
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND FORECASTING: COMPOSITIONAL TIME SE-
RIES REASONING FOR END-TO-END TASK EXECUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent decades, there have been substantial advances in time series models and
benchmarks across various individual tasks, such as time series forecasting, clas-
sification, and anomaly detection. Meanwhile, compositional reasoning in time
series prevalent in real-world applications (e.g., decision-making and composi-
tional question answering) is in great demand. Unlike simple tasks that primarily
focus on predictive accuracy, compositional reasoning emphasizes the synthesis
of diverse information from both time series data and various domain knowledge,
making it distinct and extremely more challenging. In this paper, we introduce
Compositional Time Series Reasoning, a new task of handling intricate multistep
reasoning tasks from time series data. Specifically, this new task focuses on var-
ious question instances requiring structural and compositional reasoning abilities
on time series data, such as decision-making and compositional question answer-
ing. As an initial attempt to tackle this novel task, we developed TS-Reasoner, a
program-aided approach that utilizes large language model (LLM) to decompose a
complex task into steps of programs that leverage existing time series models and
numerical subroutines. Through a comprehensive set of experiments, we demon-
strate that our simple but effective TS-Reasoner outperforms existing standalone
reasoning approaches. These promising results indicate potential opportunities in
the new task of time series reasoning and highlight the need for further research.

1 INTRODUCTION

Over the past few decades, research in time series analysis has heavily focused on improving the
performance of individual tasks such as time series forecasting, anomaly detection, and time series
classification (De Gooijer & Hyndman, 2006; Kirchgässner et al., 2012; Zong et al., 2018; Dau
et al., 2019; Hamilton, 2020; Jin et al., 2024). These results have benefited various areas such as
risk assessment in finance, disease diagnose in healthcare, pandemic modeling in public health and
event detection in natural and social science (Tsay, 2005; Cao et al., 2022; 2023c; Kamra et al.,
2021; Team & Murray, 2020; Penfold & Zhang, 2013; Cheng et al., 2021; Sharma et al., 2021;
Zhang et al., 2021).

However, most real-world applications demand multi-step reasoning, where well-established tasks
should serve as intermediate steps. A typical example is forecasting future energy supply (Zheng
et al., 2022), in which scientists must integrate domain knowledge with statistical analysis. The pro-
cess begins with the examination of time series data to forecast future signals with statistical meth-
ods, following by formulating constraints based on domain expertise to refine predictions. Another
typical example is analyzing climate time series (Mudelsee, 2010), where it is not only necessary
to predict what happens next but also crucial for experts to comprehend the fundamental physical
laws governing such data. For instance, a climate scientist studying the impact of greenhouse gas
emissions on global temperature might employ advanced time series analysis for multi-step rea-
soning, including forecasting future temperature trends and variability, analyzing cross-correlations
between different climate indicator variables (e.g., CO2 levels, ocean temperatures, ice cover), de-
tecting anomalies in weather patterns, simulating various emission scenarios, and imputing missing
historical climate data. Traditionally, these various analyses would be involved with many differ-
ent specialists - climatologists for temperature forecasting, oceanographers for sea-level analysis,
atmospheric scientists for greenhouse gas modeling, and data scientists for anomaly detection. Such
manual solutions to scientific projects are labor-intensive, and often requiring long time ranging

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Data:

Question: I have historical stock value data for some stocks that I'm interested in
investing in with a budget of 14078 dollars. I want to make at least 1.31% profit.
Please give me an investment strategy for the next 33 days. Consider the future trend
and volatility of the stock, and answer the number of units to buy (units), the
number of days to wait before buying (wait_days), and the number of day to hold after
buying for each stock (hold_days).
Program:
X0 = SinglePreOP(data=VAL, future_length=N)
OBJ = ObjGenOP(input=ObjDescription)
CON = ConGenOP(input=ConDescription)
FINAL_RESULT = OptOP(Objective=OBJ,Condiction=CON,data=X0)
Output
final_result = {'DRN': {'units': 536, 'wait_days': 17, 'hold_days': 7}, 'GHYG':
{'units': 0, 'wait_days': 0, 'hold_days': 0}, 'BHFAP': {'units': 0, 'wait_days': 0,
'hold_days': 0}, 'IGMS': {'units': 0, 'wait_days': 0, 'hold_days': 0}}
Evaluation
evaluation result: {'status': 1, 'total_return': 583.21}

Data:

Question: I have historical Relative Humidity, DHI, GHI, Solar Zenith
Angle data and the corresponding solar_power data for the past 87
minutes. I require that the system load is maintained above a minimum
of 0.1443 MW. Think about how Relative Humidity, DHI, GHI, Solar
Zenith Angle influence solar_power. Please give me a forecast for the
next 24 minutes for solar_power. Your goal is to make the most
accurate forecast as possible, and refine prediction result based on
the constraint previously described.
Program:
X0 = MultiPreOP(data=VAL, future_data=MULVAL, future_length=N)
REF_FUNC = RefGenOP(prompt=refine_requirement)
FINAL_RESULT = ApplyOP(func=REF_FUNC,data=X0)
Output
final_result= [0.38237579 0.38237579 0.38210159 ... 0.39812486]
Evaluation
evaluation result: {'status': 1, 'message': 'All constraints are
satisfied', 'mape': 0.03558859127289299}

Investment Strategy GenerationData:

Question: I have the past 14 hours historical stock value data for
some stocks that I'm interested in investing in. I want to predict the
volatility of the stock price for the future 9 hours. Your goal is to
make the most accurate prediction.
Program:
X0 = SinglePreOP(data=VAL, future_length=N)
FINAL_RESULT = VolDetOP(data=X0)
Output
final_result = [0.00471584 0.00944234 0.01529741]
Evaluation
evaluation result: {'status': 1, 'mape': 0.6606216602825435, 'answer':
array([0.00895906, 0.0623173 , 0.04498084])}

5
15
25
35
45
55
65
75
85
95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Relative Humidity
DHI
GHI
Solar Zenith Angle
solar_power

Energy Prediction

Data:

Question: I have historical Variable A, Variable B, Variable C data and want to get
the causal relationship between each pair of the variables. I know that 16.66% of the
variable pairs have relationship. Consider the potential influence of each variable
on the others in this variable list: [‘Variable A’,‘Variable B’,‘Variable C’]. Please
give me a causality matrix that indicates causal relationship.
Program:
X0 = GrangerCausalMatrixOP(data=VAL)
FINAL_RESULT = GetCausalRelationsOP(data=X0, relation_ratio=0.167)
Output
final_result= [[0 0 0],[0 0 0],[0 1 0]]
Evaluation
evaluation result: {'status': 1, 'accuracy': 1.0, ‘ground_truth’: [[0. 0. 0.], [0.
0. 0.], [0. 1. 0.]]}

Causal Relationship

-1

9

19

29

39

49

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

A
B
C

6
6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

DRN
GHYG
BHFAP
IGMS

17

17.5

18

18.5

19

19.5

20

20.5

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Stock1
Stock2
Stock3

Stock Prediction

Figure 1: Examples of End-to-End Tasks on Time Series. These tasks require the model to perform
multi-step reasoning on time series data.

from months to years. Additionally, the intermediate tasks like forecasting are typically optimized
independently, leading to inefficiencies. In contrast, an end-to-end task framework for time series
reasoning, particularly with advancements in large language models (LLMs), can optimize these
subtasks cohesively. This integrated paradigm can reduce time and resource requirements, resulting
in more accurate and timely predictions.

Nevertheless, this aim of end-to-end time series task execution is challenging due to the lack of
exploration at the intersection of structural reasoning and numerical computation of temporal sig-
nals. State-of-the-art time series foundation models (Ansari et al., 2024; Woo et al., 2024; Cao et al.,
2023b) excel in handling temporal patterns but lack reasoning abilities over context observed in
Large Language Models (LLMs) (Edwards et al., 2024). This dichotomy is particularly evident in
compositional time series tasks requiring structural multi-step reasoning, since current time series
models (Wu et al., 2021; 2022), despite their sophistication, are primarily designed for single-task
inference with predefined task definitions. This paradigm limits existing time series models’ appli-
cability to diverse, compositional problems. This gap in time series analysis opens up significant
research opportunities in the realm of multi-step reasoning, where models are required to synthesize
multiple pieces of information over time series.

With the rise of LLMs, complex logic-based reasoning on data with various modality has become
readily feasible (Qiao et al., 2022; Huang & Chang, 2022), providing a promising opportunity for the
study of complex time series analysis and compositional reasoning. Existing work has explored rea-
soning across various domains, such as chain-of-thought (CoT) reasoning in natural language (Wei
et al., 2022), VisProg in computer vision (Gupta & Kembhavi, 2023), and Thought-of-Table for tab-
ular data (Wang et al., 2024). However, research focused specifically on complex and compositional
time series reasoning remains limited. Most studies involving large language models and time-series
modality still primarily emphasize individual tasks (e.g., forecasting) (Jin et al., 2024), feature un-
derstanding(Fons et al., 2024) and one-step question answering (Merrill et al., 2024). To the best of
our knowledge, multi-step and compositional reasoning in time series remains very under-explored.

In this paper, we make an initial attempt at bridging the aforementioned gap by proposing a new
paradigm of Complex and Compositional Time Series Reasoning. It shifts the focus from standard
predictive tasks to those requiring sophisticated reasoning processes. More specific examples are
shown in Fig. 1. Furthermore, we develop a program-aided reasoning approach, which utilizes
LLMs’ in-context learning ability to decompose complex tasks into structured programs for multi-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

step reasoning. This flexible approach named as TS-Reasoner1 is different from traditional program-
aided reasoning systems (Gupta & Kembhavi, 2023) in that it supports the creation of custom mod-
ules and adapts to external knowledge and/or users-specified constraints. The goal of TS-Reasoner
is to empower domain experts by providing a tailored solution that reduces the labor-intensive nature
of multi-step analysis tasks. Unlike general-purpose models such as LLMs, which aim to address a
broad range of tasks but often lack precision and perform poorly on domain-specific challenges, TS-
Reasoneris designed to integrate domain expertise and support specialized modules. This targeted
approach ensures that the model is not only versatile but also highly effective in delivering results
in specialized fields. For evaluation, we compiled new datasets in finance and energy domains and
constructed a series of commonly-asked and most-concerned questions (D’Amico et al., 2022; Lee
et al., 2019; Zidan & El-Saadany, 2013) that requires complex reasoning and compositions. Through
extensive experiments in two application domains, we demonstrate that TS-Reasoner consistently
achieves better results than state-of-art reasoning approaches in domain-specific evaluations. These
promising results reveal potential opportunities in complex and compositional time series reasoning
and underscore the importance of further exploration into this new task.

2 RELEVANT WORKS

Time Series Analysis Tasks and Models Classical time series analysis encompasses several key
tasks that leverage patterns and trends in data over time. These tasks include forecasting, imputation,
classification, and anomaly detection. Each of these tasks serves unique purposes across various
application domains, highlighting the significance of time series analysis.

To tackle time series analysis, researchers have made significant contribution over the years. Early
methods were mainly task-specific, where each individual task was addressed by a dedicated model
optimized for its specific purpose, resulting in a fragmented approach. Recently, inspired by the
emergence of large language models, there has been a shift toward general-purpose Large Time
Series Models. Notable contributions include work by (Gruver et al., 2024), who simply encoded
time series as strings, and (Jin et al., 2023), who converted time series into language representations
through alignment. (Cao et al., 2023b) and (Pan et al., 2024) incorporated decomposition techniques
and prompt design, enabling generalization to unseen data and multimodal scenarios. (Zhou et al.,
2023) adapted GPT-2 as a general-purpose time series analysis model, extending it to various tasks.
Additionally, (Talukder et al., 2024) utilized VQVAE as a tokenizer for transformers, while (Ansari
et al., 2024) employed scaling and quantization techniques for embedding time series. These models
are designed to handle multiple preset tasks and are jointly pre-trained on diverse datasets. However
they still operate under predefined task definitions, which limits their ability to perform complex and
compositional reasoning. As a result, while they can handle multiple tasks, they lack the flexibility
to adapt to more intricate scenarios that require a deeper understanding on task instructions and
composition of different tasks or concepts.

Complex and Compositional Reasoning with Pre-trained Foundation Models Large Language
Models (LLMs) have demonstrated significant capabilities in managing complex reasoning tasks
by emulating human cognitive processes, especially when incorporated with appropriate in-context
samples (Huang & Chang, 2022; Qiao et al., 2022; Ahn et al., 2024; Qu et al., 2024). The Chain
of Thought (CoT) prompting method (Wei et al., 2022) is a prime example, encouraging models to
articulate intermediate reasoning steps (i.e. rationales) before reaching a conclusion. This method
improves performance in multi-step logical deductions by transparently demonstrating the thought
process leading to an answer as well as expanding the expressive power of Transformer architec-
ture Feng et al. (2023); Merrill & Sabharwal (2023). Following CoT, more rationale dependency
structures are proposed to capture more reasoning paradigms, such as Tree-of-Thoughts, Graph-of-
Thoughts and Self-Consistent CoT Yao et al. (2023a;b); Wang et al. (2022).

Moreover, program-based reasoning (Zhu et al., 2022; Jung et al., 2022; Zhou et al., 2022; Khot
et al., 2022; Creswell & Shanahan, 2022; Gao et al., 2023) represents an advanced form of eliciting
complex reasoning from LLMs. This involves framing reasoning tasks as code generation, where the
model is trained or prompted to understand and manipulate logical constructs akin to programming

1Demo video explaining how TS-Reasoner works can be found at https://www.youtube.com/
watch?v=FCB7atczbfc&t=1s

3

https://www.youtube.com/watch?v=FCB7atczbfc&t=1s
https://www.youtube.com/watch?v=FCB7atczbfc&t=1s

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(Shi et al., 2023). Such approach enables LLMs to make use of heterogeneous modules to tackle
various data modalities. For example, VisProg (Gupta & Kembhavi, 2023) allows LLM to call vision
modules for visual reasoning tasks, and Chain-of-Table (Wang et al., 2024) enables LLM to acquire
better performance on tabular data analysis. The tabular data reasoning is analogous to time series
(Dong et al., 2019; He et al., 2024; Hu et al., 2024; Du et al., 2021). However, tabular data is typically
static and presented as discrete records, while time series emphasizes dynamic changes and focuses
on trends and patterns that change over time, requiring consideration of temporal dependencies and
continuity. Consequently, the datasets related to tabular data reasoning are mostly concerned with
tasks such as information retrieval (He et al., 2024), information completion (Bandyopadhyay et al.,
2019), and fact verification (Chen et al., 2019; Zhang et al., 2020), often overlooking the dynamic
characteristics of the time dimension. As a result, existing methods for tabular data are not directly
suitable for address complex time series questions, especially when temporal dynamics play a key
role in such questions.

Recent works also explored the performance of LLM on time series understanding and question
answering. Fons et al. introduces a comprehensive taxonomy of time series features and utilizes
a synthetic dataset to evaluate LLM performance on tasks such as feature detection, classification,
and arithmetic reasoning. In contrast, Merrill et al. focuses on more difficult question-answering
tasks involving time series data, including challenges such as etiological inference, which require
simultaneous understanding over natural language and time series inputs. However, both studies are
constrained by their focus on individual tasks, lacking exploration of multi-step or compositional
reasoning, thus limiting their applicability to more advanced inferential processes.

3 TASK DEFINITION

In this section, we first define compositional time series reasoning, which involves the synthesis of
information from temporal data in conjunction with task-specific instructions and contextual knowl-
edge.
Definition 3.1 (Compositional Time Series Reasoning). Let x denote a time series, which is a
sequence of data points indexed in time order. Let C represent the context, which encompasses the
task instruction and additional external information. The primary objective of time series reason-
ing is to derive a set of rationales R = (r1, r2, . . . , rn) that are conditional on the inputs x and
C in an step-by-step manner. Each ri addresses a single sub-task related to the time series, e.g.
r1 tackle missing value imputation, r2 tackle forecasting, and r3 tackle numerical reasoning and
optimization. Then we can generate the final answer y to the task based on both rationales and the
input, mathematically expressed as:

ri = f(r1, ..., ri−1,x,C) ⇒ y = g(R,x,C) = g(r1, ..., rn,x,C)

Here, f is a function that constructs the next rationale bsed on previous rationales and inputs; g is
a function that maps the generated rationales R along with the inputs x and C to the final response
y, and g. The rationales R serve as intermediary results or conclusions that facilitate the reasoning
process and may exhibit various probabilistic structural dependencies. The most common one is the
sequential dependency, on which we define Chain of Thought (CoT)(Feng et al., 2023):

ri ∼ pθ(ri|r1, r2, ..., ri−1,x,C) (1)
where pθ is a Large Language Model (LLM), and every rationale is generated fully by the LLM
based on auto-regressive decoding.

In this paper, we apply an alternative paradigm due to the nature of time series as structured data,
which is Program-based Reasoning, whose mathematical expression is as follows:

fi ∼ pθ(f1, f2, ..., fi−1,x,C) y = g(R,x,C) = g(f1, ..., fn,x,C) (2)
where pθ is a LLM that can generate code, and f1, ..., fi are program sentences generated by pθ.

4 DATASET AND TASKS

Our dataset2 is primarily built for three major categories of tasks: decision making on financial data,
compositional question answering about finance market and energy usage, and causal mining on

2We will release the data and materials for public use.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Unified Evaluation Program

Goal Achieved?
(Constraint satisfied)

Performance
(Accuracy and Profit)

Answer: No. Profit is less than 5% of cost.
Answer: Yes. Profit is more than 5% of cost.

Return: Your total return is $20.68.

③ Evaluation

Time Series Reasoner

② Time Series Reasoning

Program

X0=MultiPreOP(data=VAL, num=N)
OBJ=ObjGenOP(input=ObjDescription)
CON=ConGenOP(input=ConDescription)
FINAL_RESULT =
OptOP(Objective=OBJ,Condiction=CON,data=X0)

Evaluation config

Executor

✓ Parse Input

✓ Execute modules/tools

Results: Decision or Answer

① Instruction-Program Generation

Ground Truth Data:

LLM task Decomposer

Instruction-Program

Pairs Pools

Time Series Dataset

Instruction
Instruction: Please give me
an investment strategy for
the next 30 days.
Data:

Figure 2: The proposed pipeline for evaluation and time series reasoner. Top left: Instruction,
Data, Evaluation Config sampled Instruction-Program Generator. Bottom Left: Evaluation given
model output and evaluation config. Right:TS-Reasoner performs task decomposition and program
execution to obtain final answer.

synthetic dataset (Denis et al., 2003; Gonzalez-Vidal et al., 2019; Cao et al., 2023a). Among these
tasks, decision making present unique challenges for evaluation, as they cannot be easily assessed
through simple comparisons with ground truth answers like traditional question answering tasks. To
address this, we innovatively proposed an instruction/program pool to abstract the evaluation process
for these tasks, shown in Fig. 2. Specifically, we designed a set of appropriate instructions for each
application domain, in which each instruction is paired with an evaluation configuration that outlines
the criteria for success. Given a response, our unified evaluation program (shown in Algorithm 1)
determines whether the answer is successful based on the evaluation configuration, reporting both
the success rate and end task specific performance metrics. For instance, in the context of financial
decision making, we assess whether the given decision is compliant with the given budget and
evaluate the corresponding outcomes such as the total profit. This comprehensive approach allows
us to effectively evaluate performance across diverse tasks that extend beyond conventional time
series analysis, providing a clear picture of both success rates and overall effectiveness.

1 def Evaluator(response, ground_truth_data, eval_config):
2 #obtain relevant context from question
3 context = eval_config[’context’]
4 #obtain needed constraints specified in question
5 constraint = eval_config[’constraint’]
6 #constraint verification
7 flag = check_constraint(response=response,context=context, constraint=constraint)
8 #task specific evaluation
9 performance = task_specific_eval(eval_config["task_name"],data=ground_truth_data)

10 return flag, *performance

Algorithm 1: The Unified Evaluation Program.

4.1 DECISION MAKING

In our decision-making task, we focus on investment portfolio decisions within the financial market,
which requires the ability to synthesize information from multiple areas such as trend recognition,
risk assessment, and numerical optimization based on human expertise (Bonaparte et al., 2014).
For each test sample, historical stock prices of interest are provided alongside immediate future
data. The historical data includes natural language questions articulating investment goals—such as
maximizing profit—as well as constraints, including budget limitations, expected profit ratios, and
acceptable loss ratios. The question is generated according to the following template:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Question Template (Decision Making on Financial Time Series) I have historical stock
value data for some stocks that I’m interested in investing in with a budget of {budget}
dollars. [1. I want to make at least {profit percent}% profit. 2. I have a risk tolerance of
{risk percent}%. 3. I want to allocate no more than {allocation budget} dollars to {stock
name}.] Please give me an investment strategy for the next {future length} {data resolution:
day or hour}s. {output requirement}.

4.2 COMPOSITIONAL QUESTION ANSWERING

In our compositional question answering task, we primarily focus on financial markets and load-
related issues in the energy sector. Specifically, each test sample provides the model with a natural
language question and relevant time series historical data, such as stock prices and energy supply
data. The questions are generated by the following templates:

Question Template (Compositional Question Answering on Energy Supply Time Se-
ries) I have historical {influence variables} data and the corresponding target variable
data for the past {historical length} minutes. [1. I need to ensure that the maximum al-
lowable system load does not exceed {load value} MW. 2. I require that the system load is
maintained above a minimum of {load value} MW. 3. I must monitor the load ramp rate
to ensure it does not exceed {constraint value} MW for each time step. 4. I need to man-
age the load variability so that it does not exceed {constraint value} MW over the given
period.] Think about how {influence variables} influence {target variable}. Please give me
a forecast for the next {future length} minutes for target variable. Your goal is to make the
most accurate forecast as possible, refine prediction result based on the constraint previously
described, {output requirement}.
Question Template (Compositional Question Answering on Financial Time Series) I
have the past {historical length} hours historical stock value data for some stocks that I’m
interested in investing in. [1. I want to predict the volatility of the stock price 2. I want to
predict the stock price] for the {future length} hours. Your goal is to make the most accurate
prediction. Please give me your prediction, {output requirement}.

4.3 CAUSAL MINING

For causal mining, we synthesize a set of data grounded in domain knowledge related to climate
science, finance, and economics. Specifically, we generate a series of multivariate time series data
based on established causal relationships and meteorological principles. Each test sample consists
of a time series dataset of various variables, accompanied by a natural language instruction that
asks the model to uncover the causal dependencies between the given time series. For details on
data generation process, please refer to section C.4. The reasoning model must infer dependencies
based on the given data and instructions. The evaluation framework then measures the model’s
performance by comparing its inferred causal relationships with the ground truth. The questions are
generated by the following template:

Question Template (Causal Analysis) I have historical {variable names} data and want
to get the causal relationship between each pair of the variables. I know that {ratio}% of
the variable pairs have relationship. Consider the potential influence of each variable on
the others in this variable list: variable names. {output requirement}.

5 PROGRAM-BASED TIME SERIES REASONING

When handling time series data, methods that rely solely on large language models (LLMs) for rea-
soning, such as the Chain-of-Thought (CoT) approach, often struggle with understanding numerical
information (Zhang et al., 2024). These models, while powerful in generating logical inferences, are
prone to making errors in calculations or failing to adhere to numerical constraints that are crucial
in tasks involving time series analysis. These shortcomings underscore the necessity for program-
matic assistance in reasoning processes. To mitigate such errors, we propose a framework that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

supplements LLM-based reasoning with program-based decomposition and leverages the in-context
learning ability of LLMs.

Program Executor

X0=MultiPreOP(data=VAL, num=N)
OBJ=ObjGenOP(input=ObjDescription)
CON=ConGenOP(input=ConDescription)
FINAL_RESULT=OptOP(Objective=OBJ,Condiction=CON,data=X0)

Large Language Models

(a) Time Series Foundation Model

(b) Numerical Methods

Parse Module
Arguments

(c) Custom Module Generation via LLMs

Parse Description

Results
(Increase or
Decrease)

Customized
Modules (Python)

Off-the-shelf Modules

Time Series Models
(like TEMPO)

LLM

Predefined Tasks Output Data

Question: Please give me Time Series Data:
an investment strategy
o minimize the risk
for the next 30 days.

In-context Examples

Question and Input Data

Program

Input

Modules in Tool Box

Final Result

MultiPreOP

ObjGenOP

ConGenOP

OptOP

Question:Give me an
investment strategy
for the next 12 days.
Program:

Question:Give me a
forecast for the
next 80 minutes for
solar_power.
Program:

MultiPreOP

ReFineOP

Question:Give me the
causal relationship
between each variable
in the time series.
Program:

GrangerCausalMatrixOP

CausalRelationsOP

ü Trend Extraction
ü Volatility Calculation
ü Optimization
ü …

ü Forecasting
ü Causal Relationship
ü Other Time-series Tasks

Output

Figure 3: The pipeline of TS-Reasoner. The LLM work as task decomposer, which learn from
in-context examples to decompose task instances as programs. Then a program executor will call
modules in our tool box to run relevant programs in the given order to obtain final result.

Task Decomposer The proposed framework handles time series data by integrating program-
based decomposition and task-specific models. As illustrated in Fig.3, the core idea revolves around
a programmatic task decomposition engine, which we refer to as the ”Problem Decomposer”. This
component is responsible for disassembling complex tasks into a series of smaller, manageable
subtasks, each described in a programmatic manner. These subtasks are subsequently addressed
by distinct processing modules, enabling the framework to provide robust, step-wise solutions to
time series-related problems. In TS-Reasoner , We use ChatGPT-3.5-turbo as our task decomposer.
We leverage the in-context learning ability of pretrained language model and construct question-
program pairs as in-context examples. The in context examples are carefully constructed so that
the samples questions are equally distributed across the four question types (Financial Investment
Strategy, Future Stock Characteristic Prediction, Energy Load Perdiction with known knowledge,
Causal Relation). As shown in Fig. 3 , every in-context sample is a question program pair where
the question is described in natural language and the program is pseudo-code like. Please refer to
section C.1 for prompts given to task decomposer.

The decomposition of tasks allows for targeted processing through three types of modules, each
specialized for different aspects of the reasoning process:

Time Series Model Modules: These modules are grounded in foundation time series models and
are primarily responsible for handling standard operations such as forecasting, anomaly detection,
trend analysis, and other predictive or diagnostic tasks. Their purpose is to leverage established
models in the field to process data-driven subtasks with high precision and efficiency.

Numerical Method Modules: A second class of modules focuses on numerical and statistical meth-
ods. These modules are particularly adept at performing quantitative manipulations on the data, such
as extracting trends, computing ranges, and conducting basic arithmetic or statistical analyses. The
application of numerical techniques allows for a clearer interpretation of time series dynamics, par-
ticularly in tasks where precise quantitative reasoning is required.

Custom Module Generation via Large Language Models (LLMs): The third type of module
addresses a significant challenge in time series reasoning: the handling of external knowledge and
user-specific instructions that cannot be predefined. In many real-world scenarios, users may incor-
porate unique external knowledge (i.e. maximum or minimum of the value range in forecasting) or
requirement, which are often expressed in natural language within the input instructions. To handle
such custom requirements, the framework includes a “Custom Module Generation Function,” which
calls on a large language model (LLM) to interpret the natural language directives. The LLM trans-
lates these personalized constraints and objectives into programmatic code, wrapping them into a
callable module that integrates seamlessly with the broader reasoning process.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Task Requirement TS-Reasoner CoT + code CoT
SR(%) AAP RAP SR(%) AAP RAP SR(%) AAP RAP

Profit Percent 59.2 243.31 32.34 10.0 38.75 -172.21 18.0 0.0 -210.97
Risk Tolerance 96.0 54.54 -46.04 24.0 4.36 -96.22 10.0 0.0 -100.58
Budget Allocation 90.0 37.12 7.57 32.0 -98.54 -128.09 6.0 -0.41 -29.96

Table 1: The success rate and performance of TS-Reasoner against other baselines on desicion
making. SR stands for Success Rate; AAP stands for Absolute Average Profit. RAP is the Relative
Average Profit compared to vanilla strategy. In Profit Percent and Budget Allocation task, we aim at
improving the profit. Thus positive RAP is expected. In Risk Tolerance, the model is required to first
ensure the risk and minimize the profit reduction. A negative RAP indicates a more conservative
model in terms of risk management compared to vanilla strategy. Bold indicates the best results.

Together, these three module types execute the sequence of tasks generated by the Problem De-
composer. Once the subtasks are processed, the system produces corresponding outputs and traces,
ensuring transparency and traceability in the solution path. For details on available modules in the
toolbox, please refer to section C.2.

6 EXPERIMENTS

In this section, we conducted a series of comparative experiments to assess the performance of var-
ious models across our defined tasks of decision making, compositional question answering, and
multi-domain causal mining. Our baseline models included the Chain of Thought (CoT) approach
and CoT + code approach. For the most competitive result, we used ChatGPT-4-turbo. In CoT
prompting, we outline the steps for the model to think about and directly return result. In CoT +
code setting, we provide CoT prompts that outline steps to take and additionally allows the model
the generate code that we execute to obtain result. Fore more details on the prompts, please refer
to section C.3. Through these experiments, we aimed to measure not only the performance of the
outputs but also the models’ ability to adhere to constraints and optimize outcomes within the com-
plex frameworks of financial markets and energy usage. By systematically analyzing the strengths
and weaknesses of each approach, we seek to elucidate the most effective strategies for leveraging
large language models in practical decision-making, compositional question answering and causal
inference tasks.

6.1 DECISION MAKING

Evaluation Protocol In decision making, the overall objective and specific user requirements may
be different. For this reason, we respectively report the performance of models on each kind of in-
stances. The user’s main objective is to maximize the total profit/ minimize the loss. The customized
requirements can be generally divided to: Profit Percent Guarantee (the decision needs to guarantee
the minimum profit percent that the user expected), Risk Tolerance (the volatility of the investment
portfolio must be within an expected range), and Budget Allocation (control the budget for a spe-
cific stock). In evaluation, we focus on two types of metrics: success rate (SR), absolute average
profit (AAP) and relative average profit (RAP). The strict success rate is defined as the percentage
of test samples that did not violate any constraint and requirements. The average absolute profit is
the profit that the model made on all successful instances. The relative average profit is defined as
the relative profit gain over the vanilla investment strategy that do not consider the requirements in
the instructions. In Profit Percent and Budget Allocation task, we aim at improving the profit over
the vanilla strategy. In Risk Tolerance, the model is required to first ensure the risk and minimize
the profit reduction over the vanilla strategy.

Overall Performance Table 1 shows the performance of TS-Reasoner and baseline reasoning ap-
proaches. It is evident that TS-Reasoner generally outperforms CoT and CoT + code in terms of
strict success rate, particularly in financial decision-making. TS-Reasoner achieves high success
rates in risk tolerance and budget allocation, and performs moderately in profit percent, which is
intuitive as guaranteeing profit is always harder than constraining loss and budget. Also, it notable
that TS-Reasoner has a higher relative profit gain over vanilla strategy and behaves more conserva-
tively in risk control scenarios (although still maintaining overall positive absolute profit). On the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Task Reasoning TS-Reasoner CoT + code CoT
Steps SR(%) MAPE(std) SR(%) MAPE(std) SR(%) MAPE(std)

Stock Future Price Prediction 1 100.0 0.042(0.030) 98.00 0.043(0.031) 100.0 0.058(0.047)
Stock Future Volatility Prediction 2 100.0 0.748(0.691) 90.00 0.848(0.181) 88.00 0.865(0.158)
Energy Power w/ Max Load 3 97.87 0.101(0.339) 85.10 0.226(0.402) 53.20 0.120(0.230)
Energy Power w/ Min Load 3 97.83 0.084(0.104) 73.91 0.682(1.337) 54.30 0.279(0.500)
Load Ramp Rate in Energy Power 3 100.0 0.060(0.153) 89.58 0.167(0.281) 75.00 0.062(0.170)
Load Variability Limit in Energy Power 3 93.88 0.288 (0.385) 85.71 0.265(0.472) 55.10 0.243(0.391)

Table 2: The overall success rate and performance of our model against other baselines on com-
positional QA. SR stands for Success Rate; MAPE is the Mean Absolute Percentage Error. Bold
indicates the best results.

Result Error
2.2%

Execution Error
23.9%

Success 73.9%

Result Error
45.7%

Success 54.3%

Result Error
2.2%

Success 97.8%

Error Distribution of CoT Error Distribution of CoT w/ code Error Distribution of TS Reasoner

Figure 4: Error distribution of different approaches on QA of Energy Power w/ Min Load.

task of Profit Percent and Budget Allocation, TS-Reasoner consistently improve the profit over the
vanilla strategy in the instruction. On the task Risk Tolerance, we can see that TS-Reasoner ac-
quired the minimum loss when ensuring highest success rate. In contrast, the baselines completely
lose competitiveness against vanilla strategy.

6.2 COMPOSITIONAL QUESTION ANSWERING

Evaluation Protocol In compositional QA, the various questions may lead to different reasoning
steps. For this reason, we respectively report the performance of models on each kind of instances.
Specifically, we applied the data from finance (stock price) and energy power supply. For finance,
we mainly tackle the prediction on price, volatility, which are relatively simple. For energy supply,
we consider the energy power supply forecast with external requirement attached such as the max
and min load regularization for the system or load ramp rate and variability limit. Given such
requirements, TS-Reasoner needs to additionally refine the results based on the specified external
knowledge. In evaluation, we focus on two types of metrics: success rate (SR) and Mean Absolute
Percentage Error (MAPE). The success rate is defined as the percentage of test samples in which
the model successfully execute the tasks and did not violate any constraint in the instructions (e.g.
Energy Power load constraint/Requirement).

Overall Performance Table 2 shows the performance of TS-Reasoner and baseline reasoning ap-
proaches. It is evident that TS-Reasoner generally outperforms CoT and CoT + code in terms of both
success rate (SR) and MAPE. We can observe that as reasoning steps increase, TS-Reasoner shows a
clear advantage over CoT and CoT + code. For simpler tasks with 1-2 steps, the performance across
all models is relatively similar. However, as tasks become more complex, TS-Reasoner consistently
outperforms both baselines, with significantly higher success rates (SR) and better MAPE.

Error Analysis In Fig. 4, we present a case study on the energy load prediction task when min-
imum load is specified. The analysis examines how the error rate varies in different approaches.
By introducing program-aided reasoning, result errors are substantially alleviated, which are usually
bottlenecked by numerical errors from LLM. Meanwhile, although CoT w/ code compress the rate
of result error, it additionally introduce execution error, which implies problematic code generated
by LLM. In contrast, TS-Reasoneris able to eliminate execution errors due to robustly tested mod-
ules. This result provides more insight in the advantage of program-based reasoning in time series

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: The overall success rate and performance of TS-Reasoner against other baselines on
Causal Relationship Recognition.

reasoning. The errors include the neglection of critical constraints and requirement, mismanagement
of numerical computations, problematic integration of intermediate output. For concrete examples
of error cases, please refer to Appendix B

6.3 CAUSAL RELATIONSHIP RECOGNITION

Evaluation Protocol In causal relationship recognition, TS-Reasoner is given multi-variable time
series, a description to the data, and expert knowledge of percentage of true relationships. The
model need to incorporate the expert knowledge and the causal discovery tools based on directed
acyclic graph to infer the probable causal relationship across multiple variables. In evaluation, we
focus on three types of metrics: success rate (SR), causal relationship accuracy (CRA) and causal
graph accuracy (CGA). The success rate is defined as the percentage of test samples in which the
model successfully execute the task and did not violate any constraint in the instructions (e.g. the
percentage of the causal relationships). The causal relationship accuracy is defined as the accuracy
of classifying each pair of variable as causally related or not. The causal graph accuracy is defined
as the percentage of test samples of which all causal relationships are correctly classified.

Overall Performance In the causal relation recognition task, TS-Reasoner outperform the CoT
and CoT + code on all metrics, as shown in Fig. 5. It is also noticeable that the performance of
all methods on CGA, which is the hardest evaluation metric, are not satisfactory. Specifically, both
CoT-based methods acquired 0.0 accuracy, which means that for any given test instance, none of
these approaches can correctly infer all pairs causal relationships within it. Although TS-Reasoner
slightly outperforms the baselines, the result is still very modest, opening opportunities for future
works on addressing challenges under this setting.

7 CONCLUSION

In this work, we introduced the task of Complex and Compositional Time Series Reasoning. To
support this task, we curated a specialized dataset from multiple domains and designed a domain-
specific evaluation protocol for rigorous assessments. Building on this foundation, we developed
TS-Reasoner, a simple yet effective model that integrates program-based task decomposition with
LLMs and domain-specific modules. By combining time series models, numerical techniques, and
LLM-generated custom modules, TS-Reasonerachieves a balance between numerical precision and
flexibility, enabling it to handle a variety of tasks requiring domain expertise and personalized
decision-making. Unlike purely LLM-driven methods that often suffer from numerical inaccura-
cies and limited domain adaptability, TS-Reasoner leverages a structured decomposition approach
to mitigate these limitations. This integration provides a versatile framework for domain experts to
streamline complex multi-step analyses. For future work, we plan to expand the dataset to encom-
pass more diverse domains, explore techniques for incorporating world knowledge from LLMs into
the reasoning process, and enhance the toolbox with more powerful modules. These advancements
aim to further elevate TS-Reasoner’s capabilities in compositional and domain-specific time series
analysis.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Bortik Bandyopadhyay, Xiang Deng, Goonmeet Bajaj, Huan Sun, and Srinivasan Parthasarathy.
Automatic table completion using knowledge base. arXiv preprint arXiv:1909.09565, 2019.

Yosef Bonaparte, George M Korniotis, and Alok Kumar. Income hedging and portfolio decisions.
Journal of Financial Economics, 113(2):300–324, 2014.

Defu Cao, Yousef El-Laham, Loc Trinh, Svitlana Vyetrenko, and Yan Liu. A synthetic limit order
book dataset for benchmarking forecasting algorithms under distributional shift. In NeurIPS 2022
Workshop on Distribution Shifts: Connecting Methods and Applications, 2022.

Defu Cao, James Enouen, Yujing Wang, Xiangchen Song, Chuizheng Meng, Hao Niu, and Yan Liu.
Estimating treatment effects from irregular time series observations with hidden confounders. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 6897–6905, 2023a.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. Tempo:
Prompt-based generative pre-trained transformer for time series forecasting. arXiv preprint
arXiv:2310.04948, 2023b.

Defu Cao, Yixiang Zheng, Parisa Hassanzadeh, Simran Lamba, Xiaomo Liu, and Yan Liu. Large
scale financial time series forecasting with multi-faceted model. In Proceedings of the Fourth
ACM International Conference on AI in Finance, pp. 472–480, 2023c.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. arXiv
preprint arXiv:1909.02164, 2019.

Yifang Cheng, Zachary Ross, Egill Hauksson, and Yehuda Ben-Zion. A refined comprehensive
earthquake focal mechanism catalog for southern california derived with deep learning algo-
rithms. In AGU Fall Meeting Abstracts, volume 2021, pp. S32A–05, 2021.

Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models. arXiv
preprint arXiv:2208.14271, 2022.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Jan G De Gooijer and Rob J Hyndman. 25 years of time series forecasting. International journal of
forecasting, 22(3):443–473, 2006.

Diane K Denis, John J McConnell, Alexei V Ovtchinnikov, and Yun Yu. S&p 500 index additions
and earnings expectations. the Journal of Finance, 58(5):1821–1840, 2003.

Haoyu Dong, Shijie Liu, Zhouyu Fu, Shi Han, and Dongmei Zhang. Semantic structure extrac-
tion for spreadsheet tables with a multi-task learning architecture. In Workshop on Document
Intelligence at NeurIPS 2019, 2019.

Lun Du, Fei Gao, Xu Chen, Ran Jia, Junshan Wang, Jiang Zhang, Shi Han, and Dongmei Zhang.
Tabularnet: A neural network architecture for understanding semantic structures of tabular data.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pp. 322–331, 2021.

Guglielmo D’Amico, Filippo Petroni, and Salvatore Vergine. Ramp rate limitation of wind power:
An overview. Energies, 15(16):5850, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thomas DP Edwards, James Alvey, Justin Alsing, Nam H Nguyen, and Benjamin D Wandelt.
Scaling-laws for large time-series models. arXiv preprint arXiv:2405.13867, 2024.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. arXiv preprint arXiv:2305.15408,
2023.

Elizabeth Fons, Rachneet Kaur, Soham Palande, Zhen Zeng, Svitlana Vyetrenko, and Tucker Balch.
Evaluating large language models on time series feature understanding: A comprehensive taxon-
omy and benchmark. arXiv preprint arXiv:2404.16563, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Aurora Gonzalez-Vidal, Fernando Jimenez, and Antonio F Gomez-Skarmeta. A methodology for
energy multivariate time series forecasting in smart buildings based on feature selection. Energy
and Buildings, 196:71–82, 2019.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36, 2024.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953–14962, 2023.

James D Hamilton. Time series analysis. Princeton university press, 2020.

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma, Rui Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen,
Shi Han, et al. Text2analysis: A benchmark of table question answering with advanced data
analysis and unclear queries. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 18206–18215, 2024.

Yaojie Hu, Ilias Fountalis, Jin Tian, and Nikolaos Vasiloglou. Annotatedtables: A large tabular
dataset with language model annotations. arXiv preprint arXiv:2406.16349, 2024.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming
large language models. arXiv preprint arXiv:2310.01728, 2023.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting
by reprogramming large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Unb5CVPtae.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras,
and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations.
arXiv preprint arXiv:2205.11822, 2022.

Nitin Kamra, Yizhou Zhang, Sirisha Rambhatla, Chuizheng Meng, and Yan Liu. Polsird: modeling
epidemic spread under intervention policies: analyzing the first wave of covid-19 in the usa.
Journal of Healthcare Informatics Research, 5(3):231–248, 2021.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Gebhard Kirchgässner, Jürgen Wolters, and Uwe Hassler. Introduction to modern time series anal-
ysis. Springer Science & Business Media, 2012.

12

https://openreview.net/forum?id=Unb5CVPtae

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tae Kyun Lee, Joon Hyung Cho, Deuk Sin Kwon, and So Young Sohn. Global stock market invest-
ment strategies based on financial network indicators using machine learning techniques. Expert
Systems with Applications, 117:228–242, 2019.

Mike A Merrill, Mingtian Tan, Vinayak Gupta, Tom Hartvigsen, and Tim Althoff. Language models
still struggle to zero-shot reason about time series. arXiv preprint arXiv:2404.11757, 2024.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023. doi:
10.1162/tacl a 00562. URL https://aclanthology.org/2023.tacl-1.31.

Manfred Mudelsee. Climate time series analysis. Atmospheric and, 397, 2010.

Zijie Pan, Yushan Jiang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and Dongjin Song.
S2 ip-llm: Semantic space informed prompt learning with llm for time series forecasting. In
Forty-first International Conference on Machine Learning, 2024.

Robert B Penfold and Fang Zhang. Use of interrupted time series analysis in evaluating health care
quality improvements. Academic pediatrics, 13(6):S38–S44, 2013.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
Huang, and Huajun Chen. Reasoning with language model prompting: A survey. arXiv preprint
arXiv:2212.09597, 2022.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

Karishma Sharma, Yizhou Zhang, Emilio Ferrara, and Yan Liu. Identifying coordinated accounts
on social media through hidden influence and group behaviours. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1441–1451, 2021.

Ensheng Shi, Yanlin Wang, Hongyu Zhang, Lun Du, Shi Han, Dongmei Zhang, and Hongbin Sun.
Towards efficient fine-tuning of pre-trained code models: An experimental study and beyond.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 39–51, 2023.

Sabera Talukder, Yisong Yue, and Georgia Gkioxari. Totem: Tokenized time series embeddings for
general time series analysis, 2024.

IHME COVID-19 Health Service Utilization Forecasting Team and Christopher JL Murray. Fore-
casting the impact of the first wave of the covid-19 pandemic on hospital demand and deaths for
the usa and european economic area countries. MedRxiv, pp. 2020–04, 2020.

Ruey S Tsay. Analysis of financial time series. John Eiley and Sons, 2005.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, et al. Chain-of-table: Evolving
tables in the reasoning chain for table understanding. arXiv preprint arXiv:2401.04398, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. In Forty-first International
Conference on Machine Learning, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 101–112, 2021.

13

https://aclanthology.org/2023.tacl-1.31

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
poral 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023a.

Yao Yao, Zuchao Li, and Hai Zhao. Beyond chain-of-thought, effective graph-of-thought reasoning
in language models. arXiv preprint arXiv:2305.16582, 2023b.

Hongzhi Zhang, Yingyao Wang, Sirui Wang, Xuezhi Cao, Fuzheng Zhang, and Zhongyuan Wang.
Table fact verification with structure-aware transformer. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 1624–1629, 2020.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
Pan Lu, Kai-Wei Chang, Peng Gao, et al. Mathverse: Does your multi-modal llm truly see the
diagrams in visual math problems? arXiv preprint arXiv:2403.14624, 2024.

Yizhou Zhang, Karishma Sharma, and Yan Liu. Vigdet: Knowledge informed neural temporal point
process for coordination detection on social media. Advances in Neural Information Processing
Systems, 34:3218–3231, 2021.

Xiangtian Zheng, Nan Xu, Loc Trinh, Dongqi Wu, Tong Huang, S Sivaranjani, Yan Liu, and Le Xie.
A multi-scale time-series dataset with benchmark for machine learning in decarbonized energy
grids. Scientific Data, 9(1):359, 2022.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
by pretrained lm. Advances in neural information processing systems, 36:43322–43355, 2023.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang, Ruyi Gan, Jiaxing Zhang, and Yujiu Yang.
Solving math word problem via cooperative reasoning induced language models. arXiv preprint
arXiv:2210.16257, 2022.

Aboelsood Zidan and Ehab F El-Saadany. Distribution system reconfiguration for energy loss re-
duction considering the variability of load and local renewable generation. Energy, 59:698–707,
2013.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In Inter-
national conference on learning representations, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ANALYSIS FOR DIFFERENT IN-CONTEXT SAMPLES.

In Fig. 6, we analyze how the in-context samples impact the correctness of the program generated
by the model. Specifically, we report how the percentage of the program that are correct varies
with the number of in-context samples. As we can see, as the number increases, the correctness of
generated program improves. When 16 samples are provided, the model is able to always generate
correct programs.

Figure 6: Program Correctness Rate under varying numbers of in-context samples.

B ERROR EXAMPLES

In this section, we present the example errors (shown in Fig. 7 and 8) from TS-Reasoner, CoT, and
CoT + code approaches.

I have historical stock value data for some
stocks that I'm interested in investing in
with a budget of 4587 dollars. I have a risk
tolerance of 7.7%. Please give me an
investment strategy for the next 36 days.
Consider the future trend and volatility of
the stock, give me the rationale and then
answer with a formatted python dictionary
with each stock name as keys and include the
number of units to buy (units), the number of
days to wait before buying (wait_days), and
the number of day to hold after buying for
each stock (hold_days).

Error Type Constraint Violation

User Instruction

Evaluation Result

Output

{'status':0, 'message':'Cost of investment
exceeds budget', 'failed_value':11464.72}

Final_value:
[0.87 0.89 ... 0.88]
Final_value.shape = (66,)

Constraint Violation

I have historical Wind Speed, Relative
Humidity data and the corresponding wind_power
data for the past 167 minutes. I need to
manage the load variability so that it does
not exceed 0.0305 MW over the given period.
Think about how Wind Speed, Relative Humidity
influence wind_power. Please give me a
forecast for the next 65 minutes for
wind_power. Your goal is to make the most
accurate forecast as possible, refine
prediction result based on the constraint
previously described.

{'status': 0, 'message': 'Predicted load
variability exceeds the maximum allowable
limit of 0.0305 MW.

Final_value:
[0. ... 0.03612244 ...]

Result Error (Shape Misalignment)

Final_value:
{'ENVX': {'units': 120, 'wait_days': 5,
'hold_days': 30}, 'VTC': {'units': 15,
'wait_days': 10, 'hold_days': 40}, 'MSN':
{'units': 3000, 'wait_days': 3, 'hold_days':
20,…}

{‘status’:0, ‘message’: ‘Prediction Shape
Misalignment, Expecting output of length
68', 'error':1}

I have historical Dew Point, Relative
Humidity, Solar Zenith Angle data and the
corresponding load_power data for the past
108 minutes. I require that the system load
is maintained above a minimum of 0.70 MW.
Think about how Dew Point, Relative
Humidity, Solar Zenith Angle influence
load_power. Please give me a forecast for
the next 68 minutes for load_power.

Figure 7: Examples of Result Errors in TS-Reasoner and CoT approach.

C PROMPT AND TOOL

C.1 PROMPT FOR TS-REASONER

Return only programs, using the specified operation functions. Do not return any results like dic-
tionaries or lists. You must accurately learn the relationship between the question and the required
operations. You must choose correct operations for each question. Do not use other irrelevant oper-
ations.

Question:

I have historical Variable A, Variable B, Variable C, Variable D, Variable E, Variable F data and
want to get the causal relationship between each pair of the variables. I know that 70.0% of the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

I have historical stock value data for some stocks
that I'm interested in investing in with a budget
of 4587 dollars. I have a risk tolerance of 7.7%.
Please give me an investment strategy for the next
36 days. Consider the future trend and volatility
of the stock, give me the rationale and then answer
with a formatted python dictionary with each stock
name as keys and include the number of units to buy
(units), the number of days to wait before buying
(wait_days), and the number of day to hold after
buying for each stock (hold_days). Exclude any
comment in the python code.

Error Type Execution Error

User Instruction

Evaluation Result

Execution

{'status':0, 'message’:"received NoneType"}

An error occurred: can't multiply sequence by
non-int of type 'float' final value.

Execution Error

An error occurred: name 'budget' is not
defined.

{'status':0, 'message':"received NoneType”}

I have historical stock value data for some stocks
that I'm interested in investing in with a budget of
4913.151824981799 dollars. I have a risk tolerance
of 1.65%. Please give me an investment strategy for
the next 22 hours. Consider the future trend and
volatility of the stock, give me the rationale and
then answer with a formatted python dictionary with
each stock name as keys and include the number of
units to buy (units), the number of hours to wait
before buying (wait_hours), and the number of hour
to hold after buying for each stock (hold_hours).

Figure 8: Examples of Execution Errors occurred CoT + code approach.

variable pairs have relationship. Consider the potential influence of each variable on the others in
this variable list: [’Variable A’, ’Variable B’, ’Variable C’, ’Variable D’, ’Variable E’, ’Variable F’].
Please provide 2d numpy matrix with binary values to indicate whether each pair of variables has a
relationship.

Program:

X0 = GrangerCausalMatrixOP(data=VAL)

FINAL RESULT = GetCausalRelationsOP(data=X0, relation ratio=RATIO)

Question:

I have the past 65 days historical stock value data for some stocks that I’m interested in investing
in. I want to predict the volatility of the stock price for the future 18 days. Your goal is to make the
most accurate prediction .Please give me your prediction, return a 1d numpy array with the predicted
volatility of each stock.

Program:

X0=SinglePreOP(data=VAL, future length=N)

FINAL RESULT = VolDetOP(data=X0)

...(more in-context samples)

Question:

I have historical Relative Humidity, Temperature data and the corresponding wind power data for
the past 191 minutes. I need to ensure that the maximum allowable system load does not exceed
1.33 MW. Think about how Relative Humidity, Temperature influence wind power. Please give me
a forecast for the next 56 minutes for wind power. Your goal is to make the most accurate forecast as
possible, refine prediction result based on the constraint previously described, and return the result
as a 1D array.

Program:

Follow previous examples and answer my last question in the same format as previous examples
within markdown format in “‘python“‘. Only include output steps in the python markdown, do not
repeat my question or include ’Program:’ in python markdown. Do not use irrelevant operations,
only use operations that are necessary for the question.

C.2 AVAILABLE MODULES IN TOOLBOX

The tasks defined in this paper, along with their corresponding input-output formats and the tools
utilized, are summarized in Table 3 below.

Specifically, the detailed description of the Predefined Tools is as follows:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Task Input-Output Tools

Future Stock Prediction Input: Time Series + Question
Output: Time Series

SinglePreOP, MultiPreOP,
TrendPreOP, RefGenOP

Stock Investment Input: Time Series + Instruction
Output: Investment Strategy

MultiPreOP, ApplyOP, Ob-
jGenOP, ConGenOP, OptOP

Energy Prediction Input: Time Series + Question
Output: Time Series

MultiPreOP, ApplyOP, Re-
fGenOP

Causal Relation Input: Time Series + Instruction
Output: Causal Relationship

GrangerCausalMatrixOP,
GetCausalRelationsOP

Table 3: Overall performance of causal relationship recognition.

- SinglePreOP: This operator is primarily used for univariate time series forecasting, leveraging ad-
vanced time series large language models to accurately predict future sequences. The input consists
of two variables: ’data’, representing the input historical time series, and ‘future length‘, specifying
the number of future steps to predict. The output is a time series of length ‘future length‘.

- VolDetOP: This operator performs volatility detection on time series by utilizing a volatility de-
tection algorithm. The input consists of a single variable, ‘data‘, which represents the time series to
be analyzed. The output is the volatility result for the input time series, which can be classified into
one of three categories: ’volatility clustering’, ’persistent volatility’, or ’non-volatility’.

- TrendPreOP: This operator performs trend detection on time series by utilizing a trend detection
algorithm. The input consists of a single variable, ‘data‘, which represents the time series to be ana-
lyzed. The output is the trend result for the input time series, classified into one of three categories:
’increasing’, ’decreasing’, or ’steady’.

- MultiPreOP: This is a multivariate time series forecasting operator used to accurately predict the
target variable based on multiple covariates. The input consists of three variables: ‘data‘, ‘fu-
ture data‘, and ‘future length‘. ‘data‘ represents the historical time series of several covariates
and one target variable, ‘future data‘ provides the future time series of several covariates, and ‘fu-
ture length‘ specifies the forecast length for the target variable. The output is the predicted time
series of the target variable with a length of ‘future length‘.

- RefGenOP: This operator is primarily used to generate a corresponding function based on the
requirement described in a time series forecasting task. The generated function can then be applied
to ‘data‘ to meet the specified conditions. The input consists of a single variable, ‘requirement‘,
which represents the requirement description from the task. The output is a function generated
according to the task requirement.

- ApplyOP: This operator functions as an executor, applying the input function to the corresponding
data. The input consists of two variables: ‘func‘, which represents a function (such as a requirement
function generated by RefGenOP), and ‘data‘, which represents the data to be processed. The output
is obtained by passing ‘data‘ through the ‘func‘ function.

- ObjGenOP: This operator is designed to generate an optimization objective for an optimal in-
vestment strategy based on the user’s investment goals. The input consists of a single variable,
‘obj information‘, which contains the user’s description of their investment objectives (including
expected profit, etc.). The operator utilizes large language models to interpret the investment-related
information provided by the user and generates an optimization objective function. The output is the
optimization objective function derived from the input investment information.

- ConGenOP: This operator is designed to generate a constraint function based on the user’s
investment-related constraints. The input consists of a single variable, ‘con information‘, which
contains the user’s description of their investment constraints (such as budget limits and acceptable
risk tolerance). The operator leverages large language models to interpret the investment-related
information provided by the user and generates a corresponding constraint function. The output is
the constraint function derived from the input investment information.

- OptOP: This operator is primarily used for generating the optimal stock investment strategy. The
input consists of four variables: ‘data‘, ‘constraint‘, ‘future length‘, and ‘objective‘. ‘data‘ repre-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

sents the historical stock data to be invested in, ‘constraint‘ denotes the investment constraint func-
tion (such as budget constraints, return rate constraints, etc.), ‘future length‘ specifies the number of
future investment time steps, and ‘objective‘ represents the investment objective function. This op-
erator leverages large language models to understand stock data, investment goals, and constraints
to automatically generate the optimal investment strategy. The output is the optimal investment
strategy based on all input information.

- GrangerCausalMatrixOP: This operator is used to calculate the Granger causality relationship be-
tween each pair of variables in a time series dataset. The input consists of a single variable, ‘data‘,
which is composed of the historical data of C time series. The output is a matrix of shape [C,
C], where each element represents the significance (p-value) of the causal relationship between the
corresponding variables.

- GetCausalRelationsOP: This operator is used to determine significant causal relationships based on
a Granger causality matrix, which stores the p-values of the causal relationships between variables.
A threshold parameter, ‘relation ratio‘, is applied to identify significant causal relationships, and the
output is a binary matrix indicating which variables have significant causal links. The input consists
of two variables: ‘data‘, which is the precomputed causality matrix, and ‘relation ratio‘, which is
the threshold. The output is a matrix composed of zeros and ones, reflecting the causal relationships.

C.3 COT PROMPT

(1) Stock Future Price Prediction CoT

You are an experienced data scientist specializing in time series forecasting. I will provide you
with a list of multiple time series. You must generate only predictions for the following questions,
returning only the predictions without any codes, markdown formatting or extra characters. question

Chain of Thought: Step 1: Understand and parse the input data from text. Must clarify the number of
all stocks. Step 2: Choose an appropriate model: You will select an appropriate time series forecast-
ing model (e.g., ARIMA, LSTM, etc.) based on the input data. Make sure the model is suitable for
forecasting the next n steps. Step 3: Apply the model: You will apply the chosen model to each time
series (each column in the input data) and generate predictions for the next n steps. Step 4: Return
the prediction results: Output the future predictions directly as ’predictions=List([List(),List(),...,])’.

Requirement: Do not return any codes, just the final results ’predictions=List([List(),List(),...,])’.
Please ensure that the output number of stocks is correct and the predicted length is accurate. Sim-
ply output the future predictions as a list. The predictions should be stored in a variable called
‘predictions‘ and output the list directly.

(2) Stock Future Price Prediction CoT with Code

You are an expert in time series forecasting. You need to perform a forecasting tasks. Generate only
Python code, no markdown or extra characters, for the task below: question

Instructions: 1. Input is a 2D numpy array ‘data‘ of shape [L, C], where L is the historical data
length and C is the number of time series. ‘n‘ is the future length to predict. 2. Define a function that
predicts n steps for each time series using models like ARIMA or LSTM. Ensure the model outputs
all n steps of predictions. 3. Store your output in the variable called ‘predictions‘. ‘predictions‘
should be a nested list: ‘predictions = [[step1, step2, ..., stepn] for each time series]‘, Your prediction
should be a 2d array of shape [n,C].

Requirements: - Define data = np.array([]) as placeholders and do not include any hardcoded data
in the data variable. - Ensure the code is fully executable and ‘n‘ is set from the prompt.

(3) Stock Future Volatility Prediction CoT

You are an experienced data scientist specializing in time series forecasting. I will provide you
with a list of multiple time series. You must generate only predictions for the following questions,
returning only the predictions without any codes, markdown formatting or extra characters. question

Chain of Thought: Step 1: Understand and parse the input data from text. Must clarify the number
of all stocks. Step 2: Choose an appropriate model: You will select an appropriate time series
forecasting model (e.g., ARIMA, LSTM, etc.) based on the input data. Make sure the model is

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

suitable for forecasting the next n steps. Step 3: Apply the model: You will apply the chosen model
to each time series (each column in the input data) and generate predictions for the next n steps.
Step 4. Calculate the volatility of each time forcasted time series. Volatility refers to the standard
deviation of a time series. Step 5: Return the prediction results: Output the future predictions
directly as ’predictions=List([volatility1, volatility2,...])’.

Requirement: Do not return any codes, just the final results ’predictions=List([volatility1, volatil-
ity2,...])’. Please ensure that the output number of stocks is correct and the predicted length is
accurate. Simply output the future predictions as a list of length equals to stocks. The predictions
should be stored in a variable called ‘predictions‘ and output the list directly.

(4) Stock Future Volatility Prediction CoT with Code

You are an expert in time series forecasting. You need to perform a forecasting tasks. Generate only
Python code, no markdown or extra characters, for the task below: question

Instructions: 1. Input is a 2D numpy array ‘data‘ of shape [L, C], where L is the historical data
length and C is the number of time series. ‘n‘ is the future length to predict. 2. Define a function
that predicts n steps for each time series using models like ARIMA or LSTM. Ensure the model
outputs all n steps of predictions. 3. Calculate the volatility of each time forcasted time series 4.
Store your output in the variable called ‘predictions‘. ‘predictions‘ should be a list od length C:
‘predictions = [volatility1, volatility2,...]‘.

Requirements: - Define data = np.array([]) as placeholders and do not include any hardcoded data
in the data variable. - Ensure the code is fully executable and ‘n‘ is set from the prompt.

(5) Stock Future Trend Classification CoT

You are an experienced data scientist specializing in time series forecasting. I will provide you
with a list of multiple time series. You must generate only predictions for the following questions,
returning only the predictions without any codes, markdown formatting or extra characters. question

Chain of Thought: Step 1: Understand and parse the input data from text. Must clarify the number
of all stocks. Step 2: Choose an appropriate model: You will select an appropriate time series
forecasting model (e.g., ARIMA, LSTM, etc.) based on the input data. Make sure the model is
suitable for forecasting the next n steps. Step 3: Apply the model: You will apply the chosen
model to each time series (each column in the input data) and generate predictions for the next
n steps. Step 4. Calculate the trend of each time forcasted time series. Trend refers to increasing,
decreasing and unknown. Step 5: Return the prediction results: Output the future predictions directly
as ’predictions=List([trend1, trend2,...])’.

Requirement: Do not return any codes, just the final results ’predictions=List([trend1, trend2,...])’.
Please ensure that the output number of stocks is correct and the predicted length is accurate. Simply
output the future predictions as a list of length equals to stocks. The predictions should be stored in
a variable called ‘predictions‘ and output the list directly.

(6) Stock Future Trend Classification CoT with Code

You are an expert in time series forecasting. You need to perform a forecasting tasks. Generate only
Python code, no markdown or extra characters, for the task below: question

Instructions: 1. Input is a 2D numpy array ‘data‘ of shape [L, C], where L is the historical data
length and C is the number of time series. ‘n‘ is the future length to predict. 2. Define a function that
predicts n steps for each time series using models like ARIMA or LSTM. Ensure the model outputs
all n steps of predictions. 3. Extract the trend of each time series forcasted time series (increasing,
decreasing, unknown) 4. Store your output in the variable called ‘predictions‘. ‘predictions‘ should
be a list od length C: ‘predictions = [trend1, trend2,...]‘.

Requirements: - Define data = np.array([]) as placeholders and do not include any hardcoded data
in the data variable. - Ensure the code is fully executable and ‘n‘ is set from the prompt.

(7) Electricity Prediction CoT

You are an expert in time series forecasting. You need to perform a forecasting task on electricity
data. Generate only the final results, no markdown, code, or extra characters, for the task below:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

question. Given future covariate data future data and the prediction length future length, please
predict the values of the target variable.

Chain of Thought: 1: Understand and parse the input data from text. Here are several historical
time series, where only one time series is the target variable and the other time series are covariates.
2. Select a multiple regression model to model the relationship between covariates and the target
variable, such as the LinearRegression model. 3: Based on the future covariate data, use the model
from step two to predict the target variable of the length future length. 4: Refine your predictions
if necessary to meet the required constraints and store the final results in predictions. 5. If the
predicted length exceeds future length, please truncate it and then return the predictions of length
future length.

Requirements: The predictions must be returned as a completely list predictions of length
future length. Ensure that the output is directly the result without any code, markdown, or ex-
tra characters. Only return the list predictions with length future length.

(8) Electricity Prediction CoT with Code

You are an expert in time series forecasting. You need to perform a forecasting task on electricity
data. Generate only Python code, no markdown or extra characters, for the task below: question

Instructions: 1. Input is a 2D numpy array ‘data‘ of shape [L+n, C], where L is the historical data
length and C is the number of time series. ‘n‘ is the future length to predict. The first C-1 columns
are covariates, and the last column is the target variable. 2. Define a function that predicts n steps
for the target variable given the covariates of the future n steps. 3. Store your output in the variable
called ‘predictions‘. ‘predictions‘ should be a list of length n: ‘predictions = [step1, step2,...]‘. 3.
Given the constraint, refine your prediction and store the refined prediction in the variable called
‘predictions‘.

Requirements: - Define data = np.array([]) as placeholders and do not include any hardcoded data
in the data variable. - Ensure the code is fully executable and ‘n‘,‘L‘ is set from the prompt. - Do
not include any comments, especially when you call the function.

(9) Causal Relation CoT

You are an expert in time series causality analysis. You need to perform a causality analysis task.
Generate only predictions, no any codes, no any markdown or extra characters, for the task below:
question

Instructions: 1. Create a 2D numpy array ‘data‘ of shape [hist len, stock len], where hist len is the
data length and stock len is the number of time series. 2. Implement a function that analyzes the
causal relationship between the time series using Granger causality test. 3. Store your output in
the variable called ‘causal relations‘. ‘causal relations‘ should be a 2d array of shape [stock len,
stock len] 4. Given the constraint, refine your causal relations and store the refined causal relations
in the variable called ‘causal relations‘. 5. Your final result should contain binary values (0 or 1)
indicating the presence or absence of causality between the time series. 6. Store the final output in
the variable called ‘predictions‘. 7. You don’t need to consider self-causality. The ratio mentioned
in the constraint is the ratio of the number of causal relations to the total number of possible causal
relations excluding self-causality.

Requirements: - Ensure that the final output in the predictions variable strictly follows a two-
dimensional array format, containing only binary values (0 or 1) that signify the presence or absence
of causality between the time series. - Must return only the predictions with a shape [stock len,
stock len].

(10) Causal Relation CoT with Code

You are an expert in time series causality analysis. You need to perform a causality analysis task.
Generate only Python code, no markdown or extra characters, for the task below: question

Instructions: 1. Input is a 2D numpy array ‘data‘ of shape [L, C], where L is the data length and C
is the number of time series. 2. Define a function that analyzes the causal relationship between the
time series using Granger causality test. 3. Store your output in the variable called ‘causal relations‘.
‘causal relations‘ should be a 2d array of shape [C, C] 4. Given the constraint, refine your causal
relations and store the refined causal relations in the variable called ‘causal relations‘. 5. Your final

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

result should contain binary values (0 or 1) indicating the presence or absence of causality between
the time series. 6. Store the final output in the variable called ‘predictions‘. 7. You don’t need to
consider self-causality. The ratio mentioned in the constraint is the ratio of the number of causal
relations to the total number of possible causal relations excluding self-causality.

Requirements: - Define data = np.array([]) as placeholders and do not include any hardcoded data in
the data variable. - Ensure the code is fully executable. - Do not include any comments, especially
when you call the function. - For any package import, import the functions directly.

(11) Stock Investment CoT

You are an expert in stock investment. You need to perform a stock investment task. Generate only
final strategy, no any codes, no any markdown or extra characters, for the task below: question

Instructions:

1. Create a pandas DataFrame data with columns stock columns, representing historical stock prices
over hist len hours. 2. Implement a prediction function for forecasting future stock prices using an
appropriate model. 3. Develop an objective function to optimize the total expected profit, consider-
ing the budget and the other constraints. 4. Apply constraints to ensure that units are non-negative,
both wait resolutions and hold resolutions are at least zero, and their sum does not exceed future len.
5. Calculate the optimal investment strategy, optimizing the expected profit while adhering to the
constraints. 6. Format the optimized strategy into a dictionary named predictions that details the
investment strategy for each stock.

Output Requirements: 1. Directly return the optimized strategy as a dictionary formatted as follows:
”investment target” (name of the stock): ”units”: number of shares to buy and should be no smaller
than 0 ”wait resolutions”: number of resolutions to wait before buying the stock and should be
greater than or equal to 0 ”hold resolutions”: number of resolutions to hold the stock for and should
be strictly less than the future length n , 2. Ensure the strategy is feasible within the provided
constraints and budget. 3. Exclude any extraneous comments or code annotations in the output.

(12) Stock Investment CoT with Code

You are an expert in stock investment. You need to perform a stock investment task. Generate only
Python code, no markdown or extra characters, for the task below: question

Instructions: 1. Input is a pandas dataframe ‘data‘ of shape [L, C], where L is the historical data
length and C is the number of time series. The column names are the stock names, and the values
are the stock prices. 2. Define a function that predicts the future price of each stock using a suitable
model. 3. Design an objective and constraint function to optimize the investment strategy. 4.
Optimize the investment strategy based on the functions you designed. Store the optimized strategy
in the variable called ‘predictions‘. 5. The output format should be ”investment target” (name of
the stock): ”units”: number of shares to buy and should be no smaller than 0 ”wait resolutions”:
number of resolutions to wait before buying the stock and should be greater than or equal to 0
”hold resolutions”: number of resolutions to hold the stock for and should be strictly less than the
future length n ,

Requirements: - Define data =pd.DataFrame() as placeholders and do not include any hardcoded
data in the data variable. - Ensure the code is fully executable. - Do not include any comments,
especially when you call the function. - For any package import, import the functions directly.

C.4 CASUAL MINING DATA GENERATION

Now you are a Time series data scientist, please help me to write the code to generate some synthetic
data in real world Time series domain, you should save the data into ”*/data.csv”:

Now suggesting you should construct a series data based on a relation matrix and the correlation
ratio for different influence factor, you should notice the following points,for time step I want you
to generate 500 time steps:

1. data correlation: the multi variable should be correlated, sample: which A first influence B, then
B have influence on C or D, there should be some time delay, as the influence on other staff needs
time.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

2. data trend: there should be some trend in the data, like the data is increasing or decreasing.

3. data: seasonality there should be some seasonality in the data, like the data is periodic.

4. data noise: the noise should be added to the data, as the real world data is not perfect.

5. data background: the data should have some real world background, you should first think about
different real world data, and provide a description for the variable and time series data, then generate
the data using the code. CoT Sample: Q: Approximate Relation Ratio: 0.5 Relation Matrix:

A B C D
A 1 1 0 0.5
B 0 1 0 1
C 0 1 1 1
D 0 0 0 1

• A influences B and D, and itself.

• B influences D, and itself.

• C influences B and D, and itself.

• D influences only itself.

variable size: 4 A: Scenario: Sales Data of a Chain of Stores Over Time Let’s assume we are
generating synthetic data,the variable size for the data is 4. for the daily sales of multiple stores
across a chain, the sales numbers are influenced by:

1. Advertising (A): The level of advertising spend directly impacts the sales of each store. After a
delay, this starts influencing sales. 2. Sales (B): The sales numbers for each store are influenced by
both the advertising and local seasonal events. 3. Economic Factors (C): Broader economic trends,
like GDP growth or unemployment rates, also impact sales. These factors show a delayed and more
subtle influence over time. 4. Customer Sentiment (D): Customer sentiment affects the sales of
specific products in each store and is influenced by both advertising and broader economic factors.

Seasonality: Sales experience periodic seasonal trends, with peaks around the holidays and lower
numbers during off-seasons.

Trend: There is a general increasing trend in sales as the chain expands.

Noise: Random noise is added to mimic real-world data fluctuations.

Code to Generate Synthetic Time Series Data:

1
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5
6 # Define time range (e.g., 3 years of daily data)
7 np.random.seed(42)
8 days = 365 * 3
9 time = pd.date_range(start=’2020-01-01’, periods=days, freq=’D’)

10
11 # Initialize parameters for seasonality, trend, and noise
12 seasonal_period = 365 # Yearly seasonality
13 sales_increase_trend = 0.05 # Daily incremental sales growth
14 noise_level = 0.05 # Noise level
15
16 # Define Advertising Spend (A)
17 advertising_base = 50 + 10 * np.sin(2 * np.pi * np.arange(days)
18 / seasonal_period) # Seasonal ads
19 advertising_spend = advertising_base +
20 np.random.normal(scale=5, size=days) # Add noise to advertising
21
22 # Economic factors (C) with a long-term trend and seasonality
23 economic_factors = 100 + 2 * np.arange(days) / days
24 + 10 * np.sin(2 * np.pi * np.arange(days) / (seasonal_period * 2)) # Slow increase and long-

term seasonality
25 economic_factors += np.random.normal(scale=3, size=days) # Add noise to economic factors
26
27 # Customer Sentiment (D), influenced by Advertising and Economic factors
28 customer_sentiment = 70 + 0.3 * advertising_spend + 0.1 * economic_factors

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

29 customer_sentiment += np.random.normal(scale=3, size=days) # Add noise to sentiment
30
31 # Sales (B) is influenced by Advertising,
32 Economic factors, and Customer Sentiment
33 sales_base = 200 + sales_increase_trend * np.arange(days) # General trend
34 seasonality = 50 * np.sin(2 * np.pi * np.arange(days) / seasonal_period) # Seasonal variation
35 sales = sales_base + seasonality + 0.4 * advertising_spend
36 + 0.3 * economic_factors + 0.2 * customer_sentiment
37 sales += np.random.normal(scale=noise_level * sales_base, size=days) # Add noise to sales
38
39 # Create DataFrame to hold the time series data
40 data = pd.DataFrame({
41 ’Date’: time,
42 ’Advertising Spend (A)’: advertising_spend,
43 ’Economic Factors (C)’: economic_factors,
44 ’Customer Sentiment (D)’: customer_sentiment,
45 ’Sales (B)’: sales
46 })
47
48 # Set Date as index
49 data.set_index(’Date’, inplace=True)
50
51 # Display the first few rows of the dataset
52 print(data.head())
53 # Please only save the data here
54 df.to_csv(’/Your_data_repo/data.csv’, index=False)

Explanation for :

A (Advertising Spend) influences B (Sales) directly (1) and D (Customer Sentiment) indirectly (0.5).

B (Sales) directly influences D (Customer Sentiment) (1).

C (Economic Factors) influences both B (Sales) and D (Customer Sentiment) (1).

D (Customer Sentiment) doesn’t have a direct influence on other variables, but it affects Sales (B)
in real-world scenarios. However, in this matrix, it only affects itself (1).

D ADDITIONAL EXPERIMENTS

To evaluate the effectiveness of our proposed TS-Reasoner, we compared it with state-of-the-art
reasoning-based models to highlight its advantages in decision-making, compositional optimization,
and causal reasoning scenarios. These experiments aim to demonstrate the superior performance of
TS-Reasoner across diverse and challenging tasks that require complex reasoning capabilities.

We primarily benchmarked TS-Reasoner against two advanced approaches. The first is o1-preview,
an advanced reasoning model developed by OpenAI. o1-preview is specifically designed for tackling
tasks requiring multi-step reasoning and decision-making, leveraging large-scale pretraining and
structured reasoning pathways to achieve high accuracy. It has demonstrated significant success in
tasks requiring complex problem decomposition and logical reasoning, making it an ideal baseline
for our evaluation.

The second approach we considered is based on the ReAct framework. This reasoning structure
takes inspiration from the dynamic interplay between ”reasoning” and ”acting,” mimicking human
behavior when acquiring new skills and solving problems. By integrating reasoning directly into the
action process, ReAct is capable of handling tasks requiring adaptive learning and efficient decision-
making, which has made it a popular framework for reasoning-based AI systems.

As shown in Table 4,5,10, TS-Reasoner outperforms both baselines in decision-making tasks, com-
positional QA tasks, as well as causal mining tasks. The experimental result further validated TS-
Reasoner as a simple but effective solution to multi-step reasoning in domain specific time series
practical application scenarios.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Task Requirement TS-Reasoner o1-preview ReAct
SR(%) AAP RAP SR(%) AAP RAP SR(%) AAP RAP

Profit Percent 59.2 243.31 32.34 6.1 12.53 -198.43 0.0 - -
Risk Tolerance 96.0 54.54 -46.04 18.0 124.72 24.14 4.0 -0.04 -100.63
Budget Allocation 90.0 37.12 7.57 28.0 -195.96 -225.50 4.0 15.70 -13.84

Table 4: The success rate and performance of TS-Reasoner against additional baselines on desicion
making. SR stands for Success Rate; AAP stands for Absolute Average Profit. RAP is the Relative
Average Profit compared to vanilla strategy. In Profit Percent and Budget Allocation task, we aim at
improving the profit. Thus positive RAP is expected. In Risk Tolerance, the model is required to first
ensure the risk and minimize the profit reduction. A negative RAP indicates a more conservative
model in terms of risk management compared to vanilla strategy. Bold indicates the best results.

Task Reasoning TS-Reasoner o1-preview ReAct
Steps SR(%) MAPE(std) SR(%) MAPE(std) SR(%) MAPE(std)

Stock Future Price Prediction 1 100.0 0.042(0.030) 100.0 0.053(0.031) 48.00 0.043(0.023)
Stock Future Volatility Prediction 2 100.0 0.748(0.691) 100.0 0.750(0.533) 46.00 1.123(0.882)
Energy Power w/ Max Load 3 97.87 0.101(0.339) 78.72 0.095(0.198) 21.28 0.136(0.292)
Energy Power w/ Min Load 3 97.83 0.084(0.104) 76.09 0.218(0.352) 36.96 0.374(0.796)
Load Ramp Rate in Energy Power 3 100.0 0.060(0.153) 91.67 0.076(0.179) 29.17 0.131(0.273)
Load Variability Limit in Energy Power 3 93.88 0.288 (0.385) 89.80 0.169(0.290) 26.53 0.268(0.360)

Table 5: The overall success rate and performance of our model against additional baselines on
compositional QA. SR stands for Success Rate; MAPE is the Mean Absolute Percentage Error.
Bold indicates the best results.

Task Reasoning TS-Reasoner-C TS-Reasoner-L TS-Reasoner-L + paraphrased data
Steps SR(%) MAPE(std) SR(%) MAPE(std) SR(%) MAPE(std)

Stock Future Price Prediction 1 100.0 0.042(0.030) 100.0 0.042(0.030) 20.00 0.046(0.030)
Stock Future Volatility Prediction 2 100.0 0.748(0.691) 100.0 0.748(0.691) 100.0 0.748(0.691)
Energy Power w/ Max Load 3 97.87 0.101(0.339) 97.87 0.101(0.339) 97.87 0.101(0.339)
Energy Power w/ Min Load 3 97.83 0.084(0.104) 100.00 0.086(0.103) 100.00 0.086(0.103)
Load Ramp Rate in Energy Power 3 100.0 0.060(0.153) 93.75 0.058(0.149) 97.91 0.053(0.144)
Load Variability Limit in Energy Power 3 93.88 0.288 (0.385) 97.96 0.203(0.308) 89.80 0.294(0.375)

Table 6: The overall success rate and performance of TS-Reasoner variants. TS-Reasoner-C de-
notes TS-Reasoner with ChatGPT as task decomposer leveraging it’s in context learning ability,
TS-Reasoner-L denotes TS-Reasoner with finetuned LLAMA as task decomposer, TS-Reasoner-L
+ paraphrased data denotesTS-Reasoner with LLAMA finetuned on para- phrased data as task de-
composer evaluated on paraphrased data. SR stands for Success Rate; MAPE is the Mean Absolute
Percentage Error. Bold indicates the best results

E VARIANTS OF TS-REASONER

In addition to the original TS-Reasoner (denoted at TS-Reasoner-C), we additionally propose a
variant of TS-Reasoner named TS-Reasoner-L with the LLM backbone substituted for Llama 3.1
8b Instruct instead of ChatGPT 3.5 Turbo. Instead of leveraging in context learning ability, we
performed finetuning on Llama using the question program pairs in the dataset. As shown in ta-
ble 6, TS-Reasoner-L performs comparable to TS-Reasoner-C. We further performed token eco-
nomics analysis as shown in table 9. Although TS-Reasoner-L requires less input tokens compared
to TS-Reasoner-C, TS-Reasoner-L incurs the additional computational cost of finetuning. Users can
choose the appropriate TS-Reasonerbased on their computational and financial budget.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Task Requirement TS-Reasoner o1-preview ReAct
SR(%) ACC(%) SSR(%) SR(%) ACC(%) SSR(%) SR(%) ACC(%) SSR(%)

Causal Relationship 100.0 79.15 8.0 82.0 74.08 4.0 50.0 76.13 0.0

Table 7: The success rate and performance of TS-Reasoner against other baselines on causal rela-
tionship recognition. SR stands for Success Rate; ACC stands for Accuracy; SSR stands for Strict
Success Rate. Bold indicates the best results.

Dataset Number of CSVs Avg Total Timestamps Number of Variables
Daily Yahoo Stock 6780 3785 7
Hourly Yahoo Stock 5540 35 7
Energy Data 66 872601 11
Causal Data 8 529 3–6

Table 8: Dataset Statistics of the constructed dataset. The exact number of time series are not
calculated because it depends on randomly sampled sequence length when generating task instances.

Task TS-Reasoner-C TS-Reasoner-L
Avg Input Avg Output Avg Input Avg Output

Stock Profit Percent 2670.0 49.0 142.0 49.0
Stock Risk Tolerance 2668.0 50.6 140.0 50.6
Stock Budget Allocation 2676.4 66.0 148.4 66.0
Easy Stock Future Price 2614.0 49.0 86.0 49.0
Easy Stock Future Volatility 2609.0 41.8 81.0 41.8
Easy Stock Future Trend 2613.0 45.0 85.0 45.0
Electricity Prediction Max Load 2657.6 110.6 129.6 110.6
Electricity Prediction Min Load 2654.0 56.6 126.0 56.6
Electricity Prediction Load Ramp Rate 2656.6 75.4 128.6 75.4
Electricity Prediction Load Variability Limit 2658.6 130.0 2658.6 79.0
Causal Relation 2648.2 74.0 120.2 74.0

Average 2647.76 63.36 119.76 63.36

Table 9: Token Analysis for each question type. In-Context denotes TS-Reasoner with ChatGPt 3.5
turbo as backbone leveraging its in-context learning ability. Finetuned denotes TS-Reasoner with
LLAMA 3.1 8b Instruct finetuned on our dataset as backbone. The total number of input tokens
is roughly slightly smaller than number of tokens for system prompt (57) + in-context examples
(2424)+ question (119.76) + format instruction (69) = 2669.76. Due to the nature of tokenizers,
repetitively occurring phrases may be tokenized as a single token which causes the total number of
input tokens to be slightly smaller than the sum of its parts being tokenized individually.

Task Requirement w/ Granger w/ Bayesian w/ LiNGAM w/ Causal Forest
SR(%) ACC(%) SSR(%) SR(%) ACC(%) SSR(%) SR(%) ACC(%) SSR(%) SR(%) ACC(%) SSR(%)

Causal Relationship 100.0 79.15 8.0 100.0 58.61 0.0 100.0 62.10 0.0 90.0 74.81 12.0

Table 10: The success rate and performance of TS-Reasoner with different causal tools

F DATASET STATISTICS

Table 8 summarizes the dataset compiled for the multi-step time series reasoning task. The daily
yahoo stock prices data involve stock prices for tickers from the earliest available data to September
2024. The hourly yahoo stock price data spans a week in September 2024 with 7 trading hours on
each of the 5 business days in a week. The energy data contained electricity load from 6 major
electricity grids in the United States (MISO, ERCOT,CAISO,NYISO,PJM, SPP) across 66 zones

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

for 3 complete years (201 -2020) with a minute level frequency. The electricity load data is paired
with corresponding weather variables.

26

	Introduction
	Relevant Works
	Task Definition
	Dataset and Tasks
	Decision Making
	Compositional Question Answering
	Causal Mining

	Program-based Time Series Reasoning
	Experiments
	Decision Making
	Compositional Question Answering
	Causal Relationship Recognition

	Conclusion
	Analysis for different in-context samples.
	Error Examples
	Prompt and Tool
	Prompt for TS-Reasoner
	Available Modules in Toolbox
	CoT Prompt
	Casual Mining Data Generation

	Additional Experiments
	Variants of TS-Reasoner
	Dataset Statistics

