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Abstract

Traveling waves are a fundamental phenomenon
in the brain, playing a crucial role in short-term
information storage. In this study, we leverage
the concept of traveling wave dynamics within a
neural lattice to formulate a theoretical model of
neural working memory in Recurrent Neural Net-
works (RNNs), study its properties, and its real
world implications in AI. The proposed model
diverges from traditional approaches, which as-
sume information storage in static, register-like
locations updated by interference. Instead, the
model stores data as waves that is updated by
the wave’s boundary conditions. We rigorously
examine the model’s capabilities in representing
and learning state histories, which are vital for
learning history-dependent dynamical systems.
The findings reveal that the model reliably stores
external information and enhances the learning
process by addressing the diminishing gradient
problem of RNNs. To understand the model’s
real-world applicability, we explore two cases:
linear boundary condition and non-linear, self-
attention-driven boundary condition. The experi-
ments reveal that the linear scenario is effectively
learned by RNNs through backpropagation when
modeling history-dependent dynamical systems.
Conversely, the non-linear scenario parallels an
attention-only transformer. Collectively, our find-
ings suggest the broader relevance of traveling
waves in AI and its potential in advancing neural
network architectures.
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Figure 1. Illustration of information storage in traveling waves
- A prominent hypothesis on the computational utility of traveling
waves says that information is stored as ripple like waves that
propagate outwards with time. A snapshot of the resulting wave-
field provides all information necessary to reconstruct the recent
history by encoding both when and where (in the dimensions of
the stimulus) a stimulus occured.

1. Introduction
Traveling waves are ubiquitous in neurobiological experi-
ments of human memory (Davis et al., 2020a). They have
been observed during awake and sleep states throughout
the brain, including the cortex and hippocampus and have
been shown to impact behavior (Davis et al., 2020b). Sev-
eral hypotheses based on experimental evidence point to the
utility of these waves in memory storage (Benigno et al.,
2023). One of the hypothesis suggests external stimuli in-
teracts with neural networks to form neural activity that
propagates through the brain (Muller et al., 2018; Perrard
et al., 2016). A snapshot of this wave field in the brain
provide the information necessary to reconstruct the recent
past, a mechanism ideal for the memory storage. Recent
empirical evidence also points to the potential utility of trav-
eling waves in artificial intelligence. Of note is a recent
empirical work that introduced traveling waves explicitly in
the parameters of Recurrent Neural Networks (RNNs) and
found that this simple addition improves its learnability and
generalization properties (Keller et al., 2023).

Current hypotheses of working memory in RNNs, however,
assume variables as bound in fixed register-like locations
(Sreenivasan et al., 2014; Chumbley et al., 2008; Compte
et al., 2000) that are updated by interference (McGeoch,
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1932) or decay over time (Barrouillet et al., 2011) to make
way for new variables. In this work, we assume the alter-
nate principle that working memory variables are bound to
traveling waves of neural activity. We first derive a working
memory model using the traveling wave principle applied to
a neural substrate. We show that this model can approximate
the state history required to encode any history-dependent
dynamical system. We demonstrate the practical utility
of the model by showing theoretical connections between
the model and RNNs by assuming linear wave boundary
conditions, and the autoregressive loop of transformer self-
attention by assuming non-linear wave boundary condition.
We then show theoretical and empirical evidence for the
existence of traveling waves in trained Recurrent Neural
Networks. Further, we also demonstrate the benefits of
utilizing traveling waves in the gradient propagation behav-
ior of RNNs. The results demonstrate the applicabiltiy of
traveling waves beyond neurobiology, and its potential in
understanding and improving the computational properties
of Recurrent Neural Networks.

2. History-dependent Dynamical Systems
(HDS)

Working memory in humans is typically studied using list
recall tasks (Wechsler, 1945; Chelune et al., 1990; Cabbage
et al., 2017). In a typical setting for these tasks, list items to
be remembered are first presented to a subject, then a math
distractor is presented to remove any primacy or recency
effects, and finally the subject is asked to recall the items
in the presented list. This study protocol provides suffi-
cient and useful information about human working memory,
which we know very less about, but investigating AI mem-
ory systems require tasks that are more challenging and
closer to what the AI is used for. Consider the example of a
question answering neural network typically used in Natural
Language Processing applications. At discrete timesteps,
the user first provides the question and then the answer is
obtained by running the network. This setting widely differs
from that of the list recall task.

To address the issue of practicality, while retaining exper-
imental control, we consider a class of discrete history-
dependent dynamical systems (HDS) as tasks to experimen-
tally and theoretically evaluate working memory. HDS are
a class of dynamical systems where the the next state is
a function of the current state and the state history prior
to the current state. A canonical example of an HDS is
the Fibonacci series, where the next state is the arithmetic
sum of the previous two states of the system. The HDS
is initialized with the necessary history to start generating
future states without any ambiguity akin to the query that is
provided to a generative model. Compared to the traditional
working memory tasks, HDS have the following benefi-
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Figure 2. Traveling Wave Memory Architecture - The traveling
wave based working memory architecture is composed of a neural
substrate hij with neurons arranged in a rectangular lattice. d
independent waves travel from the column with index i = s down
to i = 1. These waves are independent and do not interact with
each other as they travel in the substrate. The end boundary of the
substrate is left open so there is no interference from reflecting
waves, and the start boundary condition is computing a function f
of the entire neural substrate at the previous time step. This simple
model is found to underlie working memory storage in RNNs.

cial properties as experimental and theoretical setups - (1)
their dynamic equations can be known in advance enabling
reasoning about any learned behaviors, (2) their parameters
such as history and evolution function can be experimentally
controlled, (3) they have infinite horizon enabling evaluating
length generalization properties.

Mathematically, the state evolution of a general history-
dependent dynamical system with a history of s states is
represented by the following equations.{

xi if 1 ≤ i ≤ s
xi = f(xi−1, . . . , xi−s) if i > s

(1)

The first s states of the system are initialized with xi ∈ Rd,
where d is the dimension of the state space. After the s
steps, the system evolves according to the rule specified by
the function f acting on the previous s states. For example,
in the canonical Fibonacci case, s = 2 and the function f
is the addition operation. Now that we have a controlled
experimental setup for testing working memory, we define
the model in the next section.

3. Traveling Wave based Working Memory
(TWM)

Modeling of an HDS requires efficient storage of the past
s states in a manner that is accessible to compute future
states. Further, the storage mechanism should enable updat-
ing these past states as needed. We use the traveling wave
principle to formulate a working memory model where each
dimension of the state history is represented by 1-D travel-
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ing wave of activity in a neural substrate as shown in Figure
2.

Two components are required to fully define any wave prop-
agation behavior in a substrate - (1) Wave components and
how they interact as the waves travel in the substrate (2)
Conditions for what happens to the waves at the boundaries
of the substrate. For the first component, we consider each
dimension of the state as an independent wave that does not
interact with the other waves as it travels in the substrate.
The interactions are at the the start boundary computing the
function f and generating new states to propagate. The end
boundary is left open so that the waves do not reflect and
interfere.

To derive the working memory model with the two compo-
nents, we start with the equations for waves traveling in a
continuous substrate and discretize the substrate and time.
1-D waves traveling in d independent continuous substrates
(represented by the position vj , j ∈ {1, 2, . . . , d}) is given
by the following equation.

∂h(vj , t)

∂t
= νj

∂h(vj , t)

∂vj
(2)

There is one wave for each dimension of the state. Now,
we Euler discretize vj with a step size of 1 to account for
the discrete positions of neurons in the wave substrate, Eu-
ler discretize time with step size of 1 to obtain a discrete
dynamical system, and apply the function f at the start
boundary with the end boundary open. We finally arrive at
the following discrete dynamics (Appendix A.2).{

hi,j(t+ 1) = hi−1,j(t) 1 ≤ i < s

hs,j(t+ 1) = f(hs(t), . . . , h1(t))j otherwise
(3)

The wave activity begins at the start location s as a vector
of neural activities and travels through the substrate till
column 1 where the open boundary makes the activity flow
out without reflection. As the wave flows, new activity is
added to location s as a function f of the entire wave state
which gets propagated. This process can potentially have
infinite horizon.

Theorem 3.1. Any history dependent dynamical system with
a state dimension of d, a history of s states and an evolution
function f can be represented in the traveling wave model.

The proof is by construction. For all HDS, the state history is
defined as the neural activity h and the function f computing
the start boundary of the traveling wave is the same as the
function f computing the next state in the HDS.

To illustrate this equivalence, consider an elementary ex-
ample of encoding the Generalized Fibonacci series where

each element Fn ∈ Rd is a vector defined recursively as,

Fn =



u1 n = 1

u2 n = 2
...
us n = s∑n−1
t=n−s Ft n > s

(4)

for any ui ∈ Rd. In order to store this process of generat-
ing sequences of Fn, the vectors u1, u2, . . . us needs to be
stored as variables and recursively added to produce new
outputs. In the wave working memory framework, this can
be accomplished by initializing the neural substrate such that
hij = (ui)j , that is each u is stored as activity of distinct
columns of the substrate. To encode the Fibonacci process
in Φ, the end boundary is open and the start boundary is
defined by the following equation.

f(hs−1(t), . . . , h1(t))j =

s∑
i=1

hi,j (5)

The representation theorem and the Fibonacci example
demonstrates that the TWM stores and reliably computes us-
ing the past information for any HDS. We now consider two
cases of the TWM - linear boundary condition (LBC) and
self-attention boundary condition (SBC) that are relevant
for practical AI applications.

3.1. Linear Boundary Condition (LBC)

The Generalized Fibonacci was an elementary example
whose purpose was to demonstrate how a given HDS can
be converted to the traveling wave form. We now make two
key generalizations of the Generalized Fibonacci setup that
makes the traveling wave model relevant to practical neural
models. The first generalization focuses on the nature of the
function f . In Generalized Fibonacci, f was a simple addi-
tion operation over all the previous stored history states. In
the LBC, the f is generalized to be any linear operator act-
ing on the previous history states. The second generalization
is related to the linear basis for representing the model. In
the Generalized Fibonacci example, we implicitly assumed
the standard basis for the substrate state representation. We
allow for representing the LBC in any linearly independent
basis vectors (Karuvally et al., 2023a). We show that with
these two generalizations, the traveling wave model has a
simple iterative matrix representation applicable to RNN
dynamics.

LBC is defined with a flattened state representation (column
wise) for the neural substrate h′id+j = hi,jψid+j , where the
set of column vectors ψid+j ∈ Rsd form a basis. With the
linear f assumption and the new basis, we can represent
the entire traveling wave dynamics as a simple iterative
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application of a matrix shown below.

Φ =

(s−1)d∑
µ=1

ψµψ
µ+d +

sd∑
µ=(s−1)d+1

sd∑
ν=1

Φµνψµψ
ν

︸ ︷︷ ︸
f(u(t−1),u(t−2),...,u(t−s))

. (6)

The matrix is represented as the sum of products of column
and row vectors to conveniently separate out the two actions
of the matrix. The first part encodes the wave propagation in
a neural substrate defined in a vector space spanned by the
basis elements ψµ. The action of the first part of the matrix
in this space is visualized in 2D array form as a shift matrix
in the first s− 1 subspaces of Figure 4 (rows indexed 1− 7).
The subspaces are groups of d basis vectors and represent
each column of the wave substrate. Each basis vector ψµ
has associated with it a row vector (the basis covector), ψµ

(note the change from subscript to superscript) defined such
that the dot product of the row with the column basis vector,
⟨ψµ, ψν⟩ = 1 only if µ = ν, else ⟨ψµ, ψν⟩ = 0. The
second part encodes the linear boundary condition f (the
8th row) of Figure 4. This matrix acts on the entire flattened
wave substrate and store the result in the sth column of the
substrate. The traveling wave model now can be represented
as a simple iterative application of the matrix Φ on the
flattened substrate state h : h(t) = Φh(t − 1). Since the
‘output’ of the HDS encoded by the traveling wave model
is only the sth column of the neural substrate, we add a
transformation of the hidden state for output (y(t)) that
outputs the activity in the last column in the standard basis.
The other columns store the necessary history to compute
the next state in the HDS, but is otherwise not relevant as
output. The final dynamical evolution equations are shown
below: 

h(t) = Φh(t− 1) ,

y(t) =

sd∑
(s−1)d+1

eµ−(s−1)d ψ
µ h(t) .

(7)

The final equations of the system has a familiar form to
a first order approximation of RNN dynamics (Appendix
A.5)! In our experiments, we show that this similarity to
RNN is not an artifact of the linear assumptions of the theory,
but linearizing RNNs trained on HDS using backpropaga-
tion consistently converge to the TWM with LBC. Another
interesting connection of this wave dynamical equations is
with existing state space models (Gu et al., 2022; Gu & Dao,
2023) where Φ is the matrix A. A prominent state space
model, H3 (Dao et al., 2022), has its A matrix initialized
with an off diagonal shift matrix - a variant of the wave
propagation matrix with both the two boundaries open. We
do not delve into this connection in this paper.

3.2. Self-attention Boundary Condition (SBC)

The linear boundary condition significantly restricts the type
of HDS the traveling wave working memory can handle to
linear cases. In this section, we consider the non-linear
case, where the function f is the self attention operator.
Consider the discrete TWM defined in Equation 3 with a
self attention based dynamical evolution equations defined
below The boundary condition of this system can be written
as:

hs,j(t+ 1) =

d∑
i=1

exp
(
h⊤i WKWQhs

)∑
k exp

(
h⊤kWKWQhs

)WV hi (8)

The resultant dynamical equations is the autoregressive com-
putations of a single head of a attention layer in transformers.
This new perspective provides a justification for the trans-
former architecture, where the autoregressive loop of a self
attention head is implicitly a traveling wave based working
memory with non-linear boundary conditions.

This perspective provides alternate justification for the better
properties (and applicability) of transformers compared to
typical RNNs. One benefit is that, while RNNs have to learn
the traveling wave mechanisms through backpropagation,
transformers are set up to explicitly encode the history in
its context. This significantly reduces the training time and
prevents potential issues arising from poor traveling wave
encoding in RNNs. Another tentative benefit comes in the
form of improved non-linear interactions and the ability to
approximate any non-linear boundary conditions using the
self attention operation with learnable matrices WK ,WQ

and WV . Taken together, traveling waves have far reaching
implications beyond the theoretical benefits we showed here
and can aid in the development of efficient and smarter AI
systems.

4. Results
In this section, we investigate the potential role of the TWM
theory in informing and improving Recurrent Neural Net-
works (RNNs). First, we show empirical evidence of con-
vergence to the theoretical equations of Φ in Equation 6,
demonstrating the practical relevance of the theory in im-
proving our understanding of RNN computations. Utilizing
our understanding of TWM, we show RNNs encoding past
information as hidden traveling waves, revealed only after
accounting for the basis transformation introduced in the
LBC section. We also show a simple method that linearly
transforms and reveals the underlying TWM matrix of Equa-
tion 6 hidden in the trained weights of RNNs. Lastly, we ob-
tain the theoretical result that the TWM framework has ben-
efits for training, by alleviating the diminishing/exploding
gradient problem in RNNs - a longstanding problem in RNN
theory.
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Model Task hidden size: 64 hidden size: 128
L2: 0.0 L2: 0.001 L2: 0.0 L2: 0.001

RNN (no bias)

T1 — (0.97) — (0.88) 0.0005 (1.00) — (0.93)
T2 0.0075 (1.00) — (0.85) 0.0055 (0.98) 0.0031 (0.98)
T3 0.0026 (1.00) 0.0010 (0.97) 0.0031 (0.98) 0.0005 (1.00)
T4 0.0112 (0.94) 0.0011 (1.00) 0.0022 (1.00) 0.0006 (1.00)

RNN (with bias)

T1 — — 0.0005 (1.00) —
T2 0.0152 (1.00) — 0.0053 (1.00) 0.0006 (1.00)
T3 0.0032 (1.00) 0.0007 (1.00) 0.0031 (1.00) 0.0005 (1.00)
T4 0.0115 (1.00) 0.0011 (1.00) 0.0023 (1.00) 0.0006 (1.00)

Table 1. RNNs consistently converge to the TWM encoding of the HDS: The top image shows the composition functions for the 4
linear HDS tasks, visualized as a matrix with x-axis input, and y-axis output. Red color denotes +1, blue is -1 and no color is 0. T1 is the
linear function representing the repeat copy task, the rest are other general variable composition functions. The matrix can be imagined
as an operator acting on the sd = 8 × 8 = 64 dimensional substrate vector from the left. The table shows the MAE in the complex
argument between the eigenspectrum of the predicted Φ from the TWM and the empirically learned Whh in the 4 tasks across 20 seeds
under different RNN configurations. This average error is indeterminate (—) if the rank of the theoretical Φ is different from the empirical
Whh. Values in the brackets show the average test accuracy of the trained model. For models that have high test accuracy (> 0.94), the
error in the theoretically predicted spectrum is very low indicating consistent convergence to the theoretical circuit. A notable exception
of this behavior is T1 with hidden size= 64 and L2 = 0, where the restricted availability of dimensions forces the network to encode
variables in bottleneck superposition resulting in a low-rank representation of the solution. It is notable that the low-rank matrix is also a
TWM, where the state history representation is compressed.

Experimental Setup

For the experimental tasks, we consider linear restriction
of HDS which ensures experimental control and ease of
interpretation of learned recurrent behavior. The General-
ized Fibonacci was a good theoretical setup, but cannot be
learned directly in RNNs whose neural activity is typically
bounded by squashing non-linearities with non-linear re-
sponse profiles. We therefore focus on a restricted HDS
defined in Equation 1 with binary state representations
(xi ∈ {−1, 1}d, f : {−1, 1}sd → {−1, 1}d). The func-
tion f can be easily visualized as a matrix acting on the
flattened neural substrate (Table 1(top)). The functions are
chosen to conserve the volume of the state space so that the
HDS sequence does not converge or diverge over time. The
objective of the RNN is to produce the next element of the
HDS binary sequence. To store the s initial steps and to
produce HDS without ambiguity, the entire learning setup
is divided into two phases - the input phase and the output
phase.

The input phase lasts for s timesteps. During each
timestep t (where 1 ≤ t ≤ s) of this phase, the RNN

receives a d-dimensional input column vector u(t) =
[u1(t), u2(t), . . . , ud(t)]⊤. These vectors u(t) provide the
external information that the RNN is expected to store
within its hidden state and initializes the HDS.

Once the input phase concludes at timestep s, the output
phase begins immediately from timestep s+ 1. During the
output phase, the RNN no longer receives external input and
instead operates autonomously, generating outputs based on
the information stored during the input phase.

The RNN output is evaluated during the output phase and
compared with the known ground truth of the HDS se-
quence using the MSE loss. Backpropagation Through
Time (BPTT) is employed as the learning algorithm to esti-
mate the parameters of the RNN from the data. We do not
restrict the RNN training in any other way. It is instructive
to note that T1 (one of the HDS we consider) is the Repeat
Copy task - a canonical task used to evaluate the memory
storage properties of Recurrent Neural Networks (Graves
et al., 2014). See Appendix B for details on the experimental
setup and methodology.
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Timestep

A B

Input
Phase

Output
Phase

time= 4 time= 5 time= 6 time= 7

time= 14 time= 15 time= 16 time= 17

timestep

Figure 3. Basis transformation reveals traveling waves encoding the recent past in the repeat copy task (with s = d = 8): A.
In the repeat copy task (T1), the RNN needs to repeatedly produce an input sequence that is presented. A typical trained hidden state
after providing the input does not show any meaningful patterns connected to the input. B. The same hidden states when their basis is
transformed reveal the input information being stored as waves of activity traveling from the variable with index 8 down to the variable
with index 1 that are repeatedly mutated with the boundary condition.

Model

We consider simple Elman networks as RNN models for the
experiments (Rumelhart et al., 1986). Although elementary,
these networks are canonical models to investigate the be-
havior of recurrent neural networks. Further, compared to
advanced architectures like LSTMs, they provide ease of
understanding and analytic simplicity. The Elmann RNN is
defined by the following equations.{

h(t) = σ(Whhh(t− 1) +Wuhu(t))

y(t) =Wrh(t)
(9)

Here, h(t) ∈ Rn is a vector representing the hidden state
of the RNN at time t, u(t) ∈ Rd is the input to the RNN
at time t, and y(t) is the output at time t. The Whh ∈
Rn×n,Wuh ∈ Rn×d,Wr ∈ Rd×n are matrices that are
learned. The RNN non-linearity σ is the tanh activation
function.

4.1. Linearization of RNNs trained on linear HDS show
consistent convergence to Traveling Waves with
LBC

Do practical RNNs employ traveling waves to store history?
To answer this question, we trained various RNN configura-
tions, differing in hidden sizes and regularization penalties
on 4 HDS, each differing in the linear composition function
f (See matrix representation of f at the top of Table 1).
After training, the RNNs were linearized, and the eigen-
spectrum of the learned Jacobian matrix (Appendix A.5) is
compared with the theoretical Φ, we found for the TWM
with LBC in Equation 6. If RNNs learn a representation
in alignment with TWM, both operators, i.e., the learned

Jaconian and theoretical Φ, are expected to share a portion
of their eigenspectrums as they are similar matrices (i.e they
differ only by a basis change). The Jacobian is obtained
by adapting existing linear dynamical systems analysis of
RNNs (Sussillo & Barak, 2013) detailed in Appendix A.5.

The comparison excludes the real part of the spectrum. The
rationale behind this exclusion lies in what the magnitude
tells about the dynamical behavior. The eigenvalue mag-
nitude portrays whether a linear dynamical system is di-
verging, converging, or maintaining consistency along the
eigenvector directions (Strogatz, 1994). RNNs typically
incorporate a squashing non-linearity, such as the Tanh ac-
tivation function, which restricts trajectories that diverge
to infinity. Essentially, provided the eigenvalue magnitude
remains ≥ 1, the complex argument solely determines the
overall dynamical behavior of the RNN. Table 1 depicts
the average absolute error in the eigenspectrum and test
accuracy when the RNN models are trained across 4 distinct
variable binding tasks. The table shows that RNNs consis-
tently converge to the hypothetical circuit. This indicates
that RNNs employ traveling waves in their dynamics. Next,
we investigate what information these traveling waves carry
and how TWM with LBC can be utilized to analyze and
understand RNN behavior.

4.2. Hidden traveling waves encode recent history in
trained RNNs

We approximated the wave substrate of RNNs trained on the
Repeat Copy task (T1) using an algorithm and visualized the
hidden state. T1 was chosen because it is easy to interpret
and visualize, the results hold for other binary HDS tasks
also. We use a power iteration based algorithm described
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Algorithm 1 Algorithm to approximate linear basis of
trained RNNs

0 ≤ α ≤ 1
s ▷ number of time-steps in the input phase
Whh,Wr ▷ learned parameters of the RNN
Ψs ←W †

r

for k ∈ {s− 1, s− 2, . . . 1} do
Ψk ←

((
W⊤
hh

)k
W †
r

)
Ψk ← Ψk − EE†Ψk ∀E : λ(E) < 1 ▷ Remove

the components along transient directions.
end for
Ψ← [Ψ1; . . . ; Ψs]

Ψ⊥ ← PC({ ˜h(t)} −ΨΨ† {h̃(t)}) ▷ Principal
Components of h̃ from simulations

in Algorithm 1 to approximate the linear basis of the TWM
with LBC learned by the empirically trained RNNs (detailed
error analysis can be found in Appendix A.6).

In the Repeat Copy task, the RNN must repeatedly out-
put the stream of inputs provided during the input phase.
The simulated hidden states of learned RNNs are visual-
ized by projecting the hidden state into the columns of the
wave substrate: h̃ = ΨΨ†h, where † is the Moore Penrose
pseudo-inverse of the matrix Ψ. The results shown in Fig-
ure 3 reveal that the hidden state is in a superposition (or
distributed representation) of latent neurons that actively
store each variable required to compute the function f at all
points in time. These variables act as the substrate for wave
propagation as shown in the figure.

Finding the linear basis transformation also means that the
hidden computations of the learned parameters can be re-
vealed by using the transformation. Figure 4 utilizes the
computed basis to transform the learned parameters of the
RNN. The figure shows connectivity structure exactly pre-
dicted by the TWM with LBC encoding for each task.

4.3. TWM improve gradient propagation

A consistent problem in RNNs is the diminishing/vanishing
gradient problem, which has been the subject of intense
investigations and model improvements (Hochreiter & Ben-
gio, 2001; Pascanu et al., 2012). The main argument for
the gradient problem is that the repeated application of the
RNN weight matrix to the gradient results in the gradient
magnitude diminishing or exploding the farther back it is
propagated (Arjovsky et al., 2015). TWMs provide an alter-
nate solution to the problem by representing the state history
spatially in the RNN hidden state without resorting to ad-
vanced architectures. This representation thus removes the
requirement for the gradient to be propagated backward in
time, entirely eliminating the diminishing gradient problem.
Assume an RNN learning the history dependent dynamical

system given by Equation 1. The RNN is fed the initial
conditions in the first s timesteps and then, the output of the
RNN at each timestep y(t) is compared with the x(t) in the
equation, obtained by computing f for t > s timesteps. The
HDS is

Without TWM

Let’s consider a random initialization of the RNN devoid
of any wave phenomenon. Let C(y(s + 1), x(s + 1)) be
the cost function computed at time s + 1. We will now
analyze the influence of the input at time 1 - x(1) on the
cost function evaluated at time s+ 1.

∂C

∂x(1)
=

∂C

∂h(s+ 1)

(
s∏

k=1

∂h(k + 1)

∂h(k)

)
Wxh (10)

=
∂C

∂h(s+ 1)

(
s∏

k=1

J (σ)Whh

)
Wxh (11)

(12)

Now, if we are to upper bound the norm of the cost gradient,

∥ ∂C

∂x(1)
∥ ≤ ∥ ∂C

∂h(s)
∥ ∥(J (σ)Whh) ∥s ∥Wxh∥ (13)

≤ ∥ ∂C

∂h(s)
∥ ∥Wxh∥µs (14)

Assuming the matrix norm of the Jacobian, J (σ)Whh, is
upper bounded by µ, we have the inequality above which
states that the upper bound of the cost derivative norm de-
cays by a factor of µ based on how high s is. In other words,
increasing the size of the context (s), any perturbations of
the input far back in context do not propagate to the loss
gradient.

With Traveling Waves

With the Traveling Waves in Equation 6, we have h(s) =
ϵ+

∑s
µ=1

∑d
i (x(µ))

i ψ(µ−1)d+i. Here ϵ is any activity in
addition to the wave activity. We can similarly derive the
gradient of the cost function with respect to the input at
timestep 1.

∂C

∂x(1)
=

∂C

∂h(s+ 1)
J (σ)Whh

(
d∑
i

ψi +
∂ϵ

∂x(1)

)
(15)

Similar to the previous analysis, we can upper bound the
norms

∥ ∂C

∂x(1)
∥ ≤ ∥ ∂C

∂h(s+ 1)
∥
(
µd+ µ∥ ∂ϵ

∂x(1)
∥
)

(16)

(17)

It can be noted here that compared to the analysis without
TWM, there is no power on the µd term to compute the
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A B

Figure 4. TWM improve human interpretation of the RNN parameters (with s = d = 8): The learned weights when visualized in
the LBC basis results in a form that is human-interpretable. For RNNs trained on two sample tasks T1 (A left) and T2 (B right), the weight
matrix Whh converts into a form that reveals internal mechanisms of how RNNs solve the two tasks. For both tasks, the variables with
index < 8 copies its contents to the preceding variable resulting in a wave of activity. Variable 8 actively computes the function f applied
on all the variables stored in the hidden state as boundary condition. For T1, the boundary condition is a simple copy of the 1st variable,
and for T2, it is a linear composition of all the variables Notably, the circuit for T2 shows an optimized basis where the wave for each
dimension travels only till the boundary that is necessary to be stored for computation.

gradient. There can be higher powers of µ in µ∥ ∂ϵ
∂x(1)∥

terms, however, these terms contribute only additively to
the upper bound. As a result, the gradient upper bound need
not vanish for the traveling waves.

In other words, since each of the RNN inputs x(t) is stored
explicitly spatially in the hidden state as the activity of prop-
agating waves, how far back the input is, does not effect
gradient computation. This holds as long as the gradient is
propagated within the length of the wave substrate. The ex-
perimental results in Figure 5 show the gradient propagation
issue indicated by the gradient norm improving during train-
ing as the traveling waves are learned in the RNN weights.

5. Discussion
In this work, we introduced a Traveling wave based Working
Memory (TWM), that stores variables required for computa-
tion in neural waves of activity instead of fixed register-like
locations. We defined two cases of the theory where the vari-
ables are updated linearly using linear boundary conditions
(LBC) and non-linearly using self-attention based boundary
conditions (SBC). We theoretically connected LBC to Re-
current Neural Networks shedding light into the potential
information storage mechanisms in these networks. We also
connected SBC to transformer architectures, providing an
alternate justification for the computational advantages of
transformers over standard recurrent architectures.

The investigation of empirical RNNs trained on history-

dependent dynamical systems revealed that they employ hid-
den traveling waves for the storage of external information.
Building on the evidence, we defined a linear basis for the
trained RNN parameters that revealed latent waves actively
involved in working memory storage. Further, we viewed
the learned parameters of an RNN in a human-interpretable
manner, enabling reasoning and understanding RNN behav-
ior as propagating wave activity. Using the tools from the
theory, we fully deconstructed both the hidden state behavior
and the learned parameters of empirically trained RNNs. We
further showed that traveling waves have improved learning
behavior by alleviating the diminishing/exploding gradient
issue. A notable recent work (Keller et al., 2023) showed
empirical success by explicitly introducing waves into RNN
computation. In their experiments they showed how the
RNN with the explicitly added wave dynamics train effi-
ciently, and generalize better compared to other RNN vari-
ants. Our work adds theoretical support and adds empirical
evidence that wave computation emerges naturally in simple
RNN networks without any modifications. Through both
theoretical and empirical evidence, we add credibility to the
claim that traveling waves play a role in information stor-
age in biological and artificial intelligence. The work also
provides a path to generalize the fixed memory paradigms
used in the development of memory models (Hopfield, 1982;
Krotov & Hopfield, 2016; Karuvally et al., 2023b), to the
adaptive and dynamic case of working memory (Karuvally
& Siegelmann, 2023).

Limitations: With these results, it is also important to rec-
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input index (i) training step

training 
step

de
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ra
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A Bgradient norm 
trend during training

gradient propagation 
improvement during training

no
rm

al
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ed

Figure 5. Analysis of the RNN gradient propagation behavior reveals the diminishing gradient problem alleviating during training,
as predicted by the TWM: The experiment on the trends in the gradient norm with respect to RNN inputs show that the diminishing
gradient issue reduces during training A. During early training iterations, the gradient norm decays exponentially the farther it is propagated
(denoted by lower input indices). This diminishing behavior is slowly alleviated as training progresses, with later training iterations
gradient norm approaching 1 - the ideal gradient norm required for preventing the diminishing/exploding gradient issue. B The analysis of
the decay rates (shown by the red line) during training show sharp decrease during training, after which the decay rate remains close to 0.
The transition to the decay rate of 0 happens when the absolute value of the maximum eigenvalue (shown by the blue line) crosses 1. At
this point, the eigenvalue crosses the unit circle in the imaginary plane and traveling waves are set up. Taken together, the two plots verify
the predictions of the TWM in relation to the gradient propagation behavior of RNNs.

ognize inherent limitations to the traveling wave approach.
One of the limitations is that the analysis using linear basis
transformations we presented is primarily restricted to linear
and binary HDS. Although an accurate representation of the
qualitative behavior within small neighborhoods of fixed
points can be found for non-linear dynamical systems (Sus-
sillo & Barak, 2013), the RNNs have to be confined to these
linear regions for the analysis to be applicable. It is still an
interesting behavior that models consistently converge to
the linear regime, at least for the restricted tasks we con-
sider in the paper. Generalizing the basis transformation for
the case of non-linear tasks will enable the understanding
of wave computation to be used directly to improve and
understand neural computation. The second limitation of
the approach is that the external information is stored as a
linear basis in the hidden state. Our results indicates that
the role of non-linearity in encoding external information
may be minimal for these elementary HDS. However, we
have observed that when the number of dimensions of the
linear operator Whh is not substantially large compared to
the task’s dimensionality requirements (bottleneck superpo-
sition) or when the regularization penalty is high, the RNN
can effectively resort to non-linear encoding mechanisms to
store external information (Appendix 9). Overcoming the
limitations of non-linearity will be an interesting direction
to pursue in future research, and will bring the concept of
traveling waves in addressing the challenges posed by the

quest to understand neural computation.

Software and Data
We used Pytorch implementation of RNNs for
all the experiments. The code to reproduce the
results are available in the Github repository:
https://github.com/arjunkaruvally/emt variable binding
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A. Theoretical Models of Variable Binding
In the appendix, we use the Dirac and Einstein summation conventions for brevity to derive all the theoretical expositions in
the main paper.

A.1. Mathematical Preliminaries

The core concept of the theory is basis change, the appropriate setting of the stored memories. Current notations lack
the ability to adequately capture the nuances of basis change. Hence, we introduce abstract algebra notations typically
used in theoretical physics literature to formally explain the variable binding mechanisms. We treat a vector as an abstract
mathematical object invariant to basis changes. Vectors have vector components that are associated with the respective basis
under consideration. We use Dirac notations to represent vector v as - |v⟩ =

∑
i v
i |ei⟩. Here, the linearly independent

collection of vectors |ei⟩ is the basis with respect to which the vector |v⟩ has component vi ∈ R. Linear algebra states
that a collection of basis vectors |ei⟩ has an associated collection of basis covectors

〈
ei
∣∣ defined such that

〈
ei
∣∣ej〉 = δij ,

where δij is the Kronecker delta. This allows us to reformulate the vector components in terms of the vector itself as
|v⟩ =

∑
i

〈
ei
∣∣v〉 |ei⟩. We use the Einstein summation convention to omit the summation symbols wherever the summation

is clear. Therefore, vector |v⟩ written in basis |ei⟩ is

(18)|v⟩ = vi |ei⟩
=
〈
ei
∣∣v〉 |ei⟩ .

The set of all possible vectors |v⟩ is a vector space spanned by the basis vectors |ei⟩. A subspace of this space is a vector
space that is spanned by a subset of basis vectors {

∣∣e′j〉 : ∣∣e′j〉 ⊆ {|ei⟩}}.
A.2. Traveling Wave Model (TWM)

The traveling wave model is the discretization of the wave equation traveling in a neural lattice with only interactions at
the boundaries. This is a generalization of the model considered in the WaveRNN paper (Keller et al., 2023). We consider
independent d dimensional waves traveling in a continuous medium (represented by vj).

∂h(vj , t)

∂t
= νj

∂h(vj , t)

∂x
(19)

The index j ∈ {1, 2, . . . , d}. There is no interaction between the d different waves traveling in the substrate except at the
boundary location 1 (the beginnning of the wave):

hi(0, t) = fi(h(0, t), h(1, t), . . . , h(s, t)) (20)

After Euler discretization of the system with step size 1,

h(vj , t+ 1)− h(vj , t) = νj (h(vj + 1, t)− h(vj , t)) (21)

For uniform wave propagation speeds νj = 1,∀i,

h(vj , t+ 1)− h(vj , t) = (hi(vj + 1, t)− hi(vj , t)) (22)

Finally after simplifications, we obtain the following equations defining how the wave propagates in the neural substrate

(23)

{
h(vj , t+ 1) = h(vj + 1, t) when 1 < k ≤ s
h(0, t+ 1) = f(h(0, t), h(1, t), . . . , h(s, t))

Mapping this back to the notation that is used in the rest of the paper,

(24)

{
hi,j(t+ 1) = hi+1,j(t) when 1 < k ≤ s
hs,j(t+ 1) = fj(hij(t)) ∀j{1, 2, . . . d} and i ∈ {1, 2, . . . s}

12
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The RNN dynamics presented in Equation 7 represented in the new notation is reformulated as:

(25)|h(t)⟩ = σf
((
ξiµ Φ

µ
ν (ξ

†)νj |ei⟩
〈
ej
∣∣) |h(t− 1)⟩

)
= σf

(
Whh h⃗(t− 1)

)
.

The greek indices iterate over memory space dimensions {1, 2, . . . , Nh}, alpha numeric indices iterate over feature dimension
indices {1, 2, . . . , Nf}. Typically, we use the standard basis in our simulations. For the rest of the paper, the standard basis
will be represented by the collection of vectors |ei⟩ and the covectors

〈
ei
∣∣. The hidden state at time t in the standard basis is

denoted as |h(t)⟩ =
〈
ej
∣∣h(t)〉 |ei⟩. 〈ej∣∣h(t)〉 are the vector components of |h(t)⟩ we obtain from simulations.

A.3. Example: Generalized Fibonacci Series.

We consider a generalization of the Fibonacci sequence where each element Fn ∈ Rd is a vector defined recursively as,

Fn =



u1 n = 1

u2 n = 2
...
us n = s∑n−1
t=n−s Ft n > s

(26)

For any ui ∈ Rd. In order to store this process of generating sequences of Fn, the vectors u1, u2, . . . us needs to be stored
as variables and recursively added to produce new outputs. In our framework, this can be accomplished by initializing the
hidden state such that |h(s)⟩ =

∑
i

∑
ψµ∈{Ψi} u

µ
i |ψµ⟩, that is each uµ is stored as activity of distinct subspaces of the

hidden state. To encode the Fibonacci process in Φ, we propose the following form for the inter-memory interactions.

(27)Φ =

(s−1)d∑
µ=1

|ψµ⟩
〈
ψµ+d

∣∣+( d∑
µ=1

∣∣ψ(s−1)d+µ

〉(s−1∑
ν=0

〈
ψνd+µ

∣∣))
︸ ︷︷ ︸∑n−1

t=n−s Ft

.

This form of Φ has two parts. The first part implements a variable shift operation. The second part implements the summation
function of Fibonacci. Since the hidden state is initialized with all the starting variables uµ, application of the Φ operator
repeatedly, produces the next element in the sequence. As of now, the hidden state contains all the elements in the sequence.
The abstract algebra notation allows proposing Wr which will extract only the required output. Formally,

Wr = Ψ∗
s =

sd∑
µ=(s−1)d+1

∣∣eµ−(s−1)d

〉
⟨ψµ| . (28)

It is the projection operator which extracts the contents of the N th variable memory in the standard basis. Note that the
process works irrespective of the actual values of uµ. To summarize, we now have a memory model encoding a generalizable
process of fibonacci sequence generation.

A.4. Example: Repeat Copy

Repeat Copy is a task typically used to evaluate the memory storage characteristics of RNNs since the task has a deterministic
evolution represented by a simple algorithm that stores all input vectors in memory for later retrieval. Although elementary,
repeat copy provides a simple framework to work out the variable binding circuit we theorized in action. For the repeat copy
task, the linear operators of the RNN has the following equations.

Φ =
∑(s−1)d
µ=1 |ψµ⟩

〈
ψµ+d

∣∣+∑sd
µ=(s−1)d+1 |ψµ⟩

〈
ψµ−(s−1)d

∣∣
Wuh = Ψs

Wr = Ψ∗
s

(29)
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This ϕ can be imagined as copying the contents of the subspaces in a cyclic fashion. That is, the content of the ith subspace
goes to (i− 1)th subspace with the first subspace being copied to the N th subspace. The dynamical evolution of the RNN is
represented at the time step 1 as,

(30)|h(1)⟩ =
∣∣ψ(s−1)d+j

〉 〈
ej
∣∣ui(1) |ei⟩

(31)|h(1)⟩ = ui(1)
∣∣ψ(s−1)d+j

〉 〈
ej
∣∣ei〉

(32)|h(1)⟩ = ui(1)
∣∣ψ(s−1)d+j

〉
δij

Kronecker delta index cancellation
(33)|h(1)⟩ = ui(1)

∣∣ψ(s−1)d+i

〉
At time step 2,

(34)|h(2)⟩ = ui(1)Φ
∣∣ψ(s−1)d+i

〉
+ ui(2)

∣∣ψ(s−1)d+i

〉
Expanding Φ

(35)|h(2)⟩ = ui(1)

(s−1)d∑
µ=1

|ψµ⟩
〈
ψµ+d

∣∣+ sd∑
µ=(s−1)d+1

|ψµ⟩
〈
ψµ−(s−1)d

∣∣∣
 ∣∣ψ(s−1)d+i

〉
+ ui(2)

∣∣ψ(s−1)d+i

〉

(36)|h(2)⟩ = ui(1)
∣∣ψ(s−2)d+i

〉
+ ui(2)

∣∣ψ(s−1)d+i

〉
At the final step of the input phase when t = s, |h(s)⟩ is defined as:

(37)|h(s)⟩ =
s∑

µ=1

ui(µ)
∣∣ψ(µ−1)d+i

〉
For t timesteps after s, the general equation for |h(s+ t)⟩ is:

(38)|h(s+ t)⟩ =
s∑

µ=1

ui(µ)
∣∣ψ[((µ−t−1 mod s)+1)d+i]

〉

From this equation for the hidden state vector, it can be easily seen that the µth variable is stored in the
[(µ− t− 1 mod s) + 1]

th subspace at time step t. The readout weights Wr = Ψ∗
s reads out the contents of the sth

subspace.

A.5. Application to General RNNs

The linear RNNs we discussed are powerful in terms of the content of variables that can be stored and reliably retrieved. The
variable contents, ui, can be any real number and this information can be reliably retrieved in the end using the appropriate
readout weights. However, learning such a system is difficult using gradient descent procedures. To see this, setting the
components of Φ to anything other than unity might result in dynamics that is eventually converging or diverging resulting
in a loss of information in these variables. Additionally, linear systems are not used in the practical design of RNNs. The
main difference is now the presence of the nonlinearity. In this case, our theory can still be used. To illustrate this, consider
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a general RNN evolving according to h(t + 1) = g(Whhh(t) + b) where b is a bias term. Suppose h(t) = h∗ is a fixed
point of the system. We can then linearize the system around the fixed point to obtain the linearized dynamics in a small
region around the fixed point.

(39)h(t+ 1)− h∗ = J (g)|h∗ Whh (h(t+ 1)− h∗) +O((h(t+ 1)− h∗)2)

where J is the jacobian of the activation function g. If the RNN had an additional input, this can also be incorporated into
the linearized system by treating the external input as a control variable

(40)h(t+ 1)− h∗ = J (g)|h∗ Whh (h(t)− h∗) + J (g)|h∗ Wuhu(t)

Substituting h(t)− h∗ = h′(t)

(41)h′(t+ 1) = J (g)|h∗ Whh h
′(t) + J (g)|h∗ Wuhu(t)

which is exactly the linear system which we studied where instead of Whh = ΞΦΞ†, we have J(g)|h∗Whh = ΞΦΞ†.

A.5.1. FIXED POINT FINDING ALGORITHM

In order to perform the linearization analysis, we have to first identify the fixed points of the trained RNN. We utilized the
procedure introduced in (Sussillo & Barak, 2013) to obtain these fixed points. Specfically, we find fixed point h∗ by finding
the solution to the following optimization problem:

h∗ = argmin
x
∥g(Whh x+ b)− x∥ (42)

Intuitively, the optimization function ∥g(Whh x+ b)− x∥ reaches the minimum at the fixed point h∗.

A.6. Error Analysis of the Variable Memory Approximation Algorithm

Our empirical results revealed that there are certain cases of tasks where the algorithm fails to retrieve the correct basis
transformation. In this section, we will investigate why this dissociation from theory happens. To this end, we want to
formalize and compare what the hidden state is according to the power iteration (h(t)) and the variable memories (|h(t)⟩).

|h(0)⟩ = 0 h(0) = 0 (43)

|h(1)⟩ = ui(1) |ψi⟩ h(1) =W †
r u(1) (44)

|h(1)⟩ = ui(1)
∣∣ψ(d+i)

〉
+ (ui(2) + Φ(0, . . . , u(1))i) |ψi⟩ h(1) =WhhW

†
r u(1) +W †

r u(2) (45)

The error in the basis definition is given by

Ψ̃2 −Ψ2 = Φ(0, . . . u(1))i |ψi⟩
〈
ej
∣∣ (46)

Ψ̃3 −Ψ3 = Φ(0, . . . u(1))i
∣∣ψ(d+i)

〉 〈
ej
∣∣+Φ(0, . . . u(2), u(1))i

∣∣ψ(i)

〉 〈
ej
∣∣ (47)

For the power iteration to succeed in giving the correct variable memories, the effect of Φ acting on the variable memories
needs to be negligible. In the case of repeat copy, this effect is zero as the operator Φ does not utilize any of the variables
until the end of the input phase. For some of the compose copy tasks, we showed in the paper, this effect is negligible.
Another way to think about this issue is that the Φ keeps on acting on the variable memories during the input phase and
produces outputs even though the variables are not filled in fully yet. This behavior pollutes the definition of variable
memories using power iteration. If Φ is sufficiently representative, for instance, the operator associated with the Fibonacci
generation, then after the first input is passed, the 2nd variable memory will be the sum of the 1st and 2nd variable memories.
Future development to the algorithm to general tasks needs to take this figure out ways to get over this error.
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B. Experiments
B.1. Data

We train RNNs on the HDS tasks described in the main paper with the following restrictions - the domain of u at each
timestep is binary ∈ {−1, 1} and the function f is a linear function of its inputs and conserves the phase space volume over
time. We collect various sequence of the system evolving accoding to f by first sampling uniformly randomly, the input
vectors (seed). The system is then allowed to evolve with the recurrent function f over the time horizon defined by the
training algorithm.

B.2. Training Details

Architecture We used single layer Elman-style RNNs for all the variable binding tasks. Given an input sequence
(u(1), u(2), ..., u(T )) with each u(t) ∈ Rd, an Elman RNN produces the output sequence y = (y(1), ..., y(T )) with
y(t) ∈ Rd following the equations

h(t+ 1) = tanh(Whhh(t) +Wuhu(t) + b) , y(t) =Wrh(t) (48)

Here Wuh ∈ RNh×d, Whh ∈ RNh×Nh , and Wr ∈ Rd×Nh are the input and b ∈ RNh is the bias term, hidden, and readout
weights, respectively, and Nh is the dimension of the hidden state space.

The initial hidden state h(0) for each model was not a trained parameter; instead, these vectors were simply generated for
each model and fixed throughout training. We used the zero vector for all the models.

Task Dimensions Our results presented in the main paper for the repeat copy (T1) and compose copy (T2) used vectors of
dimension d = 8 and sequences of s = 8 vectors to be input to the model.

Training Parameters We used PyTorch’s implementation of these RNN models and trained them using Adam optimization
with the MSE loss. We performed a hyperparameter search for the best parameters for each task — see table 2 for a list of
our parameters for each task.

Repeat Copy (T1) Compose Copy (T2)
Input & output dimensions 8 8
Input phase (# of timesteps) 8 8

training horizon 100 100
Hidden dimension Nh 128 128
# of training iterations 45000 45000

(Mini)batch size 64 64
Learning rate 10−3 10−3

applied at iteration 36000
Weight decay (L2 regularization) none none

Gradient clipping threshold 1.0 1.0

Table 2. Architecture, Task, & Training Parameters

Curriculum Time Horizon When training a network, we adaptively adjusted the number of timesteps after the input
phase during which the RNN’s output was evaluated. We refer to this window as the training horizon for the model.

Specifically, during training we kept a rolling average of the model’s loss by timestep L(t), i.e. the accuracy of the model’s
predictions on the t-th timestep after the input phase. This metric was computed from the network’s loss on each batch, so
tracking L(t) required minimal extra computation.

The network was initially trained at time horizon H0 and we adapted this horizon on each training iteration based on the
model’s loss by timestep. Letting Hn denote the time horizon used on training step n, the horizon was increased by a factor
of γ = 1.2 (e.g. Hn+1 ← γHn) whenever the model’s accuracy L(t) for t ≤ Hmin decreased below a threshold ϵ = 3 ·10−2.
Similarly, the horizon was reduced by a factor of γ is the model’s loss was above the threshold (Hn+1 ← Hn/γ). We also
restricted Hn to be within a minimum training horizon H0 and maximum horizon Hmax. These where set to 10/100 for the
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repeat copy task and 10/100 for the compose copy task.

We found this algorithm did not affect the results presented in this paper, but it did improve training efficiency, allowing us
to run the experiments for more seeds. Below there are additional examples of the hidden weights decomposition applied to
networks trained on the repeat copy task.
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Figure 6. Diverse range of high-dimensional dynamical behavior around the fixed point for the variable binding tasks: The figures
show the distribution of the eigenspectrum of the Jacobian around origin for the Elman RNN in the complex plane. For each of the
representative tasks, the spectral analysis reveals a very high dimensional dynamical behavior with a complex spectral distribution. The
dynamical behavior is non-trivial to interpret by the analysis of the Jacobian spectrum in the class of variable binding tasks alone. Despite
the diverse behaviors in the eigenspectrum, the complex argument of the eigenvalues are exactly predicted from the theory. The number of
eigenvalues along each direction is counted and annotated on the lines.
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Figure 7. Transformed Learned RNN Parameters using the TWM theory: The plots show 4 same RNNs learned on the 4 tasks in the
paper. For all these tasks, the RNN consistently converged to the mechanisms predicted by the TWM theory.
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Figure 8. Additional Experimental Results of Repeat Copy Task with 16 vectors, each of 5 dimensions: A. Whh visualized in the
variable memory basis reveals the variable memories and their interactions. B. After training, the eigenspectrum of Whh with a magnitude
≥ 1 overlaps with the theoretical Φ. The boxes show the number of eigenvalues in each direction. C. During inference, ”3141” is inserted
into the network in the form of binary vectors. This input results in the hidden state evolving in the standard basis, as shown. How
this hidden state evolution is related to the computations cannot be interpreted easily in this basis. D. When projected on the variable
memories, the hidden state evolution reveals the contents of the variables over time. Note that in order to make these visualization
clear, we needed to normalize the activity along each variable memory to have standard deviation 1 when assigning colors to the pixels.
The standard deviation of the memory subspaces varies due to variance in the strength of some variable memory interactions. These
differences in interaction strengths does not impede the model’s performance, however, likely due to the nonlinearity of the activation
function. Unlike the linear model, interaction strengths well above 1 cannot cause hidden state space to expand indefinitely because the
tanh nonlinearity restricts the network’s state to [−1, 1]Nh . This property appears to allow the RNN to sustain stable periodic cycles for a
range of interaction strengths above 1.
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Figure 9. Nonlinear Variable Memories Learned for the Repeat Copy Task with 16 vectors, each of 5 dimensions. A. Eigenspectrum
of Whh after training. The learned eigenvalues cluster into 16 groups equally spaced around the unit circle, but there are only 3-4
eigenvectors per cluster (indicated in red). Compare this to the theorized linear model, which has 5 eigenvalues per cluster (indicated
in black). The task requires 16· = 5 = 80 bits of information to be stored. Linearization about the origin predicts that the long-term
behavior of the model is dictated by the eigenvectors with eigenvalue outside the unit circle because its activity along other dimensions
will decay over time. The model has only 16 · 4− 1 = 63 eigenvectors with eigenvalue near the unit circle, so this results suggests the
model has learned a non-linear encoding that compresses 80 bits of information into 63 dimensions. B: Whh visualized in the variable
memory basis reveals the variable memories and their interactions. Here, the variable memories have only 4 dimensions because the
network has learned only 63 eigenvectors with eigenvalue near the unit circle. The variable memory subspaces also have non-trivial
interaction with a few of the the non-memory subspaces. C. During inference, ”3141” is inserted into the network in the form of binary
vectors. This input results in the hidden state evolving in the standard basis, as shown. How this hidden state evolution is related to the
computations cannot be interpreted easily in this basis. D. When projected on the variable memories, the hidden state evolution is still not
easily interpreted for this network, likely due to a nonlinear variable memories. As in the previous figure, we normalized the activity along
each variable memory to have standard deviation 1 when assigning colors to the pixels.
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Figure 10. Additional Experimental Results of Repeat Copy Task with 8 vectors, each of 8 dimensions. This figure was included to
show the decomposition applied to other values of s and d for the Repeat Copy task. A: Whh visualized in the variable memory basis
reveals the variable memories and their interactions. B. After training, the eigenspectrum of Whh with a magnitude ≥ 1 overlaps with the
theoretical Φ. The boxes show the number of eigenvalues in each direction. C. During inference, ”3141” is inserted into the network in
the form of binary vectors. This input results in the hidden state evolving in the standard basis, as shown. How this hidden state evolution
is related to the computations cannot be interpreted easily in this basis. D. When projected on the variable memories, the hidden state
evolution reveals the contents of the variables over time. As in the previous figures, we normalized the activity along each variable
memory to have standard deviation 1 when assigning colors to the pixels.
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Figure 11. Experimental Results of Compose Copy Task (T3) of 8 vectors, each of 8 dimensions: A. Whh visualized in the variable
memory basis reveals the variable memories and their interactions. It is observed that Whh encodes an optimized version of the theoretical
mechanisms since there are dimensions in the variable memories irrelevant for future computations. B. Compared to repeat copy, the
eigenspectrum of the learned Whh is more complex, yet the theoretical Φ accurately predicts the angles and number of eigenvalues.
The eigenvalues’ magnitude greater than 1 (rather than close to 1 found in repeat copy) indicate that the non-linearity plays a role in
controlling the diverging behavior of the spaces. C. During the output phase, the past s variables are composed to form future outputs. D.
The hidden state evolution, when projected on the variable memories, reveals the contents of the variables over time. Unlike repeat copy,
the input phase does not precisely match the model’s theoretical predictions. Transient dynamics dominate the initial timesteps, clouding
the underlying computations (t=1, 2, 3). Yet the long-term behavior (from t=16) of the output phase behavior is as the theoretical model
predicts with the composed result stored in the 8th variable memory at each time.
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B.3. Uniform vs. Gaussian Parameter Initialization

We also tested a different initialization scheme for the parameters Wuh,Whh, and Why of the RNNs to observe the effect(s)
this would have on the structure of the learned weights. The results presented in the main paper and in earlier sections of the
Supplemental Material used PyTorch’s default initialization scheme: each weight is drawn uniformly from [−k, k] with
k = 1/

√
Nh. Fig. 14 shows the resulting spectrum of a trained model when it’s parameters where drawn from a Gaussian

distribution with mean 0 and variance 1/Nh. One can see that this model learned a spectrum similar to that presented in
the main paper, but the largest eigenvalues are further away from the unit circle. This result was observed for most seeds
for networks trained on the repeat copy task with s = 8 vectors of dimension d = 4 and d = 8, though it doesn’t hold for
every seed. We also find that the networks whose spectrum has larger eigenvalues usually generalize longer in time than the
networks with eigenvalues closer to the unit circle.
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Figure 12. Uniform Initialization

Figure 13. Gaussian Initialization

Figure 14. An effect of parameter initialization for the Repeat Copy Task with s = 8 vectors, each of dimension d = 4. A: Spectrum
(in red) of the learned hidden weights Whh for a network whose parameters where initialized from a uniform distribution over [−k, k]
with k = 1/

√
Nh. This network has 32 eigenvalues that are nearly on the unit circle. These eigenvalues are clustered into groups of 4,

each group being an angle of θ = 2π/s apart from each other. These eigenvalues coincide with the eigenvalues of the linear model for
solving the repeat copy task. B: Spectrum (in blue) of the learned hidden weights Whh for a network whose parameters where initialized
from a Gaussian distribution with mean 0 and variance 1/Nh. This network has 32 eigenvalues outside the unit circle, but they are a
larger radii than the model initialized using the uniform distribution. These eigenvalues still cluster into eight groups of four, and the
average complex argument of each group aligns with the complex arguments of the eigenvalues for the linear model.
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