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ABSTRACT

Recent advances in Multimodal Large Language Models (MLLMs) have signif-
icantly enhanced the ability of these models in multimodal understanding and
reasoning. However, the performance of MLLMs for knowledge-intensive vi-
sual questions, which require external knowledge beyond the visual content of
an image, still remains limited. While Retrieval-Augmented Generation (RAG)
has become a promising solution to provide models with external knowledge,
its conventional single-pass framework often fails to gather sufficient knowledge.
To overcome this limitation, we propose MI-RAG, a Multimodal Iterative RAG
framework that leverages reasoning to enhance retrieval and incorporates knowl-
edge synthesis to refine its understanding. At each iteration, the model formulates
a reasoning-guided multi-query to explore multiple facets of knowledge. Subse-
quently, these queries drive a joint search across heterogeneous knowledge bases,
retrieving diverse knowledge. This retrieved knowledge is then synthesized to en-
rich the reasoning record, progressively deepening the model’s understanding. Ex-
periments on challenging benchmarks, including Encyclopedic VQA, InfoSeek,
and OK-VQA, show that MI-RAG significantly improves both retrieval recall and
answer accuracy, establishing a scalable approach for compositional reasoning in
knowledge-intensive VQA.

1 INTRODUCTION

The emergence of Multimodal Large Language Models has driven significant progress in multi-
modal understanding and reasoning. Nonetheless, the performance of MLLMs remains constrained
in knowledge-intensive Visual Question Answering (VQA) tasks, which require external knowl-
edge beyond the visual content in the image. Answering such questions is particularly challenging
as it involves: (1) grounding visual entities in the image to the textual question, (2) collecting text
knowledge relevant to both the entities and the question, and (3) synthesizing the visual entities and
corresponding textual knowledge to derive the answer.

To address this challenge, multimodal Retrieval-Augmented Generation has emerged as a promising
solution. The conventional retrieve-then-read process starts with a retriever using the input image
and question to find relevant image-text pairs from a knowledge base (KB). A reader model then syn-
thesizes this information to create the final answer. Research on optimizing this single-step process
has largely advanced along two fronts: improving initial retrieval with high-quality embeddings Lin
et al. (2024); Wei et al. (2024); Jiang et al. (2025); Lin et al. (2025); Jiang et al. (2024b); Zhang et al.
(2024b), and refining retrieval results by selection and reranking Cocchi et al. (2025); Zhang et al.
(2024a); Ling et al. (2025); Chen et al. (2024); Liu et al. (2024b); Yan & Xie (2024); Yang et al.
(2025).

Although prior work has achieved notable improvements within the retrieve-then-read process, the
process itself has inherent limitations for knowledge-intensive VQA. A single retrieval step with an
initial query is often insufficient, as imperfect retrievers may fail to gather all necessary knowledge
at once Shi et al. (2023); Zhang et al. (2023); Cuconasu et al. (2024). Furthermore, a single reasoning
step to ground visual entities and synthesize knowledge is problematic, as distracting or irrelevant
content can mislead synthesis and influence the final answer Petroni et al. (2020); Wu et al. (2024);
Amiraz et al. (2025); Huang et al. (2025); Wu et al. (2025).
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Figure 1: An overview of MI-RAG. Unlike the
retrieve-then-read process of conventional multi-
modal RAG, MI-RAG iteratively refines its rea-
soning and retrieval using a multi-query search
over heterogeneous KBs.

Motivated by these limitations, the text domain
has shifted to iterative RAG, a paradigm that
leverages an LLM’s reasoning through multi-
ple rounds of retrieval and reasoning. In this
iterative cycle, the model leverages its reason-
ing to guide intermediate steps, which trans-
form queries to collect more relevant knowl-
edge and synthesize newly retrieved knowl-
edge to progressively update the reasoning it-
self. Shao et al. (2023); Trivedi et al. (2022);
Xiong et al. (2024); Liu et al. (2024a); Yue et al.
(2025); Gao et al. (2025). While previous work
has shown promise with this approach in the
text-only domain, it has largely focused on re-
fining a single subquery of decomposing multi-
hop questions at each step. Extending this to the
more complex multimodal domain remains an
open challenge.

This challenge arises because a naive adapta-
tion of the iterative RAG is insufficient for the
multimodal domain, which introduces two dis-
tinct considerations: (i) it requires retrieving di-

verse knowledge by exploring multiple facets of a visually grounded entity and its related textual
knowledge across modalities, and (ii) it demands compositional reasoning to synthesize the visual
entity with its corresponding knowledge by integrating a diverse set of visual-to-visual, visual-to-
text, and text-to-text factual links. This highlights the need for a more specialized approach that can
effectively handle the complexities of both visual and textual knowledge.

In response to these multimodal domain considerations, we propose Multimodal Iterative Retrieval-
Augmented Generation (MI-RAG). As illustrated in Figure 1, MI-RAG is an iterative framework
that cyclically refines its query and reasoning by alternately performing reasoning-guided query
transformation and retrieval-augmented reasoning. Our framework makes two primary contribu-
tions. First, we employ a reasoning-guided multi-query that dynamically searches multiple facets
across modalities. Second, these queries drive a joint search across heterogeneous KBs to find a
diverse set of factual links, allowing MI-RAG to compose visually-grounded knowledge and related
textual knowledge. Through the synergy of multi-query and heterogeneous KBs, MI-RAG is able
to retrieve sufficient knowledge and enable robust compositional reasoning over diverse knowledge
across modalities. Through iterations, MI-RAG collects diverse knowledge progressively with accu-
mulating a reasoning record, where each record is the result of compositional reasoning over newly
retrieved knowledge, thereby refining the model’s understanding to guide the subsequent iteration
step.

2 RELATED WORK

2.1 MULTIMODAL RAG FOR KNOWLEDGE-INTENSIVE VQA

The dominant paradigm for multimodal RAG follows the retrieve-then-read process. Initial work
focused on enhancing the retrieval phase, primarily by learning more effective multimodal embed-
dings. Pioneering approaches aligned queries and text documents using contrastive learning Luo
et al. (2023), while others fused similarity scores from pretrained CLIP Wei et al. (2024). To improve
retrieval, subsequent methods employed fine-grained late interaction between visual and textual to-
kens Lin et al. (2023; 2024) or leveraged MLLMs with instruction tuning to produce multimodal
embeddings Jiang et al. (2025); Liu et al. (2024b); Zhang et al. (2024b). A separate line of research
has explored generative retrieval, using document identifiers Long et al. (2024) or enhancing gener-
ative retrieval via reinforcement learning Long et al. (2025).

Another line of research improves the read phase, typically by reranking or refining the retrieved
candidates. Hierarchical systems first perform a coarse, image-based search and then refine the
results with text-based or multimodal rerankers Caffagni et al. (2024); Yan & Xie (2024); Yang
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et al. (2025). Others leverage the reasoning capabilities of MLLMs to self-reflect on retrieval needs
and evaluate relevance Cocchi et al. (2025), generate semantic tags for consistency and rerank-
ing based on relevance scores Ling et al. (2025). While effective, these methods largely adhere to
the retrieve-then-read process. In contrast, MI-RAG introduces a dynamic loop that iterates be-
tween reasoning-guided query refinement and retrieval-augmented reasoning to progressively solve
knowledge-intensive VQA tasks.

2.2 ITERATIVE RAG

When single-step retrieval is insufficient for complex, multi-hop questions, iterative RAG has
emerged as a powerful paradigm in the text-only domain. These methods typically use an iterative
loop to refine queries and retrieve new knowledge to improve subsequent iterations. Query trans-
formation techniques are central to this process and include query expansion, which uses pseudo-
answers to formulate richer queries Shao et al. (2023); Wang et al. (2024); query generation, which
decomposes complex questions into simpler, answerable sub-queries Zhang et al. (2025); Liu et al.
(2024a); and query planning, where a model strategically decides when and what to retrieve Trivedi
et al. (2022); Yu et al. (2024).

To guide the subsequent query transformation, the LLM performs retrieval-augmented reasoning.
This involves synthesizing newly retrieved information into a reasoning record. Common strategies
include summarizing retrieved passages Jiang et al. (2024c); Zhang et al. (2025), extracting direct
evidence snippets Yu et al. (2024), or generating pseudo-answers for intermediate sub-queries, often
with chain-of-thought prompting Shao et al. (2023); Trivedi et al. (2022). However, these text-based
iterative methods are primarily designed for multi-hop question decomposition, where the goal is to
build a linear reasoning chain. Our work addresses knowledge-intensive VQA, which requires the
composition of diverse knowledge across modalities.

3 METHOD

3.1 FRAMEWORK OF MULTIMODAL ITERATIVE RAG

Algorithm 1 MI-RAG
Require: I,Q,KBT,KBM,MLLM, N
Ensure: Final answer A

1: D ← MLLM(Q, I)
2: QE

0 ← Expand(Q, D)
3: KT ← Ret(KBT, Q

E
0 )

4: KM ← Ret(KBM, I, Q
E
0 )

5: R0 ← Reasoning(MLLM, Q, I, KT, KM, D)
6: for i = 1 to N do
7: QE

i ← Expand
(
Q,Ri−1

)
8: QG

i ← Generate
(
MLLM, Q,R0, . . . , Ri−1

)
9: KT ← Ret(KBT, Q

E
i )

10: KT ← KT ∪ Ret(KBT, Q
G
i )

11: KM ← Ret(KBM, I, Q
E
i )

12: KM ← KM ∪ Ret(KBM, I, Q
G
i )

13: Ri ← Reasoning
(
MLLM, Q, I, Ktext, Kmm

)
14: end for

15: A ← MLLM
(
Q, I, {R0, R1, . . . , RN}

)
16: return A

As detailed in Algorithm 1, the MI-RAG frame-
work processes multimodal queries (an image I
and question Q), through iterative retrieval and
reasoning. For conciseness in the pseudocode,
we use the following abbreviations: KBT for
text KB, KBM for multimodal KB, KT for text
passages, KM for image-text pairs, Ret for Re-
trieve, D for image description, QE for ex-
panded query, QG for generated sub-query, R
for reasoning record and N for iteration counts.
This iterative process begins with the gener-
ation of initial reasoning records (Lines 1–5;
Section 3.2). Subsequently, in each iteration,
MI-RAG leverages the accumulated reasoning
record to formulate the multi-query (Lines 7–
8; Section 3.3) and perform a joint search us-
ing the multi-query across heterogeneous KBs
(Lines 9–12; Section 3.4), thereby dynami-
cally gathering diverse and relevant knowledge.
Following retrieval, MI-RAG updates the rea-
soning record by summarizing newly acquired

knowledge about the queries (Line 13; Section 3.5). Finally, the model derives the final answer over
the accumulated records (Line 15; Section 3.6).

3.2 INITIAL REASONING RECORD GENERATION

The initial reasoning record is generated by leveraging the retrieved knowledge with internal MLLM
knowledge. Specifically, given a multimodal query, the MLLM generates an image description D
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corresponding to the question. We perform query expansion, yielding expanded query QE
0 = [Q,D].

This query QE
0 is then used to retrieve knowledge from our heterogeneous KBs, collecting both

text passages and image-text pairs. Finally, the model synthesizes retrieved diverse knowledge and
descriptions into a reasoning record. This initial process generates the first reasoning record to boot-
strap our iterative framework.

3.3 REASONING-GUIDED MULTI-QUERY TRANSFORMATION

MI-RAG employs a reasoning-guided multi-query transformation that leverages the MLLM’s inter-
mediate reasoning steps to dynamically reformulate the query. This process uses the accumulated
reasoning records to dynamically generate a set of complementary queries, ensuring a comprehen-
sive search for multifaceted knowledge across modalities:

Query Expansion: This method leverages the latest reasoning record to expand the original query.
The resulting query is designed to reflect the model’s latest reasoning, which enhances retrieval
performance while preserving the original question’s intent.

Query Generation: This method produces a set of sub-queries designed to explore alternative rea-
soning paths, resolve ambiguities, or explicitly seek out missing facts identified during the analysis
of the reasoning record.

We provide details of the prompt templates used to guide this transformation in Appendix C.

3.4 JOINT SEARCH ACROSS HETEROGENEOUS KBS

To enhance compositional reasoning, it is crucial to retrieve diverse knowledge across modalities.
To acquire the a diverse set of factual knowledge, we perform a joint search over two heterogeneous
KBs: a multimodal KB and a textual KB. The multimodal KB provides image-text pairs for visual
grounding of entities, while the textual KB offers broad knowledge that extends beyond these pairs.
Each query from the multi-query is used to retrieve candidates from both KBs simultaneously. To
balance the token budget with broad knowledge coverage, our strategy retrieves twice as many text
passages as image-text pairs, collecting up to 20 passages and 10 image-text pairs per iteration. The
implementation details for multimodal retrieval are provided in Appendix D.

Retrieval from textual KB: The textual KB is queried using the multi-query. A text embedding
model is used to retrieve the top-k passages based on semantic similarity.

Retrieval from multimodal KB: In contrast to prior methods that often rely on large, specialized
retrievers, MI-RAG employs a lightweight retrieval strategy. We utilize a multimodal similarity scor-
ing approach Changin et al. (2025) to support query transformation. For each candidate image-text
pair, the similarity score is the average of two components: (1) a text-to-text similarity between
the candidate’s text and the transformed query; and (2) a fixed image-to-image similarity between
the candidate’s image and the input query image, which maintains constant visual relevance across
iterations.

3.5 GENERATE REASONING RECORD WITH KNOWLEDGE

At each iteration, a reasoning record is generated by summarizing the newly retrieved knowledge.
The MLLM synthesizes relevant evidence from visual entities and related text knowledge. This
process utilizes the MLLM’s compositional reasoning to generate a reasoning record that captures
relevant evidence. By iteratively enriching its understanding with these reasoning records, the model
maintains a coherent reasoning path and enables more precise query transformations in subsequent
steps. We provide details of the prompt in Appendix C.

3.6 FINAL ANSWER GENERATION

Upon completion of the N iterative cycles, MI-RAG generates the final answer. In this stage, MLLM
synthesizes the original question Q, the input image I , and the accumulated reasoning records
{R0, . . . , RN} to produce an evidence-based answer.
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4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets: Our evaluation is conducted on three diverse knowledge-intensive VQA benchmarks:
validation split of InfoSeek Chen et al. (2023), validation split of OK-VQA Marino et al. (2019),
and test split of Encyclopedic VQA Mensink et al. (2023). For InfoSeek, we follow the setup of
PreFLMR Lin et al. (2024) and utilize the validation split provided by the M2KR benchmark.

Knowledge Bases: To provide the necessary external knowledge, our framework retrieves text pas-
sages and image-text pairs from heterogeneous KBs, which are held constant across all experiments:
a Wikipedia text corpus provided by FlashRAG Jin et al. (2024) for text KB and a 2M image-text
pairs from Encyclopedic VQA for multimodal KB.

Models: To assess how performance scales with reasoning ability, we primarily use two model vari-
ants: Gemma-3 Team et al. (2025) and Gemini-2.5-Flash Comanici et al. (2025). Our framework
employs lightweight retrievers. For the multimodal retrieval of image-text pairs, we compute a mul-
timodal similarity score using image embeddings from SigLIP2-SO-400m Tschannen et al. (2025)
and text embeddings from ModernBERT Warner et al. (2024). For the retrieval of text passages, we
use E5-base-v2 Wang et al. (2022), following the setup in FlashRAG Jin et al. (2024).

Evaluation Metrics: We evaluate MI-RAG using standard metrics for each benchmark to evaluate
accuracy and retrieval recall. For accuracy, we report the BERT matching score (BEM) Bulian et al.
(2022) on Encyclopedic VQA. On the InfoSeek dataset, we measure Exact Match (EM) accuracy. To
constrain the model’s answer to a single exact entity for this metric, we employ a 4-shot prompting
strategy using examples from the training split. The full prompt template and further details are
available in Appendix E. For OK-VQA, we use the standard VQA-score Marino et al. (2019) and a
Cover Exact Match (Cover EM) Jiang et al. (2024a); Yue et al. (2025), which checks if the ground-
truth answer is contained within the response. To assess retrieval performance, we use two metrics
based on ground-truth annotation availability. Retrieval quality is measured using Recall of ground-
truth entities where available, and Pseudo-Relevance Recall (PRR) otherwise Luo et al. (2021).

4.2 RETRIEVAL PERFORMANCE ON VQA BENCHMARKS

Table 1: Recall comparison on the InfoSeek and Encyclopedic VQA. The FT column with
✓indicates methods fine-tuned on the target dataset. Methods marked with † employ a reranking
step after retrieval. Our vanilla method (‡) uses a single query with expansion to retrieve K pairs
from the multimodal KB, reporting average recall across iterations for fair comparison. Our full
framework (*) reports the cumulative recall after 4 iterations. We report it on R@5, as each query
retrieves fewer than five pairs on average. The best and second-best overall accuracies are high-
lighted in bold and with an underline, respectively.

FT Method InfoSeek Validation Encyclopedic VQA

R@5 R@10 R@20 R@5 R@10 R@20

× CLIP ViT-L/14 Radford et al. (2021) 54.0 61.6 68.6 7.7 12.1 16.5
× SigLIP2-So400m Tschannen et al. (2025) 52.5 60.2 68.3 30.8 36.6 41.9
× EVA-CLIP-8B Sun et al. (2023) 67.1 73.0 77.9 31.3 41.0 48.8

✓ Wiki-LLaVA Caffagni et al. (2024) - 66.1 71.9 - 9.9 13.2
✓ LLM-RA Jian et al. (2024) 53.8 - - - - -
✓ mR²AG† Zhang et al. (2024a) - 65.0 71.0 - - -
✓ ReflectiVA† Cocchi et al. (2025) 77.6 - 86.4 36.1 - 49.8
✓ EchoSight† Yan & Xie (2024) 74.0 77.4 77.9 47.9 48.8 48.8
✓ OMGM Yang et al. (2025) 73.9 80.0 84.8 41.2 49.8 58.7
✓ OMGM† Yang et al. (2025) 80.8 83.6 84.8 55.7 58.1 58.7
× ReAuSE Long et al. (2025) 59.5 - - - - -
× Ours (Gemma-3-4B)‡ 80.8 85.6 89.7 39.1 44.3 49.8

× Ours (Gemma-3-4B)* 88.0 - - 53.6 - -
× Ours (Gemini-Flash-2.5)* 92.1 - - 62.4 - -
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As shown in Table 1, our MI-RAG framework demonstrates effective retrieval without any task-
specific fine-tuning. We analyze its performance by highlighting three key findings: the effectiveness
of reasoning-guided queries in a lightweight setup, MI-RAG’s performance boost from the iterative
process, and the framework’s inherent synergy with larger MLLMs.

To evaluate our reasoning-guided query transformation, we provide a vanilla method (‡), which uses
a single query with a multimodal KB, a small 4B MLLM, and a lightweight retriever for fair com-
parison. This contrasts with approaches that employ larger retrievers and use MLLM for reranking.
Even under these constraints, our method is highly effective, achieving a top R@20 score of 89.7%
on InfoSeek and the second-highest R@20 on Encyclopedic VQA.

Our full framework (*) performs multiple rounds of multi-query searches across heterogeneous KBs
to progressively accumulate multifaceted knowledge across modalities. The results show significant
gains in cumulative recall, reaching 88.0% (+7.2%) on InfoSeek and 53.6% (+14.5%) on Encyclo-
pedic VQA.

Finally, we analyze MI-RAG’s scalability by evaluating its two core components: the MLLM and
the retriever. As shown in Table 1, scaling the MLLM from Gemma-3-4B to Gemini-Flash-2.5
consistently improves performance. This result confirms that a more capable MLLM enhances both
query transformation and compositional reasoning. In Section 6.1, we demonstrate that scaling the
retriever provides a further performance boost.

Table 2: Recall comparison on the OK-VQA
benchmark when utilizing Wikipedia as the
knowledge source. Symbols denote: fine-tuning
(✓); reranking (†); our vanilla baseline (‡); and
our MI-RAG framework (*). The best and second-
best overall accuracies are highlighted in bold and
with an underline, respectively.

FT Methods OK-VQA

PRR@5 PRR@10 PRR@20

✓ ReViz-ICT 61.9 72.6 81.1
✓ GeMKR 70.8 79.1 -
✓ FLMR 68.1 78.0 -
✓ Pre-FLMR 68.6 - -
✓ ReAuSE 88.0 91.3 -
× OMGM† 73.4 - -
× Ours (Gemma-3-4B)‡ 77.1 85.4 91.2
× Ours (Gemma-3-4B)* 95.2 - -
× Ours (Gemini-Flash-2.5)* 97.1 - -

On the OK-VQA benchmark, MI-RAG demon-
strates strong retrieval performance, as detailed
in Table 2. Our vanilla method (‡), despite
its lightweight setup, shows competitive per-
formance. Enabling the full MI-RAG provides
a substantial boost to 95.2% (18.1%) for the
same 4B model. A more powerful MLLM with
stronger reasoning achieves 97.1% recall, out-
performing all prior work.

This robust performance contrasts sharply with
prior methods, which often exhibit a perfor-
mance trade-off across different benchmarks.
For instance, ReAuSE excels in its trained
knowledge domain (OK-VQA) but fails to gen-
eralize to InfoSeek, whereas OMGM shows the
reverse pattern. In contrast, our method shows
high performance across all benchmarks.

4.3 ACCURACY ON VQA BENCHMARKS

As demonstrated in Table 3, our MI-RAG framework establishes a new state-of-the-art on the En-
cyclopedic VQA benchmark. To isolate the contribution of our iterative reasoning, we first evaluate
a setting with a strong initial retrieval provided by Google Lens. This configuration reveals that
performance scales directly with the MLLM’s reasoning capacity: accuracy improves from a com-
petitive 62.8% with Gemma-3-4B to a state-of-the-art 75.5% with Gemini-2.5-Flash. This highlights
the synergy between a high-quality initial retrieval and the model’s ability to iteratively refine it, an
analysis further explored in Section 6.1.

In the more challenging setting without Google Lens, we use reasoning records generated by
Gemini-2.5-Flash with our lightweight retriever setup. When these records are applied to LLaVA-
MORE-8B checkpoint from ReflectiVA as the answerer, our framework achieves a competitive
accuracy of 50.4%. When Gemini-2.5-Flash is used as the answerer, our method achieves 61.4%
accuracy.

On the InfoSeek benchmark, MI-RAG translates its strong retrieval performance into state-of-the-art
accuracy, as detailed in Table 4. Our method achieves 48.0% accuracy with Gemini-2.5-Flash and
improves to 51.7% with GPT-4o as the answerer, outperforming all prior work. This is driven by our
iterative process, where accumulated reasoning records enable robust compositional reasoning over
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Table 3: Accuracy comparison on the Encyclopedic VQA benchmark. A checkmark (✓) indicates
fine-tuning, a dagger (†) denotes MLLM-based reranking, and an asterisk (*) marks the use of Re-
flectiVA checkpoints. Our framework’s Gemma-series models generate their own reasoning records,
whereas other models use records provided by Gemini-2.5-Flash.

Google
Lens FT Method Model Single-hop All

×

✓ Wiki-LLaVA Caffagni et al. (2024) LLaVA-v1.5-7B 21.8 –
✓ EchoSight† Yan & Xie (2024) Mistral-7B 35.5 –
✓ ReflectiVA† Cocchi et al. (2025) LLaVA-MORE-8B 35.5 –
✓ MMKB-RAG† Ling et al. (2025) Qwen2-VL-7B 39.7 35.9
✓ OMGM† Yang et al. (2025) LLaVA-v1.5-7B 50.2 -
✓ OMGM† Yang et al. (2025) GPT-4o 51.2 -
✓ Ours LLaVA-MORE-8B* 50.4 49.2
× Ours Gemma-3-4B 48.4 52.4
× Ours Gemini-2.5-Flash 61.4 62.9

✓

× HAMMR Castrejon et al. (2024) PaLI-X 47.8 –
× LVLM cascade Alazraki et al. (2023) PaLM, GPT-3, PaLI 53.4 –
✓ mR²AG† Zhang et al. (2024a) LLaVA-v1.5-7B 55.9 51.8
× Ours Gemma-3-4B 62.8 63.7
× Ours Gemini-2.5-Flash 75.5 70.8

Table 4: Accuracy comparison on the InfoSeek benchmark: the top section evaluates the full valida-
tion set, while the bottom section assesses a 5K validation split. A checkmark (✓) in the FT column
indicates fine-tuning, a dagger (†) denotes a reranking step, and an asterisk (*) marks the use of
checkpoints from ReflectiVA. Our framework’s Gemma-series models generate their own reasoning
records, whereas other models use records provided by Gemini-2.5-Flash.

FT Method Retriever Model Acc

✓ Wiki-LLaVA Caffagni et al. (2024) CLIP-ViT-L LLaVA-1.5-7B 28.9
✓ EchoSight† Yan & Xie (2024) EVA-CLIP-8B LLaMA3-8B 31.3
✓ mR²AG† Zhang et al. (2024a) CLIP-ViT-L LLaVA-1.5-7B 40.2
✓ ReflectiVA† Cocchi et al. (2025) EVA-CLIP-8B LLaVA-MORE-8B 40.1
✓ MMKB-RAG† Ling et al. (2025) PreFLMR ViT-G Qwen2-VL-7B 36.7
✓ OMGM† Yang et al. (2025) EVA-CLIP-8B LLaVA-1.5-7B 43.5
✓ OMGM† Yang et al. (2025) EVA-CLIP-8B GPT-4o 42.1

✓ RA-VQA-v2 Lin et al. (2024) PreFLMR ViT-G BLIP2-Flan-T5-XL 30.7
✓ MMKB-RAG Ling et al. (2025) PreFLMR ViT-G Qwen2-VL-7B 34.7
✓ MUKA Deng et al. (2025) MUKA VILA-13B 42.5
✓

Ours SigLIP2-SO-400m

LLaVA-MORE-8B* 45.1
× Gemma-3-4B 33.1
× Gemini-2.5-Flash 48.0
× GPT-4o 51.7

multifaceted, diverse knowledge. The strength of this iterative reasoning is further demonstrated by
its ability to improve ReflectiVA’s LLaVA-MORE-8B checkpoint to 45.1%.

Table 5: Comparison of accuracy based on two
metrics: Cover EM, which checks if the ground-
truth answer is included in the response, and Ex-
act Match, which requires the response to match
the ground-truth answer exactly.

Model InfoSeek
Validation

InfoSeek
Human OK-VQA

EM CEM EM CEM EM CEM

Gemma-3-4B 33.1 50.4 32.3 39.3 43.3 68.8
Gemini-2.5-Flash 48.0 61.3 40.5 44.9 57.3 71.0

Recent MLLMs generate detailed, free-form re-
sponses by leveraging multi-stage post-training
to better align with human preferences, mak-
ing strict exact match (EM) an inadequate met-
ric for a comprehensive evaluation, as noted
in prior work Shao et al. (2023); Cocchi
et al. (2025). Consequently, metrics like Cover
EM (CEM), which verify the inclusion of the
ground-truth answer within a longer response,
are increasingly used Jiang et al. (2024a); Yue
et al. (2025); Wang et al. (2025). This gap arises
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when MLLM is not explicitly fine-tuned to produce a strict single-entity answer. The MLLM’s ten-
dency to generate a rationale before the final answer results in penalties under the EM metric.

5 ABLATIONS

We conducted ablation studies to evaluate MI-RAG’s core components. For efficiency, all experi-
ments are performed on downsampled subsets of InfoSeek and Encyclopedic VQA using Gemini-
2.5-Flash as the MLLM. We strictly controlled the retrieval budget to ensure a fair comparison.
For our default heterogeneous KB setting, we retrieve 20 text passages and 10 image-text pairs. To
maintain a comparable budget for multimodal KB, we retrieve 20 pairs. This total retrieval budget
is held constant across both single-query and multi-query. We report performance using cumulative
recall, along with CoverEM on InfoSeek and BEM on Encyclopedic VQA. We provide details of
the downsampling algorithm in Appendix G.

5.1 ABLATION OF COMPONENTS

Table 6: Ablation of MIRAG on the InfoSeek val-
idation subset and Encyclopedic VQA test subset.

Components InfoSeek Encyclopedic VQA

Multi
Query

Hetero.
KB Iter. Acc Recall Acc Recall

× × × 46.70 87.28 50.78 47.06
✓ × × 49.44 90.34 52.94 49.02
× ✓ × 49.21 88.08 51.18 52.75
✓ ✓ × 54.11 91.43 56.67 57.25

✓ ✓ ✓ 61.84 94.36 63.33 67.25

Our ablation analysis in Table 6 reveals the im-
pact of each component. We establish a strong
baseline using a vanilla RAG system over
a multimodal KB, enhanced with our initial
query expansion, which integrates the MLLM’s
knowledge. Introducing the reasoning-guided
multi-query yields a substantial accuracy gain
by gathering the multifaceted knowledge.
Moreover, employing our heterogeneous KB is
crucial for compositional reasoning, as it en-
ables the model to compose visually-grounded

knowledge with the broad textual knowledge. Combining these two components creates a crucial
synergy for compositional reasoning. However, the iterative process delivers the most significant
improvement across all datasets.

5.2 IMPACT OF ITERATIVE REFINEMENT

Table 7: Performance over iterations on the
InfoSeek and Encyclopedic VQA.

Iter. InfoSeek Encyclopedic VQA

Acc Recall Acc Recall

1 55.72 92.13 58.46 65.10
2 59.10 92.95 60.86 66.27
3 61.41 93.44 61.96 66.86
4 61.84 94.36 63.33 67.25

To further investigate the benefits of iterative re-
finement, we analyze performance across multiple
iterations, with results presented in Table 7. The
study confirms that iterative processing is a primary
driver of accuracy, and performance consistently im-
proves over the vanilla baseline across all datasets.
The most substantial gains are typically observed
within the first two iterations, validating the efficacy
of the core refinement loop. As visualized in Fig-
ure 2, these gains gradually saturate.

5.3 IMPACT OF HETEROGENEOUS KB

Table 8: Ablation on the KB configuration, show-
ing performance after 4 iterations. Heterogeneous
KB refers to the use of both KBs, while Mul-
timodal restricts retrieval to the multimodal KB
only.

InfoSeek Encyclopedic VQA

KB Config. Acc Recall Acc Recall

Multimodal 57.49 91.79 56.86 58.63
Heterogenous 61.84 94.36 63.33 67.25

As shown in Table 8, we evaluate the im-
pact of heterogeneous KB. Applying our
reasoning-guided multi-query approach to the
multimodal KB alone yields high recall,
demonstrating its ability to retrieve visually
grounded information. However, its precision
remains limited, indicating that relying solely
on visually grounded knowledge is often insuf-
ficient for compositional reasoning. By com-
bining heterogeneous sources, MI-RAG en-
ables the model to perform compositional rea-
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soning more effectively, leveraging diverse and relevant evidence to refine its search and generate
more accurate reasoning records for the final answer.

6 ANALYSIS

6.1 SCALING RETRIEVERS

Building upon the established benefits of scaling MLLMs, we now investigate the impact of scal-
ing the retriever. We investigated this by employing a larger vision encoder (SigLIP2-g) and a text
embedding model (Qwen3-Embedding-0.6B). On the InfoSeek validation split, when using Gemini-
2.5-Flash for MI-RAG, this enhanced retrieval improves accuracy to 66.7% (+6.4%) and cumula-
tive recall to 95.2% (+3.1%). Similarly, on the Encyclopedic VQA test split, the scaled retriever
paired with the Gemma-3-4B enhances accuracy to 50.2% (+1.9%) and cumulative recall to 65.7%
(+12.1%). These findings confirm that improving retrieval capability provides significant benefits
for MI-RAG’s performance, validating the synergistic design.

6.2 ANALYSIS OF ITERATIVE PERFORMANCE

Figure 2: Accuracy and recall of MI-RAG on In-
foSeek subset across 9 iterations.

We analyze how iterative refinement impacts
MI-RAG’s performance by measuring accuracy
and recall across iterations. As shown in Fig-
ure 2, performance improves consistently with
each step. The initial iterations deliver signif-
icant gains. Although the rate of improvement
moderates in later steps, the model continues to
achieve substantial gains in accuracy and recall.
This performance improvement comes with an
associated computational cost for each itera-
tion, which we detail in Appendix F.

6.3 TOP-K SENSITIVITY ANALYSIS

Table 9: Top-k sensitivity analysis on the
InfoSeek validation subset. k indicates the
number of retrieved image-text pairs.

Model Metric k = 10 k = 20

Gemma-3-4B Acc 52.66 48.95
Recall 90.82 94.52

Gemini-2.5-Flash Acc 61.84 65.70
Recall 94.36 95.97

Our sensitivity analysis on the InfoSeek validation
subset (Table 9) reveals that the benefit of a larger
retrieval budget is only beneficial if the MLLM is
capable enough to handle the additional context. As
shown in Table 9, the results reveal that simply in-
creasing the retrieval budget is not always beneficial.
For instance, Gemma-3-4B shows a degradation in
accuracy when k is increased from 10 to 20, sug-
gesting that the additional context may potentially
distract, hindering its ability to gather the correct ev-

idence.

7 CONCLUSION

In this work, we introduce MI-RAG, a novel multimodal iterative RAG framework that addresses
key challenges in knowledge-intensive VQA. MI-RAG employs a reasoning-guided multi-query
transformation that dynamically explores multiple facets of an entity and its related textual knowl-
edge across modalities. To facilitate compositional reasoning, its iterative process uses this retrieved
evidence to progressively synthesize visual entities and corresponding textual knowledge, effec-
tively integrating a diverse set of factual links. Our results demonstrate that MI-RAG is an effective
and scalable paradigm for advancing compositional reasoning in knowledge-intensive VQA. Fur-
thermore, our analysis indicates clear pathways for future work, such as scaling components by
integrating web-scale search or dynamically adjusting the retrieval budget based on model capabil-
ity.
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8 ETHICS STATEMENT

Our work introduces new methods for multimodal retrieval-augmented generation for knowledge-
intensive visual question answering, and we acknowledge the associated ethical implications. Poten-
tial risks include the propagation of biases from the underlying knowledge bases, which can lead to
the generation of inaccurate or misleading information. To mitigate these concerns, our framework is
intended for research purposes and requires careful evaluation before any deployment. Our approach
uses only publicly available datasets and knowledge bases and does not involve private or person-
ally identifiable information. We advocate for continued research on methods for bias detection and
mitigation to ensure responsible development of these technologies.

9 REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide the main algorithm code for MI-RAG in the supplementary
materials. This includes comprehensive scripts for preparing the evaluation data, constructing the
knowledge bases, and executing the main experiments. All implementation details, including our
core algorithm, are described in Section 3 and detailed in Algorithm 1. The experimental setup,
including datasets, knowledge bases, model variants, and evaluation metrics, is thoroughly outlined
in Section 4.1.

REFERENCES

Lisa Alazraki, Lluis Castrejon, Mostafa Dehghani, Fantine Huot, Jasper Uijlings, and Thomas
Mensink. How (not) to ensemble lvlms for vqa. In Proceedings on, pp. 1–20. PMLR, 2023.

Chen Amiraz, Florin Cuconasu, Simone Filice, and Zohar Karnin. The distracting effect: Under-
standing irrelevant passages in rag. arXiv preprint arXiv:2505.06914, 2025.

Jannis Bulian, Christian Buck, Wojciech Gajewski, Benjamin Börschinger, and Tal Schuster.
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report. arXiv preprint arXiv:2503.19786, 2025.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509, 2022.

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
Multilingual vision-language encoders with improved semantic understanding, localization, and
dense features. arXiv preprint arXiv:2502.14786, 2025.

Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen, and Sercan Ö. Arık. Astute rag: Overcoming
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