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ABSTRACT

Image denoising techniques based on deep learning often struggle with poor gen-
eralization performance to out-of-distribution real-world noise. To tackle this
challenge, we propose a novel noise translation framework that performs denois-
ing on an image with translated noise rather than directly denoising an original
noisy image. Specifically, our approach translates complex, unknown real-world
noise into Gaussian noise, which is spatially uncorrelated and independent of im-
age content, through a noise translation network. The translated noisy images
are then processed by an image denoising network pretrained to effectively re-
move Gaussian noise, enabling robust and consistent denoising performance. We
also design well-motivated loss functions and architectures for the noise transla-
tion network by leveraging the mathematical properties of Gaussian noise. Ex-
perimental results demonstrate that the proposed method substantially improves
robustness and generalizability, outperforming state-of-the-art methods across di-
verse benchmarks.

1 INTRODUCTION

Image denoising aims to restore the pure signal from noisy images and serves as a critical prepro-
cessing step to improve the visual quality of input images, extending the applicability of various
downstream tasks. Recent advances in deep learning have significantly improved the performance
of image denoising models (Zhang et al., 2017; 2018; Guo et al., 2019; Zamir et al., 2020; 2022b;a;
Chen et al., 2022; Zhang et al., 2024). A common assumption in early approaches was that camera
noise could be modeled as Gaussian noise (Mao et al., 2016; Zhang et al., 2017; 2018), which sim-
plified the process of generating noisy-clean image pairs by adding synthetic Gaussian noise. This
allowed for the creation of large datasets that could be used to train denoising models in a supervised
manner, playing a crucial role in advancing the development of denoising models.

Although these models trained on synthetic dataset perform well under controlled environments,
they often struggle to generalize to real-world scenarios due to the fundamental differences between
synthetic and real noise distributions (Guo et al., 2019). In response, researchers have collected
clean-noisy image pairs from real images (Abdelhamed et al., 2018; Xu et al., 2018; Yue et al., 2019)
to address realistic noises, but models trained on this data still tend to overfit to the specific noise-
signal correlations present in the training data. Capturing the full spectrum of noise distributions in
real world images is impractical and even unrealistic.

To address this challenge, we propose a novel noise translation framework for image denoising to
better generalize to diverse real-world noise using a limited training dataset. The intuition behind
our framework is as follows. While existing denoising algorithms trained on images with Gaussian
noise exhibit limited performance when applied to real noisy images, we observed that adding Gaus-
sian noise to these noisy images significantly improves their effectiveness in denoising, as shown
in Figure 1. This observation motivated us to explore the idea that, instead of directly denoising
unseen real noise, first translating it into known Gaussian noise and then applying denoising could
improve the model’s ability to generalize across unseen and OOD noise. To this end, we introduce
the lightweight Noise Translation Network, which, prior to the denoising process, utilizes Gaussian
injection blocks to transform arbitrary complex noise into Gaussian noise that is spatially uncorre-
lated and independent of an input image. The translated images are then processed by the pretrained
denoising networks specialized for Gaussian noise, resulting in the clean denoised images. Our ex-
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OOD Noisy Output 29.63 dB Gaussian Added Output 32.73 dB Translated (Ours) Output 34.61 dB

Figure 1: Observations on denoising network trained with synthetic Gaussian noise applied to a
noisy image from the CC dataset. Left pair shows the original noisy input and its output, while the
middle pair shows the input added with Gaussian noise and the corresponding output. Experiments
were conducted using the Restormer with officially published model weights. Last pair shows the
Gaussian-translated input and the resulting output of our method. The denoised outputs are evaluated
with Peak Signal-to-Noise Ratio (PSNR↑) against the ground truth image. Zoom in for better details.

perimental results and analysis validate that the proposed framework outperforms existing denoising
approaches by huge margins on various benchmarks.

Overall, our key contributions are summarized as follows:

• We propose a novel noise translation framework for robust image denoising, which converts
unknown complex noise of the input image into Gaussian noise which is spatially uncorre-
lated and independent of the image content. The translated images are then processed by
pretrained denoising networks specialized in removing Gaussian noise.

• We employ well-motivated loss functions and architecture for the noise translation network.
The proposed approach guides the noise distribution of the input image to Gaussian distri-
bution both implicitly and explicitly by rigorously leveraging the mathematical properties.

• We demonstrate the efficacy of our approach through extensive experiments on image de-
noising benchmarks with diverse noise distributions, achieving significant improvements
in terms of robustness and generalization ability compared to existing methods.

The rest of this paper is organized as follows. Section 2 reviews the related literature. We present
our noise translation framework for image denoising in Section 3 and demonstrate its effectiveness
in Section 4. We conclude our paper in Section 5.

2 RELATED WORKS

Image denoising In recent years, deep learning has led to significant progress in image de-
noising, achieving impressive results by leveraging paired noisy and clean images for training.
DnCNN (Zhang et al., 2017) pioneered the use of CNNs for image denoising, which paved the
way for further advancements involving residual learning (Gu et al., 2019; Liu et al., 2019; Zhang
et al., 2019), attention mechanisms (Liu et al., 2018; Zhang et al., 2019), and transformer mod-
els (Zamir et al., 2022a; Zhang et al., 2024). Despite its success, acquiring the noisy-clean pairs
required for supervised training remains a significant challenge. To address this, self-supervised ap-
proaches (Lehtinen et al., 2018; Krull et al., 2019; Batson & Royer, 2019; Pang et al., 2021; Li et al.,
2023) have emerged to train networks using only noisy images, but these models typically perform
considerably worse than their supervised counterparts. Additionally, zero-shot approaches (Quan
et al., 2020; Huang et al., 2021; Mansour & Heckel, 2023) have been proposed for image denoising
even without training dataset, but they require substantial computational cost at inference, making
them impractical for real-time applications. In contrast to these methods that aim to reduce depen-
dency on supervised data, out approach leverages supervised data but focuses on achieving good
generalization performance with a limited amount of data.

Generalization for denoising Generalization is a critical challenge in image denoising, as the
performance of denoising models often degrades when encountering noise characteristics that were
not seen during training. To handle unseen noise type or levels, DnCNN (Zhang et al., 2017) em-
ployed blind Gaussian training to adapt to various noise levels, while Mohan et al. (2020) designed
a bias-free network to prevent overfitting to noise levels in the training set. More recent works em-
ployed masking-based learning (Chen et al., 2023) or leverage the pre-trained CLIP encoder (Cheng
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et al., 2024) to prevent overfitting by encouraging the model to understand global context rather than
relying on local patterns. While these approaches enhance robustness to unseen noise, they often
struggle to produce high-quality image restoration, particularly in complex real-world scenarios.

To address real-world noise, researchers have focused on constructing training datasets that closely
resemble real noise distribution. This includes collecting real clean-noise image pairs (Abdelhamed
et al., 2018; Xu et al., 2018; Yue et al., 2019) and learning to generate realistic noise through data
augmentation (Jang et al., 2021; Cai et al., 2021) or adversarial attacks (Yan et al., 2022; Ryou
et al., 2024). However, these approaches are limited to the noise distributions represented in the
training dataset and fail to generalize effectively to unseen OOD noise. Our approach overcomes
this limitation by incorporating a noise translation process that transforms the complex distribution
of real noise into a known Gaussian distribution, improving performance on OOD data significantly.

3 METHOD

In this section, we present a robust image denoising framework featuring a novel noise translation
process, designed to effectively handle diverse unseen noise. Our framework consists of: (1) a noise
translation network to transform the arbitrary noise in an input image into ideal Gaussian noise, and
(2) a denoising network to remove the translated noise to produce a clean output.

3.1 IMAGE DENOISING NETWORK

First of all, we train a denoising network as follows. Our image denoising network aims to recover
a clean image from a noisy input, which can be mathematically formulated as

Î = D(I;θ), (1)

where D(·;θ) denotes an image denoising network parameterized by θ, and I, Î ∈ RH×W×C

represents a noisy input image and its corresponding denoised output, respectively.

The goal of supervised training for our denoising network is to ensure that the denoised output Î ,
to closely match the ground-truth clean image IGT. To achieve this, the model parameters θ are
optimized by minimizing the following loss function:

L = ∥D(I;θ)− IGT∥. (2)

Our method is model agnostic, allowing us to use existing denoising models and focus only on how
to effectively remove Gaussian noise. To train our image denoising network to eliminate Gaussian
noise, we utilize a training dataset consisting of clean images paired with their corrupted versions
with synthetic additive Gaussian noise. We additionally use Gaussian-augmented real noisy-clean
image pairs, where the noisy images are further corrupted with Gaussian noise. In our framework,
our image denoising network is optimized with the loss function in (2) to make it specialized in
removing Gaussian noise.

3.2 NOISE TRANSLATION NETWORK

Figure 2 illustrates the overall training pipeline of the noise translation network. Formally, our
framework first transforms a noisy image I into an image with Gaussian noise IT , which is then fed
into the denoising network to produce the final denoised output ÎT , represented by

ÎT = D(IT ;θ
∗) = D(T (I;ϕ);θ∗), (3)

where T (·,ϕ) denotes the noise translation network with parameters ϕ, and D(·,θ∗) indicates the
pretrained denoising network with parameters θ∗. Note that D(·,θ∗) is specialized in handling
Gaussian noise, and its parameters are fixed during training the noise translation network. We next
discuss how to train the noise translation network T (·,ϕ) by providing the following two loss terms.

3.2.1 IMPLICIT NOISE TRANSLATION LOSS

Our goal is to transform an arbitrary noisy input image I into a noise-translated image IT that is
well-suited for the pretrained denoising network, which is specialized for handling Gaussian noise.
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Figure 2: Illustration of our overall training framework, which includes the noise translation network
and an existing denoising network specialized in handling Gaussian noise.

To achieve this, we optimize the noise translation network using a loss function, referred to as the
implicit noise translation loss, which is designed to minimize the difference between the denoised
image and the ground-truth clean image:

Limplicit = ∥ÎT − IGT∥1 = ∥D(T (I;ϕ);θ∗)− IGT∥1, (4)

which guides the network to translate unseen noise into a form that the pretrained denoiser can
handle effectively. A straightforward approach to train a noise translation network is to use real
noisy-clean image pairs as I and IGT. To handle various noise levels in real-world scenarios that
are lacking in the limited training set, we apply data augmentation by adding a random level of
synthetic Gaussian noise to the noisy image I . This helps the noise translation network generalize
more effectively across diverse noise conditions.

3.2.2 EXPLICIT NOISE TRANSLATION LOSS

The implicit noise translation loss helps to translate the image into a form preferable for the pre-
trained denoising network, but it does not ensure that the noise distribution is transformed into an
ideal Gaussian distribution, as it lacks direct control over the noise characteristics. To address this,
we introduce an explicit loss function that directly guides the noise to follow Gaussian distribution.

Let nT = IT − IGT ∈ RH×W×C represent the translated noise, and let nG ∈ RH×W×C be a
random variable following a Gaussian distribution N (µ̂, σ̂), where (µ̂, σ̂) denote the empirical mean
and standard deviation calculated from all elements of nT . Our objective is to adjust the distribution
of nT to closely align with the distribution of nG . To achieve this, we utilize the Wasserstein distance
to measure the difference between their distributions and employ it as a loss function to minimize:

Lspatial ≡ dW1
(nT , nG), (5)

where dW1(·, ·) is 1-Wasserstein distance, also known as the Earth Mover’s Distance. To calculate
this, we first flatten each channel in nT and nG over the spatial dimensions into one-dimensional
vectors, and then sort them in an ascending order. Let Xc ≡ (Xc

1 , X
c
2 , . . . , X

c
H×W ) and Yc ≡

(Y c
1 , Y

c
2 , . . . , Y

c
H×W ) denote the ordered values of nT and nG for the cth channel, respectively. The

1-Wasserstein distance is then calculated by the following simple function of the order statistics1:

dW1
(nT , nG) =

1

H ·W · C

C∑
c=1

H·W∑
i=1

|Xc
(i) − Y c

(i)|. (6)

This loss encourages the translated noise nT to follow a Gaussian distribution element-wise, but
it is still insufficient to ensure that nT is spatially uncorrelated. To handle the spatial correlation,
we convert the signals of nT and nG into the frequency domain using their respective channel-wise

1Please refer to Section A for the detailed proof.
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Fourier transforms, which are given by

F c
T (u, v) =

H−1∑
x=0

W−1∑
y=0

nT (x, y, c)e
−2πi(ux

H + vy
W ), (7)

F c
G(u, v) =

H−1∑
x=0

W−1∑
y=0

nG(x, y, c)e
−2πi(ux

H + vy
W ), (8)

where (u, v) are the frequency domain coordinates and c is a channel index. Since nG is spatially
uncorrelated Gaussian noise, the real and imaginary parts of the Fourier coefficients, F c

G(u, v), also
follow i.i.d. Gaussian distributions with zero mean and the same variance. Consequently, the mag-
nitude of the Fourier coefficients, |F c

G(u, v)|, follows a Rayleigh distribution as

pR(|F c
G(u, v)|;σ) =

|F c
G(u, v)|
σ2

exp

(
−
|F c

G(u, v)|2

2σ2

)
, (9)

which implies that |F c
T (u, v)| should also follow a Rayleigh distribution to ensure that nT is spatially

uncorrelated. To this end, similar to Eqs. (5) and (6), we minimize the difference between the
distributions of |F c

T (u, v)| and |F c
G(u, v)| by utilizing 1-Wasserstein distance, which is defined as

Lfreq ≡ dW1
(|FT |, |FG |) =

1

H ·W · C

C∑
c=1

H·W∑
i=1

|X̃c
(i) − Ỹ c

(i)|, (10)

where X̃c ≡ (X̃c
1 , X̃

c
2 , . . . , X̃

c
H×W ) and Ỹc ≡ (Ỹ c

1 , Ỹ
c
2 , . . . , Ỹ

c
H×W ) are the sorted values of flat-

tened magnitude of Fourier coefficients |F c
T (u, v)| and |F c

G(u, v)|, respectively.

The full explicit noise translation loss is defined by Lspatial and Lfreq as
Lexplicit = Lspatial + β · Lfreq, (11)

where β is a hyperparameter that balances the contribution of the two Wasserstein distances. This
loss function explicitly guides the translated noise to follow Gaussian distribution.

The total loss function for training the noise translation network is given by
Ltotal = Limplicit + α · Lexplicit, (12)

where α is a hyperparameter to control the influence of implicit and explicit loss terms.

3.2.3 GAUSSIAN INJECTION BLOCK

As illustrated in Figure 2, our noise translation network is built upon a lightweight U-Net architec-
ture, where each layer is composed of Gaussian Injection Blocks (GIBlock). GIBlock incorporates
a Nonlinear Activation-Free (NAF) block from NAFNet (Chen et al., 2022) along with our key idea
to align the discrepancy between training and inference stage: Gaussian noise injection.

In the training stage of noise translation network, random levels of Gaussian noise is augmented to an
input image I to address diverse noise conditions, enhancing the robustness of the noise translation
network. In contrast, in inference stage, noisy input images are given directly to the noise translation
network without adding extra Gaussian noise, because the direct noise augmentation to the input
images degrades output quality. To establish a consistent Gaussian noise prior in both the training
and inference stage, we inject Gaussian noise into every intermediate block of the noise translation
network. Since the noise translation network is designed based on U-Net with residual connections
between the input I and the output IT , the distortion of the signal caused by injected Gaussian
noise is alleviated, while allowing the noise translation network to utilize the Gaussian prior for
transforming unseen real noise. Our ablation studies further demonstrate that the proposed Gaussian
noise injection is crucial for the noise translation network to effectively translate unseen noise into
Gaussian noise during the inference stage.

4 EXPERIMENTS

We demonstrate the effectiveness of the proposed approach on various benchmarks, evaluating per-
formance on both in-distribution and out-of-distribution datasets. This section also provides an
in-depth analysis of our algorithm, including detailed ablation studies and qualitative assessments.
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Table 1: Quantitative comparison between other state-of-the-art real-world denoising networks and
our adaptation framework-applied networks on the SIDD validation set (in-distribution) and other
real-world benchmarks (out-of-distribution). We present the performance in terms of PSNR↑ (dB)
and SSIM↑. Networks marked with asterisk (*) are evaluated using official out-of-the-box models.

In-distribution Out-of-distribution

Architecture Metric SIDD Poly CC HighISO iPhone Huawei OPPO Sony Xiaomi OOD Avg.

MIRNet-v2* PSNR 39.76 37.39 35.93 38.15 40.41 38.06 39.62 43.89 35.39 38.60
SSIM 0.9589 0.9798 0.9796 0.9774 0.9781 0.9681 0.9792 0.9893 0.9709 0.9778

MPRNet* PSNR 39.63 37.47 35.92 38.00 40.13 38.29 39.70 43.88 35.46 38.61
SSIM 0.9581 0.9765 0.9765 0.9728 0.9736 0.9668 0.9783 0.9889 0.9693 0.9753

Uformer* PSNR 39.80 37.44 36.00 38.10 40.23 38.31 39.62 43.77 35.48 38.62
SSIM 0.9590 0.9790 0.9792 0.9759 0.9743 0.9680 0.9784 0.9882 0.9708 0.9767

Restormer* PSNR 39.93 37.63 36.31 38.24 40.05 38.36 39.49 44.02 35.62 38.85
SSIM 0.9598 0.9790 0.9805 0.9753 0.9727 0.9671 0.9768 0.9889 0.9706 0.9745

Restormer-ours PSNR 39.08 38.74 37.60 40.06 41.62 39.68 40.55 44.12 36.14 39.81
SSIM 0.9558 0.9846 0.9861 0.9851 0.9751 0.9761 0.9794 0.9849 0.9747 0.9807

NAFNet* PSNR 40.21 36.04 34.39 37.88 36.53 36.13 39.32 40.45 34.82 37.31
SSIM 0.9609 0.9615 0.9784 0.9769 0.8896 0.9385 0.9764 0.9339 0.9657 0.9535

NAFNet-ours PSNR 39.17 38.67 37.82 39.94 41.94 39.74 40.45 44.17 36.14 39.86
SSIM 0.9566 0.9851 0.9876 0.9853 0.9805 0.9778 0.9796 0.9869 0.9745 0.9822

KBNet* PSNR 40.26 36.79 35.21 38.05 37.93 35.14 37.73 41.65 34.23 37.09
SSIM 0.9618 0.9785 0.9808 0.9785 0.9526 0.9459 0.9657 0.9784 0.9640 0.9681

KBNet-ours PSNR 39.06 38.57 37.59 39.83 41.63 39.71 40.46 44.04 36.04 39.73
SSIM 0.9559 0.9840 0.9859 0.9845 0.9752 0.9773 0.9794 0.9839 0.9739 0.9805

4.1 EXPERIMENTAL SETTINGS

Training details Since our approach is model-agnostic, we employ existing architectures such as
NAFNet (Chen et al., 2022), Restormer (Zamir et al., 2022a), and KBNet (Zhang et al., 2023) as our
image denoising network, which is pretrained on BSD400 (Martin et al., 2001), WED (Ma et al.,
2016), and SIDD medium (Abdelhamed et al., 2018) datasets. BSD400 and WED datasets consist of
clean images only, while SIDD dataset is composed of real noisy-clean image pairs. During training
a denoising network, noisy images are generated by adding Gaussian noise with a standard deviation
of 15 to clean images of BSD400 and WED datasets, and noisy images of SIDD datasets. Each
training batch consists of images drawn equally from two sources: half from the combined BSD400
and WED datasets, and the other half from the SIDD dataset. The denoising models are trained for
200K iterations with a batch size of 32, except for Restormer, where the batch size is reduced to 4
due to the limitation of computational resources. After training a denoising network, we train the
noise translation network with the SIDD dataset only, where noisy images are augmented by adding
stochastic level of Gaussian noise with a range of 0 to 15. The noise translation network is trained
for 5K iterations with a batch size of 4. Both the image denoising network and noise translation
network adopt the AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning rate of
10−3, which is reduced using a cosine annealing schedule, down to 10−7 and 10−5, respectively.
Each image is randomly cropped to 256× 256 for training. All trainings were conducted using two
NVIDIA RTX A6000 GPUs.

Evaluation To evaluate the generalization performance of our framework, we employ various real-
world image denoising benchmarks. We conduct experiments using SIDD validation dataset (Ab-
delhamed et al., 2018), Poly (Xu et al., 2018), CC (Nam et al., 2016), HighISO (Yue et al., 2019),
iPhone, Huawei, Oppo, Sony, and Xiaomi (Kong et al., 2023). The SIDD validation dataset consists
of images with a resolution of 256×256 pixels, while the Poly, CC, and HighISO datasets contain
images with a resolution of 512×512 pixels. Images from iPhone, Huawei, Oppo, Sony, and Xiaomi
are 1024× 1024 pixels in size.
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Table 2: Quantitative results based on variations in the noisy input to the pretrained denoising
network on the SIDD validation set (in-distribution) and other real-world benchmarks (out-of-
distribution). I , I + N5, I + N10, and I + N15 represent the noisy input images with additional
Gaussian noise levels of 0, 5, 10, and 15, respectively, which are fed into the pretrained Gaussian
denoising network. We present performance in terms of PSNR↑ (dB) and SSIM↑.

In-distribution Out-of-distribution

Input Metric SIDD Poly CC HighISO iPhone Huawei OPPO Sony Xiaomi OOD Avg.

I
PSNR 37.77 15.24 33.76 21.18 40.13 8.68 8.45 6.35 9.33 17.89
SSIM 0.9360 0.3466 0.9139 0.5232 0.9734 0.1218 0.1138 0.0245 0.1845 0.4002

I +N5
PSNR 38.15 27.07 34.97 32.30 15.28 16.99 13.79 12.82 14.96 22.93
SSIM 0.9436 0.7010 0.9211 0.8227 0.2392 0.3943 0.2564 0.1912 0.3540 0.5359

I +N10
PSNR 38.76 38.27 37.33 39.40 40.95 39.44 39.98 42.96 35.91 39.22
SSIM 0.9536 0.9795 0.9850 0.9825 0.9638 0.9762 0.9768 0.9758 0.9728 0.9740

I +N15
PSNR 39.16 38.08 36.26 38.85 41.12 38.71 39.69 43.42 35.25 38.95
SSIM 0.9565 0.9834 0.9829 0.9808 0.9811 0.9719 0.9770 0.9886 0.9680 0.9767

IT
PSNR 39.17 38.67 37.82 39.94 41.94 39.74 40.45 44.17 36.14 39.86
SSIM 0.9566 0.9851 0.9876 0.9853 0.9805 0.9778 0.9796 0.9869 0.9745 0.9822

4.2 RESULTS AND ANALYSIS

Denoising performance on real noise Table 1 illustrates the performance of the proposed ap-
proach applied to the denoising networks Restormer, NAFNet and KBNet, along with the results
from well-known real-world image denoising networks, including MPRNet (Zamir et al., 2021),
MIRNet-v2 (Zamir et al., 2022b), and Uformer (Wang et al., 2022). For evaluating existing meth-
ods, we use the officially published models trained on the SIDD dataset. Our approach utilizes
additional clean images for training the image denoising network. As shown in Table 1, incorpo-
rating our noise translation framework, denoted by Restormer-ours, NAFNet-ours and KBNet-ours,
results in significantly improved PSNR and SSIM in most out-of-distribution (OOD) scenarios. ‘

Comparisons with simple Gaussian noise addition We validate the effectiveness of our noise
translation network by comparing it to simply adding Gaussian noise. As shown in table 2, simply
adding Gaussian noise to the input can result in fairly good generalization performance. However,
some datasets perform better with the input I + N10, while others perform better with the input
I +N15. This suggests that each image or dataset has different noise characteristics, necessitating
a more flexible approach than merely adding a fixed level of Gaussian noise. Our noise translation
network optimally transforms the input noise of each image into ideal Gaussian noise, leading to
significant performance improvements across all datasets.

Analysis of translated noise Figure 3 visualizes noise component before and after our noise
translation process. Real noise exhibits strong spatial correlation and signal dependency. These
correlations are alleviated through the noise translation, transforming the noise to resemble ideal
Gaussian noise. Figure 4 presents the analysis of the noise distribution using histograms. In the spa-
tial domain, Gaussian noise follow a normal distribution, while in the frequency domain, it follows
Rayleigh distribution, as mentioned in Section 3.2.2. The original real-noise distribution signif-
icantly deviates from the expected target: Gaussian distribution in spatial domain and Rayleigh
distribution in frequency domain. After the translation, the noise closely follows the target distri-
butions, demonstrating the effectiveness of our method in aligning the noise characteristics with the
ideal Gaussian noise in both domains. This indicates that our method successfully transforms the
noise into spatially uncorrelated, i.i.d Gaussian noise.

Qualitative results Figure 5 shows qualitative results of the SIDD validation dataset. Although
our method appears to compromise on in-distribution performance, this is due to the severe over-
fitting of other models, which even reconstruct the unnecessary artifacts prevalent in the training
set. In contrast, our method preserves visual quality without overfitting, effectively removing noise
without introducing artifacts. Figure 6 presents qualitative results of denoising models applied to
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OOD Noisy Translated Image Real Noise Translated Noise Denoised Image Ground Truth

Figure 3: Visualization of noise translation and denoised results. The noisy input image in the
top row is from the Poly dataset, while the one in the bottom row is from the CC dataset. The
original real noise exhibits strong signal dependency, whereas the translated noise closely resembles
Gaussian noise, leading to improved denoising performance. For better visualization, the noise is
shown as the absolute value scaled by a factor of 10.

(a) Poly - Spatial (b) Poly - Frequency (c) CC - Spatial (d) CC - Frequency

Figure 4: Histogram of noise distribution in both spatial and frequency domains. The real-noise
distributions of left two plots and right two plots are each obtained from single images in the Poly
and CC datasets, respectively. Real and translated noise distributions are obtained by subtracting
the ground truth image from the input noisy image or the corresponding translated image. Target
noise corresponds to the Gaussian noise with a level of 15, which the denoising network has been
pretrained to remove. The original real noise is shown in blue, the translated noise is shown in red,
and target noise is shown in green.

various real-world OOD datasets, where our method significantly outperforms other denoising mod-
els. Additional qualitative results on various benchmarks are provided in Section B.4.

4.3 ABLATIVE RESULTS

Impact of Gaussian noise injection and explicit noise translation loss Table 3 illustrates the
performance gains attributed to each component of the proposed method. The baseline translation in
Table 3 refers to the results obtained by applying our method only with the implicit noise translation
loss without Gaussian noise injection and explicit noise translation loss. When Gaussian noise
injection is applied, there is a significant improvement in out-of-distribution (OOD) performance.
Lastly, by incorporating the explicit noise translation loss, we observe the best performance gains.

Effects of hyperparameters Table 4 presents the ablative results of our hyperparameters, includ-
ing pretraining noise level (σ), noise injection level (σ̃), explicit loss weight (α), and spatial fre-
quency ratio (β). The pretraining level part of Table 4 shows the ablation results for the Gaussian
noise levels added to create noisy input during denoising network pretraining. As the noise level
increased, the performance on in-distribution (ID) consistently decreased. For out-of-distribution
(OOD), the performance improved until noise level of 15, beyond which it began to degrade, due
to oversmoothing effects caused by learning to handle strong noise. The noise injection level part
presents the ablation results for Gaussian noise injection levels. Increasing the noise level led to a
decline in ID performance, while OOD performance improved up to a certain point. The explicit loss
weight and spatial-frequency ratio parts show the ablation results for the α and β values in Eqs. (12)

8
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SIDD Noisy Image Ground Truth Restormer 33.17 dB NAFNet 33.09 dB KBNet 32.82 dB Ours 33.01 dB

Figure 5: Denoised results of an in-distribution noisy image. Although all methods demonstrate
reasonable performance, only our approach avoids overfitting, thereby preventing the zipper artifact
in the ground truth images from the training set. Zoom in for better comparison.

Poly Noisy

MIRNet 40.38 dB MPRNet 40.48 dB Uformer 40.51 dB Ground Truth

Restormer 40.72 dB NAFNet 39.97 dB KBNet 40.45 dB Ours 43.59 dB

CC Noisy

MIRNet 38.38 dB MPRNet 36.69 dB Uformer 37.48 dB Ground Truth

Restormer 37.40 dB NAFNet 36.99 dB KBNet 38.28 dB Ours 42.18 dB

HighISO Noisy

MIRNet 34.70 dB MPRNet 34.26 dB Uformer 34.58 dB Ground Truth

Restormer 34.59 dB NAFNet 35.60 dB KBNet 35.53 dB Ours 36.44 dB

Figure 6: Comparison between the qualitative results of various denoising networks including ours
(noise translation network with pretrained NAFNet), on the out-of-distribution (OOD) datasets. Our
result displays cleaner outputs compared to other state-of-the-art networks that are directly trained
from a real-noise dataset.
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Table 3: Effects of using Gaussian noise injection and explicit loss. We present denoising perfor-
mance in terms of PSNR↑ (dB) and SSIM↑.

In-distribution Out-of-distribution

Metric SIDD Poly CC HighISO iPhone Huawei OPPO Sony Xiaomi OOD Avg.

Baseline
Translation

PSNR 39.35 38.32 37.25 39.22 40.80 39.24 39.75 43.86 35.74 39.27
SSIM 0.9573 0.9820 0.9864 0.9794 0.9700 0.9727 0.9745 0.9857 0.9683 0.9774

+ Gaussian
Injection

PSNR 39.05 38.54 37.58 39.79 41.53 39.68 40.40 43.89 36.00 39.61
SSIM 0.9556 0.9835 0.9866 0.9844 0.9737 0.9773 0.9790 0.9827 0.9737 0.9801

+ Explicit
Loss

PSNR 39.37 37.91 37.16 39.07 40.28 37.85 39.06 42.72 35.21 38.66
SSIM 0.9574 0.9791 0.9862 0.9783 0.9650 0.9613 0.9670 0.9789 0.9605 0.9720

+ Both PSNR 39.17 38.67 37.82 39.94 41.94 39.74 40.45 44.17 36.14 39.86
SSIM 0.9566 0.9851 0.9876 0.9853 0.9805 0.9778 0.9796 0.9869 0.9745 0.9822

Table 4: Sensitivity results on various hyperparameters in our framework.

Pretraining Level Noise Injection Level Explicit Loss Weight Spatial-Frequency Ratio

σ SIDD OOD Avg. σ̃ SIDD OOD Avg. α SIDD OOD Avg. β SIDD OOD Avg.

5 39.37 38.96 0 39.37 38.66 0 39.05 39.61 0 39.10 39.78
10 39.29 39.64 1 39.33 39.24 0.001 39.03 39.65 0.001 39.15 39.82
15 39.17 39.86 5 39.17 39.66 0.005 39.07 39.72 0.002 39.17 39.86
20 38.88 39.53 15 39.08 39.77 0.01 39.09 39.76 0.005 39.07 39.82
25 38.73 39.21 50 39.11 39.80 0.05 39.17 39.86 0.01 39.07 39.56

100 39.17 39.86 0.1 39.05 39.67 0.02 39.07 38.97
200 39.05 39.70 0.5 38.90 37.80 0.05 38.57 37.41

and (11), respectively. Overall, the ablation experiments determined the optimal hyperparameters as
follows: a pretraining noise level σ = 15, a Gaussian noise injection level σ̃ = 100, α = 5× 10−2,
and β = 2× 10−3.

5 CONCLUSION

We presented a novel noise translation framework for robust image denoising. Our framework
allows us to effectively remove various unseen real noise, even with limited amount of training
data. By employing the noise translation network, we transform arbitrary out-of-distribution (OOD)
noise into Gaussian noise for which our image denoising network has learned during training. The
noise translation network is designed with well-motivated loss functions and architecture, enabling
effective noise translation while preserving image contents. Our experiments demonstrate that the
proposed approach significantly outperforms state-of-the-art denoising models in diverse OOD real-
noise benchmarks. Finally, we highlight that the generalization issue remains a critical challenge in
image denoising, and our approach offers a promising solution to address this problem.

6 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we have made efforts to include key details in the main text
and appendix. Furthermore, we provide the complete source code in the supplementary material to
facilitate easy reproduction of the experiments and results.
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A PROOF ON WASSERSTEIN DISTANCE

Let P and Q represent two probability distributions over Rd. We use X ∼ P and Y ∼ Q to denote
random variables with the distributions P and Q, respectively. The p-Wasserstein distance between
two probability measures P and Q is defined as follows:

Wp(P,Q) =

(
inf

J∈J (P,Q)

∫
∥x− y∥pdJ(x, y)

)1/p

, (13)

where J (P,Q) is the set of all joint distributions (or couplings) J on (X,Y ) that have marginals
P and Q. This formulation describes the minimum cost of transporting mass from distribution P
to distribution Q using the coupling J , with the cost measured as the p-th power of the distance
between points x and y.

In the Monge formulation, the goal is to find a transport map T : Rd → Rd such that the push-
forward of P under T , denoted as T#P , equals Q. This problem can be mathematically formulated
as:

inf
T

∫
|x− T (x)|pdP (x), (14)

where the map T moves the distribution P to Q. However, an optimal map T may not always
exist. In such cases, the Kantorovich formulation is used, allowing mass at each point to be split and
transported to multiple locations, leading to a coupling-based approach.

For the specific case of p = 1, known as the Earth Mover’s Distance, the dual formulation of the
Wasserstein distance can be expressed as:

W1(P,Q) = sup
f∈F

(∫
f(x)dP (x)−

∫
f(x)dQ(x)

)
, (15)

where F represents the set of all Lipschitz continuous functions f : Rd → R such that |f(y) −
f(x)| ≤ ∥x− y∥ for all x, y ∈ Rd. Then, the 1-Wasserstein distance is given by:

W1(P,Q) =

∫ 1

0

|F−1(z)−G−1(z)|dz, (16)

where F−1 and G−1 denote the quantile functions (inverse CDFs) of P and Q, respectively.

When P and Q are empirical distributions based on the datasets, X1, X2, . . . , Xn and
Y1, Y2, . . . , Yn, each of size n, the Wasserstein distance can be computed as a function of the order
statistics:

W1(P,Q) =

n∑
i=1

|X(i) − Y(i)|, (17)

where X(i) and Y(i) denote the i-th order statistics of the datasets X1, X2, . . . , Xn and
Y1, Y2, . . . , Yn.

In our approach, we utilize (17) to formulate Lspatial in (6) and Lfreq in (10), which are employed
during training to explicitly transport the translated noise distribution towards the target Gaussian
distribution. We refer to (Villani & Society, 2003) for a detailed discussion on Wasserstein distances
and optimal transport.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 TRAINING STABILITY

To assess the stability of training our noise translation network, we conducted five independent train-
ing runs using different random seeds and evaluated the PSNR metrics across multiple datasets. The
standard deviations for each dataset were as follows: SIDD (0.023), Poly (0.007), CC (0.021), High-
ISO (0.009), iPhone (0.008), Huawei (0.010), OPPO (0.016), Sony (0.022), and Xiaomi (0.020). The
average standard deviation across all datasets was 0.013, validating the stability of our method. In
this paper, we report the results obtained with random seed 8.
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Table 5: Comparison of parameter counts and MACs for denoising networks and our noise transla-
tion network. We report the number of parameters and MACs at inference, estimated with an input
size of 256×256.

Architecture Parameters (M) MACs (G)

MIRNet-v2 5.86 140.34
MPRNet 15.74 588.14
Uformer 50.9 89.5
Restormer 26.1 141.0
NAFNet 115.86 63.6
KBNet 104.93 58.19

Noise Translation Network 0.29 1.07

Table 6: Quantitative comparisons between various state-of-the-art image denoising methods on
the SIDD validation set and multiple real-noise benchmarks. We present the results in terms of
PSNR↑ (dB) and SSIM↑. The table includes both supervised and self-supervised denoising methods.
Networks marked with an asterisk (*) are evaluated using official out-of-the-box models.

Architecture Metric SIDD Poly CC HighISO iPhone Huawei OPPO Sony Xiaomi Total Avg.

Others

MaskDenoising* PSNR 28.66 34.56 33.87 34.61 36.54 34.89 35.30 37.89 33.46 34.20
SSIM 0.7127 0.9553 0.9703 0.9649 0.9273 0.9586 0.9593 0.9354 0.9531 0.9263

CLIPDenoising* PSNR 34.79 37.54 36.30 38.01 40.09 38.74 39.56 42.94 35.50 38.39
SSIM 0.8982 0.9794 0.9809 0.9771 0.9685 0.9715 0.9769 0.9824 0.9707 0.9672

DnCNN-AFM* PSNR 38.29 37.71 36.81 39.12 40.56 38.33 40.13 44.66 35.25 38.54
SSIM 0.9474 0.9800 0.9828 0.9797 0.9769 0.9679 0.9795 0.9901 0.9665 0.9745

Self-supervised

R2R* PSNR 35.06 36.81 35.26 37.33 39.19 38.29 39.32 41.46 35.36 37.12
SSIM 0.9150 0.9722 0.9756 0.9712 0.9606 0.9663 0.9739 0.9729 0.9664 0.9638

AP-BSN* PSNR 36.32 35.88 33.13 36.66 39.82 37.01 39.04 40.04 33.37 36.70
SSIM 0.9281 0.9751 0.9732 0.9777 0.9766 0.9628 0.9746 0.9798 0.9548 0.9669

SSID* PSNR 37.39 37.13 34.93 38.24 40.85 37.22 39.10 42.89 34.25 38.00
SSIM 0.9338 0.9799 0.9805 0.9808 0.9816 0.9652 0.9738 0.9878 0.9562 0.9700

Supervised NAFNet-ours PSNR 39.17 38.67 37.82 39.94 41.94 39.74 40.45 44.17 36.14 39.67
SSIM 0.9566 0.9851 0.9876 0.9853 0.9805 0.9778 0.9796 0.9869 0.9745 0.9793

B.2 PARAMETERS AND MACS

Table 5 presents a comparison of our noise translation network with other image denoising networks
in terms of the number of parameters and multiply–accumulate operations (MACs). Our noise trans-
lation network is significantly smaller in size compared to the image denoising networks, resulting
in negligible additional computational cost during inference.

B.3 COMPARISON WITH SELF-SUPERVISED AND GENERALIZATION METHODS

Table 6 further presents the performance of denoising models trained using other generalization
methods and self-supervised approaches on real-world noise datasets. All models are evaluated
using publicly available official weights. For MaskDenoising (Chen et al., 2023), which is trained
solely with Gaussian noise (σ = 15), the performance on real-world noise datasets is notably low.
In the case of CLIPDenoising (Cheng et al., 2024), it does not utilize real noise during training but
instead relied on synthetic noise generated with Poisson-Gaussian models for sRGB denoising. As
a result, its average performance on real-world datasets remains quite poor. DnCNN-AFM (Ryou
et al., 2024) is trained in a supervised manner on the real noise dataset (SIDD), while also employing
an adversarial noise generation strategy to increase robustness. Although it performs better than
previous methods, its performance still falls short compared to our proposed approach.

Additionally, self supervised methods R2R (Pang et al., 2021), AP-BSN (Lee et al., 2022) and
SSID (Li et al., 2023), listed in Table 6 are trained using only the noisy images from the real-
noise dataset SIDD (Abdelhamed et al., 2018). As a result, their performance is consistently lower
compared to our supervised method across all datasets.
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iPhone Noisy

MIRNet 41.94 dB MPRNet 41.97 dB Uformer 41.93 dB Ground Truth

Restormer 41.73 dB NAFNet 42.52 dB KBNet 42.25 dB Ours 46.92 dB

Huawei Noisy

MIRNet 33.25 dB MPRNet 33.21 dB Uformer 33.54 dB Ground Truth

Restormer 33.75 dB NAFNet 31.13 dB KBNet 27.98 dB Ours 34.05 dB

OPPO Noisy

MIRNet 39.16 dB MPRNet 39.28 dB Uformer 39.45 dB Ground Truth

Restormer 39.37 dB NAFNet 38.90 dB KBNet 31.03 dB Ours 42.08 dB

Figure 7: Additional qualitative results on iPhone, Huawei, and OPPO dataset.

B.4 QUALITATIVE RESULTS

Extensive qualitative results on all datasets are shown in Figures 7 and 8. Our method significantly
surpasses the Peak Signal-to-Noise Ratio (PSNR) scores of other denoising models on all OOD
datasets (iPhone, Huawei, OPPO, Sony, Xiaomi). Notably, the output images of KBNet (Zhang
et al., 2023), exhibit visible breakdowns due to severe overfitting to the training set. For the in-
distribution SIDD dataset, only our method produces clean results without generating unnecessary
zipper artifacts. Additionally, we include the denoised results of photos captured with our Galaxy
S22+ smartphone in Figure 9.
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Sony Noisy

MIRNet 41.32 dB MPRNet 41.16 dB Uformer 41.66 dB Ground Truth

Restormer 41.53 dB NAFNet 40.71 dB KBNet 40.94 dB Ours 41.68 dB

Xiaomi Noisy

MIRNet 38.27 dB MPRNet 38.11 dB Uformer 38.35 dB Ground Truth

Restormer 38.38 dB NAFNet 36.09 dB KBNet 36.85 dB Ours 39.45 dB

SIDD Noisy

MIRNet 34.24 dB MPRNet 34.58 dB Uformer 34.23 dB Ground Truth

Restormer 34.81 dB NAFNet 34.33 dB KBNet 34.31 dB Ours 34.11 dB

Figure 8: Additional qualitative results on Sony, Xiaomi, and SIDD datasets.
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Noisy Image (a) Restormer (b) NAFNet (c) KBNet (d) Ours

Figure 9: Denoised results of images captured by our Galaxy S22+ smartphone. Unlike existing
denoising models, our approach effectively removes challenging real-world noise.
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