
FreeInv: Free Lunch for Improving DDIM Inversion

Yuxiang Bao^{1,2*}, Huijie Liu^{1*}, Xun Gao², Huan Fu², Guoliang Kang^{1†}

¹ Beihang University, ² HUJING Digital Media & Entertainment Group
{bbao5802, liuhuijie6410, kgl.prml}@gmail.com

Abstract

Naive DDIM inversion process usually suffers from a trajectory deviation issue, *i.e.*, the latent trajectory during reconstruction deviates from the one during inversion. To alleviate this issue, previous methods either learn to mitigate the deviation or design a cumbersome compensation strategy to reduce the mismatch error, exhibiting substantial time and computation cost. In this work, we present a nearly free-lunch method (named FreeInv) to address the issue more effectively and efficiently. In FreeInv, we randomly transform the latent representation and keep the transformation the same between the corresponding inversion and reconstruction time-step. It is motivated from a statistical perspective that an ensemble of DDIM inversion processes for multiple trajectories yields a smaller trajectory mismatch error on expectation. Moreover, through theoretical analysis and empirical study, we show that FreeInv performs an efficient ensemble of multiple trajectories. FreeInv can be freely integrated into existing inversion-based image and video editing techniques. Especially for inverting video sequences, it brings more significant fidelity and efficiency improvements. Comprehensive quantitative and qualitative evaluation on PIE benchmark and DAVIS dataset shows that FreeInv remarkably outperforms conventional DDIM inversion, and is competitive among previous state-of-the-art inversion methods, with superior computation efficiency.

1 Introduction

The recent developments of large-scale text-guided diffusion models, *e.g.* Stable Diffusion [36], have fueled the rise of image and video editing. To ensure the editing results are faithful to the original input, these methods typically employ Denoising Diffusion Implicit Models (DDIM) inversion [38] techniques. The DDIM inversion process involves mapping an image back to its noisy latent representation, from which the original image is expected to be reconstructed with high fidelity.

However, the reconstruction process usually suffers from a trajectory deviation issue, *i.e.*, the latent trajectory of the reconstruction process deviates from that of the inversion process, which means the error of latent representations between inversion and reconstruction may be accumulated along the denoising steps. This is because the ideal DDIM inversion and reconstruction process is theoretically based on the local linear assumption, *i.e.*, $\epsilon_\theta(x_t) \approx \epsilon_\theta(x_{t+1})$, where $\epsilon_\theta(\cdot)$ denotes the noise predicted by a neural network parameterized with θ . The assumption usually does not hold in practice. Thus, the error introduced in each step will be accumulated and lead to a non-negligible deviation between the inversion and reconstruction trajectory, hampering the quality of reconstructed and edited results.

To mitigate the trajectory deviation, previous works focus on reducing the mismatch error of latent representations between inversion and reconstruction processes, *i.e.*, reducing $|\epsilon_\theta(x_t) - \epsilon_\theta(x_{t+1})|$ in each time-step. Learning-based methods [25, 5] aim to minimize the mismatch error through back-propagating the gradients to the null-text embedding (see Fig. 1(a)). Another group of methods [17,

*Equal contribution. [†]Corresponding author. Code is available at <https://github.com/yuxiangbao/FreeInv>. Project page is available at <https://yuxiangbao.github.io/FreeInv/>.

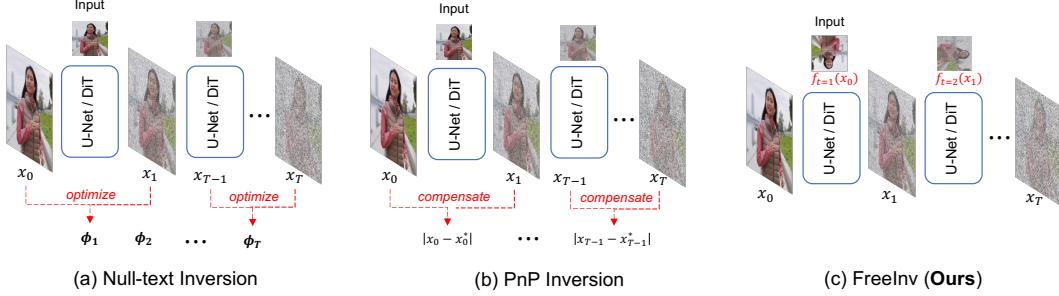


Figure 1: Illustration of different ways to mitigate the trajectory deviation in DDIM inversion. The small image above the networks denotes the input. (a) Null-text Inversion [25] reduces the mismatch error via optimizing a null-text embedding. (b) PnP Inversion [17] saves the reconstruction error of each step in memory and makes a compensation during the reconstruction or editing process. (c) FreeInv improves the DDIM inversion by applying random transformation (e.g. rotation) to the input latent, with negligible time or memory costs.

50, 15, 6] memorize or store the errors generated in each time-step, and exploit them to compensate for the latent representation deviation in the reconstruction procedure (see Fig. 1(b)). Although these techniques improve the reconstruction fidelity, they introduce high computation (time and memory) costs. Especially when inverting videos with hundreds of frames, they are cumbersome and inefficient.

In this paper, we propose a new method named *FreeInv* to deal with the trajectory deviation issue in a nearly free-lunch manner. Specifically, from a statistical perspective, we find that an ensemble of the inversion and the reconstruction processes for multiple image samples yields a smaller mismatch error. In detail, we average the predicted noise from multiple images for inversion and reconstruction and find the mismatch error can be suppressed. Further, based on our theoretical analysis and empirical observations, we propose FreeInv, which is a simplified version of performing trajectory ensemble. As illustrated in Fig. 1(c), in FreeInv, we randomly transform (e.g., rotate) the latent representation and keep the transformation (e.g., rotation angles) the same between the corresponding inversion and reconstruction time-step. Thanks to operational simplicity, FreeInv can be readily plugged into U-Net [13, 36] and DiT [29, 1, 7] architectures. Extensive experiments on PIE benchmark [17] demonstrate that FreeInv significantly outperforms the DDIM baseline, and achieves performance comparable or superior to existing state-of-the-art inversion approaches [25, 45, 46, 50, 17, 15, 9, 47]. For efficiency, our method introduces negligible costs compared to the DDIM baseline and consumes much smaller time and memory than all previous inversion methods tailored for mitigating the trajectory deviation. Due to the efficient design, FreeInv is well-suited for the inversion of video sequences. When combined with TokenFlow [10], FreeInv exhibits superior reconstruction/editing fidelity and efficiency, compared to previous state-of-the-art inversion method STEM-Inv [20].

In a nutshell, our contribution is summarized as follows

- From the statistical perspective, we find that an ensemble of trajectories for multiple images can effectively reduce the latent mismatch error between inversion and reconstruction processes, thereby improving reconstruction fidelity effectively.
- We propose a method named FreeInv to perform an efficient ensemble of trajectories, *i.e.*, we randomly transform (e.g., rotate) the latent representations and keep the transformation (e.g., rotation angles) at each step the same between the inversion and reconstruction processes.
- FreeInv is compatible with both U-Net and DiT architectures. Its efficient design enables it to be applied not only to image reconstruction but also to video sequences. Extensive experiments demonstrate that FreeInv achieves reconstruction performance on par with, or even exceeding, existing inversion methods, while offering significantly improved efficiency.

2 Related Works

Text guided image editing. Recently, text-guided diffusion models [26, 37, 36, 13, 38, 39, 40] offer significantly more powerful and flexible image editing capabilities compared to previous

methods [16, 53, 27, 28, 44, 48, 22, 35, 33, 54, 18]. Text-guided image editing requires editing the image following the prompt while maintaining the main components of the original image. Imagic [19] and UniTune [43] achieve this goal through restrictive fine-tuning of the pretrained model. Blended diffusion [2] and GLIDE [26] utilize the provided mask to control the editing region, which is not user-friendly. To realize controllable and precise editing with prompt, Prompt-to-Prompt [12] introduces the feature and attention map from the DDIM reconstruction process into the editing process, achieving promising editing results.

DDIM inversion for image/video editing. In image/video editing tasks, DDIM inversion technique is widely adopted [12, 4, 42, 10, 32, 23, 3, 14, 51, 8]. However, the editing results are always constrained by the reconstruction quality. Naive DDIM inversion usually suffers from a trajectory deviation issue, leading to distorted reconstruction. A lot of works [25, 5, 24, 21, 45, 15, 50, 17, 46] have been proposed to alleviate this issue. Null-text Inversion [25] minimizes the reconstruction error at each time-step through optimizing the null-text embedding. Other works [17, 50, 6] choose to save the error with extra memory occupation and make compensation during editing process. EDICT [45] designs a parallel inversion and reconstruction process to realize accurate preservation. Although these works are well applied in image inversion, but few of them are suited for processing video sequences for the increased computation burden. STEM Inversion [20] is designed to invert video sequences, but it still requires iterations to calculate a compact video representation. In comparison, FreeInv offers a free-lunch and more general alternative for both image and video inversion.

3 Methodology

3.1 DDIM Inversion Revisiting

Recently, Song et al. [38] proposed the Denoising Diffusion Implicit Model (DDIM), which serves as an efficient technique for diffusion model sampling, following the formula

$$\begin{aligned} \frac{x_t}{\sqrt{\alpha_t}} &= \frac{x_{t+1}}{\sqrt{\alpha_{t+1}}} - \eta_t \cdot \epsilon_\theta(x_{t+1}, t+1), \\ \eta_t &= \sqrt{\frac{1 - \alpha_{t+1}}{\alpha_{t+1}}} - \sqrt{\frac{1 - \alpha_t}{\alpha_t}}, \end{aligned} \quad (1)$$

where x_t denotes the latent at time-step t , and $\epsilon_\theta(\cdot, \cdot)$ refers to the noise prediction network with parameter θ . Note that there are no stochastic terms in the formula, meaning that the sampling procedure is deterministic. Therefore, if we inverse the DDIM sampling process from $t = 0$ to $t = T$, where T denotes the total sampling steps, we can get the initial noisy latent of the original image. This inversion process can be formulated as

$$\frac{x_{t+1}}{\sqrt{\alpha_{t+1}}} = \frac{x_t}{\sqrt{\alpha_t}} + \eta_t \cdot \epsilon_\theta(x_t, t+1). \quad (2)$$

If performing DDIM sampling on the inverted noisy latent can recover the original image ideally, it may greatly benefit diffusion-based image/video editing tasks [9, 17], which aims to modify part of the image while keeping the rest unchanged.

However, due to the discrete nature, slight error exists in each reconstruction time-step, resulting in flawed reconstruction. In order to quantitatively describe the reconstruction error, let us consider the adjacent time-step t and $t+1$, where the latent is inverted from time-step t to $t+1$ and then goes back to t . The error can be formulated as

$$|x_t^* - x_t| = \sqrt{\alpha_t} \eta_t \cdot |\epsilon_\theta(x_{t+1}, t+1) - \epsilon_\theta(x_t, t+1)|, \quad (3)$$

where $|\cdot|$ refers to calculating element-wise absolute value and we utilize x_t^* and x_t to represent the reconstructed latent and the inverted latent, respectively. Because α_t is the hyper-parameter predefined in DDIM schedule that keeps unchanged, the reconstruction error is determined by the mismatch error $|\epsilon_\theta(x_{t+1}, t+1) - \epsilon_\theta(x_t, t+1)|$. The ideal DDIM inversion and reconstruction process assumes that $\epsilon_\theta(x_{t+1}, t+1) \approx \epsilon_\theta(x_t, t+1)$. Such an error will be accumulated along the time-steps and become non-negligible. As a result, the trajectory of the reconstruction deviates from the one of the inversion process, thus hampering the fidelity of reconstruction results.

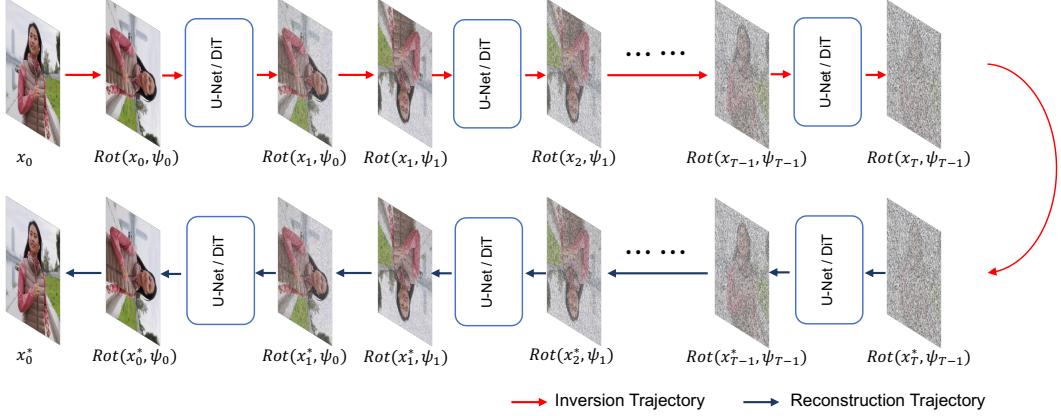


Figure 2: Detailed illustration of FreeInv. We employ rotation $Rot(\cdot, \cdot)$ as the transformation $f(\cdot)$ for example. During both the inversion and reconstruction phases, we rotate the latent representation with the same angle ψ_t at the t -th time-step, where ψ_t is randomly sampled.

3.2 Multi-Branch DDIM Inversion

As discussed in Sec. 3.1, the key of high-fidelity DDIM inversion is to minimize the mismatch error in each time-step. Inspired by the ensemble techniques [11] in various computer vision tasks, we propose to ensemble multiple trajectories to enhance reconstruction fidelity by constructing a multi-branch DDIM inversion (MBDI) and reconstruction.

Specifically, when inverting one image, an arbitrary number of different images are also sampled as auxiliary samples and follow the parallel inversion and reconstruction trajectory. In each time-step, instead of inverting/reconstructing each branch independently, we make an ensemble of the noise predictions from all the branches to invert/reconstruct all the branches simultaneously. Specifically, we average all the noise predictions at each time-step, which is

$$\epsilon_{\theta, \tilde{\lambda}}^e(x_t, t+1) = \sum_{i=1}^N \tilde{\lambda}_i \epsilon_{\theta}(x_t^i, t+1), \quad (4)$$

where $\tilde{\lambda} = [\tilde{\lambda}_1, \tilde{\lambda}_2, \dots, \tilde{\lambda}_N] = [\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N}]$. In Eq. (4), x_t^i refers to the latent of the i -th branch at time-step t . For reconstruction, the ensemble noise $\epsilon_{\theta, \tilde{\lambda}}^e(x_{t+1}, t+1)$ can be obtained in a similar way. Compared with Eq. (1) and (2), the latent in each branch is inverted and reconstructed with $\epsilon_{\theta, \tilde{\lambda}}^e(x_t, t+1)$ and $\epsilon_{\theta, \tilde{\lambda}}^e(x_{t+1}, t+1)$ instead of $\epsilon_{\theta}(x_t, t+1)$ and $\epsilon_{\theta}(x_{t+1}, t+1)$ respectively. Note that this modification does not affect the deterministic nature of the procedure in the sense that the original image can still be reconstructed theoretically.

MBDI reduces mismatch error. With MBDI, the mismatch error between estimated noise in inversion and reconstruction is

$$|\epsilon_{\theta, \tilde{\lambda}}^e(x_{t+1}, t+1) - \epsilon_{\theta, \tilde{\lambda}}^e(x_t, t+1)| = \frac{1}{N} \left| \sum_{i=1}^N [\epsilon_{\theta}(x_{t+1}^i, t+1) - \epsilon_{\theta}(x_t^i, t+1)] \right|. \quad (5)$$

According to the triangle inequality we get

$$|\epsilon_{\theta, \tilde{\lambda}}^e(x_{t+1}, t+1) - \epsilon_{\theta, \tilde{\lambda}}^e(x_t, t+1)| \leq \frac{1}{N} \sum_{i=1}^N |\epsilon_{\theta}(x_{t+1}^i, t+1) - \epsilon_{\theta}(x_t^i, t+1)|. \quad (6)$$

The right side of the inequality is the mean error of each independent branch. Given that the initial samples x_0^i are independently drawn from the natural image distribution and the inversion procedure is deterministic, the right side of Eq. 6 can be considered as an unbiased estimation for the expectation of mismatch error $\mathbb{E}_{x_0 \sim p(x_0)} \{ |\epsilon_{\theta}(x_{t+1}, t+1) - \epsilon_{\theta}(x_t, t+1)| \}$. Given that the reconstruction error is proportional to the mismatch error in Eq. (3), the reconstruction error of multi-branch is no larger than that of a single branch in each time-step on expectation. Therefore, performing the ensemble of multiple trajectories may yield better reconstruction results compared to a single branch.

3.3 Free-lunch DDIM Inversion

Though effective, the computation and memory cost of N -branch inversion framework is high, and the cost is approximately N times more than the standard DDIM inversion. Thus, in FreeInv, we make two modifications to improve the efficiency.

(1) One-time MC sampling at each time-step. Different from deterministic $\tilde{\lambda}$ in MBDI in Eq. (4), we introduce a random variable $\lambda^t = [\lambda_1^t, \lambda_2^t, \dots, \lambda_N^t] \sim \text{Categorical}(\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N})$ (in the following, we omit superscript t which denotes the time-step for simplicity). Then, we obtain $\epsilon_{\theta, \lambda}^e(x_t, t+1) = \sum_{i=1}^N \lambda_i \epsilon_\theta(x_t^i, t+1)$. The expectation of $\epsilon_{\theta, \lambda}^e(x_t, t+1)$ over λ can be denoted as

$$\mathbb{E}_\lambda[\epsilon_{\theta, \lambda}^e(x_t, t+1)] = \frac{1}{N} \sum_{i=1}^N \epsilon_\theta(x_t^i, t+1), \quad (7)$$

which means $\mathbb{E}_\lambda[\epsilon_{\theta, \lambda}^e(x_t, t+1)]$ equals to performing MBDI. Therefore, the key is to estimate $\mathbb{E}_\lambda[\epsilon_{\theta, \lambda}^e(x_t, t+1)]$. We utilize Monte Carlo (MC) sampling to estimate $\mathbb{E}_\lambda[\epsilon_{\theta, \lambda}^e(x_t, t+1)]$. For efficiency reasons, we only perform one-time MC sampling at each inversion time-step, *i.e.*,

$$\epsilon_{\theta, \hat{\lambda}}^e(x_t, t+1) = \sum_{i=1}^N \hat{\lambda}_i \epsilon_\theta(x_t^i, t+1), \quad (8)$$

where $\hat{\lambda} = [\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_N]$ is a one-hot vector sampled from the distribution of λ . Thus, only one branch is randomly sampled at each time-step of inversion. Note that MC sampling is performed independently at each time-step in FreeInv, essentially distinguishing it from single-branch DDIM inversion which can be treated as deterministically selecting one branch at all time-steps. We empirically (Sec. 4.4) find that it performs comparably to multi-time MC sampling and MBDI.

(2) Image transformation as a branch. Through one-time MC estimation, only one branch is randomly selected at each time-step to estimate the noise instead of using all N branches, effectively reducing time consumption. However, the memory cost remains high, as it is still needed to maintain the latent representations of all N branches.

To further improve efficiency, we replace the explicit multiple branches by applying transformations (*e.g.* rotation, flipping, patch-shuffling, *etc.*) to the image/latent representation, thereby generating multiple augmented versions. Since FreeInv does not impose any spatial or semantic constraints on different branches, it is reasonable to mimic multi-branch image sampling through transformation, *i.e.* $x_t^i = f_i(x_t)$, where $f_i(\cdot)$ refers to the transformation that implicitly represents the i -th branch. Then Eq. (8) becomes:

$$\epsilon_{\theta, \hat{\lambda}}^f(x_t, t+1) = \sum_{i=1}^N \hat{\lambda}_i \epsilon_\theta(f_i(x_t), t+1). \quad (9)$$

Overall, following Eq. (1-2), the inversion and reconstruction process of FreeInv can be formulated as

$$\frac{x_{t+1}}{\sqrt{\alpha_{t+1}}} = \frac{x_t}{\sqrt{\alpha_t}} + \eta_t \cdot \epsilon_{\theta, \hat{\lambda}}^f(x_t, t+1), \quad (10)$$

$$\frac{x_t}{\sqrt{\alpha_t}} = \frac{x_{t+1}}{\sqrt{\alpha_{t+1}}} - \eta_t \cdot \epsilon_{\theta, \hat{\lambda}}^f(x_{t+1}, t+1). \quad (11)$$

In Fig. 2, we employ rotation operation as the transformation for example to illustrate the whole process. In detail, during the inversion process, for an image, we rotate the latent code x_t at each time-step t with a randomly selected angle (*i.e.*, $0, \pi/2, \pi, 3\pi/2$) to predict the noise, implicitly formulating a 4-branch DDIM inversion process. For the reconstruction process, we apply similar operation. To ensure consistency, we keep the rotation angle the same between the inversion and reconstruction processes at each time-step.

In this way, the additional computational consumption is limited to the transformation and the memory required to store the transformation type (*e.g.* rotation angles), both of which are negligible compared to previous methods tailored for mitigating the trajectory deviation (see Sec. 4.2 for computation cost comparisons).

Table 1: **Quantitative comparison: reconstruction.** We quantitatively evaluate reconstruction faithfulness, as well as computation costs of existing inversion methods, including U-Net based and DiT based methods, on the PIE benchmark. FreeInv achieves competitive results with superior high efficiency. All the U-Net based methods use Stable Diffusion 1.5 and 50-step schedule except VI uses the Latent Consistency Model (LCM) and 12-step schedule. All the DiT based methods adopt 25-step schedule.

	Methods	Reconstruction Accuracy				Inversion Computation Costs	
		PSNR \uparrow	LPIPS ($\times 10^{-2}$) \downarrow	MSE ($\times 10^{-3}$) \downarrow	SSIM \uparrow	Time (Seconds) \downarrow	Memory (MB) \downarrow
U-Net Based	DDIM Baseline [38]	25.04	9.14	4.43	0.77	4	3031
	NTI [25]	26.74	5.46	3.13	0.79	148	11945
	EDICT [45]	27.21	5.12	2.88	0.80	81	12325
	DI [15]	28.19	4.76	2.29	0.81	16	13595
	VI [50]	27.86	5.45	3.77	0.80	3	13853
	ReNoise [9]	26.61	6.52	3.19	0.79	21	6395
	BELM [46]	27.12	5.15	2.91	0.79	5	3641
	PI [17]	27.12	5.13	2.91	0.79	4	7197
DiT Based	Ours	27.69	5.14	2.45	0.81	4	3031
	FLUX [1]	14.92	38.60	46.19	0.54	7	32430
	FLUX+RF-Solver [47]	26.38	10.98	3.89	0.84	15	32430
	FLUX+Ours	29.24	4.25	1.64	0.90	7	32430

Table 2: **Quantitative comparison: editing.** With P2P as baseline, we quantitatively compare existing inversion methods, with regard to background preservation and description alignment of edited images.

Method	Inversion	Editing	Background Preservation			CLIP Similarity		
			Structure Distance ($\times 10^{-3}$) \downarrow	PSNR \uparrow	LPIPS ($\times 10^{-2}$) \downarrow	MSE ($\times 10^{-3}$) \downarrow	SSIM \uparrow	Whole \uparrow
DDIM [38]	P2P		69.88	17.84	21.02	22.07	0.71	25.18
NTI [25]	P2P		10.11	27.80	4.99	2.99	0.85	24.80
EDICT [45]	P2P		3.84	29.79	3.70	2.04	0.87	23.09
DI [15]	P2P		11.64	25.96	6.16	3.93	0.84	25.60
VI [50]	P2P		17.35	28.00	5.75	7.61	0.85	24.86
ReNoise [9]	P2P		23.25	25.11	8.97	5.14	0.82	23.81
BELM [46]	P2P		17.28	25.51	8.46	4.76	0.82	24.23
PI [17]	P2P		10.89	27.21	5.44	3.31	0.85	25.02
Ours	P2P		17.13	26.03	6.79	4.17	0.83	25.30

4 Experiments

We make both quantitative and qualitative comparison with state-of-the-art inversion enhancing techniques, covering Null-Text Inversion (NTI) [25], EDICT [45], DDPM Inversion (DI) [15], Virtual Inversion (VI) [50], PnP Inversion (PI) [17], ReNoise [9], BELM [46] and STEM Inversion [20]. Moreover, we conduct comprehensive experiments by plugging FreeInv into popular inversion-based image/video editing approaches, including Prompt-to-Prompt (P2P) [12], MasaCtrl [4], PnP [42], and TokenFlow [10]. We also conduct ablation studies to provide a more comprehensive understanding of our method.

4.1 Implementation Details

In our experiments, unless otherwise stated, we adopt Stable Diffusion [36] 1.5 with a 50-step DDIM schedule for U-Net based methods, and FLUX.1-dev [1] (abbr. FLUX) with a 25-step schedule for DiT based methods.

4.2 Image Reconstruction and Editing

Dataset. Following previous works [17, 50], we employ the PIE-benchmark [17] and its officially released code to quantitatively evaluate image editing results from FreeInv and the compared methods. PIE-benchmark consists of 700 images of resolution 512×512 , the content of which is from nature or artificial generation. In the benchmark, each image is associated with a source prompt, an editing prompt, and an editing mask indicating anticipated editing areas.

Evaluation Metrics. For the image reconstruction task, we employ PSNR, LPIPS [52], MSE, and SSIM [49] to evaluate the reconstruction quality. In addition, we record the time cost and GPU memory usage to assess the computational efficiency. For the image editing task, we utilize structure

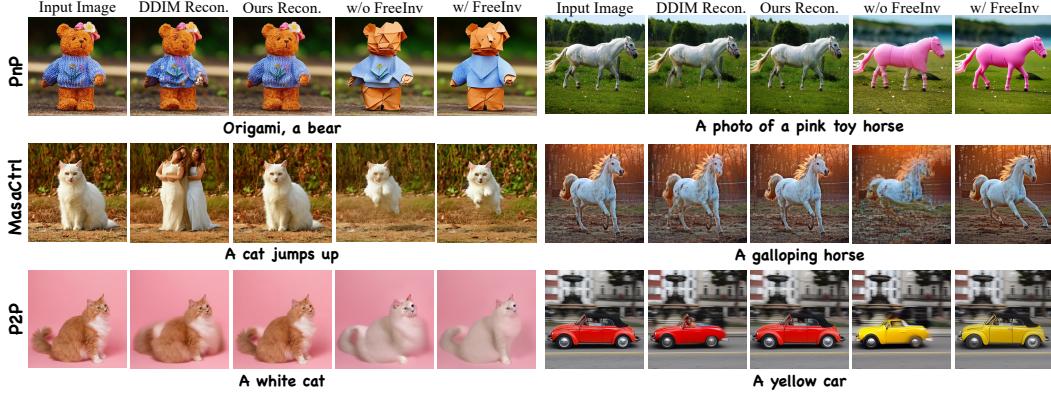


Figure 3: **Qualitative comparison.** We integrate FreeInv into PnP [42], MasaCtrl [4], and P2P [12], respectively. We compare the reconstruction and editing results w/ or w/o FreeInv.

distance [41] and background preservation metrics [17] to measure how well the layout and the unedited regions are preserved. Furthermore, CLIP similarity [34] is adopted to assess the alignment between the edited image and the target textual prompt.

Quantitative Evaluation. Quantitative results for image reconstruction are provided in Tab. 1. The results show that (i) **Effectiveness**: We observe that FreeInv and the other existing inversion methods boost the reconstruction accuracy effectively, where FreeInv achieves competitive or even superior results. (ii) **Generality**: FreeInv can be seamlessly integrated with U-Net based or DiT based methods, benefiting from its ultra simple design and implementation. (iii) **Efficiency**: Unlike other methods that rely on complicated numerical solvers (e.g. BELM, EDICT), require gradient back-propagation (e.g. NTI, ReNoise), or need extra memory consumption (e.g. DI, VI, PI), FreeInv incurs negligible computational overhead, *i.e.*, the computational cost of FreeInv is approximately equal to that of the DDIM baseline. Quantitative comparison for image editing is presented in Tab. 2, where we adopt P2P as the baseline editing framework, and all the inversion approaches are integrated into it. With inversion techniques, the edited images show improved faithfulness to the original content, with lower structure distance and better-preserved backgrounds. Compared to existing methods, FreeInv achieves superior prompt-image alignment, as indicated by its high CLIP similarity.

Qualitative Comparison. In Fig. 3, we visualize the reconstruction results and the corresponding editing outcomes of PnP [42], MasaCtrl [4], and P2P [12] with or without FreeInv. Due to the poor preservation of naive DDIM inversion, reconstruction results without FreeInv often exhibit significant deviations from the original image. In contrast, FreeInv significantly improves reconstruction quality. This improvement in reconstruction fidelity further leads to better editing outcomes, such as restoring the distorted face of the teddy bear and harmonizing the color of the horse’s legs. Besides U-Net based methods, we also evaluate the effectiveness of FreeInv on DiT-based approaches. In Fig. 4, we present the reconstruction results of FLUX, FLUX+RF-Solver [47], and FLUX+FreeInv, where the results of FLUX+FreeInv demonstrate superior fidelity. More visualization results are shown in the appendix.

Moreover, Fig. 5 presents the editing results of P2P equipped with different diffusion inversion methods. P2P with naive DDIM inversion can hardly maintain the structure or details of the input image. In contrast, EDICT, DI, VI, and BELM exhibit such a strong fidelity to the source image that it hinders their editing capabilities. Overall, the editing results from NTI, PI, and FreeInv demonstrate strong alignment

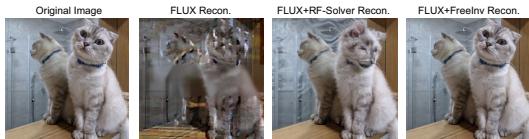


Figure 4: Visualization of the reconstructed images of different approaches with FLUX.

Table 3: **Human evaluation.** We conduct a user study on the preference of editing results w/o or w/ FreeInv. The details about the user study are provided in the appendix.

User Preference	PnP	MasaCtrl	P2P
w/o FreeInv	18.18	12.73	10.34
w/ FreeInv	81.82	87.27	89.66

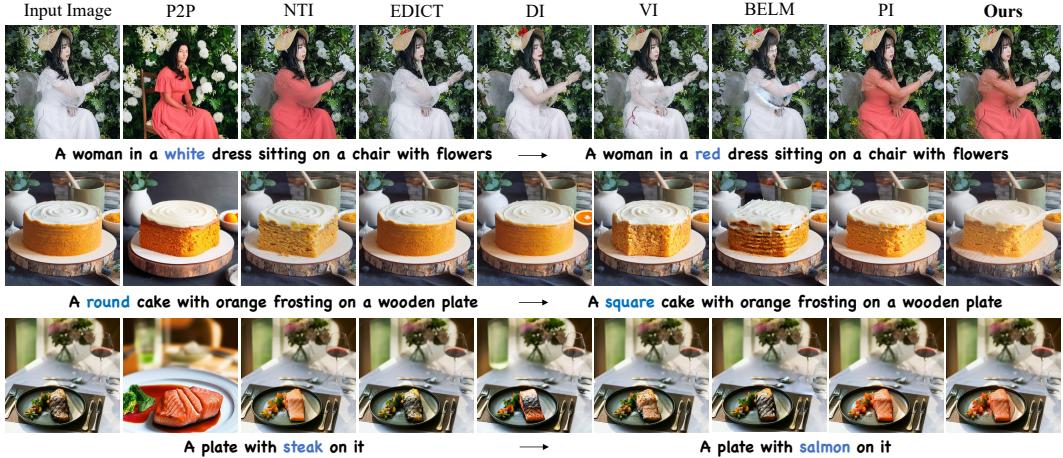


Figure 5: **Qualitative comparison.** We select Prompt-to-Prompt (P2P) as the baseline editing framework, and compare the editing results with different inversion approaches. The source and target prompts are provided below each row of the images.

with the target prompt, as well as high faithfulness with respect to the input. More comparisons can be found in the appendix.

Human Evaluation. To further validate the effectiveness of FreeInv, we also conduct a user study to calculate the user preference rate of the edited images with the editing instruction. The edited images generated with FreeInv achieve significantly higher user preference compared to those without FreeInv, as illustrated in Tab. 3. In the appendix, we additionally provide the human preference rate of the editing results with different inversion methods, as well as more implementation details about the user study.

4.3 Video Reconstruction and Editing

Dataset and Metrics Following previous works [10, 20], we use the videos from the DAVIS dataset [31] or downloaded from the Internet for evaluation. The video is captured for the first 120 frames, cropped to a resolution of 512×512 pixels. We measure the mean PSNR across all the frames to evaluate the reconstruction fidelity. Additionally, time and memory costs are reported to compare efficiency.

Quantitative and Qualitative Comparison. TokenFlow [10] is adopted as the baseline method, which is representative for inversion-based video editing. To demonstrate the superiority of FreeInv, it is also compared with STEM Inversion [20], a state-of-the-art method designed for video inversion. The quantitative and qualitative comparisons are presented in Fig. 6. More visualization results and videos that can be played are available in the appendix. Through Fig. 6, it can be seen that (i) DDIM inversion and reconstruction exhibit poor preservation of the original video contents. Consequently, in the pixar animation case, the eyes of the woman look strange, and in the black SUV case, the road appears dark at some regions. (ii) Although STEM Inversion makes a great improvement, there remains artifacts in the reconstruction with regard to some details, which are annotated with red boxes. Moreover, we notice the editing results with STEM-Inv are usually over sharpened, *e.g.*, the cloud in the pixar animation case and the trace on the road in the black SUV case. (iii) In comparison, FreeInv achieves the best reconstruction results regarding the highest PSNR value and visualization faithfulness, and brings negligible extra consumption (2MB GPU memory occupation). The enhanced reconstruction quality benefits editing, making editing results more natural and detailed.

4.4 Ablation Study

MC sampling vs. MBDI. We compare the reconstruction quality of MC sampling and MBDI. We adopt MBDI ($N = 4$) as the baseline and compare it with one-time, two-time, and four-time

Figure 6: **Video comparison.** We compare TokenFlow [10], TokenFlow+STEM [20], and TokenFlow+Ours with respect to the reconstruction results (on the left side of the dash-line), the editing outcome (on the right side of the dash-line), as well as time and memory costs (below the reconstruction results).

MC sampling. The comparison is shown in Tab. 4. We observe that one-time sampling performs comparably to MC sampling with multiple times and MBDI.

Table 4: Ablation study on the number of MC sampling steps.

Sampling Times	PSNR \uparrow	LPIPS ($\times 10^{-2}$) \downarrow	MSE ($\times 10^{-3}$) \downarrow	SSIM \uparrow
MBDI (4-branch)	28.14	4.94	2.30	0.81
1-time MC (Ours)	28.13	5.00	2.30	0.81
2-time MC	28.14	5.00	2.30	0.81
4-time MC	28.14	5.00	2.30	0.81

Transformation vs. Multiple Images. As discussed in Sec. 3.3, instead of sampling different images in multiple branches, we exploit different transformations to improve efficiency. For multi-branch DDIM inversion, we compare two variations. One is that each branch consists of distinct images, termed as **MB-I** in our experiment, while the other is that each branch consists of the original image rotated with different angles, termed as **MB-R**. In the ablation, the branch number is set to 4. The comparison is listed in Tab. 5. FreeInv performs comparable to **MB-I** and **MB-R**, but outperforms the DDIM baseline by a large margin (27.64 versus 25.04 in terms of PSNR).

Comparison between different types of transformations. We implement FreeInv with different types of transformations including random rotation, random horizontal/vertical flipping, random patch shuffling, random color jittering, as well as the combination of these transformations for comparison. The experiment is conducted on the PIE benchmark. The results in Tab. 6 show that different types of transformations achieve comparable performance in improving the reconstruction faithfulness.

Table 5: Comparison among a) **MB-I**: multi-branch inversion where each branch represents distinct images, b) **MB-R**: multi-branch inversion where each branch corresponds to one image rotated a certain angle, and c) **Ours**: single-branch inversion where random rotation is applied in each time-step.

Methods	PSNR \uparrow	LPIPS ($\times 10^{-2}$) \downarrow	MSE ($\times 10^{-3}$) \downarrow	SSIM \uparrow
DDIM	25.04	9.14	4.43	0.77
MB-I	28.14	4.94	2.30	0.81
MB-R	27.73	5.06	2.42	0.81
Ours	27.64	5.14	2.45	0.81

Table 6: Comparison between different types of transformations.

Methods	PSNR \uparrow	LPIPS ($\times 10^{-2}$) \downarrow	MSE ($\times 10^{-3}$) \downarrow	SSIM \uparrow
flip	27.47	5.43	2.55	0.80
patch shuffle	27.61	5.18	2.55	0.80
color jitter	27.53	5.40	2.55	0.80
rotation	27.64	5.14	2.45	0.81
combination	27.69	5.14	2.45	0.81

Cross-attention Map Visualization To provide an intuitive understanding of the improvement brought by FreeInv, we visualize the cross-attention map in Fig. 7. The prompt is “a woman running”, and we aggregate the cross-attention maps with respect to the word “woman” among all time-steps for each sample. We observe that FreeInv enables the model to focus more precisely on the region of “woman” compared to the DDIM baseline.

Figure 7: Visualization of cross-attention map in diffusion U-Net.

5 Conclusion

In this paper, we find that an ensemble of trajectories for multiple images can effectively reduce the DDIM reconstruction error. Based on such a finding, we propose a method named FreeInv to perform an efficient ensemble. FreeInv enhances DDIM inversion in a free-lunch manner. In detail, we randomly transform the latent representation, and keep the transformation at each time-step the same between the inversion and the reconstruction. FreeInv is compatible with both U-Net and DiT architectures. Thanks to its efficiency, FreeInv is applicable not only to image reconstruction but also to video sequences. In both image and video reconstruction tasks, it achieves reconstruction fidelity comparable to or better than existing methods, while demonstrating significantly improved efficiency.

Acknowledgments

This project is supported by National Natural Science Foundation of China under Grant 92370114. This work is also supported by HUJING Digital Media & Entertainment Group through HUJING Digital & Entertainment Innovative Research Program.

References

- [1] Flux. <https://github.com/black-forest-labs/flux>.
- [2] Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion. *arXiv preprint arXiv:2206.02779*, 2022.
- [3] Yuxiang Bao, Di Qiu, Guoliang Kang, Baochang Zhang, Bo Jin, Kaiye Wang, and Pengfei Yan. Latentwarp: Consistent diffusion latents for zero-shot video-to-video translation. *arXiv preprint arXiv:2311.00353*, 2023.
- [4] Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinjiang Zheng. Masactr: Tuning-free mutual self-attention control for consistent image synthesis and editing. In *ICCV*, 2023.
- [5] Wenkai Dong, Song Xue, Xiaoyue Duan, and Shumin Han. Prompt tuning inversion for text-driven image editing using diffusion models. In *ICCV*, pages 7430–7440, 2023.
- [6] Xiaoyue Duan, Shuhao Cui, Guoliang Kang, Baochang Zhang, Zhengcong Fei, Mingyuan Fan, and Junshi Huang. Tuning-free inversion-enhanced control for consistent image editing. In *AAAI*, volume 38, pages 1644–1652, 2024.
- [7] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *ICML*, 2024.
- [8] Yutang Feng, Sicheng Gao, Yuxiang Bao, Xiaodi Wang, Shumin Han, Juan Zhang, Baochang Zhang, and Angela Yao. Wave: Warping ddim inversion features for zero-shot text-to-video editing. In *ECCV*, 2024.
- [9] Daniel Garibi, Or Patashnik, Andrey Voynov, Hadar Averbuch-Elor, and Daniel Cohen-Or. Renoise: Real image inversion through iterative noising. In *ECCV*. Springer, 2024.
- [10] Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Tokenflow: Consistent diffusion features for consistent video editing. In *ICLR*, 2024.
- [11] Lars Kai Hansen and Peter Salamon. Neural network ensembles. *IEEE TPAMI*, 2002.
- [12] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt image editing with cross attention control. In *ICLR*, 2023.
- [13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*, volume 33, pages 6840–6851, 2020.
- [14] Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation. In *CVPR*, pages 8153–8163, 2024.
- [15] Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise space: Inversion and manipulations. In *CVPR*, pages 12469–12478, 2024.
- [16] Phillip Isola, Jun Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with conditional adversarial networks. In *CVPR*, pages 5967–5976, 2017.
- [17] Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Pnp inversion: Boosting diffusion-based editing with 3 lines of code. In *ICLR*, 2024.
- [18] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung Park. Scaling up gans for text-to-image synthesis. In *CVPR*, pages 10124–10134, 2023.

[19] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic: Text-based real image editing with diffusion models. In *CVPR*, pages 6007–6017, 2023.

[20] Maomao Li, Yu Li, Tianyu Yang, Yunfei Liu, Dongxu Yue, Zhihui Lin, and Dong Xu. A video is worth 256 bases: Spatial-temporal expectation-maximization inversion for zero-shot video editing. In *CVPR*, pages 7528–7537, 2024.

[21] Senmao Li, Joost van de Weijer, Taihang Hu, Fahad Shahbaz Khan, Qibin Hou, Yaxing Wang, and Jian Yang. Stylediffusion: Prompt-embedding inversion for text-based editing. *arXiv preprint arXiv:2303.15649*, 2023.

[22] Jiadong Liang, Wenjie Pei, and Feng Lu. Cpgan: Content-parsing generative adversarial networks for text-to-image synthesis. In *ECCV*, pages 491–508. Springer, 2020.

[23] Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, and Jiaya Jia. Video-p2p: Video editing with cross-attention control. In *CVPR*, 2024.

[24] Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt inversion: Fast image inversion for editing with text-guided diffusion models. *arXiv preprint arXiv:2305.16807*, 2023.

[25] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for editing real images using guided diffusion models. In *CVPR*, 2023.

[26] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. In *ICML*, pages 16784–16804. PMLR, 2022.

[27] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-adaptive normalization. In *CVPR*, pages 2337–2346, 2019.

[28] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-driven manipulation of stylegan imagery. In *ICCV*, pages 2085–2094, 2021.

[29] William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, pages 4195–4205, 2023.

[30] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image synthesis. In *ICLR*, 2024.

[31] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017 davis challenge on video object segmentation. *arXiv preprint arXiv:1704.00675*, 2017.

[32] Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, and Qifeng Chen. Fatezero: Fusing attentions for zero-shot text-based video editing. In *ICCV*, pages 15932–15942, 2023.

[33] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. Mirrorgan: Learning text-to-image generation by redescription. In *CVPR*, pages 1505–1514, 2019.

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *ICML*, pages 8748–8763. PMLR, 2021.

[35] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee. Generative adversarial text to image synthesis. In *ICML*, pages 1060–1069. PMLR, 2016.

[36] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *CVPR*, pages 10684–10695, 2022.

[37] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. *arXiv preprint arXiv:2205.11487*, 2022.

[38] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*, 2021.

[39] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In *NeurIPS*, volume 32, 2019.

[40] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021.

[41] Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Splicing vit features for semantic appearance transfer. In *CVPR*, pages 10748–10757, 2022.

[42] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for text-driven image-to-image translation. In *CVPR*, pages 1921–1930, 2023.

[43] Dani Valevski, Matan Kalman, Eyal Molad, Eyal Segalis, Yossi Matias, and Yaniv Leviathan. Unitune: Text-driven image editing by fine tuning a diffusion model on a single image. *ACM TOG*, 42(4):1–10, 2023.

[44] Yael Vinker, Eliahu Horwitz, Nir Zabari, and Yedid Hoshen. Image shape manipulation from a single augmented training sample. In *ICCV*, pages 13769–13778, 2021.

[45] Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled transformations. In *CVPR*, pages 22532–22541, 2023.

[46] Fangyikang Wang, Hubery Yin, Yue-Jiang Dong, Huminhao Zhu, Chao Zhang, Hanbin Zhao, Hui Qian, and Chen Li. BELM: Bidirectional explicit linear multi-step sampler for exact inversion in diffusion models. In *NeurIPS*, 2024.

[47] Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li, and Ying Shan. Taming rectified flow for inversion and editing. *arXiv preprint arXiv:2411.04746*, 2024.

[48] Ting Chun Wang, Ming Yu Liu, Jun Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In *CVPR*, 2018.

[49] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE TIP*, 13(4):600–612, 2004.

[50] Sihan Xu, Yidong Huang, Jiayi Pan, Ziqiao Ma, and Joyce Chai. Inversion-free image editing with natural language. In *CVPR*, 2024.

[51] Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation using diffusion model. In *CVPR*, pages 1481–1490, 2024.

[52] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *CVPR*, pages 586–595, 2018.

[53] Jun Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In *ICCV*, pages 2242–2251, 2017.

[54] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-gan: Dynamic memory generative adversarial networks for text-to-image synthesis. In *CVPR*, pages 5802–5810, 2019.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The paper's contributions and scope are reflected in the abstract and introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: The limitation is discussed in the appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Justification: We provide complete assumption and detailed proof to support our theoretical claims.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: **[Yes]**

Justification: We disclose all the implementation details.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: **[No]**

Justification: We will release the code upon the acceptance of the paper.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: We provide complete implementation details in the Experiment section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: **[No]**

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: The computer resources are listed in the main table.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics in every respect.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We discuss the societal impact in appendix.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release a new model, and the paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: They are credited properly.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The main contribution of the paper does not involve crowdsourcing experiments.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

Appendix

In the appendix, we provide more quantitative and qualitative results to facilitate a more comprehensive understanding and evaluation of the proposed method. Moreover, we supplement more visualization results comprising both image and video editing in a web-page through the link <https://yuxiangbao.github.io/FreeInv/> for better visualization. Further, we discuss the social impact and limitations of FreeInv.

A Image/Video Editing with FreeInv

As FreeInv may improve the reconstruction quality in a free-lunch manner, it can be easily combined with existing image/video editing approaches [12, 42, 4, 10] to improve the editing performance. As current editing methods typically rely on spatial coherence (*e.g.*, the self-attention map in U-Net) as guidance, we make minor modifications of FreeInv to make it better aligned with existing editing approaches, *i.e.*, we additionally apply inverse transformation to the predicted noise. For example, at a certain time-step, we rotate the latent by an angle to predict the noise and then reversely rotate the noise with the same angle before adding the noise to the latent x_t . Note that such an inverse transformation of noise is optional for reconstruction as the reconstruction quality is mainly determined by the closeness between inversion and reconstruction trajectories. We compare the reconstruction and editing results with and without applying inverse transformation on the predicted noise on PIE benchmark. The results presented in Tab. 7 and Fig. 8 show that the inverse transformation has minimal impact on the reconstruction results, but may benefit the structural faithfulness in editing.

Table 7: Ablation study on the effect of inverse transformation applied on the predicted noise with respect to reconstruction quality on the PIE benchmark.

Methods	PSNR \uparrow	LPIPS ($\times 10^{-2}$) \downarrow	MSE ($\times 10^{-3}$) \downarrow	SSIM \uparrow
DDIM Baseline	25.04	9.14	4.43	0.77
w/o inverse transformation	27.64	5.13	2.45	0.81
w/ inverse transformation	27.64	5.14	2.45	0.81

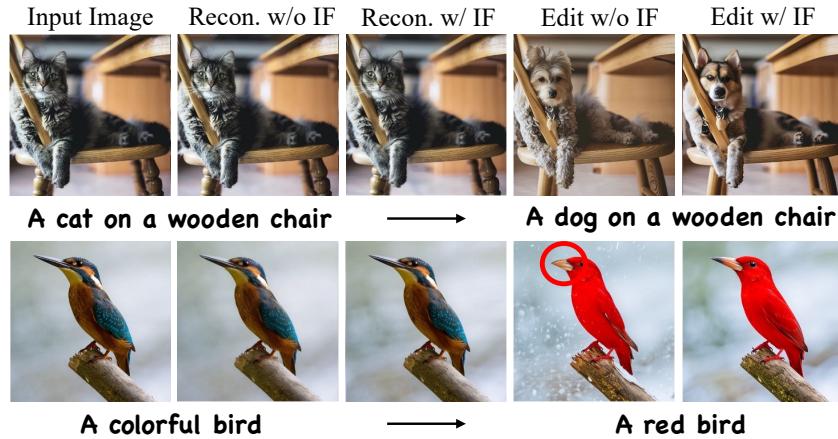


Figure 8: Visualization of the reconstruction and editing results with and without inverse transformation (IF). We adopt PnP as the editing method.

B Combination with NTI

To further demonstrate the free-lunch benefit, we supply extensive experiments by combining FreeInv with the previous representative method NTI [25] to further boost performance. The result is provided in Tab. 8.

Table 8: Ablation study on plugging FreeInv into NTI [25].

Methods	PSNR \uparrow	LPIPS ($\times 10^{-2}$) \downarrow	MSE ($\times 10^{-3}$) \downarrow	SSIM \uparrow
DDIM Baseline	25.04	9.14	4.43	0.77
NTI	26.74	5.46	3.13	0.79
FreeInv	27.69	5.14	2.45	0.81
NTI+FreeInv	28.15	4.89	2.31	0.81

C Experiments on SDXL

Following previous works [25, 45, 15, 50] in the literature, we choose SD1.5 to perform U-Net based experiments, and FLUX to perform DiT based experiments. In Tab. 9, we further include SDXL [30] for comparison with U-Net-based architectures. FreeInv consistently delivers performance improvements, further demonstrating its effectiveness and generality.

Table 9: Ablation study on plugging FreeInv into SDXL [30].

Methods	PSNR \uparrow	LPIPS ($\times 10^{-2}$) \downarrow	MSE ($\times 10^{-3}$) \downarrow	SSIM \uparrow
SDXL DDIM Baseline	24.78	12.3	6.02	0.75
SDXL FreeInv	26.68	5.57	3.15	0.79

D Human Evaluation

In Tab. 3, we compare the editing results from PnP [42], MasaCtrl [4], and P2P [12] under the scenarios with or without FreeInv. We use fifteen images from the PIE benchmark, with each editing method applied to five distinct images. During the survey, participants are shown the source image, the edited results with and without FreeInv, and the target prompt. They are then asked to choose the edited image that demonstrates higher textual alignment and better source preservation. Finally, we receive 165 votes from a participant pool. A screenshot of the survey interface is provided in Fig. 9.

In a similar way, we perform another user study to evaluate the effectiveness of different inversion methods. Participants are presented with P2P editing results generated using each inversion method, and then asked to choose their preferred results. Finally, we receive 130 votes from a participant pool, and the result is provided in Tab. 10.

Table 10: User study on different inversion methods.

User Study	DDIM	NTI	EDICT	DI	VI	PI	Ours
preference (%)	4.6	12.3	8.5	10.8	7.7	26.2	30.0

E More Visualizations

E.1 Image Reconstruction

We additionally visualize more reconstruction results in Fig. 10, to compare FreeInv with other state-of-the-art inversion methods. The results further verify the effectiveness and generality of FreeInv as indicated in Sec. 4.2.

E.2 Image Editing

Comparison with Other Inversion Methods. We show more examples edited by P2P with previous state-of-the-art inversion approaches in Fig. 11. The visualization results further validate that FreeInv significantly outperforms the DDIM baseline, and achieves performance comparable to existing state-of-the-art inversion approaches.

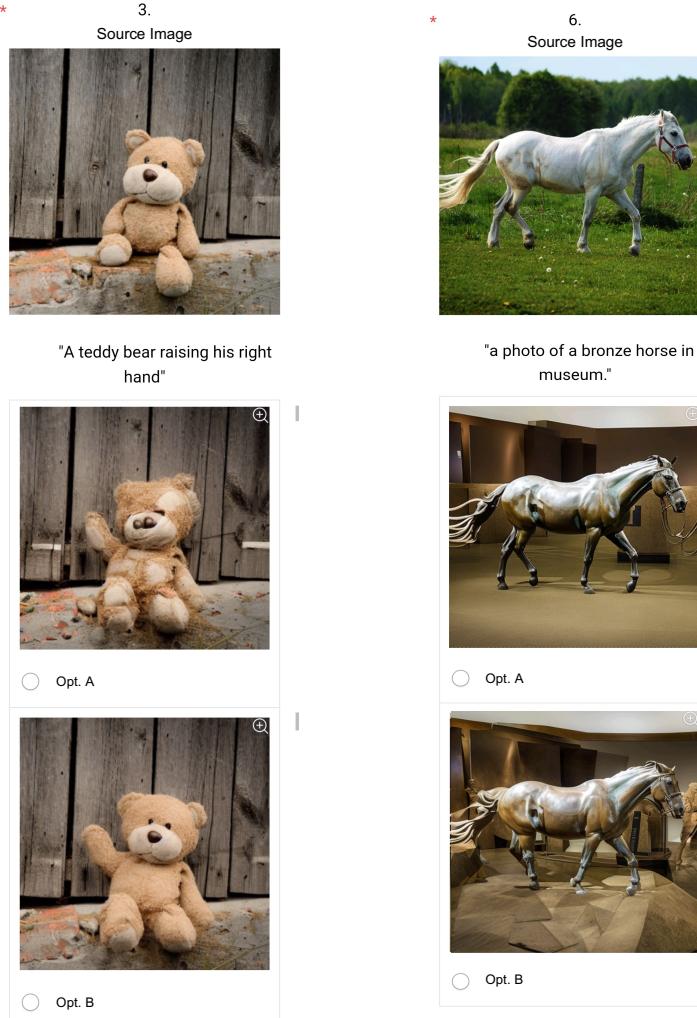


Figure 9: The screenshot of the user survey interface on the phone. The source image, the edited results with and without FreeInv, and the target prompt are presented to the participants.

Plugging in Existing Image Editing Methods. Due to operational simplicity, FreeInv can be readily plugged into existing inversion-based image editing frameworks. In Fig. 12 and Fig. 13, we present more editing results of PnP [42] and MasaCtrl [4], respectively. As shown in Fig. 12, 13, FreeInv outperforms the baseline editing method remarkably.

E.3 Video Editing

We provide the video editing results through this [link](#), where we compare the results of TokenFlow [10] baseline, TokenFlow with STEM-Inv [20], and TokenFlow with FreeInv. Besides, we provide the video reconstruction results of DDIM inversion, STEM-Inv and FreeInv. Through the visualization results, we observe that FreeInv exhibits superior reconstruction fidelity and editing effects, compared with DDIM inversion and STEM-Inv.

F Social Impact and Limitation

Social Impact. We introduce a free-lunch DDIM inversion-enhanced technique FreeInv in this work. FreeInv enables high-fidelity reconstruction, benefiting image and video editing accordingly. However, we are aware that it can be potentially abused by those malicious individuals or groups

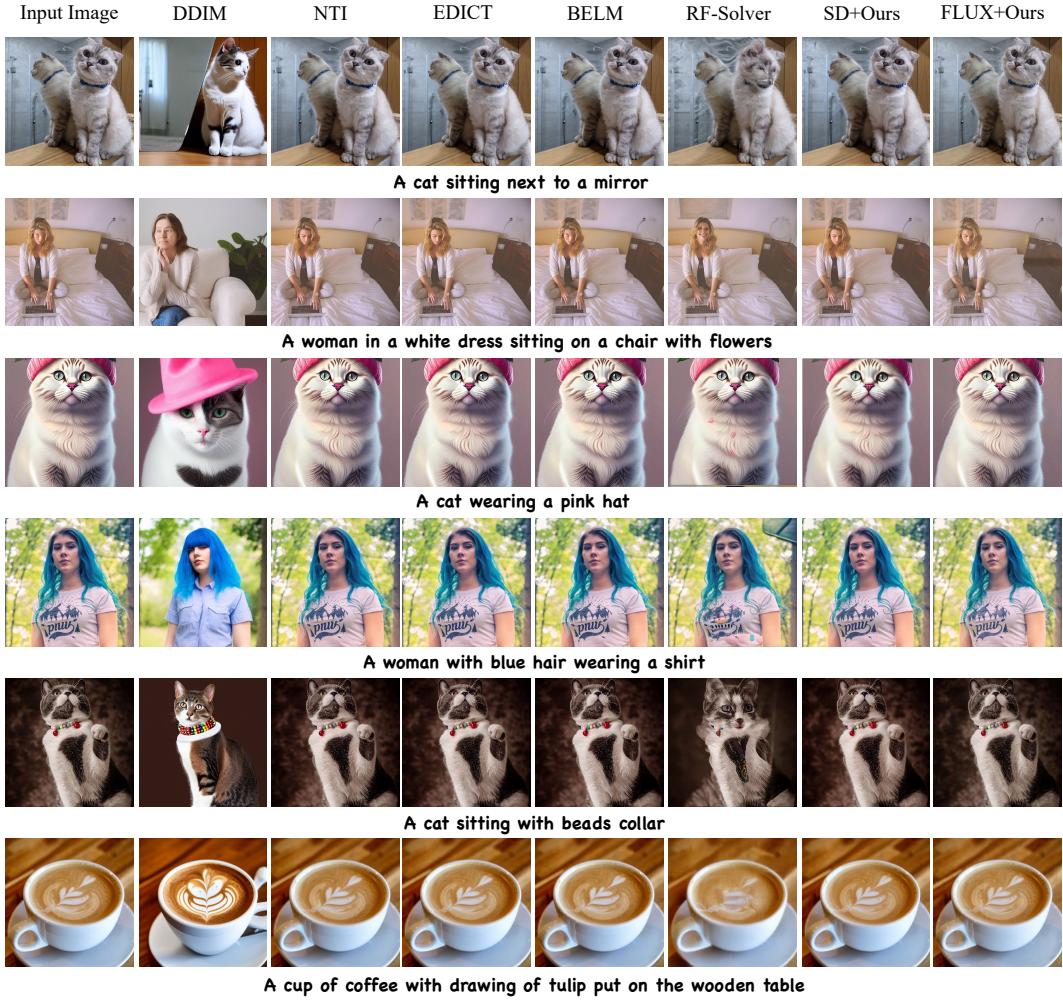


Figure 10: **Qualitative comparison.** Visualization of the reconstruction results in comparison with state-of-the-art inversion methods.

to distribute false information and cause confusion, which undoubtedly violates the intention of our research. We believe the misuse can be alleviated through developing AIGC detection algorithms and being supervised with regulations.

Limitation. While our proposed FreeInv improves the efficiency of DDIM inversion significantly, there still remains room for improvement. One key challenge lies in balancing editability and reconstruction fidelity, which is a common issue for inversion methods. In some cases, FreeInv may overemphasize the preservation of source content, which can limit its editability. Another limitation lies in that FreeInv is an inversion-enhanced technique. The editing quality also relies on the editing framework itself which is integrated with FreeInv. Thus, a better editing framework may yield better editing result. For specific scenarios, a suitable editing framework should also be considered.

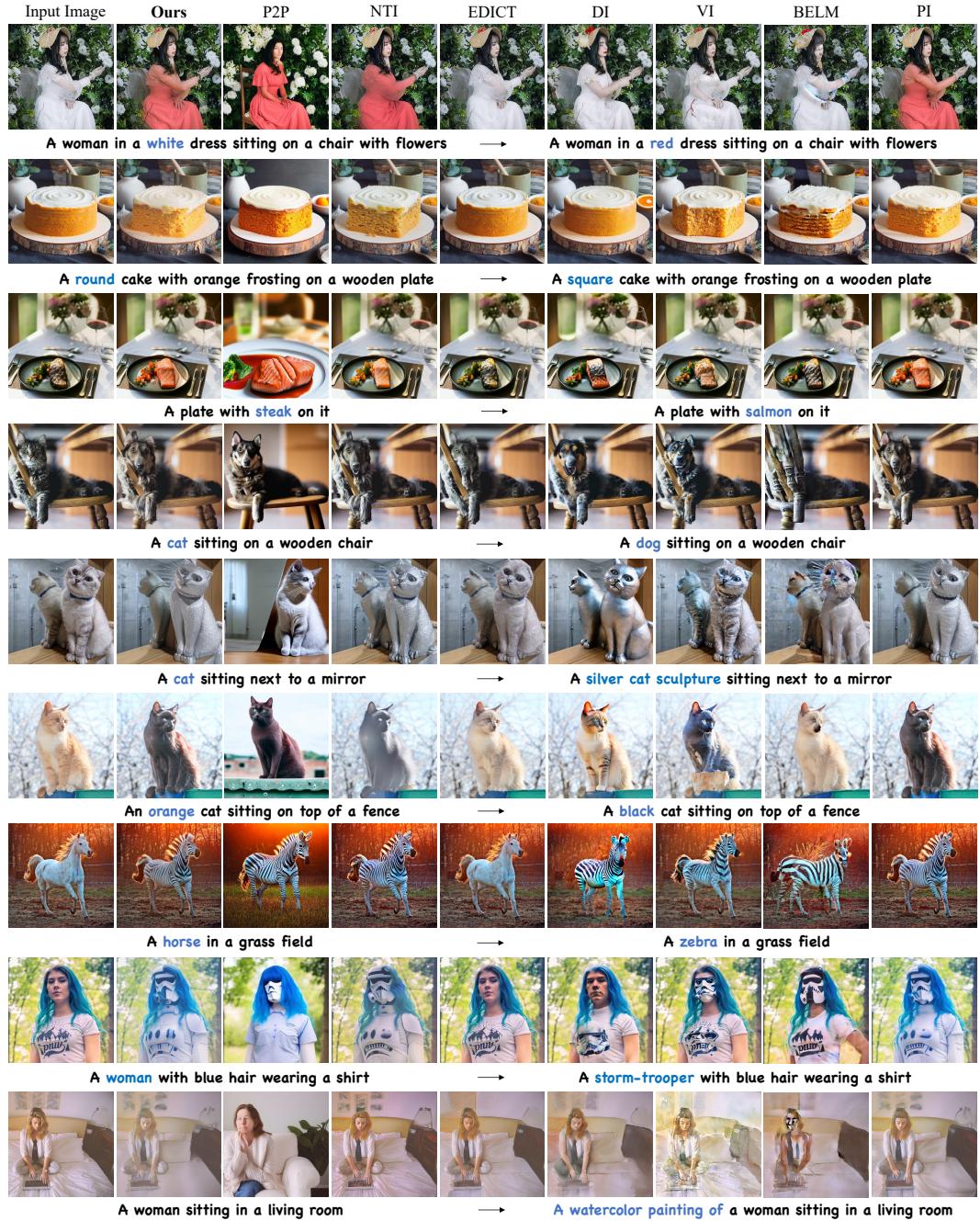


Figure 11: **Qualitative comparison.** More comparison with state-of-the-art inversion methods. P2P [12] with DDIM inversion serves as the baseline method, and all of the methods are plugged into it.

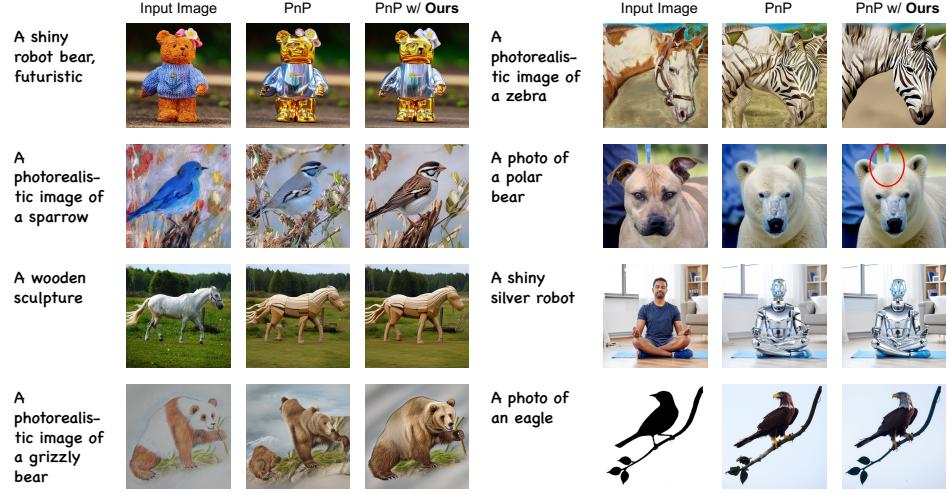


Figure 12: **Qualitative comparison.** More editing results of PnP [42] with and without FreeInv.

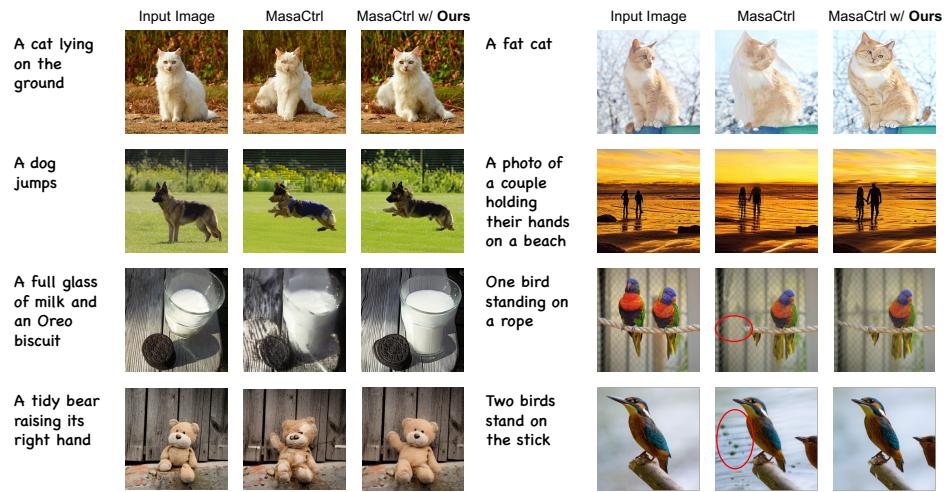


Figure 13: **Qualitative comparison.** More editing results of MasaCtrl [4] with and without FreeInv.