimation error, which characterizes the benefits.

Theorem 4.4 (Estimation Error). Let the class prior
can be estimated by π̂p = minc∈[0,1]Q

A
u (c)/QA

p (c)

and the graph structure can be optimized through Â =
argminA LLPA(A)(K). Then, the upper bound of the es-
timation error with optimized graph structure Â is lower
than ordinary graph structure A.

Please refer to Appendix D for the complete proof. Accord-
ing to Theorem 4.4, we can find that our heterophily mini-
mization makes the upper bound of class prior estimation
tighten, which proves the benefits of reducing heterophilic
structures to the vanilla graph PU learning.

4.3. Why heterophilic structure degenerates PU
Classification?

In this part, we perform a theoretical analysis of the het-
erophilic structure, elucidating how it leads P and N nodes
to converge closer to each other within the embedding space.
Let h(l) be the embedding of node x(l) after trained graph
classifier. Through the following theorem, we illustrate that
the aggregation step in graph classifier training, influenced
by the heterophilic structure, reduces the distance in the
embedding space between P and N nodes.

Theorem 4.5. Let DPN(x) = 1
2

∑
xi∈P,xj∈N Ãij∥xi −

xj∥22 be a distance metric between P and N node embed-
dings x and Ãij(xi ∈ P,xj ∈ N) is the normalized weight
of heterophilic edges. Then we have

DPN(h
(l)) ≤ DPN(x

(l)).

Proof of Theorem 4.5 is in Appendix E. Theorem 4.5 in-
dicates that following one aggregation step within the het-
erophilic structure, there is a reduction in the overall dis-
tance between P and N nodes. Thus, the heterophilic edges
between P and N nodes hinder the distinguishability of
these nodes, thereby making the task of identifying P and N
nodes from U nodes more challenging during PU classifi-
cation. Fortunately, the GPL method effectively minimizes
heterophilic edge weights by utilizing LPL, which ensures
that P and N nodes maintain a more discernible distinction
than that they would be under the original structure.

5. Experiment
5.1. Experiment Setting

Datasets We evaluate the performance of our method on
various real-world datasets, each characterized by an edge
homophily ratio h ranging from strong homophily to strong
heterophily, as defined in Zhu et al. (2020). We have sum-
marized the dataset details in Table 1. To transform these

datasets into binary classification tasks, we follow the previ-
ous approach (Yoo et al., 2021; Yang et al., 2023), where we
treat the label with the largest number of nodes as positive
and the rest as negative. The resulting numbers of positive
and negative nodes are reported in the Appendix Table 4.

Dataset Processing To ensure a fair comparison with re-
lated work (Yoo et al., 2021; Wu et al., 2021; Yang et al.,
2023), we randomly split each positive and negative dataset
into positive and unlabeled sets. For each dataset, we use
rp = 50% of all positive nodes as the observed positive
nodes P and treat the rest as unobserved positive nodes Pu.
All negative nodes are treated as unobserved and denoted
by Nu, as we assume graph PU learning. Then, our objec-
tive is to predict the labels of each node in U = Pu ∪ Nu

as test data. This is achieved by training a classifier using
the labeled nodes P and the unlabeled nodes U ; All nodes
are accessible during training, but the labels of only P are
observable as training data. Additionally, the true prior πp,
which is defined as πp = Pu/(Pu+Nu) in our experiments.

Experimental Setup In the GPL, the backbone model is a
graph convolutional network (GCN), with the number of lay-
ers set to 2 and the size of hidden layers set to 16. We train
each model using Adam optimizer with a learning rate of
0.01. Owing to the imbalance between positive and negative
nodes in our dataset, we adopt F1 score as our measure. For
each experiment, we run five trials with different random
seeds and compute the average and standard deviation.

5.2. Main Results

Classification Evaluation In this experiment, we bench-
marked our method against several established approaches.
This includes (1) Native GCN and MLP, which represent
standard baselines for a range of graph structures, from
homophily to heterophily; (2) GCN+TED, MLP+TED,
GCN+NNPU, and MLP+NNPU: These are two popular
methods adapted for PU learning in i.i.d data, i.e, TED (Garg
et al., 2021) and NNPU (Kiryo et al., 2017) implemented
with GCN and MLP as the backbone models. (3) LS-
DAN (Ma & Zhang, 2017), GRAB (Yoo et al., 2021), and
PU-GNN (Yang et al., 2023): These are three current meth-
ods tailored for graph PU learning. Further details about
these baseline methods can be found in Appendix F.2.

The results presented in Table 1 show that our GPL method
consistently outperforms others, achieving the highest clas-
sification performance across a variety of datasets, from ho-
mophilic to heterophilic datasets. Remarkably, our method
shows particularly substantial improvements in datasets
characterized by a high degree of heterophilic structure.
Popular methods that excel in PU learning with i.i.d. data,
such as TED and NNPU, do not demonstrate the same level
of effectiveness on graph data, especially in the presence
of pronounced heterophilic structures. This discrepancy
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Table 1: Mean F1 score ± stdev over different datasets. The best model is highlighted in LightGreen. The heterophily
(Hete.) ratios of all datasets are collected from (Zhu et al., 2020). The “*” methods mean using the knowledge of class prior.

Cora Pubmed Citeseer Wiki-CS Cornell Chameleon Squirrel Actor Wisconsin Texas
Hete. ratio h 0.19 0.20 0.26 0.35 0.70 0.77 0.78 0.78 0.79 0.89
#Nodes |V| 2,708 19,717 3,327 11,701 183 2,277 5,201 7,600 251 183
#Edges |E| 13,264 108,365 12,431 431,206 298 36,101 217,073 30,019 515 325

GCN 25.2±5.2 19.7±3.1 25.7±3.1 35.4±4.1 1.4±2.9 0.7±0.6 0.8±0.7 0.6±0.3 0.9±1.8 1.3±3.0

MLP 16.6±8.1 8.0±9.0 4.2±8.4 5.4±8.4 11.3±9.1 18.8±6.9 14.8±6.4 17.6±8.1 15.9±8.9 11.3±9.2

GCN+TED 80.1±0.8 75.4±0.4 70.0±1.4 80.6±0.5 13.9±5.5 17.5±3.5 22.8±1.3 27.6±1.0 19.6±6.1 11.9±5.0

MLP+TED 24.4±9.2 15.6±19.1 10.6±9.5 16.2±7.5 29.2±9.5 26.5±4.1 31.4±2.6 43.3±6.7 40.4±9.1 41.0±7.9

GCN+NNPU* 76.7±0.9 76.5±2.3 66.2±1.1 71.1±0.6 11.7±6.3 28.2±9.2 15.5±12.6 25.2±21.7 15.5±8.6 22.8±19.7

MLP+NNPU* 25.2±5.6 34.2±2.3 12.9±9.8 24.4±5.1 32.9±4.9 21.0±3.7 32.1±5.6 43.2±2.6 35.6±5.2 40.1±6.2

LSDAN* 63.5±4.1 69.6±0.4 47.0±19. 80.4±0.9 26.8±4.3 30.2±8.5 25.5±9.3 38.4±9.2 25.5±8.6 41.8±9.7

GRAB 80.4±0.2 71.6±0.3 69.7±0.4 79.4±1.0 30.6±9.0 15.5±2.2 29.0±8.4 25.2±0.7 39.5±9.6 40.2±8.2

PU-GNN* 79.8±0.3 73.0±0.4 69.5±0.4 80.3±1.8 28.3±3.9 31.5±6.3 29.5±4.8 32.6±8.4 27.8±8.2 42.3±9.4

GPL 81.9±0.5 79.1±0.4 74.1±0.9 82.3±0.8 37.9±1.3 36.2±1.4 37.7±5.8 48.0±4.2 45.2±2.7 46.3±3.2

↑ 2.2% ↑ 3.4% ↑ 5.8% ↑ 2.1% ↑ 15.2% ↑ 14.5% ↑ 17.4% ↑ 10.9% ↑ 12.5% ↑ 10.2%

Table 2: Absolute estimation error with the true class prior in the first row over different datasets. Results were reported by
meaning absolute error over five experiments. The best model with the smallest estimation error is highlighted.

Cora Pubmed Citeseer Wiki-CS Cornell Chameleon Squirrel Actor Wisconsin Texas
Hete. ratio h 0.19 0.20 0.26 0.35 0.70 0.77 0.78 0.78 0.79 0.89
#True πp 0.1779 0.2496 0.1179 0.1293 0.2887 0.1294 0.1113 0.1485 0.3073 0.3835

KM 0.09±0.02 0.08±0.04 0.10±0.05 0.06±0.03 0.21±0.04 0.18±0.05 0.39±0.10 0.16±0.06 0.19±0.08 0.31±0.05

DEDPUL 0.05±0.03 0.05±0.05 0.07±0.04 0.05±0.02 0.19±0.05 0.16±0.04 0.32±0.09 0.14±0.07 0.17±0.06 0.25±0.07

MPE 0.04±0.03 0.04±0.02 0.08±0.04 0.02±0.01 0.13±0.06 0.10±0.03 0.36±0.17 0.08±0.02 0.14±0.06 0.26±0.03

ReMPE 0.03±0.03 0.04±0.01 0.06±0.03 0.02±0.02 0.14±0.07 0.12±0.05 0.34±0.12 0.11±0.04 0.12±0.05 0.25±0.03

BBE 0.03±0.01 0.05±0.01 0.04±0.02 0.03±0.01 0.27±0.01 0.12±0.01 0.10±0.08 0.11±0.01 0.23±0.05 0.27±0.02

TED 0.02±0.01 0.04±0.00 0.02±0.01 0.02±0.01 0.18±0.04 0.25±0.03 0.13±0.04 0.25±0.10 0.16±0.02 0.26±0.03

GRAB 0.07±0.13 0.08±0.09 0.06±0.08 0.09±0.12 0.35±0.26 0.18±0.07 0.36±0.19 0.30±0.07 0.37±0.18 0.33±0.20

GPL 0.01±0.01 0.008±0.01 0.01±0.01 0.01±0.00 0.04±0.03 0.07±0.01 0.02±0.01 0.02±0.01 0.03±0.02 0.08±0.03

↓ 0.01 ↓ 0.03 ↓ 0.01 ↓ 0.01 ↓ 0.09 ↓ 0.03 ↓ 0.08 ↓ 0.06 ↓ 0.09 ↓ 0.17

Figure 3: Distribution of edge weights for heterophilic and homophilic edges on Cornell dataset as training process in GPL.

underscores the unique challenges posed by heterophilic
structures and proves the necessity and novelty of our GPL
approach. Moreover, existing graph-based PU learning
methods also show a marked decline in performance un-
der heterophilic conditions, further confirming this point.

Class Prior Estimation In this section, we discuss
the results of CPE. We compare our method with
KM (Ramaswamy et al., 2016), DEDPUL (Ivanov, 2020),
MPE (Scott, 2015), REMPE (Yao et al., 2020), BBE,
TED (Garg et al., 2021) and GRAB (Yoo et al., 2021). The
summarized results are shown in Table 2. Overall, using
the same backbone model, our method consistently outper-

forms other baseline models. Notably, as the heterophily
ratio increases, we observe a corresponding decrease in the
estimation error. This trend clearly demonstrates that our
method effectively reduces estimation errors by mitigating
the impact of the heterophilic structure.

5.3. Ablation Study

Different Ratios of Labeled Nodes in PU learning. We
summarize the performance of GPL and the baselines with
different ratios of observed positive nodes to unlabeled ones
in Figure 4. We gradually decrease the ratio rp from 0.5 to
0.2. The problem becomes more difficult with smaller rp.
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Figure 4: The F1 scores of GPL and the baseline approaches
for PU learning. We change the ratio rp of observed positive
nodes among all positive ones.

Table 3: Ablation study for GPL.

Variant Citeseer Wiki-CS Cornell Chameleon
Hete. ratio h 0.26 0.35 0.70 0.77

GPL 74.1±0.9 82.3±0.8 37.9±1.3 36.2±1.4

- w/o LPL 70.0 ↓ 5.5% 79.6 ↓ 3.3% 13.9 ↓ 63.3% 17.5 ↓ 51.6%
- w/o Bilevel 71.5 ↓ 3.5% 80.1 ↓ 2.7% 32.4 ↓ 14.5% 28.9 ↓ 20.2%

- w/o Selected 71.1 ↓ 5.3% 80.2 ↓ 3.7% 34.6 ↓ 8.7% 32.4 ↓ 10.5%

Despite this challenge, our method consistently maintains
high F1 scores across all values of rp, unlike the baselines
whose performance deteriorates. This indicates the robust-
ness of GPL even in imbalanced PU learning scenarios,
where the count of observed nodes is significantly lower
than the total number of nodes.

The distribution of Learned weights In Figure 3, we
showcase the distribution of weights for both heterophilic
and homophilic edges. During training with GPL, het-
erophilic edges tend to receive lower weights, whereas the
weights of homophilic edges remain larger. This empirical
observation demonstrates the substantial effectiveness of our
GPL in mitigating the influence of heterophilic structures,
thereby contributing to graph PU learning.

Contribution of Each Component We conducted a com-
prehensive analysis to evaluate the individual contributions
of various components in our GPL method. This analy-
sis in Table 3 includes (1) GPL without the LPL, focusing
solely on reducing the heterophilic structure; (2) GPL with-
out bilevel optimization, employing a two-stage approach
of first optimizing the graph structure and then learning
from PU nodes; (3) GPL without selected nodes, omitting
the use of extracted nodes to enhance the convergence of
the LPL. The results elucidate the distinct contributions of
each component and underscore the importance of the LPL,
especially in scenarios with a high heterophily ratio.

6. Related Work
Positive-Unlabeled Learning Positive-Unlabeled (PU)
learning is broadly categorized into two subtasks: (i) Class-

Prior Estimation (CPE) — determining the fraction of posi-
tive examples in the unlabeled data; and (ii) PU classifica-
tion—given such an estimate, learning the desired positive-
versus-negative classifier. Research on CPE and PU clas-
sification date to (De Comité et al., 1999; Denis, 1998;
Letouzey et al., 2000). Without specific assumptions for
CPE, class prior remains unidentifiable. To ensure identifi-
ability, Du Plessis & Sugiyama (2014) and Elkan & Noto
(2008) posited that positive and negative examples must
have disjoint support. Following this, the concept of the
irreducibility assumption was introduced by Blanchard et al.
(2010), forming the basis for nearly all subsequent CPE
algorithms (Blanchard et al., 2010; Ivanov, 2020; Jain et al.,
2016). Recently, Yao et al. (2020) and Zhu et al. (2023)
have begun exploring approaches to CPE that transcend the
irreducibility assumption. However, these assumptions are
based on i.i.d data, making them ill-suited for application
to graph data. Our work is the first effort to adapt these
assumptions for graph-based CPE.

Given the estimated class prior, the PU classification meth-
ods can be divided into two categories based on how unla-
beled data is handled (Xinrui et al., 2023). The first category
focuses on the sample-selection task to form a reliable nega-
tive set and further yield the semi-supervised learning frame-
work, where the quantity of selected N data depends on the
class prior (Liu et al., 2002; Li & Liu, 2003); the second
regards unlabeled data as weighted positive and negative
data simultaneously, as determined by the class-prior (Niu
et al., 2016; Kiryo et al., 2017). Presently, methods specific
to graph-based PU classification all fall into the latter cat-
egory (Ma & Zhang, 2017; Yoo et al., 2021; Yang et al.,
2023). However, these methods typically rely on the ho-
mophily characteristics of graphs to modulate the training
loss for positive and unlabeled nodes, restricting their effec-
tiveness in heterophilic structures, which are prevalent in
graph data (Zhu et al., 2022; Li et al., 2022).

Graph Learning with Heterophily Heterophilic struc-
tures, prevalent in many graph data scenarios, have garnered
considerable attention lately, leading to the emergence of
various models designed to tackle this challenge. For in-
stance, Geom-GCN (Pei et al., 2020) employs a bilevel
aggregation process in the embedding space to manage het-
erophily. CPGNN (Zhu et al., 2021) addresses heterophilic
signals by modelling label correlations using a compatibility
matrix. Other methods (Luan et al., 2022; Chien et al., 2020;
Bo et al., 2021) using the high-frequency graph signals in
supervised embedding space to address heterophily. How-
ever, a common limitation of these methods is their depen-
dency on complete label information to address heterophily.
This dependency is not available in our PU learning setting,
where negative labels are absent.
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7. Conclusion
In this paper, we address the challenge of employing Posi-
tive and Unlabeled (PU) learning on graph-structured data,
primarily due to the presence of heterophilic edges. We in-
troduce the Graph PU Learning with Label Propagation
Loss (GPL) method, specifically engineered to mitigate
the adverse effects of heterophilic structures. This miti-
gation hinges on the newly proposed Label Propagation
Loss (LPL), which effectively lowers the weights of het-
erophilic edges. Assisted by LPL, GPL refines the graph
structure and develops a well-performing binary classifier
for positive-unlabeled nodes. Our approach encapsulates
this process in a bilevel optimization framework, where het-
erophilic reduction occurs in the inner loop, and classifier
learning takes place in the outer loop. We have validated
the efficacy of this framework through rigorous theoretical
analysis and comprehensive experiments. Looking forward,
we aim to extend our exploration to other forms of imperfect
graph data, such as imbalanced or out-of-distribution graphs,
further demonstrating the versatility of our approach.
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In the era of big data, the prevalence of incomplete (positive-
unlabeled) labels presents significant reliability challenges
for traditional supervised learning algorithms. This issue
is particularly acute in graph data, where it impedes the
effective training of graph models. Learning models accu-
rately from positive and unlabeled nodes is a crucial issue,
drawing increasing attention in both research and industry
circles due to its significant impact on practical applications
involving graph data.

In this study, we propose the GPL method as a novel ap-
proach to learning from positive and unlabeled nodes. This
method is specifically designed to counter the negative ef-
fects of heterophilic edges. The effectiveness of GPL is
substantiated by the extensive evidence presented in our

paper. The findings of this research contribute to a deeper
understanding of how to handle incomplete labels in graph
data. They mark a significant step forward in enhancing the
robustness and accuracy of graph models, paving the way
for more reliable and precise graph-based learning.
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A. Proof of the Theorem 2.1
Up to now, almost all CPE algorithms assume Pn to be irreducible with respect to Pp (Blanchard et al., 2010; Ivanov, 2020;
Jain et al., 2016), or stricter conditions like the anchor set assumption (Ramaswamy et al., 2016; Yao et al., 2020). In this
section, we briefly review the irreducibility assumptions used for existing CPE estimators on i.i.d data. Then we understand
the irreducibility assumption on the graph data when estimating the class prior on a graph.

The so-called irreducibility assumption was proposed by (Blanchard et al., 2010):
Definition A.1 (Irreducibility). Pn and Pp are said to satisfy the irreducibility assumption if Pn is not a mixture containing
Pp. That is, there does not exist a decomposition Pn = (1− β)Q+ βPp, where Q is some probability distribution and
0 < β ≤ 1.

Equivalently, the irreducibility assumption assumes the support of Pp is hardly contained in the support of Pn and implies
the following fact (Scott et al., 2013; Zhu et al., 2023):
Lemma A.2. We say that Pn is irreducible with respect to Pp if the infimum of the likelihood ratio

ess inf
i∈V

P(xi,GAxi
|y = −1)

P(xi,GAxi
|y = +1)

= 0. (14)

Now, we consider a way of understanding irreducibility in terms of a latent graph label model on a graph. The conditional
probability of y given (x,GAx ) to be defined via

P(y = +1|x,GAx ) =

{
πpP(x,GA

x |y=+1)
P(x,GA

x )
, P(x,GAx ) > 0,

0, otherwise.
(15)

This latent graph label model is inspired by the commonly used label model in the PU learning literature (Bekker & Davis,
2020). y may be viewed as a label indicating which component an observation from P(x,GAx ) was drawn from. Going
forward, we use this latent graph label model in addition to the CPE.
Proposition A.3. Under the latent label model, the essential supremum

ess sup
i∈V

P(y = +1|xi,GAxi
) =

πp

ess infi∈V
P(xi,GA

xi
)

P(xi,GA
xi

|y=+1)

=
πp

πp + (1− πp) ess infi∈V
P(xi,GA

xi
|y=−1)

P(xi,GA
xi

|y=+1)

.
(16)

Combining Proposition A.3 and Lemma A.2, we conclude the irreducible condition for satisfying the irreducibility
assumption on a graph as in the Theorem 2.1.

B. Proof of the Theorem 4.2
Inspired from the (Koh & Liang, 2017; Wang & Leskovec, 2020; Xu et al., 2018), we can propose
Lemma B.1. Let Ua→b

j be a path [x(j),x(j−1), · · · ,x(0)] of length j from positive node (xa,GAxa
) to negative node

(xb,GAxb
), where x(j) = xa, x(0) = xb, x(i−1) ∈ N (x(i)) for i = j, · · · , 1, and all nodes along the path are unlabeled

except x(0). Then we have

HI((xa,GAxa
), (xb,GAxb

); k) =

k∑
j=1

∑
Ua→b

j

1∏
i=j

ãx(i−1),x(i) , (17)

where ãx(i−1),x(i) is the normalized weight of edge (x(i),x(i−1)).

Proof. When running LPA, the value of the negative class-posterior probability in y
(·)
a (denoted by P(ya = −1|xa,GAxa

)
(·))

mainly comes from the nodes with initial negative label. It is clear that∣∣∣P(ya = −1|xa,GAxa
)
(k) −P(ya = −1|xa,GAxa

)
(0)

∣∣∣ := ∑
xb:yb=−1

k∑
j=1

∑
Ua→b

j

1∏
i=j

ãx(i−1),x(i) , (18)
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which equals
∑

xb:yb=−1 HI((xa,GAxa
), (xb,GAxb

); k) according to Lemma B.1. Therefore, we have∣∣∣P(ya = −1|xa,GAxa
)
(k) −P(ya = −1|xa,GAxa

)
(0)

∣∣∣ := ∑
xb:yb=−1

HI((xa,GAxa
), (xb,GAxb

); k), (19)

which is the same as∣∣∣P(ya = −1|xa,GAxa
)
(k) −P(ya = −1|xa,GAxa

)
(0)

∣∣∣ := ∑
xi∈V,xi ̸=xa

HI((xa,GAxa
), (xi,GAxi

); k) (20)

C. Convergence of GPL
The convergence of the bilevel optimization (Xia et al., 2023) using approximated solution of inner loop was established
in (Pedregosa, 2016; Yong et al., 2022). We restate it here for completeness.

Theorem C.1 (Convergence, Theorem 3.3 of (Pedregosa, 2016)). Suppose LGNN(π̂p, w, Â) is smooth w.r.t. w, LLPA(A)(k)

is β-smooth and α-strongly convex w.r.t. A. We solve the inner loop by unrolling J steps, choose the learning rate in the
outer loop as ητ = 1/

√
τ , then we arrive at an approximately stationary point as follows after R steps:

E

 R∑
τ=1

ητ

∥∥∥∇wLGNN(π̂p, w, Â)
∥∥∥2
2∑R

τ=1 ητ

 ≤ Õ

(
ϵ+

ϵ2 + 1√
R

)
, (21)

where Õ absorbs constants and logarithmic terms and ϵ = (1− α/β)J .

D. Proof of the Theorem 4.4
According to the Lemma 4.3, the upper bound of eA is

bA =
c

QA
p (c∗)

√
log(4/δ)

nu
+

√
log(4/δ)

np

 (22)

and the upper bound of eÂ is

bÂ =
c

QÂ
p (c∗)

√
log(4/δ)

nu
+

√
log(4/δ)

np

 . (23)

The QA
p (c∗) :=

∑
xi∈P 1[fw(xi,GAxi

) ≥ c∗]/n and QÂ
p (c∗) :=

∑
xi∈P 1[fw(xi,GÂxi

) ≥ c∗]/n, we know that the GNN
model transforms each node (x,GAx ) to a positive posterior probability z ∈ [0, 1], i.e., z = fw(x,GAx ). Numerous studies
(Yan et al., 2022; Zhu et al., 2020; 2021) have both theoretically and empirically demonstrated that heterophilic structures
impede the confidence of GNN predictions. Therefore, for positive nodes, the positive posterior probability ẑ = fw(x,GÂx )
is greater than z = fw(x,GAx ) due to the reduction of heterophilic structure.

Thus, we have ∑
xi∈P

1[fw(xi,GÂxi
) ≥ c∗]/n ≥

∑
xi∈P

1[fw(xi,GAxi
) ≥ c∗]/n, (24)

then
QÂ

p (c∗) ≥ QA
p (c∗). (25)

According to Equation 22 and 23, we have following inequality:

bÂ ≤ bA. (26)
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E. Proof of Theorem 4.5
Firstly, we analyze the layer-wise propagation rules of GNN for the node xi:

x
(l+1)
i = σ

 ∑
xj∈N (xi)

Ãijx
(l)
i w(l)

 ,

where Ãij = Aij/dii is the normalized weight of edge eij with the degree dii. This formula can be decomposed into the
following two steps: (1) In aggregation step, we calculate the aggregated representation h

(l)
i of all neighborhoods N (xi):

h
(l)
i =

∑
xj∈N (xi)

Ãijx
(l)
j .

(2) In transformation step, the aggregated representation h
(l)
i is mapped to a new space by a transformation matrix and

nonlinear function σ:

x
(l+1)
i = σ

(
h
(l)
i w(l)

)
.

we assume that the dimension of node representations is one, but note that the conclusion can be easily generalized to the
case of multi-dimensional representations since the function DPN(x) can be decomposed into the sum of one-dimensional
cases. This proof is according to (Wang & Leskovec, 2020). In the following of this proof, we still use bold notations x(l)

i

and h
(l)
i to denote node representations, but keep in mind that they are scalars rather than vectors.

We give two lemmas before proving Theorem 4.5. The first one is about the gradient of DPN(x):

Lemma E.1. h
(l)
i = x

(l)
i −

∂DPN(x(l))

∂x
(l)
i

.

Proof.

x
(l)
i −

∂DPN(x
(l))

∂x
(l)
i

= x
(l)
i −

∑
xj∈N (xi)

Ãij(x
(l)
i − x

(l)
j ) =

∑
xj∈N (xi)

Ãijx
(l)
j = h

(l)
i (27)

It is interesting to see from Lemma E.1 that the aggregation step in GCN is equivalent to running gradient descent for one
step with a step size of one. However, this is not able to guarantee that DPN(h

(l)) ≤ DPN(x
(l)) because the step size may

be too large to reduce the value of DPN.

The second lemma is about the Hessian of DPN(x):

Lemma E.2. ∇2DPN(x) ⪯ 2I , or equivalently, 2I −∇2DPN(x) is a positive semidefinite matrix.

Proof. We first calculate the Hessian of DPN(x) =
1
2

∑
xi∈P,xj∈N ãij∥xi − xj∥22:

∇2DPN(x) =


1− ã11 −ã12 · · · −ã1n
−ã21 1− ã22 · · · −ã2n

...
...

. . .
...

−ãn1 −ãn2 · · · 1− ãnn

 = I −D−1
PNA. (28)

Therefore, 2I −∇2DPN(x) = I +D−1
PNA. Since D−1

PNA is Markov matrix (i.e., each entry is non-negative and the sum of
each row is one), its eigenvalues are within the range [-1, 1], so the eigenvalues of I +D−1

PNA are within the range [0, 2].
Therefore, I +D−1

PNA is a positive semidefinite matrix, and we have∇2DPN(x) ⪯ 2I .

We can now prove Theorem 4.5:
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Proof. Since DPN is a quadratic function, we perform a second-order Taylor expansion of DPN around x(l) and obtain the
following inequality:

DPN(h
(l)) =DPN(x

(l)) +∇DPN(x
(l))⊤(h(l) − x(l)) +

1

2
(h(l) − x(l))⊤∇2DPN(x)(h

(l) − x(l))

=DPN(x
(l))−∇DPN(x

(l))⊤∇DPN(x
(l)) +

1

2
∇DPN(x

(l))⊤∇2DPN(x)∇DPN(x
(l))

≤DPN(x
(l))−∇DPN(x

(l))⊤∇DPN(x
(l)) +∇DPN(x

(l))⊤∇DPN(x
(l)) = DPN(x

(l)).

(29)

F. Experiment
F.1. Datasets

The statistical information of used datasets is shown in Table 4.

Table 4: Summary of datasets.

Name Nodes Edges Features Pos. Neg.
Cora 2, 708 5, 278 1, 433 818 1, 890

CiteSeer 3, 327 4, 552 3, 703 701 2, 626
PubMed 19, 717 44, 324 500 7, 875 11, 842
WikiCS 11, 701 215, 603 300 2, 679 9, 022
Cornell 183 298 1, 703 41 142

Chameleon 2, 277 36, 101 2, 325 260 2, 017
Squirrel 5, 201 2, 089 217, 073 521 4, 680
Actor 7, 600 30, 019 932 982 6, 618

Wisconsin 251 515 1, 703 59 192
Texas 183 325 1, 703 50 133

F.2. Baseline Details

In more detail, we employ baselines:

(1) GCN: Utilizing the cross-entropy loss function to train a Graph Convolutional Network (GCN) and treating all unlabeled
nodes as negative examples.

(2) MLP: Applying the cross-entropy loss during the training of a Multi-Layer Perceptron (MLP), where unlabeled nodes
are treated as negative examples.

(3) GCN+TED: Combining the GCN model with the TED method (Garg et al., 2021), a state-of-the-art approach
specifically tailored for PU learning, which estimates the unknown class prior.

(4) MLP+TED: Integrating the MLP model with the TED method for PU learning.

(5) GCN+NNPU: Adopting a GCN model with the Non-Negative PU (NNPU) method (Kiryo et al., 2017), which employs
a non-negative risk estimator specially designed for PU learning to estimate the unknown negative risk.

(6) MLP+NNPU: Using an MLP model with the NNPU method.

(7) LSDAN (Ma & Zhang, 2017): Improving GCN on PU learning by the long-short distance attention that effectively
combines the information of multi-hop neighbors.

(8) GRAB (Yoo et al., 2021): Estimating class priors using heuristics and learning from positively labeled nodes in the
presence of unlabeled nodes, leveraging the homophily graph structure.
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(9) PU-GNN (Yang et al., 2023): Introducing a distance-aware loss that leverages homophily within graphs to provide
more precise supervision in the context of graph-based Positive-Unlabeled (PU) learning.

F.3. Performance with different GNN architectures

We evaluate our proposed GPL on different GNN architectures, i.e., GCN (Kipf & Welling, 2016), GAT (Veličković et al.,
2017), ARMA (Bianchi et al., 2021) and APPNP (Gasteiger et al., 2018). The experiments are conducted on various datasets,
which are shown in Table 5. As can be seen, GPL performs similarly on different GNN architectures, showing consistent
generalization on different architectures.

Table 5: Mean F1 score ± stdev over different datasets. The experimental results are reported over five trials. Bold numbers
are superior results.

Backbone Cora Pubmed Citeseer Wiki-CS Cornell Chameleon Squirrel Actor Wisconsin Texas

GPL+GCN 81.9±0.5 79.1±0.4 74.1±0.9 82.3±0.8 37.9±1.3 36.2±1.4 37.7±5.8 48.0±4.2 45.8±2.7 46.3±3.2

GPL+GAT 82.1±0.5 79.8±0.7 74.7±0.2 81.9±0.3 36.3±1.1 35.7±0.9 37.9±4.6 48.8±3.5 44.8±1.8 46.6±2.1

GPL+ARMA 81.2±1.1 78.9±0.9 74.1±0.5 81.7±0.7 38.0±0.8 35.9±1.2 36.9±4.5 47.0±2.2 44.9±2.3 46.5±2.9

GPL+APPNP 81.5±0.6 79.3±0.5 74.9±0.7 82.1±0.6 37.7±1.8 36.8±1.1 37.1±4.9 49.5±3.8 45.1±2.9 45.9±2.6

F.4. Hyperparameter sensitivity

In GPL, the hyperparameter K affects the performance by controlling the iteration times in the label propagation loss. To
assess the sensitivity of GPL to K, we analyzed its effect as depicted in Figure 5. Our findings reveal an initial increase in
the F1 score with a rising K, indicative of effective label propagation loss (LPL) functioning. However, a significant drop in
the F1 score is observed when K increases excessively, suggesting that overly high iteration counts hinder the convergence
of LPL and performance.
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Figure 5: The F1 score of GPL with increasing K on Cora, WIKI-CS, Texas and Wisconsin.
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