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Abstract

Although knowledge distillation (KD) is an effec-
tive approach to improve the performance of a
smaller LLM (i.e., the student model) by trans-
ferring knowledge from a large LLM (i.e., the
teacher model), it still suffers from high training
cost. Existing LLM distillation methods ignore
the difficulty difference among different samples,
making the distillation of easy samples unnec-
essary. This leads to high distillation cost. In
this paper, we propose difficulty-aware knowl-
edge distillation (DA-KD) framework for efficient
knowledge distillation, in which we dynamically
adjust the distillation dataset based on the diffi-
culty of samples. We further observe existing KD
loss cannot perform well when most of samples
are difficult in the distillation dataset because of
unstable optimization and the neglect of hard sam-
ples. Therefore, we also propose a new KD loss
called bidirectional discrepancy loss (BDL) for
effective KD. Extensive experiments demonstrate
that our DA-KD framework is effective and ef-
ficient. Without bells and whistles, DA-KD can
outperform existing state-of-the-art KD methods
by 2% with half training cost and even surpass
the teacher model with 4.7× compression.

1. Introduction
Recent advancements in Large Language Models (LLMs)
such as LLaMA and Qwen (Touvron et al., 2023; Bai et al.,
2023; Yang et al., 2024a) have garnered significant atten-
tion due to their remarkable capabilities and intelligence.
However, these models impose substantial computational
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Figure 1. Performance of various distillation methods on Dolly
dataset in the upper part, and their training time (minutes) and
iterations in the bottom part.

and storage requirements, posing challenges for practical
deployment (Yang et al., 2024b). To address this issue, nu-
merous model compression methods have emerged, such
as quantization (Guo et al., 2024; Lv et al., 2024), pruning
(Wang et al., 2024b; Guo et al., 2022; 2023b) and knowl-
edge distillation (Hinton, 2015). Knowledge distillation is
an effective approach for constructing smaller and more effi-
cient neural networks. It aims to transfer knowledge from a
high-performing teacher model to a compact student model
for efficient inference.

Despite the success of KD for effective training of stu-
dent models, it still suffers from high training cost, which
normally requires hundreds of GPU hours when distill-
ing models with billions of parameters (Agarwal et al.,
2023). To solve this problem, many efficient distillation
approaches were proposed in recent years. They use knowl-
edge caching (Jin et al., 2024; Zheng et al., 2021; Huang
et al., 2024), self-distillation (Dong et al., 2023; Zhang
et al., 2021; Naeem et al., 2025), dataset condensation (Zhao
et al., 2020; Yin et al., 2024) and so on. However, these
approaches focus on traditional downstream tasks such as
computer vision or language processing, and few of them
have delved deeply into efficient distillation using dataset se-
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lection for generative large models. As a result, it is still an
open problem on how to effectively select informative sam-
ples for distillation, which makes the efficient distillation
for generative large models a non-trivial task.

To solve the aforementioned problems, in this paper, we pro-
pose a knowledge distillation framework called Difficulty-
Aware Knowledge Distillation (DA-KD), which is de-
signed for efficient distillation of large language models
(LLMs). To achieve efficient distillation, we first construct
a Difficult-Aware Data Updating (DiffUp) strategy, which
includes a Distillation Difficulty Score (DDS) to measure
the sample complexity based on the performance gap be-
tween the teacher and student. As a result, we use DDS
to filter out easy samples for condensed data volume. To
strengthen data diversity and mitigate the forgetting problem
when only difficult samples are adopt (Jiang et al., 2023),
we also propose a Stratified Data Updating (SDU) strategy
to improve the diversity of the dataset by gradually mixing
samples with various DDS.

Furthermore, as we select difficult samples in the distillation
process, we find the existing KD loss cannot provide robust
optimization for the student. When extreme distribution
occurs in the student, existing KD loss will encounter the
explosion or vanishing gradient problem. Moreover, we also
find it is challenging for existing KD loss to pay more at-
tention to hard samples. To this end, we propose a new loss
function called Bidirectional Discrepancy Loss (BDL) to
restrict the gradient without explosion or vanishing. Specifi-
cally, our BDL is built upon traditional KL divergence, but
further incorporates combined probability distribution from
both teacher and student. From our detailed analysis, we
show that our BDL can not only effectively stabilize the
optimization for the student but also enforce the distillation
to pay more attention to the hard samples.

Our main contributions are summarized as follows:

▶ We propose difficulty-aware knowledge distillation (DA-
KD) for efficient and effective LLM distillation,
▶ We also propose difficulty-aware data updating strategy to
dynamically update the distillation dataset, which consists
of a distillation difficult score for sample difficulty measure-
ment and a stratified sampling strategy for data diversity.
▶ We propose a new loss function called bidirectional dis-
crepancy loss, which can effectively stabilize the student
training from difficult samples.
▶ Extensive experiments on multiple benchmark datasets
demonstrate the effectiveness of our DA-KD framework.

2. Related Work
Large language model. Recent advancements in artifi-
cial intelligence have garnered significant attention (Tao
et al., 2022; 2025b). In particular, Large language models

have emerged as transformative advancements in natural
language processing, achieving state-of-the-art performance
across a broad range of complex tasks. Prior works such as
GPT (Radford, 2018) introduced the use of stacked trans-
former decoders, laying the foundation for subsequent inno-
vations. Building on this, models like the Llama (Touvron
et al., 2023; Dubey et al., 2024) and the Qwen (Yang et al.,
2024a) series refined transformer architecture to improve
efficiency and performance. Other approaches (Guo et al.,
2023a; 2021; 2020) were also proposed in recent years by
improving either training techniques or network architec-
ture.

Despite these advancements, LLMs often require substantial
computational resources due to their massive parameter
sizes. In this work, we aim to train an efficient student
model by using knowledge distillation technique.

Knowledge distillation for LLM. Knowledge distillation
transfers knowledge from a large teacher model to a smaller
student model (Hinton, 2015) for faster inference. Recently,
many knowledge distillation works were proposed for LLM.
For example, MiniLLM (Gu et al., 2024) proposed reverse
KL divergence (RKL) as the loss function to prevent the
student from overestimating the low-probability regions of
the teacher. GKD (Agarwal et al., 2023) additionally intro-
duced generalized Jensen-Shannon divergence (JSD), and
trained the student on its self-generated outputs to mitigate
the training-inference mismatch. DistiLLM (Ko et al., 2024)
proposed skew KL divergence (SKL) and skew reverse KL
divergence (SRKL) that using a mixture of probability dis-
tributions to improve the optimization stability.

However, current KD methods for LLM require a significant
amount of training time (Xu et al., 2024; Ko et al., 2024),
primarily due to the large-scale training data. In contrast,
our DA-KD framework aims at not only effective but also
efficient LLM knowledge distillation.

Data selection for LLM training. Data selection is increas-
ingly recognized as crucial for optimizing the LLM fine-
tuning process (Zhou et al., 2024; Wang et al., 2024a). These
methods aim to prioritize subsets of data that are most valu-
able for training, thus reducing computational costs while
preserving or even improving model performance (Tao et al.,
2025a). Several recent works have explored data selection
for LLM fine-tuning. For example, Chen et al. (2023) in-
troduced Alpagasus to directly leverage ChatGPT for rating
each data sample, and select samples with higher ratings.
Cao et al. (2023) proposed a linear rule-based approach
named Instruction mining by training a linear function to
identify the most effective data samples. Li et al. (2023)
proposed the IFD method, where a LLM first learns from a
small subset of data to acquire foundational capabilities and
then uses this learned model to rate and select data from the
original dataset.
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Figure 2. Overview of our Difficulty-Aware Knowledge Distillation framework.

Data selection for knowledge distillation. Several studies
also explored data selection methods in knowledge distilla-
tion. For instance, Li et al. (2021) proposed an uncertainty-
based data selection method for knowledge distillation of
LLMs, while Lan et al. (2025) also introduced a data se-
lection approach specifically designed for knowledge dis-
tillation. However these methods are either solely based
on student model (Li et al., 2021) or solely based on the
teacher model (Lan et al., 2025), ignoring their discrepancy.
Different from these works, we propose DA-KD framework
to dynamically adjust distillation dataset in the distillation
process based on the discrepancy between teacher and stu-
dent.

3. Difficulty-Aware Knowledge Distillation
3.1. Overview

Figure 2 shows the overview of our DA-KD framework.
Given a large teacher LLM and a small student LLM, we
first calculate the cross-entropy loss of each sample in the
initial dataset, based on which we calculate the distillation
difficult score (DDS) for each sample. Then, we perform
the stratified data updating based on the calculated DDS, in
which the distillation dataset will be progressively reduced
in this process. In the distillation procedure, we use our
bidirectional discrepancy loss as the loss function, which
can provide stable optimization and pay more attention to
hard samples. We will introduce each component in our
DA-KD framework in detail.

3.2. Difficulty-aware Data Updating

Knowledge distillation for LLMs often involves training
a smaller student model to emulate the teacher model’s
behavior. However, it is inefficient to use the entire dataset
indiscriminately for distillation. To address this, we propose
Difficulty-aware data Updating (DiffUp) to dynamically
updates the distillation data based on the sample difficulty
to reduce the computational costs of distillation.

3.2.1. DISTILLATION DIFFICULTY SCORE

To evaluate the difficulty of sample x quantitatively, we first
propose a new difficulty metric called Distillation Difficulty
Score (DDS) as the ratio of the loss from student over that
from teacher:

DDS(x) =
Lqθ (x)

Lp(x)
, (1)

where Lqθ (x) and Lp(x) represent the cross-entropy loss
between the sample x and the ground-truth from the student
and teacher models, respectively.

This simple but effective DDS captures the distillation dif-
ficulty based on the discrepancy between the teacher and
student models. Figure 3 gives examples for different cases.
When the student exhibits a high Lqθ (x) on a sample but the
teacher has low loss Lp(x) on it, the DDS value becomes
large. This situation indicates that the teacher is confident
about the sample, whereas the student struggles to do so.
Such case highlights the student model requires additional
supervision from the teacher. Conversely, the DDS value
remains small when both the student and teacher achieve
low losses, which means the sample is well-learned by both
models, making further distillation unnecessary. When both
the teacher and student incur high losses, the DDS value
remains small as well, which means the teacher’s under-
standing of the sample is inadequate, limiting its ability
to provide meaningful guidance. The essence of DDS is
analogous to real-world teaching: effective teaching occurs
when concentrating on difficult knowledge that the teacher
understands well but the student finds challenging.

3.2.2. STRATIFIED DATA UPDATING

In the distillation process, we propose Stratified Data Up-
dating strategy to dynamically select the data in each epoch
based on the aforementioned DDS. The core idea is to prior-
itize difficult samples with high DDS value and gradually
reduce the overall data volume in the next epoch for efficient
distillation. Suppose we have a training dataset of size N ,
with the data selection ratio per epoch denoted by r. This im-
plies that in each epoch, we actually select and use rN data
samples for distillation. Initially, the selection ratio r is set
to 1, meaning all available data is utilized at the beginning.
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Outputs of Teacher ------ and Student ------ DDS value

Input: What are the words of House Fowler?

Output: First in  Battle

Output: Beware Our Talons 

Input: Identify which animal species is alive or extinct: 

Megalania, Sea Turtle.

Output: Sea Turtle is alive, Megalania is extinct. 

Output: Sea Turtle is alive, Megalania is extinct. 

Input: How many cents do I have if I have 3 quarters?

Output: If you have 3 quarters, you have 30 cents.

Output: If you have 3 quarters, you have 75 cents.

Loss

0.0003 

1.1055

0.0058

0.0057

3.8324

3.7285

3685

0.9828

0.9729

Figure 3. Examples of DDS values for different cases.

As distillation progresses, the selection ratio r gradually
decreases following a linear or cosine decay schedule. If the
total number of epochs is E, then the selection ratio r at the
e-th epoch is:

linear decay schedule : r = 1− e

E
,

cosine decay schedule : r =
1

2
cos

πe

E
+

1

2

(2)

This strategy allows the distillation process to focus on the
most valuable data, thereby lowering training costs without
sacrificing model performance.

Stratified sampling for diversity. Inspired by Jiang et al.
(2023), to strengthen data diversity and mitigate the forget-
ting problem when only difficult samples are adopted, we
further propose a stratified sampling strategy to mix various
samples when updating distillation data. Specifically, at the
beginning of each epoch, we first calculate the DDS for the
whole dataset and sort them in descending order. Then, we
split the dataset into two partitions by a number threshold r,
creating low-DDS partition Dlow with 1− r percentage of
samples and high-DDS partition Dhigh with r percentage
of samples, respectively. Then, we randomly draw sam-
ples from both partitions to construct the data subset for
distillation for the current epoch.

Formally, let us denote the whole dataset as set D. And the
power set P(D) represents all subsets of D. It is obvious
that Dhigh,Dlow ∈ P(D) and Dhigh ∪ Dlow = D. Next,
P 1−τ
high represents the collection of subsets in the power set

of Dhigh that contain (1− τ)|Dhigh| elements, i.e.,

∀S ∈ P 1−τ
high, |S| = (1− τ)|Dhigh|, and S ⊆ Dhigh, (3)

where | · | returns the number of element of the set, and τ
is to balance the selection ratio in high and low partitions.
Before the start of each epoch, we compute and sort to obtain
Dhigh, and then randomly select an element D′

high from
P 1−τ
high, i.e., D′

high ∈R P 1−τ
high and D′

high ⊆ Dhigh, where

∈R denotes a random selection from a finite set. The same
procedure is applied to theDlow set, where an elementD′

low

is randomly selected from P τ
low, i.e., D′

low ∈R P τ
low, where

P τ
low represents the collection of subsets in the power set

of Dlow that contain τ |Dhigh| elements. Thus, the activated
data for this training epoch is D′

= D′

low ∪ D
′

high, and
is easy to know that |D′

low| + |D
′

high| = τ |Dhigh| + (1 −
τ)|Dhigh| = r|D|.

This stratified sampling strategy ensures the distillation
dataset not only prioritizes challenging samples but also
retains representative easier examples, which prevents poten-
tial biases toward high-DDS samples and allows the student
to effectively generalize across the entire data distribution.

3.3. Bidirectional Discrepancy Distillation

As we use our DiffUp approach to construct our distilla-
tion dataset, the retained training samples are often more
challenging, exhibiting greater discrepancies between the
teacher and student.

To achieve robust and stable distillation, we propose a new
distillation loss function called Bidirectional Discrepancy
Loss (BDL) building upon KL divergence, but further inte-
grate the two measured probability distributions, which can
be formally expressed as:

DBDL(p, qθ) =

DKL (((1− λ)p+ λqθ)∥(λp+ (1− λ)qθ)) ,
(4)

where p and qθ denote the probability distributions from
teacher and student, respectively. λ is the coefficient to
balance the contribution of p and qθ during the mixing. DKL
denotes the standard KL divergence.

Remark. Our BDL can perform well on difficult samples
because it can provide robust optimization for the student.
Specifically, let us denote Pm = (1−λ)p+λqθ and Qm =
λp + (1 − λ)qθ, we compute the gradient of BDL w.r.t.
student parameter θ:

∇θDBDL(p, qθ) = ∇θDKL(Pm, Qm)

= ∇θ

∑
x

Pm(x) log
Pm(x)

Qm(x)

=
∑
x

[λ log
Pm(x)

Qm(x)
+ λ− (1− λ)

Pm(x)

Qm(x)
]︸ ︷︷ ︸

C(x)

∇θqθ(x),

(5)
where C(x) determines the direction and magnitude of each
term in ∇θqθ(x). Next, we substitute Pm and Qm into
Pm(x)/Qm(x) to analyze the influence of the blend distri-
bution on the gradient:

Pm

Qm
=

(1− λ)p+ λqθ
λp+ (1− λ)qθ

. (6)
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Assuming that the distribution of qθ may be extremely small
or large for hard samples. If qθ(x)→ 0, we have Pm(x)

Qm(x) →
(1−λ)p(x)

λp(x) = 1−λ
λ . On the contrary, if qθ(x)→∞, we have

Pm(x)
Qm(x) →

λqθ(x)
(1−λ)qθ(x)

= λ
1−λ . A similar phenomenon can

be observed when p(x) approaches 0 or∞.

This leads to our first conclusion: BDL stabilizes the train-
ing by restricting the gradients without explosion or van-
ishing. Specifically, the range of C(x) is solely determined
by λ, and is independent of qθ or p. C(x) falls between
(λ log 1−λ

λ + 2− 1
λ and λ log λ

1−λ ) (see Figure 5 in the ap-
pendix for illustration). Therefore, since λ is a pre-defined
value, the range of C(x) is finite and known in advance.
This prevents C(x) from becoming excessively large or
small due to qθ or p approaching extreme or less active,
thereby avoiding gradient explosion or vanishing.

Furthermore, by analyzing the range and monotonicity of
C(x) in Appendix A, we derive our second conclusion:
BDL emphasizes the samples that have distinct output proba-
bilities by teacher and student model (i.e., difficult samples).
Specifically, denoting z = Pm/Qm, then we have

∂C(x)

∂z
=

λ

z
− (1− λ). (7)

when z < λ
1−λ , ∂C(x)

∂z exhibit a positive value, indicating
C(x) is monotonically increasing with z = Pm/Qm. From
our experiments, λ = 0.9 excels the best performance. Con-
sidering the distribution from both teacher and student are
usually small, z < 0.9

1−0.9 takes most of cases in the distil-
lation. Therefore, C(x) can be treated as monotonically
increasing with z. From Appendix A, we also demonstrate
z = Pm/Qm is also monotonically increasing with qθ/p
when λ > 0.5. As a result, C(x) is monotonically increas-
ing with respect to qθ/p in our setting. We empirically
observe most difficult samples have qθ ≫ p, so we have
larger C(x) on these difficult samples. Although this as-
sumption does not always hold, we find it is helpful for the
distillation of our DA-KD. This property can enlarge the
gradient of these hard samples, which enforce our BDL to
pay more attention on them.

Meanwhile, when λ ∈ (0, 0.5), Pm

Qm
is closer to p

qθ
, and

C(x) is constantly negative, making BDL behaves similar
to standard KL divergence. When λ > 0.5, Pm

Qm
transits

to qθ
p , and C(x) takes positive values to make qθ increase,

making BDL behaves similar to reverse KL divergence.
However, λ = 0.9 excels the best performance when C(x)
is either positive or negative, which provides a larger range
of C(x), and also brings a bigger Pm

Qm
(see Appendix A).

This demonstrates that the combination of KL and reverse
KL helps the training and convergence of the student. But
a higher λ may also lead to aggressiveness and gradient
explosion. The complete derivation and proof can be found

Algorithm 1 Difficulty-aware data updating in our DA-KD
Input: Initial selection ratio r = 1; the whole dataset D

with size N = |D|; balancing coefficient τ ; total train-
ing epochs E; teacher and student model θT and θS .

Output: Trained student model θS .
1: Iterate the model using D, and obtain initial DDS
2: for i← 2 to E do
3: Update the selection ratio r based on Eq. (2)
4: Lqθ (D),Lp(D)← θT (D), θS(D)
5: DDS← Lqθ

(D)

Lp(D)

6: Dord← Descending ordered D with updated DDS
7: Dhigh←Dord[: rN ]

Dlow←Dord[rN :]
8: Pτ

low ← ∀t ∈ P(Dlow), s.t.|t| = τ |Dhigh|
P1−τ
high ← ∀t ∈ P(Dhigh), s.t.|t| = (1− τ)|Dhigh|

9: D′

low,D
′

high
∈R← Pτ

low,P
1−τ
high

10: D′ ← D′

high +D′

low

11: yT , yS ← θT (D′), θS(D′)
12: LBDL ← DBDL(yT , yS)
13: LBDL.backward()
14: end for
15: return Student model θS

in Appendix A.

In a word, by gradient analysis, we claim that BDL not
only stabilizes the optimization process inherently, but also
emphasizes the hard samples that induce distinct activations.
Compared to the traditional KL divergence, the blending
of teacher and student distributions in the numerator and
denominator results in smoother gradients, avoiding unsta-
ble updates in extreme cases where the teacher and student
distributions differ significantly. At the same time, the gra-
dients are regularized based on both distributions, empha-
sizing the importance of hard samples during training. We
provide a detailed parameter analysis experiment to verify
the behavior of BDL under different λ to show that our BDL
ensures more stable and efficient update during training.

After using the proposed BDL and the DiffUp methods,
we can effectively focus on more difficult but informative
samples, and thus achieve efficient distillation. To provide
better explanation of the process for our DA-KD framework,
we present a description of the procedure in Algorithm 1.

4. Experiments
4.1. Experiments Setup

Tasks and Datasets. To validate the effectiveness of our
DA-KD framework, we conduct two categories of experi-
ments: task-agnostic instruction following and task-specific
experiments.
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Table 1. Results of task-agnostic instruction following on Llama2 and Qwen2.5 models. We report the average ROUGE-L scores across
five random seeds. The bold and underline indicate the best and second-best results, respectively.

Model #Params Method DollyEval SelfInst Super-Natural Unnatural VicunaEval Avg.

Llama2

7B Teacher 29.61 20.98 34.11 35.56 19.19 27.89

2.7B

SFT 27.52 19.48 30.93 32.09 18.24 25.65
KD-KL (Hinton, 2015) 27.71 19.19 30.24 31.75 17.73 25.32
KD-RKL (Gu et al., 2024) 28.60 19.74 35.18 36.26 18.71 27.70
SeqKD (Kim & Rush, 2016) 27.78 18.64 30.95 32.14 18.13 25.53
GKD (Agarwal et al., 2023) 28.72 19.48 33.12 33.74 19.17 26.85
Distillm (Ko et al., 2024) 27.93 18.90 32.03 35.42 18.76 26.61
DA-KD (ours) 29.04 19.50 35.29 37.39 19.34 28.11

1.3B

SFT 25.85 14.59 24.13 28.22 17.41 22.04
KD-KL (Hinton, 2015) 26.17 15.13 24.97 29.22 17.34 22.57
KD-RKL (Gu et al., 2024) 25.66 15.01 27.89 32.39 18.34 23.86
SeqKD (Kim & Rush, 2016) 25.98 15.00 25.36 29.83 17.66 22.76
GKD (Agarwal et al., 2023) 26.55 16.51 27.88 30.63 17.66 23.85
Distillm (Ko et al., 2024) 27.16 16.52 27.27 31.98 17.70 24.13
DA-KD (ours) 26.75 18.05 32.35 36.09 17.53 26.15

Qwen2.5

7B Teacher 31.37 25.98 43.61 40.19 23.15 32.86

1.5B

SFT 28.05 21.12 34.21 37.06 19.22 27.93
KD-KL (Hinton, 2015) 28.01 21.97 37.24 37.94 19.98 29.03
KD-RKL (Gu et al., 2024) 28.40 20.60 37.93 39.46 21.18 29.51
SeqKD (Kim & Rush, 2016) 28.21 20.98 35.79 36.52 21.46 28.59
GKD (Agarwal et al., 2023) 28.89 23.78 44.76 39.56 23.80 32.16
Distillm (Ko et al., 2024) 29.38 21.74 40.55 37.41 22.96 30.41
DA-KD (ours) 28.91 24.08 45.73 42.31 24.04 33.01

0.5B

SFT 25.98 14.89 30.74 32.82 16.54 24.19
KD-KL (Hinton, 2015) 24.59 16.07 30.00 30.95 17.57 23.84
KD-RKL (Gu et al., 2024) 25.09 15.30 29.06 32.01 19.08 24.11
SeqKD (Kim & Rush, 2016) 26.28 17.40 29.57 31.64 18.90 24.76
GKD (Agarwal et al., 2023) 26.24 18.74 38.45 33.31 21.56 27.66
Distillm (Ko et al., 2024) 27.72 19.55 42.19 37.80 23.94 30.24
DA-KD (ours) 27.36 19.74 43.63 39.52 21.97 30.44

For instruction following experiments, we choose the
databricks-dolly (Conover et al., 2023) dataset pro-
cessed by Gu et al. (2024) for distillation. Then, we evaluate
the trained student models on five instruction-following
datasets: Dolly evaluation (Conover et al., 2023), Self-
Instruct (Wang et al., 2022a), Super-Natural Instructions
(Wang et al., 2022b), Unnatural Instruction(Honovich et al.,
2022) and Vicuna evaluation(Chiang et al., 2023). The eval-
uation metric is ROUGE-L (Lin, 2004). To mitigate the
randomness, we report the average ROUGE-L score under
five different random seeds.

For task-specific experiments, we consider two distinct
tasks for evaluation: text summarization using SAM-
Sum (Gliwa et al., 2019), and mathematical reasoning with
GSM8K (Cobbe et al., 2021). We use ROUGE-L score and
zero-shot accuracy for measuring, respectively.

Models. We evaluate our DA-KD using multiple teacher-
student model pairs. For task-agnostic instruction fol-

lowing, we employ LLaMA2-7B (Touvron et al., 2023)
and Qwen2.5-7B (Yang et al., 2024a) as teacher models,
with Sheared-LLaMA2-2.7B/1.3B (Xia et al., 2023) and
Qwen2.5-1.5B/0.5B as their respective students. For task-
specific experiments, we utilize LLaMA2-7B and Qwen2.5-
7B as teachers, distilling knowledge into LLaMA2-1.3B
and Qwen2.5-1.5B, respectively. Additionally, we include
LLaMA3.2-3B (Dubey et al., 2024) as the teacher model
with LLaMA3.2-1B as the student.

Implementation details. We train all models for 10 epochs
using a batch size of 8. We use the AdamW optimizer and
a cosine learning rate scheduler. The initial learning rate is
set as 1e-5. In our implementation, we set τ and λ as 0.1
and 0.9, respectively. We use a cosine decay schedule to
gradually reduce the data selection ratio r.

Comparison Methods. We compare our approach with six
methods: SFT, KD-KL (Hinton, 2015), KD-RKL (Gu et al.,
2024), SeqKD (Kim & Rush, 2016), GKD (Agarwal et al.,
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2023), Distillm (Ko et al., 2024). SFT means we directly
fine-tune the student without distillation.

4.2. Main Results

Task-Agnostic Instruction-Following. Table 1 presents the
results of task-agnostic instruction-following experiments.
Our proposed DA-KD method achieves the highest ROUGE-
L scores on most of the evaluation datasets, consistently
outperforming other methods across different model types
and sizes. For instance, in the case of the Llama2-2.7B
model, our approach achieves an average ROUGE-L score
of 28.11, surpassing the state-of-the-art methods KD-RKL
(27.70) and GKD (26.85). Even on the smallest Qwen2.5-
0.5B model, our method attains an average ROUGE-L score
of 30.44, exceeding Distillm (30.24) and all other baselines.

Notably, both Llama2-2.7B and Qwen2.5-1.5B outperform
their respective teacher models in terms of average perfor-
mance. We hypothesize that this improvement may come
from the more informative training datasets brought by our
DiffUP approach and the more stable optimization process
caused by BDL.

Moreover, we successfully compress the Qwen2.5 model
from 7B to 0.5B (14× reduction in disk storage) with only
a 2.42 drop in average performance. Furthermore, com-
pressing Qwen2.5 from 7B to 1.5B (4.7× storage reduction)
not only preserves performance but even yields a slight
improvement. Similar results are observed in the Llama2
experiments. It further demonstrates the effectiveness of
our DA-KD framework, highlighting the potential of our
proposed distillation framework in producing smaller large
models with minor computational resources and time costs.

Task-Specific Experiments. Table 2 reports the results of
task-specific experiments conducted on the Llama2-1.3B,
Qwen2.5-1.5B and Llama3.2-1B for text summarization
and mathematical reasoning. Our DA-KD method achieves
the best performance across both tasks, demonstrating its
effectiveness in diverse task-specific scenarios. Specifically,
for the text summarization task on the SAMSum dataset,
our approach consistently surpasses previous state-of-the-art
methods. For example, on Llama2-1.3B and Llama3.2-1B,
our DA-KD achieves 39.20 and 32.92 respectively, outper-
forming Distillm (38.73 and 32.53). Notably, on Qwen2.5,
the student model distilled by our DA-KD achieves a score
of 40.05, surpassing even the 7B teacher model. The re-
markable result underscores DA-KD’s ability to empower
a lightweight student model to retain and even enhance
high-quality text generation capabilities.

For the mathematical reasoning task on the GSM8K dataset,
our method achieves a zero-shot accuracy of 54.66% on
Qwen2.5, 14.56% on Llama2, and 22.37% on Llama3.2,
demonstrating significant improvements over competitors.

Table 2. Results of task-specific experiments on Llama2-1.3B,
Qwen2.5-1.5B and Llama3.2-1B. The bold and underline mark-
ings indicate the best and second-best results, respectively.

Model Method SAMSum GSM8K

Llama2

Teacher (7B) 40.84 38.67

SFT 37.11 11.52
KD-KL (Hinton, 2015) 37.80 11.37
KD-RKL (Gu et al., 2024) 38.45 9.40
GKD (Agarwal et al., 2023) 38.39 14.18
Distillm (Ko et al., 2024) 38.73 12.59
DA-KD (ours) 39.20 14.56

Qwen2.5

Teacher (7B) 39.70 71.72

SFT 37.74 41.77
KD-KL (Hinton, 2015) 37.91 44.50
KD-RKL (Gu et al., 2024) 38.75 44.88
GKD (Agarwal et al., 2023) 38.89 50.80
Distillm (Ko et al., 2024) 39.21 46.70
DA-KD (ours) 40.05 54.66

Llama3.2

Teacher (3B) 33.47 37.83

SFT 31.78 12.59
KD-KL (Hinton, 2015) 29.57 7.28
KD-RKL (Gu et al., 2024) 30.51 14.03
GKD (Agarwal et al., 2023) 30.43 17.82
Distillm (Ko et al., 2024) 32.53 20.17
DA-KD (ours) 32.92 22.37

Table 3. Training efficiency comparison.

Method Iterations Traing time
(minutes)

SFT 3570 62.81

KD-KL (Hinton, 2015) 3570 140.75
KD-RKL (Gu et al., 2024) 3570 141.40
SeqKD (Kim & Rush, 2016) 3570 159.73
GKD (Agarwal et al., 2023) 3570 408.24
Distillm (Ko et al., 2024) 3570 213.34
DA-KD (ours) 1963 106.35

However, performance degradation is still observed for
smaller models on GSM8K. One possible explanation is the
inherent complexity of mathematical reasoning, requiring
stronger logical inference and multi-step reasoning capabili-
ties. Consequently, distilling such knowledge into a smaller
model is inherently more challenging, and remains an open
problem for future work to enhance knowledge transfer in
mathematical reasoning.

Training costs. As our objective is to develop an effective
and efficient distillation framework for large language mod-
els, we also evaluate the training efficiency of our method
compared to existing work. Table 3 presents the number of
training iterations and time required for end-to-end distil-
lation. All the test cases compress Llama2-7B into a 2.7B
model using four NVIDIA A800 GPUs.
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Table 4. Ablation study of our DiffUp method.

Method Dolly SelfInst Super-N Unnatural Vicuna Avg.

DiffUp 26.75 18.05 32.35 36.09 17.53 26.15
w/o DDS 26.05 16.70 31.27 33.86 17.53 25.08
w/o SDU 26.65 17.37 31.11 34.56 16.54 25.24
w/o DiffUp 26.73 18.51 32.07 35.64 16.58 25.91

We take SFT as the baseline performance since it directly
fine-tunes the student model on the corresponding dataset
without knowledge distillation. Compared to all the other
typical and commonly-used distillation frameworks, our
DA-KD significantly reduces the computational cost of dis-
tillation while maintaining superior performance. Specifi-
cally, DA-KD requires only 1,963 training iterations, which
is 55% fewer compared to all other distillation methods.

In terms of training time, our DA-KD method requires only
26.1% of the GPU hours compared to GKD (106.35 vs.
408.24 minutes) and 49.9% compared to Distillm (106.35
vs. 213.34 minutes), demonstrating remarkable efficiency
compared to other methods. That is because as the train-
ing process goes on, we use fewer data with hard samples
while filtering out the most simple ones, which brings sig-
nificant time saving for each single epoch. Methods such
as GKD and Distillm incur substantial computational costs
because they rely on student-generated outputs during train-
ing, which increases processing overhead. Although it will
introduce an extra computational cost when computing DDS
in DA-KD (for example, the total time of 106.35 minutes
in Table 3 consists of 28.31 minutes of DDS computation
and 78.04 minutes of distillation), we can achieve a reduc-
tion of 55% in training iterations by using DDS to filter the
distillation data. As a result, we can still achieve an overall
reduction in computational cost compared to existing KD
methods.

4.3. Ablation Study

In this section, we distill Llama2-7B to 1.3B as an exam-
ple and conduct extensive ablation studies to validate the
effectiveness of each component of our DA-KD approach.

4.3.1. EFFECT OF DIFFUP

To verify the effectiveness of our proposed difficulty metric
DDS, we first remove each component in DiffUp. The result
denoted as “w/o DDS” in Table 4 means we randomly select
data for distillation at each epoch instead of according to
their DDS, showing that our DDS metric can bring 1.07
improvement on the average ROUGE-L score, highlighting
the importance of DDS in ordering and selecting challeng-
ing samples for distillation. For comparison denoted as
“w/o SDU”, we remove the mixing strategy, making all the
samples in the distillation dataset being sampled from the
high-DDS partition. So SDU brings 0.91 improvement on
the average ROUGE-L score. Finally, when we remove the

Table 5. Comparison results for different distillation loss functions
combined with DiffUP. We report the average ROUGE-L scores
across five random seeds. The bold and underline markings indi-
cate the best and second-best results, respectively.

Loss Dolly SelfInst Super-N Unnatural Vicuna Avg.

KL 23.69 14.40 24.97 26.16 15.98 21.04
RKL 25.35 14.72 27.31 32.15 18.18 23.54
JSD 24.80 16.86 31.18 31.70 16.79 24.26
SKL 26.02 17.31 30.76 33.02 17.72 24.96
SRKL 26.43 16.91 29.94 34.56 17.12 24.99

BDL 26.75 18.05 32.35 36.09 17.53 26.15

Avg.
Std.

Unnatural

Super-N

SelfInst
Vicuna

Dolly

Figure 4. Hyperparameter analysis of λ in BDL.

whole DiffUp method and use the entire dataset during dis-
tillation process (“w/o DiffUp”), the performance degrades
0.24 compared to ours, indicating that dynamically updating
the dataset based on the complexity of samples improves
the model’s performance.

4.3.2. EFFECT OF BDL

Comparisons to Other Distillation Losses. To verify
the effectiveness of our proposed BDL, we conduct exper-
iments by replacing BDL with other objective functions:
KL (Hinton, 2015), KL (Gu et al., 2024), JSD (Agarwal
et al., 2023), SKL (Ko et al., 2024), and SRKL (Ko et al.,
2024). As shown in Table 5, BDL achieves the highest av-
erage ROUGE-L score of 26.15, surpassing SRKL by 1.16,
and has even larger margin compared to other loss functions,
which demonstrates our BDL can stabilize the training and
also learn more information in difficult samples.

Parameter Analysis on λ. We conduct the experiment
to investigate the performance with different values of λ
in BDL, and the result is shown in Figure 4, which is con-
sistent to our derivation in Appendix A. When λ = 0.5,
the gradients will have relatively small coefficients which
lead to gradient vanishing and performance degradation.
When λ ∈ (0.1, 0.5), BDL behaves similar to standard KL
divergence and constantly improves the model performance.
Moreover, when λ ∈ (0.6, 0.9), it consistently leads to per-
formance gains, and reaches its optimal when λ = 0.9,
which demonstrates that the combination of KL and reverse
KL helps the model to converge. The results in Figure 4 con-
firm the conclusions of our theoretical derivation. However,
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determining the optimal λ, as well as fine-grained tuning of
λ for the best efficiency, remains an open problem.

5. Conclusion
In this paper, we introduce Difficulty-Aware Knowledge
Distillation (DA-KD), a novel framework designed to en-
hance the efficiency and effectiveness of LLM distillation.
It includes Difficulty-Aware Data Updating (DiffUp) to
filters easy samples using a Distillation Difficulty Score
(DDS), and Stratified Data Updating (SDU) to mitigates
catastrophic forgetting by mixing samples from all DDS
partitions. Additionally, we propose Bidirectional Discrep-
ancy Loss (BDL) to stabilize student training by preventing
gradient explosion or vanishing when distilling difficult
samples. Extensive experiments demonstrate that DA-KD
outperforms state-of-the-art knowledge distillation methods
and even surpasses the teacher model in several datasets
with only half training cost, making it a highly effective
solution for efficient LLM distillation.

One of the limitations of our DA-KD is that its performance
depends on the teacher model quality. If the teacher model
provides incorrect prediction, the DDS mechanism may
misidentify difficult samples, potentially affecting student
performance.

Acknowledgements
This work was supported by the National Science and Tech-
nology Major Project (2022ZD0116405), Beijing Municipal
Science and Technology Project (No. Z231100010323002),
National Natural Science Foundation of China (Nos.
62306025, 92367204, 62476018).

Impact Statement
This paper presents work whose goal is to advance the field
of LLM knowledge distillation. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.

References
Agarwal, R., Vieillard, N., Stanczyk, P., Ramos, S., Geist,

M., and Bachem, O. Gkd: Generalized knowledge distilla-
tion for auto-regressive sequence models. arXiv preprint
arXiv:2306.13649, 2023.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., et al. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023.

Cao, Y., Kang, Y., Wang, C., and Sun, L. Instruction min-

ing: Instruction data selection for tuning large language
models. arXiv preprint arXiv:2307.06290, 2023.

Chen, L., Li, S., Yan, J., Wang, H., Gunaratna, K., Yadav,
V., Tang, Z., Srinivasan, V., Zhou, T., Huang, H., et al.
Alpagasus: Training a better alpaca with fewer data. arXiv
preprint arXiv:2307.08701, 2023.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
et al. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality. See https://vicuna. lmsys. org
(accessed 14 April 2023), 2(3):6, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Conover, M., Hayes, M., Mathur, A., Xie, J., Wan, J., Shah,
S., Ghodsi, A., Wendell, P., Zaharia, M., and Xin, R. Free
dolly: Introducing the world’s first truly open instruction-
tuned llm. Company Blog of Databricks, 2023.

Dong, X., Bao, J., Zheng, Y., Zhang, T., Chen, D., Yang, H.,
Zeng, M., Zhang, W., Yuan, L., Chen, D., et al. Maskclip:
Masked self-distillation advances contrastive language-
image pretraining. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10995–11005, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Gliwa, B., Mochol, I., Biesek, M., and Wawer, A. Samsum
corpus: A human-annotated dialogue dataset for abstrac-
tive summarization. arXiv preprint arXiv:1911.12237,
2019.

Gu, Y., Dong, L., Wei, F., and Huang, M. Minillm: Knowl-
edge distillation of large language models. In The Twelfth
International Conference on Learning Representations,
2024.

Guo, J., Ouyang, W., and Xu, D. Multi-dimensional pruning:
A unified framework for model compression. In CVPR,
2020.

Guo, J., Liu, J., and Xu, D. Jointpruning: Pruning networks
along multiple dimensions for efficient point cloud pro-
cessing. IEEE Transactions on Circuits and Systems for
Video Technology, 2021.

Guo, J., Liu, J., and Xu, D. 3d-pruning: A model com-
pression framework for efficient 3d action recognition.

9



DA-KD: Difficulty-Aware Knowledge Distillation for Efficient Large Language Models

IEEE Transactions on Circuits and Systems for Video
Technology, 32(12):8717–8729, 2022.

Guo, J., Xu, D., and Lu, G. Cbanet: Towards complexity
and bitrate adaptive deep image compression using a
single network. IEEE Transactions on Image Processing,
2023a.

Guo, J., Xu, D., and Ouyang, W. Multidimensional pruning
and its extension: A unified framework for model com-
pression. IEEE Transactions on Neural Networks and
Learning Systems, 2023b.

Guo, J., Wu, J., Wang, Z., Liu, J., Yang, G., Ding, Y., Gong,
R., Qin, H., and Liu, X. Compressing large language mod-
els by joint sparsification and quantization. In Forty-first
International Conference on Machine Learning, 2024.

Hinton, G. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Honovich, O., Scialom, T., Levy, O., and Schick, T. Unnat-
ural instructions: Tuning language models with (almost)
no human labor. arXiv preprint arXiv:2212.09689, 2022.

Huang, Y., Wang, Z., Gong, R., Liu, J., Zhang, X., and
Zhang, J. Harmonica: Harmonizing training and infer-
ence for better feature cache in diffusion transformer
acceleration. arXiv preprint arXiv:2410.01723, 2024.

Jiang, Y., Chan, C., Chen, M., and Wang, W. Lion: Adver-
sarial distillation of proprietary large language models. In
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 3134–3154,
2023.

Jin, C., Zhang, Z., Jiang, X., Liu, F., Liu, X., Liu, X., and Jin,
X. Ragcache: Efficient knowledge caching for retrieval-
augmented generation. arXiv preprint arXiv:2404.12457,
2024.

Kim, Y. and Rush, A. M. Sequence-level knowledge distil-
lation. arXiv preprint arXiv:1606.07947, 2016.

Ko, J., Kim, S., Chen, T., and Yun, S.-Y. Distillm: Towards
streamlined distillation for large language models. arXiv
preprint arXiv:2402.03898, 2024.

Lan, W., Cheung, Y.-m., Xu, Q., Liu, B., Hu, Z., Li, M., and
Chen, Z. Improve knowledge distillation via label revi-
sion and data selection. IEEE Transactions on Cognitive
and Developmental Systems, 2025.

Li, L., Lin, Y., Ren, S., Li, P., Zhou, J., and Sun, X. Dynamic
knowledge distillation for pre-trained language models.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 379–389,
2021.

Li, M., Zhang, Y., Li, Z., Chen, J., Chen, L., Cheng, N.,
Wang, J., Zhou, T., and Xiao, J. From quantity to quality:
Boosting llm performance with self-guided data selection
for instruction tuning. arXiv preprint arXiv:2308.12032,
2023.

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74–81, 2004.

Lv, C., Chen, H., Guo, J., Ding, Y., and Liu, X. Ptq4sam:
Post-training quantization for segment anything. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 15941–15951, 2024.

Naeem, M. F., Xian, Y., Zhai, X., Hoyer, L., Van Gool,
L., and Tombari, F. Silc: Improving vision language
pretraining with self-distillation. In European Conference
on Computer Vision, pp. 38–55. Springer, 2025.

Radford, A. Improving language understanding by genera-
tive pre-training. 2018.

Tao, R., Wang, T., Wu, Z., Liu, C., Liu, A., and Liu, X.
Few-shot x-ray prohibited item detection: A benchmark
and weak-feature enhancement network. In Proceedings
of the 30th ACM international conference on multimedia,
pp. 2012–2020, 2022.

Tao, R., Le, M., Tan, C., Liu, H., Qin, H., and Zhao, Y. Oddn:
Addressing unpaired data challenges in open-world deep-
fake detection on online social networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 39, pp. 799–807, 2025a.

Tao, R., Wang, H., Guo, Y., Chen, H., Zhang, L., Liu, X.,
Wei, Y., and Zhao, Y. Dual-view x-ray detection: Can ai
detect prohibited items from dual-view x-ray images like
humans? In 2025 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2025b.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, J., Zhang, B., Du, Q., Zhang, J., and Chu, D. A
survey on data selection for llm instruction tuning. arXiv
preprint arXiv:2402.05123, 2024a.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. arXiv
preprint arXiv:2212.10560, 2022a.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y.,
Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran,

10



DA-KD: Difficulty-Aware Knowledge Distillation for Efficient Large Language Models

A. S., Naik, A., Stap, D., et al. Super-naturalinstructions:
Generalization via declarative instructions on 1600+ nlp
tasks. arXiv preprint arXiv:2204.07705, 2022b.

Wang, Z., Guo, J., Gong, R., Yong, Y., Liu, A., Huang,
Y., Liu, J., and Liu, X. Ptsbench: A comprehensive
post-training sparsity benchmark towards algorithms and
models. In ACM Multimedia 2024, 2024b.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared llama:
Accelerating language model pre-training via structured
pruning. arXiv preprint arXiv:2310.06694, 2023.

Xu, X., Li, M., Tao, C., Shen, T., Cheng, R., Li, J., Xu,
C., Tao, D., and Zhou, T. A survey on knowledge
distillation of large language models. arXiv preprint
arXiv:2402.13116, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li,
C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5 technical
report. arXiv preprint arXiv:2412.15115, 2024a.

Yang, G., He, C., Guo, J., Wu, J., Ding, Y., Liu, A., Qin,
H., Ji, P., and Liu, X. Llmcbench: Benchmarking large
language model compression for efficient deployment.
NeurIPS, 2024b.

Yin, Z., Xing, E., and Shen, Z. Squeeze, recover and rela-
bel: Dataset condensation at imagenet scale from a new
perspective. Advances in Neural Information Processing
Systems, 36, 2024.

Zhang, L., Bao, C., and Ma, K. Self-distillation: Towards
efficient and compact neural networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44
(8):4388–4403, 2021.

Zhao, B., Mopuri, K. R., and Bilen, H. Dataset condensation
with gradient matching. arXiv preprint arXiv:2006.05929,
2020.

Zheng, X.-Y., Lee, M.-C., and Hong, Y.-W. P. Knowledge
caching for federated learning. In 2021 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6,
2021. doi: 10.1109/GLOBECOM46510.2021.9685861.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., et al. Lima: Less is more for
alignment. Advances in Neural Information Processing
Systems, 36, 2024.

11



DA-KD: Difficulty-Aware Knowledge Distillation for Efficient Large Language Models

A. Details about the BDL
A.1. Proof for BDL

First, we discuss the monotonicity with respect to qθ/p for the following equation:

Pm

Qm
=

(1− λ)p+ λqθ
λp+ (1− λ)qθ

, (8)

Proof. To simplify the analysis, let x = qθ
p (representing the relative ratio of qθ and p). Then we have

Pm

Qm
=

(1− λ) + λx

λ+ (1− λ)x
. (9)

Next, differentiate Pm

Qm
with respect to x:

∂ Pm

Qm

∂x
=

λ(λ+ (1− λ)x)− ((1− λ) + λx)(1− λ)

(λ+ (1− λ)x)2
(10)

=
2λ− 1

(λ+ (1− λ)x)2
, (11)

where the denominator (λ + (1 − λ)x)2 is always positive, and the numerator is a constant 2λ − 1. When λ > 0.5,

2λ− 1 > 0, which implies
∂ Pm

Qm

∂x > 0 , meaning that Pm

Qm
is monotonically increasing with respect to x. On the contrary,

when λ < 0.5, Pm

Qm
is monotonically decreasing. And when λ = 0.5, Pm

Qm
is a constant. Due to the monotonic function of

Eq. (9), it is easy to find out the boundary values of Pm

Qm
. As x → 0 (i.e., qθ ≫ p), Pm

Qm
→ λ

1−λ ; while as x → ∞ (i.e.,
qθ ≪ p), Pm

Qm
→ 1−λ

λ .

𝜆	log	
1 − 𝜆
𝜆

+ 2 −
1
𝜆

𝜆	log	
𝜆

1 − 𝜆

Figure 5. Curves of the two boundaries of C(x).

Next, we prove the monotonicity of C(x) in Eq. (5) that

C(x) = λ log
Pm(x)

Qm(x)
+ λ− (1− λ)

Pm(x)

Qm(x)
(12)

Proof. We first differentiate C(x) as
∂C(x)

∂z
=

λ

z
− (1− λ), (13)

where z = Pm/Qm. And the second derivative of C(x) is

∂2C(x)

∂z2
= − λ

z2
, (14)

12



DA-KD: Difficulty-Aware Knowledge Distillation for Efficient Large Language Models

which constantly below 0 since λ > 0. Therefore, when z = λ
1−λ , i.e., Pm

Qm
= λ

1−λ , C(x) reaches its maximum λ log λ
1−λ .

When λ < 0.5, λ log λ
1−λ < 0, constantly brings negative C(x). It always makes Qm to increase and match Pm, which is

how standard KL Divergence works. However, when λ > 0.5, C(x) ∈ (λ log 1−λ
λ + 2− 1

λ , λ log
λ

1−λ ). By drawing the
curves of the two boundaries in Figure 5, we can see that when 0.5 < λ <∼ 0.7 (value that around 0.7), C(x) is constantly
positive, which is how reversed KL Divergence works in most cases. However, if ∼ 0.7 < λ < 1, the range of C(x)
includes both positive and negative values. Since we blend probabilities qθ and p into Pm and Qm, it can be regarded as a
combination of KL and reversed KL. And it is easy to imagine that when a larger λ is applied, the range of C(x) is larger,
but if λ is close to 1, it behaves similar to reversed KL Divergence.

In a word, we can draw two conclusions. First, given a certain constant λ, C(x) falls in the range between λ log 1−λ
λ +2− 1

λ

and λ log λ
1−λ , which provides finite and known coefficients on the gradients ∇θqθ(x). It avoids the gradient explosion

issue during training in case of the outliers in student models’ output probability. Second, when the predefined λ ∈ (0.7, 1),
C(x) can be positive or negative values, allowing the qθ to increase or decrease flexibly. While when being close to 1, it has
the probability to give an extreme regularization.

A.2. Further Discussion on Parameter λ

Based on above conclusion, we can understand how the loss function BDL functions within the method: when the difference
of teacher and student model enlarges regarding to sample x, the output probabilities of the two networks differs, leading to
a larger qθ/p. And through the blending of probabilities in BDL, the gradients in the backpropagation will be enhanced by a
larger coefficient C(x), which emphasizes the importance of the sample x. Based on our analysis above, moderate λ is
required.

Our parameter analysis experiments in Sec. 4.3.2 show that BDL consistently brings improvements of most λ except 0.5. It
is easy to understand that C(x) has the smallest range near 0 when λ = 0.5, which leads to the gradient vanishing issue.
When λ ∈ (0, 0.5), Pm

Qm
is closer to p

qθ
, and C(x) is negative, making BDL behaves similar to standard KL divergence.

When λ ∈ (0.5,∼ 0.7), Pm

Qm
transits to qθ

p , and C(x) takes positive values to make qθ increase, making BDL behaves similar
to reverse KL divergence. However, λ = 0.9 excels the best performance, which demonstrates that the combination of
KL and reverse KL helps the training and convergence of the model. Meanwhile, a larger λ allows a larger range of C(x),
and also brings a bigger Pm

Qm
. Based on the monotonicity of Pm

Qm
and C(x), we can draw that samples has distinct output

probabilities from teacher and student will have a larger C(x) with a larger λ, which means the gradient will be enlarged
and emphasized.

Based on this, we hypothesize that our method inherently addresses some intrinsic issues in existing distillation frameworks,
such as stabilizing gradients and emphasizing hard samples. However, determining the optimal value of λ remains an open
question.
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