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Abstract

Understanding how humans interact with each other is key to building realistic
multi-human virtual reality systems. This area remains relatively unexplored
due to the lack of large-scale datasets. Recent datasets focusing on this issue
mainly consist of activities captured entirely in controlled indoor environments
with choreographed actions, significantly affecting their diversity. To address
this, we introduce Harmony4D, a multi-view video dataset for human-human
interaction featuring in-the-wild activities such as wrestling, dancing, MMA, and
more. We use a flexible multi-view capture system to record these dynamic
activities and provide annotations for human detection, tracking, 2D/3D pose
estimation, and mesh recovery for closely interacting subjects. We propose a
novel markerless algorithm to track 3D human poses in severe occlusion and
close interaction to obtain our annotations with minimal manual intervention.
Harmony4D consists of 1.66 million images and 3.32 million human instances
from more than 20 synchronized cameras with 208 video sequences spanning
diverse environments and 24 unique subjects. We rigorously evaluate existing state-
of-the-art methods for mesh recovery and highlight their significant limitations
in modeling close interaction scenarios. Additionally, we fine-tune a pre-trained
HMR2.0 model on Harmony4D and demonstrate an improved performance of
54.8% PVE in scenes with severe occlusion and contact. Code and data are
available at https://jyuntins.github.io/harmony4d/.

“Harmony—a cohesive alignment of human behaviors.”

1 Introduction

As social beings, humans frequently interact with each other using physical touch [73, 64, 35].
By studying these interactions, one can potentially unravel various aspects of human behavior,
including emotions [24], intentions [13], and dynamics [59]. As with most problems in computer
vision [36], a first step in modeling contact interactions involves building large-scale 3D multi-human
datasets. Many such datasets [15, 74, 20, 80, 87, 57] have emerged in recent years. However,
similar to most existing single-human datasets [28], contact interaction datasets lack subject and
environment diversity and are captured under controlled indoor conditions with choreographed
activities. Learning-based methods [42, 70, 43, 38] trained on such biased benchmarks struggle to
generalize to real-world conditions. The core issue is that recovering high-quality ground-truth mesh
for scenarios with frequent human-human contact is challenging due to severe occlusion, truncation,
and dynamic movements [58]. Existing methods typically rely on extensive RGBD motion capture
systems [80] or a large number of high-end wired camera systems (over 100) [31] to achieve accurate
annotations. This reliance on extensive static capture systems makes in-the-wild data collection
impractical [60]. Therefore, we ask: can we develop a markerless capture system that uses only a few
cameras, is mobile, and is capable of accurately extracting 3D ground truth for in-the-wild scenarios
involving contact interactions? To tackle this challenge, we introduce the Harmony4D dataset.
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Figure 1: Overview of Harmony4D setup. (a) Multiple synchronized and calibrated cameras capture
the contact interaction in wrestling. (b) We align all cameras into a gravity-aligned metric world
coordinate system. (c) Our processing obtains per-view instance segmentation masks along with 3D
keypoints. (d) Reconstructed ground-truth meshes after multi-step collision optimization.

Harmony4D is a novel dataset featuring high-resolution videos of dynamic activities with contact
interactions such as wrestling, dancing, karate, MMA and fencing. In contrast to previous datasets,
Harmony4D is collected in the wild with a specific focus on subject and environment diversity.
Table 1 compares our dataset with existing 3D human datasets focusing on contact interactions.
Harmony4D is a substantially large dataset, consisting of 1.66 million images captured from more
than 20 synchronized cameras, resulting in 3.32 million visible human instances. Specifically, we
provide comprehensive ground-truth annotations such as camera parameters, 2D bounding boxes [23],
human tracking identities [86], 2D/3D human poses [68], and 3D human meshes [33]. Figure 1
provides an overview of the capture setup and annotation processing. The multi-camera setup is
inspired by EgoHumans [39], utilizing Meta’s Aria glasses [54], which feature an RGB and two
greyscale cameras for the subject’s first-person view, along with stationary RGB cameras for the
third-person view. This combination allows us to accurately track and triangulate poses in 3D for
extended periods without using visual markers [85] or additional sensors [1]. To our knowledge,
Harmony4D is the only in-the-wild video dataset with dynamic activities and contact interactions.

Our annotation procedure minimizes the need for manual supervision. We divide any input multi-view
video sequence into two stages: (i) pre-contact and (ii) post-contact. The pre-contact stage refers to
the time interval before the first physical interaction between the subjects. We utilize an existing
pose extraction algorithm [39] to obtain 3D poses during the pre-contact stage. However, existing
methods face significant challenges in post-contact scenarios, primarily due to severe occlusion,
truncation, and joint ambiguity when subjects are in very close proximity (e.g., during wrestling or
dancing). For the challenging post-contact stage, we propose a novel algorithm that uses instance
segmentation [40], segmentation-conditioned 2D pose estimation [51], and 3D pose forecasting [2]
in a temporal feedback loop to accurately track 3D poses. Our key idea is to use segmentation-
conditioned 2D pose estimation, see (c) in Figure 1, to reason about missing or completely hidden
body parts and disambiguate between multiple human joints. Finally, we build an efficient multi-stage
motion capture pipeline to fit the SMPL [52] body model to the 3D human skeletons, incorporating
optimization to minimize mesh interpenetration.

Dataset In-The-Wild Scenes Subjects Cameras Images Instances Mesh

ShakeFive2 [74] ✗ 1 6 1 34K 68K ✗

MuPoTs-3D [57] ✗ 3 8 8 8K 22K ✗

MultiHuman [87] ✗ 1 8 6 32K 69K ✓

ExPI [20] ✗ 1 4 68 1.9M 3.8M ✗

CHI3D [15] ✗ 1 10 4 315K 728K ✓

Hi4D [80] ✗ 1 40 8 88K 176K ✓

Harmony4D (Ours) ✓ 5 24 20 1.66M 3.32M ✓

Table 1: Comparison with existing 3D datasets with multi-human interactions. Subjects and
Scenes are number of unique subjects and capture environments. Cameras are number of stationary
views per sequence. Images are number of images. Instances are number of visible human instances.
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Figure 2: Dataset Composition. Harmony4D consists of diverse, dynamic activities such as dancing,
karate, MMA, and wrestling, all captured in in-the-wild settings.

The extensive scale and diverse scenarios of the Harmony4D dataset enable a thorough evaluation
and improvement of methods for human-human contact estimation. We specifically evaluate current
techniques for human mesh regression, uncovering that existing methods often struggle with missing
meshes, inaccurate pose predictions in the presence of occlusion, and handling the complexities of
natural, unconstrained human interactions. Importantly, when we fine-tune off-the-shelf methods
on our large training set, the fine-tuned methods generalize well to challenging contact interactions
and even outperform specifically designed methods for human contact reasoning [58]. Moreover,
we observe significant improvements in vertex contact prediction and occlusion reasoning. This
underscores the need for Harmony4D, a large-scale dataset and a robust evaluation benchmark for
in-the-wild contact interactions. The limitation is not necessarily with the methods [42, 70, 48, 46],
but with the need to expose these methods to more extensive data in these underrepresented scenarios.

Our contributions are summarized as follows.

• A novel method based on multi-view instance segmentation and 3D human pose forecasting
to extract 4D meshes of closely interacting humans.

• Harmony4D, a large-scale in-the-wild dataset with millions of multi-view images, parametric
body models and vertex-level contact for dynamic and unchoreographed activities.

• Evaluation of existing state-of-the-art methods for monocular mesh regression, empha-
sizing their fundamental limitations in handling contact interactions, and demonstrating
significantly improved performance when fine-tuned on our dataset.

2 Related Work

Limited 3D Mesh Recovery Datasets. Current progress in human vision research has been signifi-
cantly driven by datasets [11, 76, 51, 28, 10, 16, 25, 45, 84]. However, unlike 2D pose datasets, 3D
human mesh estimation datasets [28, 75, 56, 31, 32, 67, 79] are limited in diversity which significantly
hampers the ability of deep models to generalize to the real world [82]. Popular 3D datasets like
Human3.6M [28], AMASS [55], HumanEva [67], AIST++ [47], HUMBI [81], PROX [22], and To-
talCapture [32] only contain single human sequences. Multi-human datasets like PanopticStudio [31],
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Figure 3: Data Distribution. The dynamic activities in the Harmony4D dataset cover all area for the
SMPL body model. We visualize the most frequent body parts in contact during interactions as a
normalized heatmap.

MuCo-3DHP [57], TUM Shelf [8] are limited to indoor lab conditions. Outdoor multi-human datasets
like 3DPW [75], MuPoTS [57], and EgoHumans [39] do not focus on human-human interactions.
The Harmony4D dataset goes beyond existing 3D mesh datasets in meaningful ways, capturing
in-the-wild activities with frequent multi-human contact and a particular focus on subject and scene
diversity, as well as unchoreographed activities.

Human Pose and Shape Estimation. Most approaches [49, 42, 50, 46, 19, 12, 83, 33, 9, 38, 69]
rely on the SMPL model [52], which provides a low-dimensional parametrization of the human body.
HMR [34] employs a neural network to regress the parameters of an SMPL body model from a single
image. Follow-up works like 4DHumans [18], Multi-HMR [3], WHAM [66], BEV [70], ROMP [69],
and PARE [42] have improved the robustness of the original method by using more annotations, larger
models, and auxiliary conditioning information such as camera parameters, segmentation masks,
and 2D poses. However, most methods require “full-body” single human images [62], limiting their
robustness in scenarios where multiple humans are interacting due to the limited representation in the
training data. Recent works like BUDDI [58] build a diffusion model on top of BEV [70]’s output as
initialization to model the distribution of humans in proximity. Despite these advancements, we show
that existing methods fail in scenarios with interacting humans in the Harmony4D dataset.

Close Human Interaction Datasets. Several contact-related datasets focus on human interactions
with objects or static scenes [72, 4, 14, 22, 27, 71]. Additionally, recent datasets model close
interactions between dynamic humans [80, 15, 74, 26, 31, 57, 20, 87]. ShakeFive2 [74] and MuPoTS-
3D [57] only provide 3D keypoints and lack mesh or body shape information. CHI3D [15] uses
an indoor motion capture system to fit parametric human models of at most one actor at a time.
MultiHuman [87] provides textured scans of interacting people but lacks ground-truth level body
model registrations. ExPI [20] contains dynamic textured meshes in addition to 3D joint locations but
misses body model registrations and contact information. Furthermore, ExPI [20] includes only two
pairs of dance actors. The most related dataset to ours is Hi4D [80], which uses a multi-view RGBD
capture system to capture the 4D volume of two subjects interacting with each other. Hi4D uses online
tracking and optimization to extract per person scans from the joint scans and fit a parametric body
model to them. However, Hi4D is limited to a single indoor capture location and lacks background
diversity, consisting of choreographed activities. In contrast, Harmony4D is collected in in-the-wild
settings with unchoreographed dynamic activities.

3 Harmony4D

This section describes the data collection setup and our proposed in-contact human mesh tracking
system. Our objective is to develop a markerless annotation pipeline that accurately provides ground
truth 3D human shapes and poses from videos, even in cases of severe occlusions and multiple human
contacts, with minimal manual intervention. The proposed capture and mesh tracking system builds
upon EgoHumans [39] and extends to work effectively under post-contact conditions, including
significant occlusions and truncations.
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Figure 4: Overview of Harmony4D processing setup. Given a multi-view RGB video sequence, we
divide it into pre-contact and post-contact stages. We estimate per-subject 3D poses in the pre-contact
stage [39] as initialization. The post-contact stage uses sequential processing involving 3D pose
forecasting with a human motion model, per-view 2D point-conditioned instance segmentation, and
mask-conditioned 2D pose estimation, followed by multi-view triangulation and mesh fitting.

Data Collection. We aim to capture dynamic activities with human-human contact under in-the-
wild conditions such as wrestling, dancing, fencing, etc. Figure 2 and Figure 3 show the captured
dynamic activities and depicts the data distributions of activities in the Harmony4D dataset. In
comparison to previous datasets, our sequences are not restricted to indoor conditions and consist of
realistic contact interactions with over 1.6 million images. Following EgoHumans [39], to obtain high-
quality ground truth, our capture setup includes multiple views using 20 GoPro cameras, refer Figure
1 (b). The video resolution is set to 4K (3840× 2160) and recorded at a rate of 60 frames per second
(FPS). Importantly, the volume created by our cameras is portable and can be moved across locations.
All cameras are synchronized to ensure temporal consistency across different views. Optionally,
we also include Aria glasses [54] to provide the egocentric perspective of subjects. Each sequence
consists of two subjects. All participants were briefed on the research project, provided informed
consent following IRB guidelines, and received monetary compensation for their participation.

Camera Calibration. We determine the intrinsic and extrinsic parameters for all cameras using
structure from motion (SfM) [65] for each sequence. The world coordinate system is scaled to be
metric and gravity-aligned. To ensure the registration of all cameras in a single coordinate system
using SfM, we pre-scan the environment externally with an additional camera. For contact sequences
with Aria glasses [54], we also transform the camera coordinates of the ego-glasses into the stationary
camera coordinate system using Procrustes alignment [53].

Pre-Contact Processing. We divide a multi-view video sequence into two parts: (i) pre-contact,
the time interval before the first subject-to-subject contact, and (ii) post-contact, the period after the
first contact. We leverage the multi-person 3D pose estimation method from EgoHumans [39] to
obtain 3D poses in the pre-contact stage. Our pre-contact processing is efficient, parallelizing all
time-steps, and works accurately since the subjects are completely visible from most camera views
during this stage.

3.1 Post-Contact Processing.

The main challenges in post-contact are detecting partially or completely occluded keypoints, associ-
ating these keypoints with the correct human identities, and ensuring that the estimated 3D human
meshes remain spatially and temporally coherent while being consistent with the multi-view video
evidence. To address this, we propose a novel sequential algorithm that leverages 3D human-pose
forecasting, 2D point-conditioned instance segmentation, and mask-conditioned 2D pose estimation.
Figure 4 provides an overview of Harmony4D post-contact processing.

Human Motion Model. To reason about occluded keypoints, we use 3D human pose forecasting
with a human motion model based on Kalman filter (KF) [44]. KF is a linear estimator for dynamical
systems discretized in the time domain which only requires the state estimations on a history of time
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steps to estimate the next time step target state. Specifically, we train a per-subject 3D motion model
in a sliding window fashion over a history of T frames to predict the future 3D keypoint locations.
The forecasting model is initialized using the pre-contact poses. Assuming J keypoints, we use
J filters to model the 3D motion of each keypoint independently. Each KF’s state x is defined as
x = [x, y, z, ẋ, ẏ, ż]⊤, where (x, y, z) are the 3D keypoint coordinates and (ẋ, ẏ, ż) are the velocities.

Instance Segmentation. We aim to infer the actual 3D keypoint locations at time step t+ 1 from
the forecasted ones, accounting for discrepancies due to sudden motions like tackling or jumping.
Most current methods rely on per-view 2D pose estimation using a bounding box and then multi-view
triangulation [29]. However, bounding boxes are ambiguous [37] when subjects are close together,
as seen in Figure 5 (Left). An off-the-shelf 2D pose estimator, given the subject bounding-boxes is
unable to distentangle the subject poses accurately. Our key idea is to use instance segmentation
masks as conditioning to a 2D pose estimator. We project the forecasted 3D poses to all views and
apply the Segment-Anything model [40] using the target subject’s 2D pose as positive points and
others’ poses as negative points. Our high frame rate processing ensures the forecasted 3D poses are
close to the true ones, enabling reliable instance mask estimation across all views.

Segmentation Conditioned 2D Pose Estimation. We propose SegPose2D, a deep model for
conditional 2D pose estimation, which takes both the RGB image patch and the binary segmentation
mask as input to predict the 2D pose. SegPose2D uses the ViTPose [78] backbone with two
transformer branches and feature fusion at multiple depths of the network. We train SegPose2D
on the COCO [51] dataset using ground-truth segmentation masks. Figure 5 (Right) compares the
mask-conditioned 2D pose estimation of SegPose2D with ViTPose [78] on a hugging sequence. The
input mask is crucial for disentangling occluded human poses.

Multi-View Triangulation. Our triangulation setup follows the pre-contact processing [39]. Let C
represent all synchronized video streams with known projection matrices Pc. We aim at estimating
the global 3D pose yj,t ∈ R3 of a fixed set of human keypoints indexed by j ∈ (1..J) at timestamp
t ∈ (1..T ) for all humans in the scene (omitting the human index for simplicity). Let xc,j,t ∈ R2

be the jth 2D keypoint at time t from camera c. To infer 3D poses from 2D estimates, we use a
linear algebraic multi-view triangulation approach [21]. Traditional triangulation assumes equal
contribution from all 2D keypoints xc,j,t, but some views may be unreliable due to occlusions or
framing issues, degrading the results. We apply RANSAC to address this. For each time step t, we
solve: ỹj,t, Aj,tỹj,t = 0, where Aj,t ∈ R2C′×4 consists of components from the projection matrices
and xc,j,t and C ′ is the cardinality of the camera inlier set post-RANSAC. Finally, we refine the 3D
poses for the entire sequence using temporal smoothing, joint symmetry and bone constraints [7, 39].

Mesh Optimization. Given the 3D pose estimates y{1..T} for all subjects in a video sequence,
we fit a human mesh to these 3D pose sequences to obtain the in-contact vertex annotations. The
human mesh is represented using body pose and shape parameters, θ = [θpose,θshape,θglobal], where
θpose ∈ R23×6,θshape ∈ R10,θglobal ∈ R6. The pose parameters θpose are the 6D representation
of the joint rotations [88] of the 23 body joints of the SMPL [52] body. The shape parameters
θshape are the first 10 coefficients of the PCA shape space derived from CAESAR [63] scans. θglobal
consists of the global root orientation and translation of the body. Let Φ : θ → y be a differentiable
mapping function that projects SMPL parameters θ to corresponding 3D keypoints y. Similar to
EgoHumans [39], we fit θ to the 3D pose trajectory by minimizing Lmesh defined as follows,

Lmesh(θ) = w1||y − Φ(θ)||2 + w2||θpose||2 + w3Llimb
(
Φ(θ)

)
+ w4Lsymm

(
Φ(θ)

)
+ w5Ltemporal

(
Φ(θ)

)
+ w6Lβ(θshape) + w7Lcollison(θ) (1)

Instance Mask A ViTPose SegPose2D (Ours)Input Instance Mask A Instance Mask B Instance Mask B SegPose2D (Ours)

Figure 5: (Left) Point conditioned instance segmentation. Projected 3D keypoints as positive or
negative prompts. (Right) Comparison of ViTPose [78] with mask-conditioned 2D pose estimation.
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No Loss With Interpenetration Loss
Figure 6: Mesh optimization with interpenetration loss.

where Llimb is the constant limb length loss,
Lsymm is the body symmetry loss, Ltemporal is
temporal smoothing, Lβ is the Gaussian mix-
ture shape prior loss [6], ||θpose||2 penalizes
hyper-extensions of joints, Lcollison, inspired
by Interdiff [77], prevents mesh self and inter-
penetration and w1..w7 are scalar weights. Com-
pared to optimization in EgoHumans [39] where
each subject mesh is fitted independently, the
addition of the Lcollison is a crucial improve-
ment for modeling in-the-wild multi-human
contact scenarios. We define Lcollison(θ) =
ΣN

i=1Σ
V
j=1ϕi(xj , yj , zj), where N is the num-

ber of subjects, and V is the number of mesh
vertices. ϕ computes the negative penetration depth by ϕ(x, y, z) = −min(SDF(x, y, z), 0) where
SDF(x, y, z) is the signed-distance field [30] at a vertex location (x, y, z). This formulation en-
sures that the loss is positive when vertices penetrate themselves or other human meshes, thereby
encouraging the separation of two human meshes as shown in Figure 6.

4 Experiments

In this section, we first describe the evaluation of mesh recovery methods on our dataset. Then, we
showcase ablative experiments that highlight the quality of the annotations provided by the dataset.

4.1 Implementation Details
Subject A Subject B

Figure 7: Ground-truth contact vertices
for hugging sequence.

We divide each sequence into shorter clips of at least 5 seconds
at 20 FPS. The annotation per time step includes camera pa-
rameters, bounding boxes, person IDs, 2D/3D human poses,
and 3D meshes per subject. All 3D poses at each time step
are manually inspected and rectified in case of errors before
performing mesh fitting. After mesh optimization, we manu-
ally verify and re-optimize each mesh sequence and contact
vertices with custom hyperparameters if necessary. The number
of keypoints J is set to 17 [51]. The human motion model uses
history of 10 frames. We use the Segment-Anything-H [40]
backbone for instance segmentation. SegPose2D is based of the
ViTPose-H [78] backbone and is trained on 6 A100 GPUs for 5
days on the COCO [51] dataset. We use CLIFF [48] to obtain
initial SMPL estimates for mesh optimization. To compute the
SDF for mesh interpenetration loss, we use a custom GPU implementation by Jiang et al. [30] along
with Geman-McClure [17] error for robustness. Figure 8 provides a multi-view visualization of the
ground-truth mesh during contact interaction. We visualize the vertices in contact in Figure 7. For
more visualization, please refer to the supplemental.

4.2 Benchmarking Mesh Recovery Methods

We evaluate existing state-of-the-art monocular mesh prediction methods such as PARE[41],
HMR2.0[18], ROMP[69], BEV[70], Multi-HMR[3] and BUDDI[58] on the Harmony4D test
set. For fairness, we use ground-truth bounding boxes as input to the top-down methods.

Metrics. We report standard metrics [75] such as MPJPE and PVE for mean joint and vertex errors,
along with PA-MPJPE, PA-PVE, N-MPJPE, and N-PVE for their Procrustes-alignment and F1 score
normalized variants, respectively. Additionally, we also report other metrics like 3DPCK, AUC [60].
To measure interpenetration during multi-contact, we compute maximum point-to-surface distance
(mP2S) in mm. Note, for BUDDI and Multi-HMR, which predict SMPL-X [61] parameters instead
of SMPL, we follow BEDLAM [5] and convert predicted SMPL-X meshes to SMPL using a fixed
vertex mapping M ∈ R10475×6890.
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Figure 8: Harmony4D ground-truth mesh visualized from six camera views for the hugging sequence.

Discussion. In contrast to a general dataset like 3DPW [75], we observe that the MPJPE for baseline
methods is much higher on the challenging Harmony4D test set. For instance, off-the-shelf Multi-
HMR [3] reports an MPJPE of 61.4 mm on 3DPW compared to 93.8 mm on the Harmony4D
benchmark. Notably, Multi-HMR, a bottom-up method, performs significantly well compared to
other baselines, even outperforming BUDDI [58], which is specifically trained and designed to model
human-human contact. Among the top-down methods, HMR2.0 [18] performs the best with an
MPJPE of 108.2 mm due to its large-scale training and the ViTPose [78] transformer backbone.
Importantly, we also notice a very high normalized per vertex error (N-PVE) for all baselines, which
is due to the failure in predicting a 3D consistent mesh in the presence of frequently occurring
occlusions in our dataset. Harmony4D provides a unique and challenging evaluation benchmark for
in-the-wild human contact interaction scenarios.

Finetuning. To demonstrate the utility of our dataset beyond serving as a challenging evaluation
benchmark, we finetune HMR2.0 [18] on our train set. The Harmony4D train set is significantly
larger than existing general datasets, containing more than 1.2 million images. We use a training setup
similar to HMR2.0 [18] for finetuning. HMR2.0-finetuned demonstrates significant improvement
across all metrics, see Table 2. It improves MPJPE by 55.9%, MPVPE by 54.8% and 3DPCK by
21.01%. Interestingly, we do not supervise HMR2.0 specifically with contact vertex annotations;
however, we observe that the inter-contact relationships are preserved in the predictions. Figure 9
provides a qualitative comparison on the test set between BUDDI [58], HMR2.0 [18], and HMR2.0-
finetuned alongside the ground truth annotations. The results show that our train set can serve as an
effective source for adapting existing monocular mesh estimation methods to multi-human interaction
settings.

4.3 Ablations

Number of Cameras. We investigate the impact of the number of cameras on the estimated 3D pose
accuracy in our processing. Specifically, we uniformly sample 6 to 18 equidistant cameras from the
camera perimeter and calculate the MPJPE between the resulting keypoints and our ground truth
3D keypoints obtained from all 20 cameras. Figure 10 shows the performance trend across various

Method MPJPE ↓ PA-MPJPE ↓ N-MPJPE ↓ PVE ↓ PA-PVE ↓ N-PVE ↓ 3DPCK ↑ AUC ↑ F1 ↑ mP2S ↓

PARE[41] 119.03 65.49 138.40 144.77 73.52 168.34 73.23 47.19 0.86 N/A

ROMP[69] 121.13 80.23 134.59 161.12 91.82 179.02 68.47 44.70 0.90 N/A

BEV[70] 111.29 78.04 119.66 144.28 90.13 155.14 74.63 48.94 0.93 134

BUDDI[58] 126.35 84.00 133.00 158.72 95.95 167.06 70.28 45.75 0.95 106

HMR2.0[18] 108.18 60.25 109.28 131.00 67.96 132.32 75.62 49.79 0.99 N/A

Multi-HMR[3] 93.82 58.53 101.98 115.79 67.67 125.85 83.57 55.08 0.92 53

HMR2.0-finetune 47.71 (-46.11) 32.75 48.18 59.14 38.93 59.74 96.63 75.75 0.99 N/A

Table 2: Comparison of monocular mesh recovery methods on the Harmony4D test set. mP2S
metric is not reported for HMR2.0, PARE, and ROMP, as they predict each human instance in an
independent coordinate system. Note, finetuning HMR2.0 improves performance significantly.
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Image Ground-Truth HMR2.0-FinetunedBUDDI HMR2.0

Figure 9: Qualitative comparison of mesh estimation methods. We evaluate all methods using
ground-truth bounding boxes for fairness. HMR2.0 finetuned on the Harmony4D train set, demon-
strates robustness to inter-person occlusion and improved 3D in-contact estimation.

activities in our dataset. We observe that increasing the number of cameras predictably improves
performance, as more cameras imply a higher likelihood of a larger inlier set during RANSAC in
triangulation. Interestingly, 16 cameras offer a fair trade-off between accuracy and processing speed.

Interpenetration Loss. We examine the impact of interpenetration loss on our mesh optimization.
We evaluate using the following collision metrics: maximum point-to-surface distance (mP2S) in
mm, maximum volumetric IoU (mIoU), and maximum intersection of area (mIoA) in m2. Table 3
demonstrates a significant improvement in all collision metrics across sequences. Specifically, on
average, mP2S is reduced by 44.7 mm, mIoU is reduced by 0.7%, and mIoA is reduced by 0.1 m2.

Event No Loss Interpenetration Loss

mP2S ↓ mIoU ↓ mIoA ↓ mP2S ↓ mIoU ↓ mIoA ↓

Hugging 111.14 1.59 0.24 51.50 0.40 0.07
Wrestling 102.88 0.79 0.16 95.00 0.61 0.10
Dancing 114.91 1.41 0.18 65.60 0.79 0.12
Karate 113.70 0.94 0.16 44.97 0.25 0.06
MMA 122.01 2.26 0.31 83.99 1.43 0.18

Table 3: Adopting the interpenetration loss in mesh optimization significantly improves multi-human
collision metrics across activities in the Harmony4D dataset.
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Figure 10: 3D pose triangulation error with varying number of cameras for various interaction
activities.

5 Conclusion

We propose a novel method to track, segment, and localize 4D body meshes of multiple people
interacting in close range with frequent dynamic physical contact under in-the-wild conditions. Our
key idea is to use multi-view segmentation-conditioned pose estimation, 3D motion models for
forecasting, and collision optimization to obtain precise body model parameters. Using this method,
we constructed the diverse Harmony4D dataset with ground-truth annotations for mesh recovery.
Emphasis is placed on capturing unchoreographed, dynamic activities such as wrestling, dancing,
karate, and MMA in the real world. Our evaluations show that existing state-of-the-art methods fail
significantly under the challenging sequences of our dataset, mainly due to the lack of representation
of human-human contact interactions in training. Importantly, fine-tuning baselines on our large
training set improves mesh estimation performance in severe occlusion and contact conditions.

Limitations. We currently trade off the accuracy of 3D pose and shape estimation under contact
interactions in favor of capturing in the wild. By adopting an optimization perspective from a dense
and mobile camera rig, we enable markerless large-scale capture, complementing high-precision
static indoor wired 3D capture systems with limited diversity.
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