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Abstract

Stochastic dominance is an important concept in probability theory, econometrics
and social choice theory for robustly modeling agents’ preferences between random
outcomes. While many works have been dedicated to the univariate case, little has
been done in the multivariate scenario, wherein an agent has to decide between
different multivariate outcomes. By exploiting a characterization of multivariate
first stochastic dominance in terms of couplings, we introduce a statistic that
assesses multivariate almost stochastic dominance under the framework of Optimal
Transport with a smooth cost. Further, we introduce an entropic regularization of
this statistic, and establish a central limit theorem (CLT) and consistency of the
bootstrap procedure for the empirical statistic. Armed with this CLT, we propose
a hypothesis testing framework as well as an efficient implementation using the
Sinkhorn algorithm. We showcase our method in comparing and benchmarking
Large Language Models that are evaluated on multiple metrics. Our multivariate
stochastic dominance test allows us to capture the dependencies between the metrics
in order to make an informed and statistically significant decision on the relative
performance of the models.

1 Introduction

In choice theory, economics, finance, and models benchmarking, agents are faced with stochastic
prospects that are (eventually) multivariate random variables which they wish to order according to a
utility or risk measure of interest. To formalize such a notion of ordering of stochastic quantities, the
concept of stochastic dominance can be utilized.

In the univariate case, a standard notion of order is given by First order Stochastic Dominance (FSD)
which can be expressed in terms of the quantiles of the underlying random variables [Ogryczak
and Ruszczynski, 2002]. To wit, a random variable X dominates another random variable Y in
FSD, if it has larger quantiles than Y across all percentiles. A weaker notion of FSD, called almost
stochastic dominance was introduced in del Barrio et al. [2018]. Their approach is based on optimal
transport (OT) and consists of measuring a ratio which quantifies how close X is to dominating Y .
del Barrio et al. [2018] further lay the groundwork for principled statistical analysis of almost FSD
by establishing a central limit theorem for the empirical ratio as well as consistency of the bootstrap.
Dror et al. [2018], Ulmer et al. [2022], Nitsure et al. [2023] used the almost FSD testing framework
in benchmarking Large Language models to make statistically significant decisions regarding which
model to select when these models are evaluated with a metric of interest on test data.
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Our main motivation is to extend the testing framework for almost FSD of del Barrio et al. [2018]
to the multivariate case as to enable applications with dependencies between metrics. For instance,
the problem of multivariate portfolio selection in financial applications has been treated via a
reduction to univariate orders [Kouaissah, 2021]. Another application of interest is that of multi-
metric benchmarking which is central nowadays in ranking and selecting Large Languages Models
[Bommasani et al., 2023, Chang et al., 2023, Huang et al., 2023, MosaicLM, 2023, Wolf, 2023,
Zhang and Hardt, 2024]. Current approaches such as Nitsure et al. [2023] use aggregation techniques
to reduce the ordering to the univariate case thereby ignoring dependencies between metrics.

Our starting point is the so-called standard multivariate stochastic order (see Chapter 6 in Shaked
and Shanthikumar, 2007). This order can be expressed in terms of couplings between random
vectors. This insight allows us to follow the approach of del Barrio et al. [2018] and define an almost
multivariate FSD via OT in Section 2. This notion of stochastic dominance can be defined using
multivariate violation ratios that are expressed as optimal transport problems with smooth costs
[Manole and Niles-Weed, 2024, Hundrieser et al., 2022, Groppe and Hundrieser, 2023]. Given that
empirical OT suffers from the curse of dimensionality, we resort in Section 3 to entropic regularization
[Cuturi, 2013] to alleviate that issue and hence define Entropic Multivariate Violation Ratios. We
establish in Section 3 convergence of these entropic violation ratios as the regularization parameter
goes to zero, as well as a central limit theorem and bootstrapping consistency in Section 4 using
the functional delta method [Römisch, 2006]. We highlight that the delta method has seen general
success for proving limit theorems with entropic OT [Hundrieser et al., 2024, Goldfeld et al., 2024a,b].
Armed with this theory, we propose a new framework for hypothesis testing of multivariate stochastic
dominance and apply it to multi-metric benchmarking of LLMs. Multivariate FSD captures the
dependencies between the metrics in this setting and leads to a more robust ordering.

Notation The indicator function of a set A ⊂ Rd is denoted 1A(x) and takes the value 1 if x ∈ A
and 0 otherwise. We also adopt the following shorthand notation, R+ = [0,∞), the maximum of
two numbers a, b ∈ R is denoted by a ∨ b, and for vectors x, y ∈ Rd, we write x ≤ y to indicate that
xi ≤ yi for every i ∈ {1, . . . , d}.

Throughout, P(Rd) is the set of all probability measures on Rd. A measure η ∈ P(Rd) is said to be
sub-Gaussian with parameter τ2 ≥ 0 with respect to the 1-norm provided Eη

[
exp(∥X∥2

1/2τ2)
]
≤ 2.

Convergence in distribution of random variables is denoted by d→ (in the sense of Hoffmann-Jørgensen
when necessary, see Chapter 1 in van der Vaart and Wellner, 1996).

2 Optimal transport and stochastic order

2.1 FSD and Almost Stochastic Dominance in One Dimension

To properly motivate our results on multivariate FSD, we first review some theory for the univariate
setting. For random variables X,Y , it is said that X dominates Y in the stochastic order (denoted
X ≽

FSD
Y ) if P(X ≤ t) ≤ P(Y ≤ t) for every t ∈ R. Formally, this means that the inequality

Y ≤ X generally holds for a given instantiation of these random variables. This condition can be cast,
equivalently, as F−1

Y (t) ≤ F−1
X (t) for every t ∈ (0, 1), where F−1

X (t) and F−1
Y (t) are the quantile

functions for X and Y respectively. With this formulation in mind, del Barrio et al. [2018] propose
the following index of almost stochastic dominance;

εW2
(µ, ν) =

∫ 1

0
(F−1
Y (t)− F−1

X (t))2+dt

W2
2 (µ, ν)

, whereW2
2 (µ, ν) =

∫ 1

0

(F−1
X (t)− F−1

Y (t))2dt,

µ = law(X), ν = law(Y ), and, for z ∈ R, (z)2+ = (0 ∨ z)2 denotes the squared hinge loss. Here,
the numerator captures the degree to which X fails to dominate Y whereas the denominator serves as
a normalizing constant so that εW2(µ,ν) ∈ [0, 1]. Indeed, as (x− y)2+ + (y − x)2+ = (x− y)2, we
see that εW2

(µ, ν) = 0 precisely when F−1
Y (t) ≤ F−1

X (t) for a.e. t ∈ (0, 1) whereas εW2
(µ, ν) = 1

when the opposite inequality holds. del Barrio et al. [2018] then propose to test the null hypothesis
εW2(µ, ν) ≤ ε0 for some ε0 sufficiently close to 0, corresponding to the case where X almost
dominates Y in the stochastic order, versus the alternative hypothesis εW2(µ, ν) > ε0. To this end,
they provide a central limit theorem for the statistic εW2 and propose to construct the rejection region
via bootstrap estimation of the limiting variance. Similar results were obtained for a notion of almost
second order stochastic dominance in Nitsure et al. [2023].
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We highlight that the index εW2 can be connected to OT. Indeed, by Theorem 2.9 in Santam-
brogio [2015], the numerator and the denominator in εW2(µ, ν) can be written, respectively, as
infπ∈Π(µ,ν)

∫
(y−x)2+dπ(x, y), and infπ∈Π(µ,ν)

∫
(y−x)2dπ(x, y), where Π(µ, ν) denotes the set

of all couplings of (µ, ν). These problems are (univariate) instances of the well-studied OT problem

OTc(µ, ν) := inf
π∈Π(µ,ν)

∫
cdπ, (1)

where c : Rd × Rd → R+ is a given cost function. We highlight that the costs considered herein are
such that an optimal coupling always exists (see Theorem 4.1 in Villani, 2009). This connection will
serve as our basis for extending the notion of almost stochastic dominance to the multivariate setting.

2.2 Multivariate FSD and its Relaxation via Optimal Transport with Compatible Costs

In the sequel, we provide a general framework for assessing multivariate almost FSD using a purely
OT-based methodology. Following Chapter 6 and Theorem 6.B.1. in Shaked and Shanthikumar
[2007], given the random vectorsX,Y ∈ Rd, we say thatX dominates Y in the usual stochastic order
(denoted X ≽

FSD
Y ) provided that there exists a coupling (X̂, Ŷ ) of (X,Y ) satisfying P(X̂ ≥ Ŷ ) = 1

(i.e. for each i = 1, . . . , d, X̂i ≥ Ŷi with probability one). This condition can be cast as follows:
Lemma 1. Letting µ (resp. ν) denote the law of X (resp. Y ), X ≽

FSD
Y if OTc(µ, ν) = 0, where

c : Rd × Rd → R+ is the cost function c(x, y) = 1{x≤y}(x, y).

Evidently, the cost 1{x≤y}(x, y) in Lemma 1 can be replaced by any nonnegative cost function
c(x, y) satisfying c(x, y) = 0 if and only if x ≤ y and it still holds that X ≽

FSD
Y if OTc(µ, ν) = 0.

We denote the set of all such costs by C≤.
Definition 1 (OT Costs Compatible with Multivariate FSD). The set of all cost functions which are
compatible with multivatiate FSD in the sense that OTc(law(X), law(Y )) = 0 implies that X ≽

FSD
Y

is given by C≤ = {c : Rd × Rd → R+ such that c(x, y) = 0 if and only if x ≤ y}.

A simple recipe for generating cost functions in C≤ is to take any univariate function h : R→ R+

with the property that h−1({0}) = (−∞, 0] and define c(x, y) =
∑d
i=1 h(yi − xi). For notational

simplicty, we write OTh to denote the OT cost with this type of cost function even when the
aforementioned property does not hold. The results presented in the following sections require some
additional smoothness assumptions on the function h discussed above which we summarize presently.
Definition 2 (Smooth Costs). The function h : R→ R+ satisfies the smoothness condition (SCd) if
h is Lipschitz continuous with constant L ≥ 0 (that is, |h(x)− h(y)| ≤ L|x− y| for every x, y ∈ R)
and, for k = ⌊d/2⌋ + 1, h is k-times continuously differentiable with derivatives of order s ≤ k
satisfying |h(s)(x)| ≤ Ck(1 + |x|)pk for some Ck <∞ and pk > 1 which may depend on k.

We now discuss some examples of cost functions of interest.

Example 1 (Examples of OT Costs). 1) The function h(z) = e−1/z for z ∈ (0,∞) and 0 otherwise
is known to be smooth (see Example 1.3 in Tu, 2011) and satisfies h−1({0}) = (−∞, 0]. It is easy to
see that all derivatives of h are 0 on (−∞, 0], and decay to 0 at infinity (and hence are bounded on
R) so that h satisfies (SCd) for any d ∈ N, and induces a cost function in C≤.

2) The squared hinge function h(z) = (z)2+ considered in Section 2.1 has linear growth, but is non-
smooth. Although this function can be smoothed using e.g. mollification as introduced in Friedrichs
[1944], this will result in a cost c which is not an element of C≤ and may be costly to implement due
to the convolution operation used in mollification.

3) The logistic function h(z) = log(1 + eβz) for β > 0 has linear growth and derivative h′(z) =
β eβz

1+eβz
= βς(βz), where ς(z) = 1

1+e−z is the sigmoid function. As ς ′(z) = ς(z)(1 − ς(z)), it is
easy to see that all derivatives of h are bounded on R so that the assumption (SCd) is satisfied for
any d ∈ N. Although h does not induce a cost in C≤, it is increasing and decays to 0 faster than
eβz as z → −∞. Moreover, if the induced cost satisfies c(x, y) ≤ ε0, then maxdi=1(yi − xi) ≤
1
β log(eε0 − 1). Thus, if OTc(µ, ν) =

∫
{c≤ε0} cdπ

⋆ +
∫
{c>ε0} cdπ

⋆ = ε for an optimal plan π⋆ and
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some small ε > 0, one has that
∫
{c>ε0} cdπ

⋆ ≤ ε so that π⋆({c > ε0}) ≤ ε/ε0 i.e. π⋆ assigns at
least mass 1− ε/ε0 to points (x, y) for which maxdi=1(yi − xi) ≤ 1

β log(eε0 − 1). Hence, for large β,
c enforces similar properties to a cost in C+. Note also that h can be viewed as a smooth surrogate
for the 0/1 loss for large β.

At this point, a multivariate analogue to the univariate almost stochastic domination could be defined
by analogy with Section 2.1. However, we highlight two major impasses which make the entropically
regularized index considered in the following sections a far more palatable option in dimension
d > 1. First, it is well-known that the expected rate of convergence of empirical OT generally
suffers from the curse of dimensionality in statistical estimation; scaling as n−1/d (cf. e.g. Manole
and Niles-Weed, 2024). Although Hundrieser et al. [2022] improve these rates as to depend on
the minimum of the intrinsic dimensions of µ, ν in place of d, entropic optimal transport exhibits
a preferable parametric rate of convergence. Next, solving the OT problem numerically between
two finitely discrete distributions supported on N points requires solving a linear program in N2

variables which can be prohibitive for even moderately sized problems.

3 Entropic Regularization of OT with Multivariate FSD Compatible Costs

Before defining the regularized index, we first provide some background on entropic optimal transport
(EOT) with a cost c : Rd × Rd → R+. EOT is defined by regularizing the OT problem (1) as

OTc,λ(µ, ν) = inf
π∈Π(µ,ν)

∫
cdπ + λDKL(π||µ⊗ ν), (2)

where λ ≥ 0 is a regularization parameter and DKL is the Kullback-Leibler divergence defined by
DKL(ρ, η) =

∫
log
(
dρ
dη

)
dρ if ρ is absolutely continuous with respect to η and DKL(ρ, η) = +∞

otherwise. When λ = 0, we recover the standard OT problem. If c ∈ L1(µ⊗ ν), (2) admits a unique
solution and is paired in strong duality with the problem

sup
φ∈L1(µ),ψ∈L1(ν)

∫
φdµ+

∫
ψdν − λ

∫
e
φ(x)+ψ(y)−c(x,y)

λ dµ⊗ ν(x, y) + λ. (3)

Solutions to (3) are known to be almost surely unique up to additive constants (i.e. if (φ,ψ), (φ′, ψ′)
solve (3), φ = φ′ + C µ-almost surely and ψ = ψ′ − C ν-almost surely for some constant C ∈ R)
and are uniquely determined for µ-a.e. x and ν-a.e. y by the so-called Schrödinger system

e−
φ(x)/λ =

∫
e
ψ(y)−c(x,y)

λ dν(y), e−
ψ(y)/λ =

∫
e
φ(x)−c(x,y)

λ dµ(x), (4)

which implies that
∫
e
φ(x)+ψ(y)−c(x,y)

λ dµ⊗ ν(x, y) = 1. EOT potentials satisfying (4) on the whole
space are known to exist and are unique up to additive constants (see Lemma 6). We refer the reader
to Nutz [2021] for a comprehensive introduction on EOT including all stated results.

Entropic regularization of OT problems was introduced in the seminal work of Cuturi [2013] as
a means to accelerate computation by utilizing Sinkhorn-Knopp’s matrix scaling algorithm which
can be efficiently implemented on GPUs. Interestingly, entropic regularization also alleviates the
curse of dimensionality rates in statistical estimation inherent to standard OT; for instance Genevay
et al. [2019] and Mena and Niles-Weed [2019] show that the plug-in estimator for the EOT cost with
fixed λ > 0 and cost c(x, y) = ∥x− y∥2 achieves a parametric expected rate of convergence with a
dimension dependent constant (see also Groppe and Hundrieser, 2023, Stromme, 2023 for related
results with the dimension replaced by the minimum intrinsic dimension of µ and ν); del Barrio et al.
[2023] and Goldfeld et al. [2024b] further establish a central limit theorem in this setting.

Given that EOT is meant to approximate OT, we derive the properties of OTh,λ(µ, ν) and its solutions
as λ ↓ 0. First, we quantify the rate of convergence of OTh,λ to OT0,λ under mild conditions, then
show that solutions of OTh,λ converge to solutions of OTh,0 as λ ↓ 0 in a suitable sense.

Theorem 1 (Stability as λ ↓ 0). Let µ, ν ∈ P(Rd) have finite first moment, h be a function satisfying
(SCd), and fix δ > 0. Then,
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1. for any λ ∈ [0, 1) satisfying ⌊λ−d⌋ ≥ (20/δ)
d, we have that

0 ≤ OTh,λ(µ, ν)− OTh,0(µ, ν) ≤ dλ log(1/λ) +
4Lλ

δ
(5Cδ + 20d)

for Cδ =
∑d
j=1

∫
|xj |1+δdµ0(x) ∧

∑d
j=1

∫
|xj |1+δdµ1(x).

2. if πλ is the unique solution to OTh,λ(µ, ν) for λ > 0, then there exists a subsequence of (πλ)λ↓0
which converges weakly to a solution of OTh,0(µ, ν).

We highlight that the implications of Theorem 1 require only the Lipschitz condition imposed in
(SCd). The proof of the first result follows that of Theorem 3.3 in Eckstein and Nutz [2023] which
controls the error of approximating the OT cost and OT plan using discretizations of the measures
at play. The main novelty in our approach is to provide explicit constants and a simple argument
showing that the rate at which a general measure on Rd can be approximated by a finitely discrete
measure on at most n points under the 1-Wasserstein distance scales at worst as n−1/d for sufficiently
large n. The second statement is proved using the machinery of Γ-convergence (see Maso, 1993).
Complete proofs are provided in Appendix C.2.

4 Entropic Multivariate FSD Violation Ratio and Testing

By analogy with the univariate case described in Section 2.1, we consider a normalized index of
stochastic order violation given by

εh,λ(µ, ν) =
OTh,λ(µ, ν)

OTh̄,λ(µ, ν)
, (5)

we adopt the convention that εh,λ(µ, ν) = 0 whenever OTh̄,λ(µ, ν) = 0. Here, OTh̄,λ(µ, ν) is the
EOT problem with cost c(x, y) =

∑d
i=1 h(yi−xi)+h(xi−yi). This cost function is induced by the

function h̄(z) = h(z) + h(−z) and hence satisfies (SCd) provided that h satisfies (SCd). Moreover,
OTh,λ(µ, ν) ≤ OTh̄,λ(µ, ν) by construction so that εh,λ(µ, ν) ∈ [0, 1] yielding a normalized index.
The corresponding notion of entropic multivariate almost stochastic dominance can thus be defined.
Definition 3 (Entropic Multivariate Almost FSD). We define (h, λ, ε0)− FSD, the entropic multi-
variate almost FSD via the violation ratio as follows:

µ ≽
(h,λ,ε0)−FSD

ν if εh,λ(µ, ν) ≤ ε0.

In light of Theorem 1, limλ↓0 εh,λ(µ, ν) =
OTh,0(µ,ν)
OTh̄,0(µ,ν)

with the convention that this latter quantity is
zero when OTh̄,0(µ, ν) = 0. In the case that h is the squared hinge function described in Example 1
and d = 1, we recover the univariate index from Section 2.1. As aforementioned, the squared hinge
function is not sufficiently smooth to enable us to characterize the asymptotic fluctuations of the
empirical index in arbitrary dimensions. See Example 1 which lists other examples of costs satisfying
(SCd); this condition is sufficient for the following statistical developments. We underscore that
the choice of cost influences the notion of stochastic dominance reflected by the violation ratio.
In applications where a practitioner wishes to formulate a domain-specific notion of dominance, a
data-driven approach can be employed by replacing the fixed cost h in the previous development by
a collection of costs (hi,θi)

d
i=1 for each dimension where θi is the corresponding parameter (e.g. β

in the logistic function) and optimizing over these parameters. The results presented herein readily
adapt to this setting, but, for simplicity, we restrict our attention to the case of a fixed h troughout.

4.1 Statistical Properties

We now lay the groundwork for performing principled statistical inference with the empirical estimator
of the entropic index εh,λ. Namely, we establish the asymptotic properties of the plug-in estimator
εh,λ(µ̂n, ν̂n), where µ̂n = 1

n

∑n
i=1 δXi , ν̂n = 1

n

∑n
j=1 δYj are the empirical distributions from n

independent observations, (Xi)
n
i=1 and (Yj)

n
j=1 of µ and ν respectively. Furthermore, we establish

consistency of the bootstrap procedure. To this end, given sets of n iterations observations of µ and
ν, (Xi)

n
i=1 and (Yj)

n
j=1 as above and sets (XB

i )ni=1 and (Y Bj )nj=1 of n independent samples from
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µ̂n and ν̂n, µ̂Bn := 1
n

∑n
i=1 δXBi and ν̂Bn := 1

n

∑n
j=1 δY Bj are the corresponding bootstrap empirical

distributions. PB denotes the conditional probability given the data.

Theorem 2 (Limit distribution and bootstrapping). Assume that µ, ν ∈ P(Rd) are sub-Gaussian with
a shared parameter τ2 > 0 and that h satisfies (SCd). Let (φh, ψh) and (φh̄, ψh̄) be any pairs of
optimal potentials for OTh,λ(µ, ν) and OTh̄,λ(µ, ν) respectively satisfying the Schrödinger system
(4) on Rd × Rd. Then, if OTh̄,λ(µ, ν) > 0,

1.
√
n (εh,λ(µ̂n, ν̂n)− εh,λ(µ, ν))

d→ N(0, σ2), a mean-zero Gaussian with variance σ2 =

varµ

(
1

OTh̄,λ(µ,ν)
φh − OTh,λ(µ,ν)

OTh̄,λ(µ,ν)
2φh̄

)
+ varν

(
1

OTh̄,λ(µ,ν)
ψh − OTh,λ(µ,ν)

OTh̄,λ(µ,ν)
2ψh̄

)
.

2. If σ2 > 0, supt∈R
∣∣PB (√n(εh,λ(µ̂Bn , ν̂Bn )− εh,λ(µ̂n, ν̂n)) ≤ t)− P(N(0, σ2) ≤ t)

∣∣ P→ 0.

Observe that the limiting distribution in Theorem 2 is non-pivotal in the sense that the variance
depends on the population distributions (µ, ν) rendering direct estimation of the limiting variance
highly non-trivial. The bootstrap consistency result in the second point enables us to establish
confidence intervals for εh,λ(µ, ν). Explicitly, if ζβ denotes the smallest value of t ∈ R for which
PB
(
εh,λ(µ̂

B
n , ν̂

B
n ) ≤ t

)
≥ 1− β for any β ∈ (0, 1), then εh,λ(µ, ν) ∈ [0, 2εh,λ(µ̂n, ν̂n)− ζα] with

probability approaching 1− α for any α ∈ (0, 1) due to Lemma 23.3 in Van der Vaart [2000].

The proof of Theorem 2 is based on the functional delta method [Römisch, 2006] which extends
the standard delta method to functionals defined on normed vector spaces, following the framework
of Goldfeld et al. [2024b]. Formally, this approach consists of showing that the functional map-
ping τ2-sub-Gaussian distributions (η, ρ) to εh,λ(η, ρ) is directionally differentiable at (µ, ν) and
Lipschitz continuous in a suitable sense and that the relevant potentials lie in a space of sufficiently
smooth functions using the assumption (SCd). Smoothness of the potentials is crucial to ensure
that the empirical processes

√
n(µ̂n − µ),

√
n(ν̂n − ν) converge when treated as functionals on the

aforementioned space of smooth functions. Complete details are included in Appendix C.3, and a
primer on the functional delta method can be found in Appendix D.

Remark 1 (On Theorem 2). 1) We note that the condition that OTh̄,λ(µ, ν) > 0 in Theorem 2 is satis-
fied except in certain degenerate settings. Indeed, for a general nonnegative cost c, OTc,λ(µ, ν) = 0
if and only if

∫
cdµ ⊗ ν = 0 as follows from the fact that DKL(π∥µ ⊗ ν) ≥ 0 with equality if and

only if π = µ ⊗ ν. In particular, OTh̄,λ(µ, ν) = 0 if and only if h(xi − yi) = h(yi − xi) = 0 for
every x ∈ spt(µ) and y ∈ spt(ν) and every i ∈ {1, . . . , d}. If h is chosen as to generate a cost
function which is compatible with multivariate FSD (recall Definition 1), h−1({0}) = (−∞, 0] so
that OTh̄,λ(µ, ν) = 0 if and only if µ and ν are point masses at some shared a ∈ Rd.

2) Theorem 2 is presented in the balanced case with empirical measures from n samples. In the
case where µ̂n and ν̂m are empirical measures from n ̸= m samples with n

n+m → s ∈ (0, 1),

the implications of Theorem 2 are easily seen to hold with
√

nm
n+m in place of

√
n and σ2

s =

varµ

(
1−s

OTh̄,λ(µ,ν)
φh − sOTh,λ(µ,ν)

OTh̄,λ(µ,ν)
2φh̄

)
+ varν

(
1−s

OTh̄,λ(µ,ν)
ψh − sOTh,λ(µ,ν)

OTh̄,λ(µ,ν)
2ψh̄

)
in place of σ2.

4.2 Multivariate FSD Hypothesis Testing In ML Models Benchmarking

With the statistical properties of the violation ratio in hand, we now consider using the violation ratio
in the context of statistical testing for (h, λ, ε0)− FSD. Consider two d-dimensional distributions
µ, ν. In our application, these will correspond to the distributions of performance of two language
models’ responses evaluated on d metrics. Given n,m samples from µ, ν respectively, we can apply
Theorem 2 to create statistically valid tests comparing µ and ν. Similarly to Nitsure et al. [2023], we
consider both absolute and relative testing (see Nitsure et al., 2023 for a complete discussion).

Absolute testing The most straightforward application of Theorem 2 is to specify a desired threshold
ε0 and consider the following hypothesis test for (h, λ, ε0)− FSD: H0 : µ �≽

(h,λ,ε0)−FSD
ν versus the

alternativeH1 : µ ≽
(h,λ,ε0)−FSD

ν. Note that ν dominating µ would be tested separately. Given a desired
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confidence 1−α, the central limit theorem and bootstrap results in Theorem 2 suggest rejecting H0 if

εh,λ(µ̂n, ν̂m) ≤ ε0 +
√
m+ n

mn
σB(µ̂n, ν̂m)Φ−1(α), (6)

where σ2
B is the bootstrapped variance (See Algorithm 1) and Φ is the CDF of the standard normal

distribution. By Theorem 2, this test will be asymptotically valid.

Relative testing A downside of absolute testing is that it requires specifying a threshold ε0. This
threshold can be meaningful in pairwise comparisons, but when multiple distributions (e.g. multiple
language models evaluations) are being compared for ranking purposes, it is difficult to determine
a priori what threshold to use to ensure that the distributions can be separated. As in Nitsure
et al. [2023], we therefore also present a relative test that compares each of k random vectors with
measures µ1, . . . , µk using a one-versus-all violation ratio. First, consider all pairs of violations ratios
between the k measures: ε(h,λ)ij = εh,λ(µi, µj) for i, j ∈ {1 . . . k}, i ̸= j. Let M = (µ1, . . . µk),
and define the one-versus-all violation ratio of the dominance of µi on all other variables µj , j ̸= i:
ε
(h,λ)
i (M) = 1

k−1

∑
j ̸=i ε

(h,λ)
ij . We can then define relative stochastic dominance (h, λ)-R-FSD as

µi1 ≽
R−FSD

µi2 . . . ≽
R−FSD

µik ⇐⇒ ε
(h,λ)
i1

(M) ≤ · · · ≤ ε
(h,λ)
ik

(M). Here the most dominating

model is the one with the lowest one-versus-all violation ratio. Testing for relative dominance of
µi on µj we can then compare their one-versus-all ratios via the following statistic: ∆ε(ℓ)ij (M) =

ε
(ℓ)
i (M) − ε

(ℓ)
j (M).To test for (h, λ)-R-FSD of µi versus µj then, we have the null hypothesis

H0 : ∆εij(M) ≥ 0 versus the alternative H1 : ∆εij(M) < 0. It is possible to extend the central
limit theorem and bootstrapping results in Theorem 2 to this relative statistic under an independence
assumption (omitted for brevity). Let M̂n = (µ̂1,n, . . . µ̂k,n) be the empirical measures for n samples
from each distribution. As in the absolute case, we then reject H0 with a confidence 1 − α if:

∆εi1,i2(M̂n) ≤
√

1
nσB,relative(i1, i2)Φ

−1(α) where σ2
B,relative(i1, i2) is the bootstrapped variance

(see Algorithm 1 for the variance expression).

Multitesting and Ranking To apply the above multivariate FSD violation ratio hypothesis tests to
ranking of multiple distributions, we follow the approach of Nitsure et al. [2023]. We aggregate the
set of all pairwise tests, ensure multitesting statistical validity via Family-Wise Error Rate (FWER)
control, and, if needed, aggregate the pairwise test results into a numerical ranking. Our approach is
described below and summarized in Algorithm 1. The overall complexity of performing one pairwise
test is dominated by the cost of computing the EOT cost with h and h̄. To this end, the Sinkhorn
algorithm is used [Cuturi, 2013], which computes EOT between distributions on N points with a
complexity of O(N2K(d) +N2), where K(d) denotes the cost of complexity of computing the cost
c(x, y) between x, y ∈ Rd.

Ranking multiple distributions In our experiments below, we seek to use the pairwise tests above to
obtain a statistically valid ranking of a set of k random vectors X(i) with measures µ(i), e.g. samples
of X(i) can be the per-sample evaluation metrics for a set of language models. To rank k models
at a specified significance level α, we first test all k2 − k pairs (µ(i), µ(j)), i ̸= j, employing a
FWER correction (see next paragraph) to guarantee a valid control on the overall false rejection rate.
This yields a set of trinary outcomes for each (i, j) pair, with 1 if the null is rejected in the positive
direction, -1 if the null is rejected in the negative direction, and 0 if the null is not rejected. These
pairwise rankings are then combined into a single rank using a simple Borda count [de Borda, 1781]
rank aggregation algorithm.

Multitesting FWER control When running a family of T tests each at a significance level 1−α, the
true probability that at least one test falsely rejects the null scales with T . If the output of all T tests
needs to be trusted simultaneously, instead it is desirable that the probability of any test falsely rejects
the null is less than or equal to the specified α. Achieving this requires adjusting, or “correcting” the
significance level of each of the T tests, in a process called Family-Wise Error Rate (FWER) control.
In the present work, we use the Bonferroni correction, which sets the significance level of the ith test
to 1− αi with αi = α/T . Note that while the Bonferroni correction is known to be pessimistic, we
choose it as it sets uniform significance levels for all tests, as opposed to other strategies such as the
Holm correction [Holm, 1979] which is tighter but yields highly nonuniform statistical power across
the family of tests. Exploring sensible ways to employ nonuniform FWER control approaches in the
context of performance ranking is an interesting avenue for future work.
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5 Experiments

All experiments were run on NVIDIA A100 80GB GPUs using PyTorch [Ansel et al., 2024] (v.2.3.0,
BSD-3 license) and the Python Optimal Transport package [Flamary et al., 2021] (v.0.9.3, MIT
license) to compute optimal transport distances with and without regularization. Code for these
experiments is available at https://github.com/IBM/stochastic-order-eval.

5.1 Synthetic Data Experiment

In this section we analyze our method on a synthetic toy dataset that enables us to parametrically
control the level of the multivariate stochastic dominance between two random variables. Given a
dimension d, a parameter p ∈ [0, 1], and mean and variance parameters µ, σ2, our synthetic dataset is
generated by sampling from the multivariate random variables X,Y ∈ Rd:

• Xi ∼ N (µ, σ2) for i = 1, . . . , d

• Yi = Xi + (2 ·Bi(p)− 1)Ui with Bi(p) = Bernoulli(p) ∈ {0, 1} and Ui = Uniform(0, 1).

These variables X and Y are designed in such a way that p parametrizes the dominance of Y over X .
In particular, X ≽

(h,λ)−FSD
Y if p < 0.5, and Y ≽

(h,λ)−FSD
X if p > 0.5.

As a baseline for our synthetic experiments, we also compute the violation ratio for the standard
FSD framework using unregularized OT (EMD), i.e. εhinge,0, as a function of p for fixed d = 5,
µ = 0, σ2 = 1.0 and N = 100 samples from X and Y . We then investigate how well this baseline
is approximated by εlog,λ>0, the entropically regularized ratio with a logistic cost as in Example 1.
Fig. 1 shows that as the entropic regularization parameter λ decreases towards 0 and as the gain of
the logistic cost β increases, εlog,λ>0 converges towards εhinge,0 across all values of p ∈ [0, 1]. In
all cases, multivariate FSD violation ratio predicts linearly p, indicating that it is captures well the
FSD violations. This experiment indicates that, to best approximate the standard FSD violation ratio,
λ should be taken as small as possible (c.f. Theorem 1) and β should be taken as large as possible
(c.f. Example 1). There is, in practice, a tradeoff that must be made when computing the regularized
index, as Sinkhorn’s algorithm requires the matrix e−C/λ, where C is the matrix of pairwise costs.
As such, if the ratio β/λ is too large, numerical underflow will occur and the algorithm will fail. As a
rule of thumb, it is recommended to set β first and increase the value of λ if instability occurs.
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Figure 1: Convergence of εlog,λ>0 towards εhinge,0 in the synthetic dataset introduced in this section.
Left panel: for a fixed parameter β = 8 of the logistic cost, εlog,λ>0 converge towards εhinge,0 as
λ is decreased toward 0. Right panel: for a fixed entropic regularization parameter λ = 0.1, εlog,λ
converges towards εhinge,0 as the gain of the logistic cost β increases. All simulations were generated
for d = 5, µ = 0, σ2 = 1.0 and N = 100. Points and error bars indicate average and standard
deviation across 100 repetitions.

We now assess the power of our proposed test with as a function of the number of samples and
the dimension. We consider the same setup as the previous experiment and set p = 0.65 so that
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Y ≽
(h,λ,0.5)−FSD

X . We then estimate the type I and type II error of the relative test statistic by

averaging across 100 repetitions, these results are compiled in Fig. 2.

Figure 2: Type I and type II error of the relative test statistic as a function of the sample size n in
dimension d ∈ {10, 20, 50}. Here, β = 8 and λ = 0.01d.
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Figure 3: Mix Instruct Results: Comparison of Multivariate FSD to Reduction to univariate FSD with
aggregation across the dimensions.

5.2 LLM Benchmarking

To test our method on real world scenarios, we have chosen a current topic of significant interest to
the community: LLM Benchmarking. We show through our experiments that our method can provide
a more holistic ranking of LLMs evaluated on different metrics as opposed to present strategies which
involve mean win rate. To demonstrate our method’s application to LLM Benchmarking, we have
conducted assessments on two different sets of data.

Mixinstruct For our first evaluation we use the dataset from Jiang et al. [2023] (MIT license) that
consists of responses from 12 different instruction following LLMs, with each response evaluated
on 9 metrics such as BLEU, ROUGE, BERTScore, BARTScore, etc. The data has a train (100K
rows) and test (5k rows) split where each row consists of an instruction, input sentence, the expected
output from users, as well as the responses of a set of different LLMs with their decoding parameters
and evaluation scores on different metrics. However for the test set, Jiang et al. [2023] also did a
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pairwise evaluation of the responses from the models by asking ChatGPT which response was better.
We use this test set and generate a ranking of the LLMs using Entropic Multivariate FSD (Algorithm
1), where for each LLM we construct an empirical measure on R9 using n samples varying from 100
to 5000. We then compute the pairwise ratios for these empirical distributions using the logistic loss
with β = 0.2, the regularization parameter λ = 0.1, and utilize the relative testing procedure from
Section 4.2 to rank the 12 LLMS (see Fig. 4 for the ranking obtained with n = 5000 in appendix
Appendix B). The confidence intervals are then generated using 1000 bootstrap repetitions. Finally,
we compare the resulting ranking with the (univariate ranking) provided by ChatGPT scoring (which
serves as a human proxy) as a function of the sample size n using Kendall Tau similarity. These
results are presented in Fig. 3.

We then compare different methods that reduce multivariate ordering to univariate FSD via aggrega-
tion. The first method is a portfolio aggregation with Independent Copula P(IC) [Nitsure et al., 2023],
where a dimension is normalized with a global univariate CDF across all models and a geometric
mean is performed across all dimensions. A univariate FSD is then applied on the resulting univariate
random variables. The second method, referred to as portfolio aggregation with Empirical Copula
P(EC) [Ruschendorf, 1976, Ulan et al., 2021], estimates a global multivariate CDF across all models,
and then assigns to each evaluation vector the value of its CDF. Similarly, a univariate FSD is applied
on this one dimensional data.

Results We see from Fig. 3 that the multivariate FSD, is sample efficient and has the highest
Kendall tau rank similarity with GPT score. We hypothesize that this thanks to its ability to capture
dependencies between the metrics. The independent copula P(IC), ignores the dependencies and
hence lags a little behind but is still sample efficient. Whilst the empirical copula P(EC) captures the
dependencies, it suffers from the curse of dimension and is not sample efficient.

6 Conclusion

In this paper, we proposed entropic multivariate FSD violation ratio as a statistic for assessing
multivariate first order dominance. We addressed the convergence of these ratios as the entropic
regularization goes to zero and established a central limit theorem and bootstrap consistency for this
statistic. These statistical properties were leveraged in a framework for multivariate FSD testing
which was applied to multi-metrics benchmarking machine learning models, showing its benefits
in capturing the metric dependencies. Casting testing for stochastic order as an optimal transport
problem with a smooth cost and devising an entropic regularization to ensure beneficial statistical
and computational properties is an interesting framework that we envision to be useful and versatile
for other stochastic orders. For instance the µ-first order dominance of Galichon and Henry [2012]
uses optimal transport maps as multivariate quantiles [Carlier et al., 2014] and defines a µ-stochastic
dominance; our entropic violation ratio framework can be extended to that case and, upon proving
central limit theorems on the OT potentials, will lead to similar central limit theorems to the one
presented in this work. Similarly, for the multivariate Lorenz order [Fan et al., 2024] that is of
interest when the agent making the choice is risk averse. The Lorenz order can be expressed in terms
of optimal transport maps and can be extended to our statistical testing framework using the tools
introduced in this paper. We leave these developments for future work.
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A Algorithm

Algorithm 1 describes our multitesting-based ranking procedure, for both the absolute and relative
testing frameworks.

Algorithm 1 Multivariate Stochastic Order Multi-testing (relative and absolute)
1: Input: µ1, ..., µk, k models we want to rank corresponding to empirical measure p1 =

1
n

∑n
i=1 δx1

i
, . . .pk = 1

n

∑n
i=1 δxki , Threshold: τ .

2: Input: Desired h, λ, B number of bootstraps, m = K2 number of comparisons, significance
level α.

3: Cache the bootstraps samples
4: for j = 1 to k do
5: p0j ← pj
6: for b = 1 to B do
7: pbj ← RESAMPLEWITHREPLACEMENT(pj , n)
8: Compute all violation ratios
9: for b = 0 to B do

10: for i = 1 to k do
11: for j = 1 to k do
12: if i ̸= j then
13: Cost matrix [Ch]k,l ← h([pbi ]k − [pbj ]l). {Use h(z) = log(1 + eβz). [pbi ]k is the kth

sample in pbi .}
14: [Ch̄]k,l ← [Ch]k,l + [Ch]l,k.
15: Πi,j,b ← Sinkhorn(Ch, λ, p

b
i , p

b
j), Π̄i,j,b ← Sinkhorn(Ch̄, λ, p

b
i , p

b
j).

{Sinkhorn alg. with costs Ch, Ch̄ and entropic reg. λ.}
16: OTh,λ(p

b
i , p

b
j)← Trace(C⊤

h Πi,j,b) + λDKL(Π̄i,j,b||pbi ⊗ pbj).
17: OTh̄,λ(p

b
i , p

b
j)← Trace(C⊤

h̄
Π̄i,j,b) + λDKL(Π̄i,j,b||pbi ⊗ pbj).

18: εb,i,j ← εh,λ(p
b
i , p

b
j) =

OTh,λ(p
b
i ,p

b
j)

OTh̄,λ(p
b
i ,p

b
j)

in (5).

19: εb,i,i = 0,∀ b, i
20: Compute the sum statistics
21: for b = 0 to B do
22: for i = 1 to k do
23: εib ← 1

k−1

∑
j εb,i,j

24: Compute the relative statistics
25: ∆εi,jb = εib − ε

j
b,∀b, i, j

26: Compute the Bootstrap Variance
27: for i = 1 to k do
28: for j = 1 to k do
29: σij =

√
1

B−1

∑B
b=1(∆ε

i,j
b −MEAN(∆εi,jb , b))

2

30: σabs
ij =

√
1

B−1

∑B
b=1(εb,i,j −MEAN(εb,i,j , b))2

31: Compute the test
32: Winij = Winabsij = 0
33: for i = 1 to k do
34: for j = 1 to k do
35: if i ̸= j and ∆εi,j0 − 1√

n
σijΦ

−1(α/k2) ≤ 0 then
36: Winij = 1 {with confidence level 1− α/k2}

37: if i ̸= j and ε0.i,j − 1√
n
σabs
ij Φ−1(α/k2) ≤ τ then

38: Winabsij = 1 {with confidence level 1− α/k2}
rank = BORDA(Win) {with confidence level 1− α}
rankabs = BORDA(Winabs) {with confidence level 1− α}

39: Return rank, rankabs
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Model one-versus-all violation ratio
oasst-sft-4-pythia-12b-epoch-3.5 0.463332

chatglm-6b 0.472356
alpaca-native 0.474452

vicuna-13b-1.1 0.475832
llama-7b-hf-baize-lora-bf16 0.490481

moss-moon-003-sft 0.499978
koala-7B-HF 0.506661

mpt-7b-instruct 0.508465
dolly-v2-12b 0.512816

stablelm-tuned-alpha-7b 0.521765
mpt-7b 0.522466

flan-t5-xxl 0.558775

Figure 4: This table ranks the 12 models tested in the LLM benchmarking experiment using n = 5000

samples according to their one-versus-all violation ratio, ε(h,λ)i (M) = 1
k−1

∑
j ̸=i ε

(h,λ)
ij where ε(h,λ)ij ,

is the pairwise violation ration of model i compared with model j (lower is better).

B Ranking from the Mix Instruct experiment

C Proofs of main results

C.1 Proof of Lemma 1

Observe that the set {(x, y) ∈ Rd × Rd : x ≤ y} is closed, as any limit point, (x, y), of a sequence
{(xn, yn)}n∈N satisfying xn ≤ yn is such that x ≤ y as the relevant inequalities are preserved in
the limit. It follows that 1{x≤y}(x, y) is a lower semicontinuous function and hence there exists a
coupling π̄ ∈ Π(µ, ν) for which infπ∈Π(µ,ν)

∫
1{x≤y}(x, y)dπ(x, y) =

∫
1{x≤y}(x, y)dπ̄(x, y) for

any choice of µ, ν ∈ Rd (cf. e.g. Theorem 4.1 in Villani, 2009).

Assume that infπ∈Π(µ,ν)

∫
1{x≤y}(x, y)dπ(x, y) = 0 such that there exists a coupling π̄ for which

0 =
∫
1{x≤y}(x, y)dπ̄(x, y) = P(X̂,Ŷ )∼π̄(X̂ ≤ Ŷ ) = 1− P(X̂,Ŷ )∼π̄(X̂ > Ŷ ) i.e. P(X̂,Ŷ )∼π̄(X̂ ≥

Ŷ ) ≥ P(X̂,Ŷ )∼π̄(X̂ > Ŷ ) = 1 which, in light of Theorem 6.B.1. in [Shaked and Shanthikumar,
2007], implies that X ≽

FSD
Y .

C.2 Proof of Theorem 1

Throughout, we fix the metric d : ((x, y), (x′, y′)) ∈ R2d × R2d 7→ ∥x − x′∥1 + ∥y − y′∥1 on
R2d. We first show that costs induced by functions h satisfying (SCd) are Lipschitz continuous with
respect to d with constant L.
Lemma 2. For any (x, y), (x′, y′) ∈ Rd × Rd, |c(x, y)− c(x′, y′)| ≤ Ld((x, y), (x′, y′)).

Proof. As c(x, y) =
∑d
i=1 h(yi − xi) for (x, y) ∈ Rd × Rd and h is Lipschitz continuous with

constant L ≥ 0, we have that, for any x, y, x′, y′ ∈ Rd,

|c(x, y)− c(x′, y′)| ≤
d∑
i=1

|h(yi − xi)− h(y′i − x′i)| ≤ L
d∑
i=1

|yi − y′i + x′i − xi|

≤ L(∥y − y′∥1 + ∥x− x′∥1).

Lemma 3. For any choice of (µ, ν), (µ′, ν′) ∈ P(Rd) × P(Rd) and π ∈ Π(µ, ν), π′ ∈ Π(µ′, ν′),
we have that ∣∣∣∣∫ cd(π − π′)

∣∣∣∣ ≤ LW1(π, π
′), (7)

where W1(π, π
′) = OTd(π, π

′) is the 1-Wasserstein distance for the metric d.
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Proof. Let (µ, ν), (µ′, ν′) ∈ P(Rd)×P(Rd) be arbitrary and fix any π ∈ Π(µ, ν) and π′ ∈ Π(µ′, ν′).
Let γ ∈ Π(π, π′) be arbitrary and consider∣∣∣∣∫ c(x, y)dπ(x, y)−

∫
c(x′, y′)dπ(x′, y′)

∣∣∣∣ = ∣∣∣∣∫ c(x, y)− c(x′, y′)dγ(x, y, x′, y′)
∣∣∣∣ ,

≤
∫
|c(x, y)− c(x′, y′)| dγ(x, y, x′, y′),

≤ L
∫

d((x, y), (x′, y′))dγ.

As γ is arbitrary, it follows that
∣∣∫ cd(π − π′)

∣∣ ≤ OTd(π, π
′).

The proof of Theorem 1 is based on the framework developed in [Eckstein and Nutz, 2023] and,
in particular, the proof of Theorem 3.1 therein. As a byproduct of their proof technique, it is
demonstrated that, for any π ∈ Π(µ, ν), there exists a coupling π′ ∈ Π(µ, ν) which is independent
of c satisfying ∫

cdπ′ −
∫
cdπ ≤ 2L

(
OT|·|,0(µ

n, µ) ∧ OT|·|,0(ν
n, ν)

)
, (8)

provided that the cost satisfies the condition (7) (see Definition 3.1 in [Eckstein and Nutz, 2023]
for a weaker condition) for any choice of µn, νn ∈ Pn(Rd), the set of all probability measures on
Rd supported on at most n points. We note that OT|·|,0 is simply the 1-Wasserstein distance for the
distance induced by the 1-norm and recall that | · | has Lipschitz constant 1 due to the reverse triangle
inequality (recall the notation OTh,λ from Section 3). It is then shown in their proof that∫

cdπ′ −
∫
cdπ ≤ 4LCλ, DKL(π

′||µ⊗ ν) ≤ 1

α
log

(
1

λ

)
, (9)

provided that there exists µn, νn ∈ Pn(Rd) satisfying
(
OT|·|,0(µ

n, µ) ∧ OT|·|,0(ν
n, ν)

)
≤ Cn−α

for n = ⌊λ−1/α⌋ for some α ∈ (0, 1] and C ≥ 0.

Lemma 4. Fix δ > 0 and assume that η ∈ P(Rd) is not mutually singular with respect to the
Lebesgue measure. Then, there exists a measure ηn ∈ Pn(Rd) satisfying

OT|·|,0(η
n, η) ≤ n−1/d

(
5

δ

d∑
i=1

Eη|Xi|1+δ +
20d

δ

)
,

for every n ≥ (20/δ)
d.

Proof. First, note that if
∑d
i=1 Eη|Xi|1+δ =∞, the inequality holds vacuously. We hence assume

that
∑d
i=1 Eη|Xi|1+δ <∞.

Fix δ > 0. Then, by Lemmas 6.6 and 6.7 in [Graf and Luschgy, 2000], there exists constants
C1, C2, C3 > 0 depending on δ for which

inf
ρ∈Pn(Rd)

OT|·|,0(ρ, η) ≤ n−
1/d

(
2C1

d∑
i=1

Eη|Xi|1+δ + 2dC2

)
, (10)

for every n ≥ (2C3)
d. Here C1 = 5

2δ and C2, C3 > 0 can be chosen as any constants satisfying
Γ(2)Γ(δn−1)

Γ(δn) = 1
δn−1 ≤

C2

5n for every n ≥ C3

5 . Observe that C2 = C3 = 10
δ satisfy these conditions.

We conclude by noting that the infimum in (10) is achieved by Theorem 4.12 in [Graf and Luschgy,
2000].

Lemma 5. Fix δ > 0 and η ∈ P(Rd). Then, there exists a measure ηn ∈ Pn(Rd) satisfying

OT|·|,0(η
n, η) ≤ n−1/d

(
5

δ

d∑
i=1

Eη|Xi|1+δ +
20d

δ

)
,

for every n ≥ (20/δ)
d.
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Proof. Again, if
∑d
i=1 Eη|Xi|1+δ =∞, the inequality trivially holds.

Assume that
∑d
i=1 Eη|Xi|1+δ < ∞ and, for t ≥ 0, let gt : Rd → R denote the density of an

isotropic mean-zero normal distribution with covariance t2Id. Define the probability measure η ∗ gt
via

η ∗ gt(A) =
∫∫

1A(x+ y)gt(y)dydη(x) =

∫ (∫
1A(z)gt(z − x)dz

)
dη(x)

=

∫
1A(z)

(∫
gt(z − x)dη(x)

)
dz,

for any Borel measurable set A ⊂ Rd. From the above display, η ∗ gt has density z ∈ Rd 7→∫
gt(z − x)dη(x) with respect to the Lebesgue measure.

It follows from a minor modification of Lemma 7.1.10 in [Ambrosio et al., 2005], that, for any
1 ≤ p <∞, OT|·|p,0(η ∗ gt, η) ≤ tp

∫
∥z∥p1gt(z)dz <∞ as normal distributions have finite absolute

moments of all orders. Hence, limt↓0 OT|·|,0(η ∗ gt, η) = 0 and Eη∗gt |Xi|1+δ → Eη|Xi|1+δ as t ↓ 0
(see Theorem 6.9 in [Villani, 2009]).

Now, let ηn ∈ Pn(Rd) be such that

OT|·|,0(η
n, η ∗ gt) ≤ n−

1/d

(
5

δ

d∑
i=1

Eη∗gt |Xi|1+δ +
20d

δ

)
for every n ≥ (20/δ)

d as in Lemma 4. It follows for the triangle inequality for Wasserstein distances
(see Chapter 6 in Villani, 2009) that

OT|·|,0(η
n, η) ≤ OT|·|,0(η

n, η ∗ gt) + OT|·|,0(η, η ∗ gt).
The claimed result follows by applying the upper bound from the penultimate display and taking the
limit t ↓ 0 on both sides of the resulting inequality.

Lemma 5 provides the worst case scaling for OT|·|,0(η
n, η). As noted in the text, it is anticipated that

d can be replaced by a suitable notion of intrinsic dimension for η.

Proof of Theorem 1. We begin with part 1. The lower bound 0 ≤ OTh,λ(µ, ν) − OTh,0(µ, ν) is
due to the fact that the Kulback-Leibler divergence is non-negative. As for the upper bound, letting
π ∈ Π(µ, ν) be an optimal plan for OTh,0(µ, ν), such a plan always exists due to Theorem 4.1 in
[Villani, 2009]. It follows from (9) and Lemma 5 that there exists a plan π′ ∈ Π(µ, ν) satisfying∫

cdπ′ + λDKL(π
′∥µ⊗ ν)− OTh,0(µ, ν) ≤ dλ log

(
1

λ

)
+ 4Lλ

(
5

δ

d∑
i=1

Eη|Xi|1+δ +
20d

δ

)
provided that ⌊λ−d⌋ ≥ (20/δ)d. By minimizing both sides of the above display with respect to
π′ ∈ Π(µ, ν), Part 1 readily follows.

The proof of Part 2 will follow from the fact that the set of all couplings Π(µ, ν) is tight and hence
admits a limit point in the weak topology by Prokhorov’s theorem (see Lemma 4.4 in Villani, 2009)
and Corollary 7.20 in [Maso, 1993] once we establish that the functionals

Fλ : π ∈ P(Rd × Rd) 7→
{∫

cdπ + λDKL(π||µ⊗ ν), if π ∈ Π(µ, ν),

+∞, otherwise,

F : π ∈ P(Rd × Rd) 7→
{∫

cdπ, if π ∈ Π(µ, ν),

+∞, otherwise,

are such that Fλ Γ-converges to F when treated as functionals on the separable metric space (P(Rd×
Rd), d′), where d′ is the Lévy-Prokhorov metric which metrizes the weak convergence of probability
distributions (cf. e.g. p.72 in [Billingsley, 2013]), we refer the reader to [Maso, 1993] as a standard
reference on Γ-convergence. In light of Proposition 8.1 in [Maso, 1993] it suffices to show that:

1. for every π ∈ P(Rd × Rd) and any sequence P(Rd × Rd) ∋ πλ → π with respect to d′,
F(π) ≤ lim infλ↓0 Fλ(πλ).
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2. for every π ∈ P(Rd × Rd) there exists a sequence P(Rd × Rd) ∋ πλ → π with respect to
d′ satisfying F(π) = limλ↓0 Fλ(πλ).

We start by proving the first statement. Fix π ∈ P(Rd×Rd) and any sequence (πλ)λ↓0 ⊂ P(Rd×Rd)
converging to π with respect to W1. By Lemma 4.4 in [Villani, 2009], Π(µ, ν) is tight and hence
precompact with respect to d′ by Prokhorov’s theorem. It is easy to see that Π(µ, ν) is closed under
the weak convergence such that it is in fact compact with respect to d′. It follows that if π ̸∈ Π(µ, ν),
πλ ̸∈ Π(µ, ν) for every λ sufficiently small, hence Fλ(πλ) → +∞ = F(π) as λ ↓ 0. Now, if
π ∈ Π(µ, ν), compactness of Π(µ, ν) implies that πλ ∈ Π(µ, ν) for every λ sufficiently small. As
µ, ν have finite first moments and c is Lipschitz continuous with constant L, any γ ∈ Π(µ, ν) satisfies∫

|c(x, y)|dγ(x, y) ≤
∫
|c(0, 0)|+ L(∥x∥1 + ∥y∥1)dγ(x, y)

= |c(0, 0)|+ L

∫
∥x∥1dµ(x) + L

∫
∥y∥1dν(y) <∞.

Conclude from Lemma 5.1.7 in [Ambrosio et al., 2005] that

Fλ(πλ) =

∫
cdπλ + λDKL(π||µ⊗ ν) ≥

∫
cdπλ →

∫
cdπ = F(π),

proving the first condition.

As for the second condition, if π ̸∈ Π(µ, ν), the constant sequence πλ = π satisfies
Fλ(πλ) = Fλ(π) = F(π) = +∞. If π ∈ Π(µ, ν), let µn, νn ∈ Pn(Rd) be such that
OT|·|,0(µ

n, µ),OT|·|,0(ν
n, ν) → 0 as n → ∞ (i.e. µn and νn converge weakly to µ and ν re-

spectively and Eµn [∥X∥1] → Eµ[∥X∥1],Eνn [∥Y ∥1] → Eν [∥Y ∥1]). For instance, the empirical
versions of µ and ν constructed from independent samples satisfy this condition almost surely (see
Theorem 3 in [Varadarajan, 1958] for weak convergence, convergence of the moments is due to the
law of large numbers). By (8) and the surrounding discussion, there exists πλ ∈ Π(µ, ν) satisfying∫

cdπλ −
∫
cdπ ≤ 4L

(
OT|·|,0

(
µ⌊λ−1⌋, µ

)
∧ OT|·|,0

(
ν⌊λ

−1⌋, ν
))
→ 0 as λ ↓ 0.

From the proof of Theorem 3.1 in [Eckstein and Nutz, 2023], λDKL(πλ||µ⊗ν) ≤ λ log(⌊λ−1⌋)→ 0
as λ ↓ 0 and

W1(πλ, π) ≤ 2
(
OT|·|,0

(
µ⌊λ−1⌋, µ

)
∧ OT|·|,0

(
ν⌊λ

−1⌋, ν
))
→ 0 as λ ↓ 0.

Conclude that

Fλ(πλ) =

∫
cdπλ + λDKL(πλ||µ⊗ ν)→

∫
cdπ = F(π),

and, as W1(πλ, π)→ 0, πλ converges weakly to π (see [Villani, 2009]).This concludes the proof.

C.3 Proof of Theorem 2

We first establish some useful properties of optimal potentials for this problem, there exists a pair

Lemma 6. Fix λ > 0 and sub-Gaussian distributions µ, ν ∈ P(Rd) with a shared constant τ2 > 0.
Then, for any choice of h satisfying (SCd), there exists a unique pair of continuous optimal potentials
(φ,ψ) for OTh,λ(µ, ν) for which the Schrödinger system (4) holds at all points (x, y) ∈ Rd × Rd
and φ(0) = 0. Moreover, this pair of potentials satisfies the estimates

|φ(x)| ≤ Cd,L,τ,h(0)(1 + ∥x∥1), |ψ(y)| ≤ Cd,L,τ,h(0)(1 + ∥y∥1),
|Dαφ(x)| ≤ Cd,k,τ,λ,pk,L,h(0)(1 + ∥x∥1)

kpk , |Dαψ(y)| ≤ Cd,k,τ,λ,pk,L,h(0)(1 + ∥y∥1)
kpk ,

for any multi-index α ∈ Nd0 of order |α| ≤ k = ⌊d/2⌋+ 1 with the constants k, L, pk from the (SCd)
condition. The quantities in the subscripts of the constants indicate what parameters the constants
depend on.
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Proof. Let (φh, ψh) be an arbitrary pair of optimal potentials for OTh,λ(µ, ν) so that∫
φhdµ+

∫
ψhdν = OTh,λ(µ0, µ1),

and, setting C =
∫
ψhdν − 1

2OTh,λ(µ, ν), we have that (φ′
h, ψ

′
h) = (φh + C, ψh − C) is another

pair of optimal potentials, and
∫
φ′
hdµ =

∫
ψ′
hdν = 1

2OTh,λ(µ, ν).

We further consider the functions defined on Rd by

φ′′
h(x) = −λ log

(∫
e
ψ′
h(y)−c(x,y)

λ dν(y)

)
, ψ′′

h(y) = −λ log
(∫

e
φ′′
h(x)−c(x,y)

λ dµ(x)

)
.

We will show that (φ′′
h, ψ

′′
h) are optimal potentials satisfying the claimed bounds.

It follows by Jensen’s inequality and Lemma 2 that

φ′′
h(x) ≤

∫
c(x, y)− ψ′

h(y)dν(y) ≤ c(0, 0)︸ ︷︷ ︸
=h(0)

+L

∫
∥y∥1dν(y)︸ ︷︷ ︸
≤
√
4τ2

+L∥x∥1 −
1

2
OTh,λ(µ, ν)︸ ︷︷ ︸

≥0

,

observing that 2 ≥ Eν [exp(∥X∥2
1/2τ2)] ≥ Eν [∥X∥2

1/2τ2] such that
∫
∥ · ∥1dν ≤

√
4τ2 (again by

Jensen’s inequality). It follows that φ′′
h(x) ≤ Cd,L,τ,h(0)(1 + ∥x∥1) where Cd,L,τ,h(0) depends on

d, L, τ, and the value of h(0). The same bound evidently holds for ψ′′
h on Rd and for ψ′

h on the
support of ν. Applying this bound and Lemma 2, it holds that

−φ′′
h(x) ≤ λ log

(∫
e
Cd,L,τ (1+∥y∥1)−h(0)+L∥x∥1+L∥y∥1

λ dν(y)

)
≤ L∥x∥1 + C ′

d,L,τ,h(0),

where we have used the fact that Eν [et∥X∥1 ] ≤ Eν
[
e
τ2t2

2 +
∥X∥21
2τ2

]
≤ 2e

τ2t2

2 for any t ∈ R as follows

from Young’s inequality and the sub-Gaussian assumption. The same argument implies that ψ′′
h

satisfies an analogous bound.

To see that (φ′′
h, ψ

′′
h) is a pair of optimal potentials, observe that Jensen’s inequality yields∫

(φ′
h − φ′′

h)dµ+

∫
(ψ′
h − ψ′′

h)dν ≤ λ log
∫
e
φ′
h−φ′′

h
λ dµ+ λ log

∫
e
ψ′
h−ψ′′

h
λ dν

= λ log

∫
e
φ′
h(x)+ψ′

h(y)−c(x,y)
λ dµ⊗ ν(x, y)

+ λ log

∫
e
φ′′
h(x)+ψ′

h(y)−c(x,y)
λ dµ⊗ ν(x, y) = 0

as follows from the fact that (φ′
h, ψ

′
h) satisfy (4). Conclude that

∫
φ′′
hdµ+

∫
ψ′′
hdν ≥ OTh,λ(µ, ν)

such that equality must hold (indeed
∫
e
φ′′
h(x)+ψ′′

h (y)−c(x,y)
λ dµ⊗ ν(x, y) = 1 by construction, so the

left hand side of the ineqalit is the objective value in the dual form of the EOT problem) and, by
strict concavity of the logarithm, φ′′

h = φ′
h µ-a.e. and ψ′′

h = ψ′
h ν-a.e. such that (φ′′

h, ψ
′′
h) are indeed

optimal potentials for this problem.

Now, consider the potentials (φ,ψ) = (φ′′
h − φ′′

h(0), ψ
′′
h + φ′′

h(0)), which satisfy (4) on Rd × Rd
φ(0) = 0. The bounds for φ′′

h and ψ′′
h evidently carry over to φ and ψ so that there exists a constant

C ′′
d,L,τ,h(0) <∞ depending only on d, L, τ, and h(0) for which

|φ(x)| ≤ C ′′
d,L,τ,h(0)(1 + ∥x∥1), |ψ(y)| ≤ C ′′

d,L,τ,h(0)(1 + ∥y∥1),

for every (x, y) ∈ Rd × Rd. Now, suppose that (φ̄, ψ̄) is any other pair of potentials for which (4)
holds on Rd × Rd and φ̄(0) = 0. As discussed in Section 3, one has that (φ,ψ) and (φ̄, ψ̄) coincide
µ- and ν-a.e. so that, for every x ∈ Rd,

e−
φ̄(x)
λ =

∫
e
ψ̄(y)−c(x,y)

λ dν(y) =

∫
e
ψ(y)−c(x,y)

λ dν(y) = e−
φ(x)
λ ,

which shows that φ̄ = φ, the equality of ψ and ψ̄ follows analogously.
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We now establish the bounds on the derivatives. By the multivariate Faà di Bruno formula (cf.
e.g. Constantine and Savits, 1996), for any multi-index α ∈ Nd0 of order |α| ≥ 1, the derivative
−Dαφ′′

h(x) (assuming it exists) can be expressed as a linear combination of products of derivatives
of the form

|α|∏
j=1

Dβj
x

∫
e
ψ′′
h (y)−c(x,y)

λ dν(y)∫
e
ψ′′
h

(y)−c(x,y)
λ dν(y)

kj

, (11)

where βj ∈ Nd0 and kj ∈ N0 satisfy
∑|α|
j=1 βjkj = α. By the dominated convergence theorem,

the derivative commutes with the integral sign and, applying the same formula to the derivative
D
βj
x e

−c(x,y)
λ , we see that it can be expressed as a linear combination of products of the form

e−
c(x,y)
λ

|βj |∏
m=1

(
− 1

λ
Dγm
x

d∑
i=1

h(yi − xi)

)lm
, (12)

where γm ∈ Nd0, lm ∈ N0 with
∑|βj |
m=1 γmlm = βj , and we assume that all relevant derivatives exist.

As h satisfies (SCd), it is k-times continuously differentiable for k = ⌊d/2⌋ + 1 with derivatives
of order s ≤ k satisfying |h(s)(x)| ≤ Ck(1 + |x|)pk for some Ck < ∞ and pk > 1 which may
depend on k. From this assumption, (12) is well defined provided that |βj | ≤ k and we observe that∣∣∣Dγm

x

∑d
i=1 h(yi − xi)

∣∣∣ ≤∑d
i=1 Ck(1+ |yi−xi|)pk ≤

∑d
i=1 Ck2

pk−1(1+ |yi−xi|pk) as pk > 1,

so that
∣∣∣Dβj

x e−
c(x,y)
λ

∣∣∣ can be bounded as e−
c(x,y)
λ Cd,k,pk,λ(1 + ∥y − x∥1)pk|βj | by appealing to (12).

Returning to (11), we infer that Dαφ′′
h is well-defined for any |α| ≤ k and that∣∣∣∣Dβj

x

∫
e
ψ′′
h (y)−c(x,y)

λ dν(y)

∣∣∣∣ = ∣∣∣∣∫ e
ψ′′
h (y)

λ Dβj
x e

− c(x,y)
λ dν(y)

∣∣∣∣
≤ Cd,k,pk,λ

∫
e
ψ′′
h (y)−c(x,y)

λ (1 + ∥y − x∥1)pk|βj |dν(y).

We will split this integral into the regions ∥y∥1 < τ and ∥y∥1 ≥ τ for some τ > 0 which will be
chosen later in the proof.

In this first region,∫
{∥y∥1<τ}

e
ψ′′
h (y)−c(x,y)

λ (1 + ∥y − x∥1)pk|βj |dν(y) ≤ (1 + τ + ∥x∥1)pk|βj |
∫
e
ψ′′
h (y)−c(x,y)

λ dν(y),

by the triangle inequality so that

D
βj
x

∫
{∥y∥1<τ} e

ψ′′
h (y)−c(x,y)

λ dν(y)∫
e
ψ′′
h

(y)−c(x,y)
λ dν(y)

≤ (1 + τ + ∥x∥1)pk|βj |

For the second region, we have from Lemma 2 and the first part of the proof that∫
{∥y∥1≥τ}

e
ψ′′
h (y)−c(x,y)

λ (1 + ∥y − x∥1)pk|βj |dν(y)

≤
∫
{∥y∥1≥τ}

e
ψ′′
h (y)−h(0)+L∥x∥1+L∥y∥1

λ (1 + ∥y − x∥1)pk|βj |dν(y)

≤
∫
{∥y∥1≥τ}

e
L
√

4τ2+L∥x∥1+2L∥y∥1
λ (1 + ∥y − x∥1)pk|βj |dν(y).

To bound this integral, note that

(1 + ∥y − x∥1)pk|βj | ≤ (1 + ∥y∥1 + ∥x∥1)pk|βj | ≤ 2pk|βj |−1
(
(1 + ∥x∥1)pk|βj | + ∥y∥

pk|βj |
1

)
,
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and that∫
{∥y∥1≥τ}

e
L
√

4τ2+L∥x∥1+2L∥y∥1
λ dν(y) = e

L
√

4τ2+L∥x∥1
λ

∫
{∥y∥1≥τ}

e
2L∥y∥1

λ dν(y)

≤ e
L
√

4τ2+L∥x∥1
λ

(∫
e

4L∥y∥1
λ dν(y)

) 1
2

(∫
{∥y∥1≥τ}

1dν(y)

) 1
2

,

by the Cauchy-Schwarz inequality. Similarly,∫
{∥y∥1≥τ}

e
L
√

4τ2+L∥x∥1+2L∥y∥1
λ ∥y∥pk|βj |1 dν(y)

≤ e
L
√

4τ2+L∥x∥1
λ

(∫
e

4L∥y∥1
λ dν(y)

) 1
2

(∫
{∥y∥1≥τ}

∥y∥2pk|βj |1 dν(y)

) 1
2

.

Now,
∫
e

4L∥y∥1
λ dν(y) ≤ 2e

16L2τ2

2λ2 due to the bound Eν [et∥x∥1 ] ≤ Eν
[
e
τ2t2

2 +
∥X∥21
2τ2

]
≤ 2e

τ2t2

2 which

holds for every t ≥ 0. Further,∫
{∥y∥1≥τ}

1dν(y) ≤ e−
τ2

4τ2

∫
{∥y∥1≥τ}

e
∥y∥21
4τ2 dν(y) ≤

√
2e−

τ2

4τ2 ,

∫
{∥y∥1≥τ}

∥y∥2pk|βj |1 dν(y) ≤ e−
τ2

4τ2

∫
e

∥y∥21
4τ2 ∥y∥2pk|βj |1 dν(y) ≤

√
2e−

τ2

4τ2

(∫
∥y∥4pk|βj |1 dν(y)

) 1
2

,

where we have applied the Cauchy-Schwarz inequality in the second line. By sub-Gaussianity,

2 ≥ Eν [e∥X∥21/2τ2 ] ≥ Eν
[

∥X∥2p
1

(2τ2)pp!

]
for any p ∈ N so that

√
Eν
[
∥X∥4pk|βj |1

]
≤

√
2(2τ2)pk|βj |

√
(2pk|βj |)!.

Combining all of these bounds,∫
{∥y∥1≥τ}

e
ψ′′
h (y)−c(x,y)

λ (1 + ∥y − x∥1)pk|βj |dν(y)

≤ 2pk|βj |−1(1 + ∥x∥1)pk|βj |e
L
√

4τ2+L∥x∥1
λ

√
2e

4L2τ2

λ2 e−
τ2

8τ2

(
2

1/4 +

√
√
2(2τ2)pk|βj |

√
(2pk|βj |)!

)
.

The denominator can be bounded as
(∫

e
ψ′′
h (y)−c(x,y)

λ dν(y)

)−1

= e
φ′′
h(x)

λ ≤ e
h(0)+L

√
4τ2+L∥x∥1
λ as

follows from the first part of the proof. The ratio we wish to bound thus includes the exponential

term e
h(0)+2L

√
4τ2+2L∥x∥1
λ + 4L2τ2

λ2
− τ2

8τ2 , which we equate to 1 by setting τ2 = 8τ2

λ (h(0) + 2L
√
4τ2 +

2L∥x∥1) + 32L2τ4

λ2 = CL,τ,λ,h(0) +
16τ2

λ L∥x∥1.

All in all,∣∣∣∣∣∣D
βj
x

∫
e
ψ′′
h (y)−c(x,y)

λ dν(y)∫
e
ψ′′
h

(y)−c(x,y)
λ dν(y)

∣∣∣∣∣∣
≤ Cd,k,pk,λ

(
1 +

(
CL,τ,λ,h(0) + 16τ2λ−1L∥x∥1

)1/2
+ ∥x∥1

)pk|βj |
+ Cd,k,pk,λ2

pk|βj |−1(1 + ∥x∥1)pk|βj |
√
2

(
2
1/4 +

√
√
2(2τ2)pk|βj |

√
(2pk|βj |)!

)
,

the products in (11) can thus be bounded as Cd,k,τ,λ,pk,L,h(0)(1 + ∥x∥1)pk|α|, for any |α| ≤ k.
The same argument establishes analogous bounds for ψ′′

h . As (φ,ψ) coincides with (φ′′
h, ψ

′′
h) up to

additive constants, the derivative bounds evidently transfer over.
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In what follows, we always choose the unique solution for any given EOT problem described in
Lemma 6.

As aforementioned, our approach to proving limit distributions is based on the functional delta method
(see Appendix D for a summary of the method). As h̄ also satisfies (SCd) with Lipschitz constant
2L, Ck replaced by 2Ck, and h̄(0) = 2h(0), there exists a constant Cd,h,τ for which all bounds from
Lemma 6 hold simultaneously for some choice of potentials (φh, ψh) for OTh,λ(µ, ν) and (φh̄, ψh̄)
for OTh̄,λ(µ, ν). We thus instantiate the function classes

Fτ,h =
{
f ∈ Ck(Rd) : |Dαf(x)| ≤ Cd,h,τ (1 + ∥x∥1)kpk for k = ⌊d/2⌋+ 1,

∀α ∈ Nd0 with |α| ≤ k,∀x ∈ Rd
}
,

and

F⊕
τ,h = {f ⊕ g : f, g ∈ Fτ,h} ,

where f ⊕ g is understood as the function (x, y) ∈ Rd × Rd 7→ f(x) + g(y). We further consider
the class of probability distributions

P⊗
τ =

{
µ⊗ ν : µ, ν ∈ P(Rd) and are τ2-sub-Gaussian

}
,

for some τ > 0. Throughout, we will treat P⊗
τ as a subset of ℓ∞(F⊕

τ,h), the Banach space of bounded
real functions on F⊕

τ,h endowed with the supremum norm ∥ℓ∥∞,F⊕
τ,h

= supf⊕g∈F⊕
τ,h
|ℓ(f ⊕ g)|; the

action of µ ⊗ ν ∈ P⊗
τ on f ⊕ g is given by µ ⊗ ν(f ⊕ g) =

∫
fdµ +

∫
gdν. It is easy to see that

µ⊗ ν defines a bounded function on this function class due to the growth bounds inherent to Fτ,h.

Our approach is similar to that of Proposition 1 in [Goldfeld et al., 2024b] and, in particular, Section
6 of that work. Namely, we prove a type of directional differentiability and Lipschitz continuity for
the EOT cost.

Lemma 7. Fix λ > 0 and sub-Gaussian distributions µ, ν, ρ, η ∈ P(Rd) with constant τ2 > 0.
Then, for any choice of optimal potentials (φ,ψ) solving OTh,λ(µ, ν) and satisfying (4) on Rd ×Rd,

lim
t↓0

OTh,λ(µ+ t(ρ− µ), ν + t(η − ν))− OTh,λ(µ, ν)

t
=

∫
φd(ρ− µ) +

∫
ψd(η − ν).

Proof. For t ∈ [0, 1], let µt := µ + t(ρ − µ) and νt := ν + t(η − ν) and, let (φ(µt,νt), ψ(µt,νt))
denote the unique pair of optimal potentials for OTh,λ(µt, νt) satisfying φ(µt,νt)(0) = 0 and
solving the Schrödinger system on Rd × Rd (see Lemma 6) and likewise for (φ(µt,ν), ψ(µt,ν))
and (φ(µ,ν), ψ(µ,ν)). Observe that

OTh,λ(µt, νt)− OTh,λ(µ, ν)

= OTh,λ(µt, νt)− OTh,λ(µt, ν) + OTh,λ(µt, ν)− OTh,λ(µ, ν)

≤
∫
φ(µt,νt)dµt +

∫
ψ(µt,νt)dνt −

∫
φ(µt,νt)dµt −

∫
ψ(µt,νt)dν

+ λ

∫
e
φ(µt,νt)(x)+ψ(µt,νt)(y)−c(x,y)

λ dµt ⊗ ν(x, y)− λ

+

∫
φ(µt,ν)dµt +

∫
ψ(µt,ν)dν −

∫
φ(µt,ν)dµ−

∫
ψ(µt,ν)dν

+ λ

∫
e
φ(µt,ν)(x)+ψ(µt,ν)(y)−c(x,y)

λ dµ⊗ ν(x, y)− λ,
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where we recall that the potentials satisfy the relevant Schrödinger systems (4) such that∫
e
φ(µt,νt)(x)+ψ(µt,νt)(y)−c(x,y)

λ dµt(x) ≡ 1 and
∫
e
φ(µt,ν)(x)+ψ(µt,ν)(y)−c(x,y)

λ dν(y) ≡ 1 on Rd so that

OTh,λ(µt, νt)− OTh,λ(µ, ν)

= OTh,λ(µt, νt)− OTh,λ(µt, ν) + OTh,λ(µt, ν)− OTh,λ(µ, ν)

≤
∫
φ(µt,νt)dµt +

∫
ψ(µt,νt)dνt −

∫
φ(µt,νt)dµt −

∫
ψ(µt,νt)dν

+

∫
φ(µt,ν)dµt +

∫
ψ(µt,ν)dν −

∫
φ(µt,ν)dµ−

∫
ψ(µt,ν)dν

= t

∫
φ(µt,ν)d(ρ− µ) + t

∫
ψ(µt,νt)d(η − ν)

(13)

and, analogously,

OTh,λ(µt, νt)− OTh,λ(µ, ν) ≥ t
∫
φ(µ,ν)d(ρ− µ) + t

∫
ψ(µt,ν)d(η − ν). (14)

It suffices, therefore, to show pointwise convergence of all relevant potentials to (φ(µ,ν), ψ(µ,ν)) in
the limit t ↓ 0. Here we will only show convergence of (φ(µt,νt), ψ(µt,νt)), convergence of the other
set of potentials follows analogously. For convenience set (φt, ψt) = (φ(µt,νt), ψ(µt,νt))

Let [0, 1] ∋ tn ↓ 0 be arbitrary and fix a subsequence tn′ . By Lemma 6 we can apply the Arzelà-
Ascoli theorem (cf. e.g. Theorem 4.44 in Folland, 1999) to infer that (φt, ψt) converges to a pair of
continuous functions (φ,ψ) uniformly on compact sets and, in particular, pointwise along a further
subsequence tn′′ . From Lemma 6,

e
φt
n′′ (x)+ψtn′′ (y)−c(x,y)

λ ≤ e
Cd,L,τ (2+∥x∥1+∥y∥1)−c(0,0)+L∥x∥1+L∥y∥1

λ ,

where this final term is integrable with respect to any product of sub-Gaussian measures. By the
dominated convergence theorem, for any (x, y) ∈ Rd × Rd,

e−
φt
n′′ (x)

λ =

∫
e
ψt
n′′ (y)−c(x,y)

λ d(ν + tn′′(η − ν))(y)→
∫
e
ψ(y)−c(x,y)

λ dν(y),

e−
ψt
n′′ (x)

λ =

∫
e
φt
n′′ (x)−c(x,y)

λ d(µ+ tn′′(ρ− µ))(x)→
∫
e
φ(x)−c(x,y)

λ dµ(x),

as tn′′ ↓ 0 such that the pair (φ,ψ) satisfies the Schrödinger system (4) pointwise and hence is a
pair of optimal potentials for OTh,λ(µ, ν) and φ(0) = limtn′′↓0 φtn′′ (0) = 0, whence (φ,ψ) =

(φ(µ,ν), ψ(µ,ν)). Combining (13) and (14), we conclude that

lim
tn′′↓0

OTh,λ(µtn′′ , νtn′′ )− OTh,λ(µ, ν)

tn′′
=

∫
φ(µ,ν)d(ρ− µ) +

∫
ψ(µ,ν)d(η − ν),

and, as the limit is independent of the choice of original subsequence it follows that

lim
t↓0

OTh,λ(µt, νt)− OTh,λ(µ, ν)

t
=

∫
φ(µ,ν)d(ρ− µ) +

∫
ψ(µ,ν)d(η − ν).

This limit is invariant under the transformation (φ(µ,ν), ψ(µ,ν)) 7→ (φ(µ,ν)+C,ψ(µ,ν)−C), proving
the claim.

Lemma 8. Fix λ > 0 and arbitrary sub-Gaussian distributions ρ, η, ρ′, η′ ∈ P(Rd) with a shared
constant τ2 > 0. Then, we have that

|OTh,λ(ρ, η)− OTh,λ(ρ
′, η′)| ≤ ∥ρ⊗ η − ρ′ ⊗ η′∥∞,F⊕

τ,h
.

Proof. Let (φ(ρ,η), ψ(ρ,η)), (φ(ρ′,η′), ψ(ρ′,η′)), and (φ(ρ′,η), ψ(ρ′,η)) be the optimal potentials for
OTh,λ(ρ, η), OTh,λ(ρ′, η′), and OTh,λ(ρ

′, η) described in Lemma 6. Then, by analogy with (13)
and (14)

OTh,λ(ρ, η)− OTh,λ(ρ
′, η′) ≤

∫
φ(ρ,η′)d(ρ− ρ′) +

∫
ψ(ρ,η)d(η − η′),

OTh,λ(ρ, η)− OTh,λ(ρ
′, η′) ≥

∫
φ(ρ′,η′)d(ρ− ρ′) +

∫
ψ(ρ,η′)d(η − η′),
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such that

|OTh,λ(ρ, η)− OTh,λ(ρ
′, η′)| ≤

∣∣∣∣∫ φ(ρ′,η)d(ρ′ − ρ) +
∫
ψ(ρ′,η′)d(η′ − η)

∣∣∣∣∨ ∣∣∣∣∫ φ(ρ,η)d(ρ′ − ρ) +
∫
ψ(ρ′,η)d(η′ − η)

∣∣∣∣ .
As the constants from Lemma 6 (and hence the constants defining F⊕

τ,h) are independent of
the choice of sub-Gaussian distributions (rather they depend only on the sub-Gaussian constant),
(φ(ρ′,η), ψ(ρ′,η′)) and (φ(ρ,η), ψ(ρ′,η)) are elements of F⊕

τ,h so that

|OTh,λ(ρ, η)− OTh,λ(ρ
′, η′)| ≤ ∥ρ⊗ η − ρ′ ⊗ η′∥∞,F⊕

τ,h
.

Lemma 9. Fix λ > 0 and sub-Gaussian distributions µ, ν ∈ P(Rd) with a shared constant τ2 > 0.

Then,
√
n(µ̂n ⊗ ν̂n − µ ⊗ ν)

d→ Gµ⊗ν in ℓ∞(F⊕
τ,h), where Gµ⊗ν is a tight Gaussian process in

ℓ∞(F⊕
τ,h) for which Gµ⊗ν(f ⊕ g) = N(0, varµ(f) + varν(g)).

Proof. From the proof of Lemma 27 in [Goldfeld et al., 2024b] (see also Lemma 8 in Nietert et al.,
2021), we see that the function class Fτ,h is µ-Donsker and ν-Donsker (i.e. the associated empirical
processes

√
n(µ̂n−µ) and

√
n(ν̂n−ν) converge weakly to tight mean-zero Brownian bridge processes

in ℓ∞(Fτ,h) with respective covariance functions given by (f, g) ∈ Fτ,h × Fτ,h 7→ covµ(f, g)
and (f, g) ∈ Fτ,h × Fτ,h 7→ covν(f, g) respectively) provided that

∑∞
r=1 r

d+kpk−1Pµ(∥X∥ ≥
r − 1)1/2 <∞ for k = ⌊d/2⌋+ 1 and likewise for ν. By the Chernoff bound, Pµ(∥X∥ ≥ r − 1) ≤
Eµ
[
et∥X∥] e−t(r−1) for any t > 0. The standard inequality ∥z∥ ≤ ∥z∥1 for any z ∈ Rd yields

Eµ
[
et∥X∥] ≤ Eµ

[
et∥X∥1

]
≤ 2e

t2τ2

2 (recall the proof of Lemma 6). It readily follows that the sum∑∞
r=1 r

d+kpk−1Pµ(∥X∥ ≥ r − 1)1/2 is finite, establishing Donskerness of the class with respect to
µ and hence ν by the same argument.

By independence of the samples (Xi)
n
i=1 and (Yj)

n
j=1 we have by Example 1.4.6 in [van der Vaart

and Wellner, 1996], Lemma 3.2.4 in [Dudley, 2014], and Donskerness of the class that

(
√
n(µ̂n − µ),

√
n(ν̂n − ν))

d→ (Gµ, Gν) in ℓ∞(Fτ,h)× ℓ∞(Fτ,h),
where Gµ and Gν are independent tight µ- and ν-Brownian bridge processes. As the map (ℓ, ℓ′) ∈
ℓ∞(Fτ,h) × ℓ∞(Fτ,h) 7→ ℓ ⊗ ℓ′ ∈ ℓ∞(F⊕

τ,h) is continuous (indeed ∥ℓ ⊗ ℓ′∥∞,F⊕
τ,h
≤ ∥ℓ∥Fτ,h +

∥ℓ′∥Fτ,h), we have by the continuous mapping theorem that
√
n(µ̂n − µ)⊗

√
n(ν̂n − ν)) =

√
n (µ̂n ⊗ ν̂n − µ⊗ ν)

d→ Gµ⊗ν in ℓ∞(F⊕
τ,h),

where Gµ⊗ν(f0 ⊕ f1) = Gµ(f0) +Gν(f1) for any f0 ⊕ f1 ∈ F⊕
τ,h, proving the claim.

Proof of Theorem 2. Throughout, we fix some τ̄ > τ and observe that if µ, ν are τ2-sub-Gaussian,
then they are also τ̄2-sub-Gaussian. From the proof of Proposition 1 in [Goldfeld et al., 2024b]
(see also Remark 4 of the same reference), Lemmas 7 and 8 together imply that the functional
ρ ⊗ η ∈ P⊗

τ̄ 7→ OTh,λ(ρ, η) is Hadamard directionally differentiable at µ ⊗ ν tangentially to P⊗
τ̄

(treated as a convex subset of ℓ∞(F⊕
τ̄ ,h)) with derivative γ ∈ TP⊗

τ̄
(µ⊗ ν) 7→ γ(φ⊕ψ), where (φ,ψ)

denote any pair of optimal potentials for OTh,λ(µ, ν) satisfying (4) on Rd × Rd, and the derivative
is defined on the tangent cone to P⊗

τ̄ at µ⊗ ν which is defined as

TP⊗
τ̄
(µ⊗ ν) :=

{
γ ∈ ℓ∞(F⊕

τ̄ ,h) : ∃P
⊗
τ̄ ⊃ (ρn ⊗ ηn)n∈N → µ⊗ ν in ℓ∞(F⊕

τ̄ ,h) and tn ↓ 0

s.t. γ = lim
n→∞

ρn ⊗ ηn − µ⊗ ν
tn

}
,

see Appendix D for precise definitions. Note that we have identified OTh,λ(ρ, η) with a functional
on P⊗

τ̄ ; such an identification is well-defined in light of the discussion following Proposition 1 in
[Goldfeld et al., 2024b].
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The same implications hold for the functional ρ⊗ η ∈ P⊗
τ̄ 7→ OTh̄,λ(ρ, η) in light of the discussion

preceding Lemma 7, with corresponding derivative γ ∈ TP⊗
τ̄
(µ⊗ ν) 7→ γ(φ̄⊕ ψ̄), where (φ̄, ψ̄) is

any pair of optimal potentials for OTh,λ(µ, ν) satisfying (4) on Rd × Rd.

Note that εh,λ(µ, ν) = f ◦
(
OTh,λ(µ, ν),OTh̄,λ(µ, ν)

)
for f : (x, y) ∈ R× R 7→ x/y such that the

chain rule (cf. e.g. Proposition 3.6 in Shapiro, 1990) guarantees that ρ⊗ η ∈ P⊗
τ̄ 7→ εh,λ(ρ, η) is

Hadamard directionally differentiable at µ⊗ ν tangentially to P⊗
τ̄ with derivative

(εh,λ)
′
µ⊗ν : γ ∈ TP⊗

τ̄
(µ⊗ ν) 7→ 1

OTh̄,λ(µ, ν)
γ(φ⊕ ψ)− OTh,λ(µ, ν)

OTh̄,λ(µ, ν)
2
γ(φ̄⊕ ψ̄), (15)

which is notably linear as a function of γ. It will be useful to rewrite this expression in terms of a single
evaluation of γ. To this end, observe that if f1⊕f2, g1⊕g2 ∈ F⊕

τ̄ ,h, then so too is (αf1−βg1)⊕(αf2−
βg2) for any α, β ∈ R with |α|+ |β| ≤ 1. Moreover, setting M = 1

OTh̄,λ(µ,ν)

∨ OTh,λ(µ,ν)
OTh̄,λ(µ,ν)

2 (which

is assumed to be nonzero by construction), we have that 0 ≤ 1
2M

1
OTh̄,λ(µ,ν)

∨
1

2M
OTh,λ(µ,ν)
OTh̄,λ(µ,ν)

2 ≤ 1
2

so that we can write

1

OTh̄,λ(µ, ν)
(φ⊕ ψ)− OTh,λ(µ, ν)

OTh̄,λ(µ, ν)
2
(φ̄⊕ ψ̄)

= 2M

(
1

2M

1

OTh̄,λ(µ, ν)
φ⊕ 1

2M

1

OTh̄,λ(µ, ν)
ψ

)
− 2M

(
1

2M

OTh,λ(µ, ν)

OTh̄,λ(µ, ν)
2
φ̄⊕ 1

2M

OTh,λ(µ, ν)

OTh̄,λ(µ, ν)
2
ψ̄

)
= 2M

(
1

2M

1

OTh̄,λ(µ, ν)
φ− 1

2M

OTh,λ(µ, ν)

OTh̄,λ(µ, ν)
2
φ̄

⊕ 1

2M

1

OTh̄,λ(µ, ν)
ψ − 1

2M

OTh,λ(µ, ν)

OTh̄,λ(µ, ν)
2
ψ̄

)
,

where the final term in brackets is an element of F⊕
τ̄ ,h. Further, for any γ ∈ TP⊗

τ̄
(µ⊗ν), there exists a

sequence (ρn⊗ηn)n∈N ⊂ P⊗
τ̄ which converges to µ⊗ν in ℓ∞(F⊕

τ̄ ,h) and a sequence tn ↓ 0 for which
γ = limn→∞

ρn⊗ηn−µ⊗ν
tn

. Thus, if f0⊕ f1, g0⊕ g1 ∈ F⊕
τ̄ ,h are such that f0 + g0⊕ f1 + g1 ∈ F⊕

τ̄ ,h,
we have that

γ(f0 ⊕ f1) + γ(g0 ⊕ g1)

= lim
n→∞

t−1
n

(∫
f0dρn +

∫
f1dηn −

∫
f0dρ−

∫
f1dη

)
+ lim
n→∞

t−1
n

(∫
g0dρn +

∫
g1dηn −

∫
g0dρ−

∫
g1dη

)
= lim
n→∞

t−1
n

(∫
f0 + g0dρn +

∫
f1 + g1dηn −

∫
f0 + g0dρ−

∫
f1 + g1dη

)
= γ(f0 + g0 ⊕ f1 + g1).

Likewise, if αf0 ⊕ αf1 ∈ F⊕
τ̄ ,h for some α ∈ R, and f0 ⊕ f1 ∈ F⊕

τ̄ ,h, then

γ(αf0 ⊕ αf1) = α lim
n→∞

t−1
n

(∫
f0dρn +

∫
f1dηn −

∫
f0dρ−

∫
f1dη

)
= αγ(f0 ⊕ f1).

With this, (15) can be written as

(εh,λ)
′
µ⊗ν : γ ∈ TP⊗

τ̄
(µ⊗ ν) 7→

2Mγ

(
1

2MOTh̄,λ(µ, ν)
φ− OTh,λ(µ, ν)

2MOTh̄,λ(µ, ν)
2
φ̄⊕ 1

2MOTh̄,λ(µ, ν)
ψ − OTh,λ(µ, ν)

2MOTh̄,λ(µ, ν)
2
ψ̄

)
.

(16)

25



Given the above differentiability result and Lemma 9, part 1 of Theorem 2 will follow from the
functional delta method (see Lemma 10 in Appendix D) upon showing that µ̂n ⊗ ν̂n ∈ P⊗

τ̄ with
probability approaching one and noting that Gµ⊗ν ∈ TP⊗

τ̄
(µ⊗ ν) with probability one as follows

from the portmanteau theorem. To this end, note that, by the law of large numbers,

Eµ̂n
[
exp(∥X∥2

1/2τ̄2)
]
=

1

n

n∑
i=1

exp(∥Xi∥
2
1/2τ̄2)→ Eµ

[
exp(∥X∥2

1/2τ̄2)
]
≤ 2

τ2

τ̄2 < 2.

almost surely such that µ̂n is τ̄2-sub-Gaussian with probability approaching one. The same delibera-
tions imply that ν̂n share the same property.

By applying the delta method, we obtain that
√
n(εh,λ(µ̂n, ν̂n)− εh,λ(µ, ν))

d→ (εh,λ)
′
µ⊗ν (Gµ⊗ν),

and using the explicit expression for the derivative from (16), we see that (εh,λ)
′
µ⊗ν (Gµ⊗ν) is equal

in distribution to 2MN(0, v2 + w2), where v2 = varµ
(

1
2MOTh̄,λ(µ,ν)

φ− OTh,λ(µ,ν)
2MOTh̄,λ(µ,ν)

2 φ̄
)

and

w2 = varν
(

1
2MOTh̄,λ(µ,ν)

ψ − OTh,λ(µ,ν)
2MOTh̄,λ(µ,ν)

2 ψ̄
)

; the 2M terms in the variance and multiplying the
normal distribution evidently cancel out to give the desired formula for the limiting variance.

As for the bootstrap consistency result, since (15) is linear, it follows from Corollary 1 in [Goldfeld
et al., 2024b] that (ρ, η) 7→ εh,λ(ρ, η) is Hadamard directionally differentiable at µ⊗ν tangentially to
spt(Gµ⊗ν). As in the proof of Lemma 9, the class Fτ̄ is µ- and ν-Donsker such that the bootstrapped
empirical processes

√
n(µ̂Bn − µ̂n) and

√
n(ν̂Bn − ν̂n) are asymptotically measurable and converge

conditionally in distribution to the µ- and ν-Brownian bridge processes Gµ and Gν respectively
(see Chapter 3.6 in van der Vaart and Wellner, 1996). By Lemma 1.4.4 and Example 1.4.6 in
[van der Vaart and Wellner, 1996], (

√
n(µ̂Bn − µ̂n),

√
n(ν̂Bn − ν̂n)) is asymptotically measurable and

converges conditionally in distribution to (Gµ, Gν) as elements of ℓ∞(Fτ̄ )× ℓ∞(Fτ̄ ). As the map
(ℓ, ℓ′) ∈ ℓ∞(Fτ̄ )× ℓ∞(Fτ̄ ) 7→ ℓ⊗ ℓ′ ∈ ℓ∞(F⊕

τ̄ ,h) is continuous, (
√
n(µ̂Bn − µ̂n)⊗

√
n(ν̂Bn − ν̂n))

is asymptotically measurable and converges conditionally in distribution to Gµ⊗ν as elements of
ℓ∞(F⊕

τ̄ ,h) where Gµ⊗ν(f0 ⊕ f1) = Gµ(f0) +Gν(f1) for any f0 ⊕ f1 ∈ F⊕
τ̄ ,h.

Bootstrap consistency then follows from Theorem 23.9 in [Van der Vaart, 2000] by applying the logic
from the first half of the proof.

D The Functional Delta Method

Our strategy for deriving limit distributions and consistency of the bootstrap is based upon the
functional delta method, which generalizes the standard delta method for functions of simple random
variables. This section provides a brief introduction to the functional delta method following the
exposition of [Römisch, 2006]. Throughout, convergence in distribution is understood in the sense of
Hoffmann-Jørgensen when necessary (cf. e.g. Chapter 1 in [van der Vaart and Wellner, 1996]).

Much like the delta method which, identifies the distributional limit of
√
n(g(Xn) − g(µ)) as

N(0, σ2(g′(µ))2) n→∞ provided that
√
n(Xn − µ)

d→ N(0, σ2) and that g : R→ R is differen-
tiable at µ (see Proposition 8.14 in Keener, 2010), the functional delta method establishes the limit
distribution of a functional f : Θ ⊂ D → R, where D is a normed vector space. In this setting, the
surrogate for the derivative in the standard delta method is the Hadamard directional derivative.
Definition 4 (Hadamard directional derivative [Römisch, 2006, Shapiro, 1990]). Let D be a normed
vector space and fix a non-empty set Θ ⊂ D. The tangent cone to Θ at θ ∈ Θ is given by

TΘ(θ) :=
{
h ∈ D : h = lim

n→∞

θn − θ
tn

, for some θn ∈ Θ, θn → θ, tn ↓ 0
}
.

A functional f : Θ→ R is Hadamard directionally differentiable at θ ∈ Θ tangentially to Θ if there
exists a map f ′θ : TΘ(θ)→ R satisfying

lim
n→∞

f(θ + tnhn)− f(θ)
tn

= f ′θ(h), (17)

for any h ∈ TΘ(θ), tn ↓ 0, and hn → h in D with θ + tnhn ∈ Θ.
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This notion of differentiability is compatible with distributional convergence of random elements of
D in the sense that the following generalization of the delta method holds.
Lemma 10 (Functional delta method [Römisch, 2006, Shapiro, 1991]). Fix a probability space
(Ω,Σ,P) and let D be a normed vector space and f : Θ ⊂ D → R be Hadamard directionally
differentiable at θ ∈ Θ tangentially to TΘ(θ) with derivative f ′θ : TΘ(θ) → R. Let Tn : Ω → Θ

be maps such that rn(Tn − θ)
d→ T for some norming sequence rn → ∞ and a measurable map

T : Ω→ TΘ(θ) ⊂ D. Then rn
(
f(Tn)− f(θ)

) d→ f ′θ(T ) and, if Θ is convex, rn
(
f(Tn)− f(θ)

)
−

f ′θ
(
rn(Tn − θ)

)
→ 0 in outer probability.

Whilst Lemma 10 is sufficient to derive limit distributions, bootstrap consistency typically requires
the following notion of full Hadamard differentiability (see e.g. Theorem 23.9 in [Van der Vaart,
2000] or Theorem 3.9.11 in van der Vaart and Wellner, 1996). A functional f : D → R is said to be
Hadamard differentiable at θ tangentially to a vector subspace D0 ⊂ D if there exists a continuous
linear functional f ′θ : D0 7→ R satisfying (17) for any h ∈ TΘ(θ), tn ̸= 0, tn → 0, and hn → h
in D with θ + tnhn ∈ Θ. The following lemma enables a connection between full and directional
Hadamard differentiability.
Lemma 11 (Lemma 2 in [Goldfeld et al., 2024b]). If f : Θ ⊂ D → R is Hadamard directionally
differentiable at θ ∈ Θ tangentially to TΘ(θ) and f ′θ is linear on a subspace D0 ⊂ TΘ(θ), then f is
Hadamard differentiable at θ tangentially to D0.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction make the following claims: 1) we introduce a
statistic for accessing a notion of multivariate almost stochastic dominance 2) we establish
a CLT and bootstrapping for this statistic 3) we use this statistic to compare the relative
performance of models. The first two points are addressed in Section 4 whereas Section 4.2
clarifies the testing framework and our approach is validated empirically in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As we mention in the discussion section, a limitation of our work is that does
not treat the case where choices are risk averse. However, we indicated how these situations
can be addressed by combining our statistical testing framework with multivariate Lorenz
order.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?

Answer: [Yes]

Justification: The complete proofs of all results are provided in the appendices along with a
short outline in the main text. All relevant assumptions are also clearly stated.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Algorithm 1, included in the appendix, provides the relevant pseudocode to im-
plement the proposed statistical framework. The descriptions of the numerical experiments
provide all required details to reproduce the results provided. A complete code package is
also included in the submission.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As highlighted in the previous point, the code is included in the submission,
and all relevant experimental details are provided.

Guidelines:
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All relevant experimental details are provided in the main text.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments are provided with error bars and are computed using the
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided details on the type of hardware and computation time needed
in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work provides a theoretical framework for assessing a statistical property
of multivariate data. The application explored in this work is to benchmarking of different
models according to a vector of metrics. Such a framework can be broadly useful for
identifying ethical concerns in models, but in itself poses no such concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The statistical framework proposed in this paper is used to compare the outputs
of different models based on metrics of interest. On its own, this framework has no social
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No new data or models were released in conjunction with this paper.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
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Justification: All relevant details regarding existing assets are provided in the main text.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets were released in conjunction with this paper.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects was included in this paper.
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tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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approvals (or an equivalent approval/review based on the requirements of your country or
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Justification: No crowdsourcing or research with human subjects was included in this paper.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
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and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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