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Abstract

Adversarial examples crafted on one model often exhibit poor transferability to
others, hindering their effectiveness in black-box settings. This limitation arises
from two key factors: (i) decision-boundary variation across models and (ii) rep-
resentation drift in feature space. We address these challenges through a new
perspective that frames transferability for untargeted attacks as a consensus-robust
optimization problem: adversarial perturbations should remain effective across
a neighborhood of plausible target models. To model this uncertainty, we intro-
duce two complementary perturbation channels: a parameter channel, capturing
boundary shifts via weight perturbations, and a representation channel, addressing
feature drift via stochastic blending of clean and adversarial activations. We then
propose CORTA (COnsensus–Robust Transfer Attack), a lightweight attack instan-
tiated from this robust formulation using two first-order strategies: (i) sensitivity
regularization based on the squared Frobenius norm of logits’ Jacobian with respect
to weights, and (ii) Monte Carlo sampling for blended feature representations. Our
theoretical analysis provides a certified lower bound linking these approximations
to the robust objective. Extensive experiments on CIFAR-100 and ImageNet show
that CORTA significantly outperforms state-of-the-art transfer-based methods—
including ensemble approaches—across CNN and Vision Transformer targets.
Notably, CORTA achieves a 19.1 percentage-point gain in transfer success rate
over the best prior method while using only a single surrogate model.

1 Introduction

Adversarial attacks [1, 2] pose a serious threat to deep neural networks (DNNs), as small, often
imperceptible perturbations to input data can cause models to produce incorrect predictions. The
risks are particularly severe in safety-critical domains such as facial recognition, autonomous driving,
and medical diagnosis [3, 4]. Although numerous defenses have been proposed, black-box attacks
remain especially concerning because they require no knowledge of the target model’s architecture
or parameters. Developing more effective black-box attacks is therefore critical for exposing model
vulnerabilities and advancing robust evaluation practices.

Most black-box attacks rely on transferability: adversarial examples generated on a surrogate model
are expected to fool an unknown target model [5]. Transferability has therefore become a focal
point for exposing cross-model vulnerabilities. Recent progress spans multiple directions—gradient
refinements [6, 7, 8, 9], input transformations [10, 11, 12, 13], model ensembles [14, 15, 16, 17],
and feature-level objectives [18, 19, 20, 21, 22, 23]. While feature-level approaches begin to address
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deeper causes of transfer failure—such as differences in internal representations—most existing
methods do not explicitly or jointly tackle the full range of factors that limit transferability. Conse-
quently, state-of-the-art success rates still drop sharply when the target’s architecture diverges from
the surrogate’s, due to overfitting to surrogate-specific characteristics and limited generalization to
unseen black-box models.

Two Sources of Transfer Failure. Our analysis identifies two independent factors that hinder
adversarial transferability:

• Decision-boundary variation. The local classification boundary can shift significantly between
the surrogate and target models due to differences in initialization, training procedures, or
architecture. As a result, a sample located at the same position in decision space may still yield
different predictions.

• Representation drift. The latent representations produced by different models for the same input
can diverge, placing the sample at different locations in feature space. This shift can cause the
input to fall on opposite sides of an otherwise similar decision boundary, leading to inconsistent
outputs.

None of the existing attacks explicitly addresses both factors, leading to limited transferability.

Consensus-Robust Approach. We view transferability through a consensus-robust lens: any black-
box target can be modeled as a perturbed version of a single surrogate, with uncertainty injected
along two independent axes:

• Parameter channel. We model decision-boundary shifts—arising from differences in initialization,
training, or architecture—as weight perturbations ∆W to the surrogate’s parameters W . The
perturbed model fW+∆W simulates local boundary variation between the surrogate and target
models.

• Representation channel. Because an adversarial example resembles its clean counterpart, a
target model—especially one with a different architecture—may preserve clean features that the
surrogate suppresses. To emulate such variations, we blend the surrogate’s clean and adversarial
latent representations at selected layers, simulating feature-level deviations.

These two perturbation modes jointly define an uncertainty set T over plausible target models. We
therefore pose transferability as a set–robust objective for untargeted attacks: choose input per-
turbations that maximize the minimum (worst–case) loss across T —that is, raise the loss even for
the worst–case target induced by bounded parameter perturbations, while taking expectation over
stochastic feature blending. To make this tractable, we use two lightweight, first–order approxima-
tions: linearizing the logits with respect to parameter changes and Monte Carlo sampling to estimate
the expectation over feature blends. Our theoretical analysis then provides a certified lower bound
on this robust objective in terms of two estimable quantities—the expected blended loss and the
squared Frobenius norm of the logits’ Jacobian with respect to parameters—offering principled
guarantees for consensus–robust transferability. We instantiate this formulation as CORTA, a query-
free, optimizer-agnostic attack on a single surrogate that maximizes the expected blended loss while
regularizing the squared Frobenius norm of the logits’ Jacobian, jointly addressing representation
drift and decision-boundary variation.

Our Major Contributions:

• Consensus–robust formulation. We frame black-box transferability as a set–robust objective for
untargeted attacks: choose perturbations that maximize the minimum loss across an uncertainty set
of plausible targets, induced by bounded parameter perturbations (decision-boundary variation)
and stochastic feature blending (representation drift).

• Dual-channel surrogate modeling. We propose a unified transfer-based framework that emulates
target variability via two channels on the surrogate: (i) the parameter channel, modeling boundary
shifts through weight perturbations; and (ii) the representation channel, simulating feature-level
discrepancies by blending clean and adversarial representations.

• Principled first-order optimization with certified guarantees. We develop lightweight, scalable
approximations for each channel—logit linearization for parameter perturbations and Monte
Carlo estimation for feature blends—and provide theoretical analysis yielding a certified lower
bound on the robust target objective in terms of two estimable quantities: the expected blended
loss and the squared Frobenius norm of the logits’ Jacobian with respect to parameters.
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• Superior empirical results. Our CORTA consistently surpasses state-of-the-art transfer-based
black-box attacks—including ensemble-based methods—across diverse architectures (CNNs and
ViTs) on ImageNet and CIFAR-100. For example, when transferring from ResNet-18 to Swin-B
on CIFAR-100, CORTA achieves a 97.9% transfer success rate, outperforming Ens—the strongest
existing method—by 19.1 percentage points (78.8%), while using only a single surrogate model
(ResNet-18) compared to Ens’s ensemble of four surrogates (two CNNs and two ViTs).

2 Related Work

Transfer-based adversarial attacks seek to enhance the effectiveness of surrogate-generated examples
on unseen models. Existing approaches can be grouped as follows:

• Gradient-based refinements: Momentum [6], advanced optimizers [7, 9, 24], and skip-gradient
or linearized backpropagation [25, 26] aim to stabilize updates and escape local minima.

• Input transformations: Random resizing, translation, and image mixing (e.g., DI [10], TI [11],
Admix [12]) increase input diversity to reduce overfitting to the surrogate.

• Model ensembles: These attacks improve transferability by ensembling surrogate models with
diverse architectures [14, 15, 16]. To avoid training multiple models, Ghost Networks [27] and
LGV [28] generate variants from a single network via dropout perturbation or high–learning-rate
fine-tuning, while others ensemble checkpoints from one training trajectory [17]. Although these
methods vary in how they introduce diversity, all require generating adversarial examples for
multiple network instances, resulting in substantial computational overhead.

• Feature-level attacks: These methods manipulate intermediate representations to promote trans-
ferability. For example, TAP [18] and ILA [19] maximize the distance between clean and
adversarial features at selected layers. FIA [20], BFA [29], and NAA [21] estimate feature im-
portance using gradient-based attribution techniques. FPA [30] relies on permutation at a feature
layer of a CNN-based surrogate model. CFM [22] mixes adversarial features with those of benign
samples, while DHF [23] mixes adversarial and original features during attack generation.

Existing methods fail to directly address both decision-boundary variation and representation drift.
Most inject diversity to bridge the surrogate–target gap without tackling these root causes. DHF is
the closest to our approach on representation drift, but it remains heuristic and lacks a principled
formulation. Consequently, these methods consistently underperform compared to our approach,
which explicitly and jointly targets both sources of transferability failure.

3 Transferability as Consensus Robustness

3.1 Modeling Transferability via Parameter and Representation Perturbations

In Section 1 we argued that adversarial examples generated on a surrogate model fW may fail to
transfer to an unseen target f t

θ because of (i) decision–boundary variation and (ii) representation
drift. We formalize these two factors as parameter and representation perturbations of the surrogate.

Decision Boundary Variation as Parameter Perturbation. Both fW and f t
θ solve the same task, so

their decision boundaries are generally similar despite differences in initialization, optimization, or
even architecture [31, 32]. We model the target as a parameter-perturbed version of the surrogate:

f t
θ(x) ≈ fW+∆W (x), (1)

where ∥∆W∥F ≤ ρ represents “nearby” models, and x denotes an input with true label y. This gives
an architecture-agnostic abstraction of decision-boundary shifts.

Representation Drift as Feature Blending. Adversarial examples usually remain visually and
semantically similar to their originals, yet targets may retain features suppressed by the surrogate,
causing intermediate mismatch. To capture this uncertainty, we stochastically blend, at a chosen set
of layers S, the activations from the adversarial and clean inputs

zblend
ℓ (λℓ) = λℓ z

adv
ℓ + (1− λℓ) z

orig
ℓ , λℓ ∈ [λmin, 1], ℓ ∈ S, (2)

where zadvℓ = zℓ(x+ δ;W ) and zorigℓ = zℓ(x;W ) are computed at layer ℓ using the same weights
W . This stochastic blending abstracts representation uncertainty across models.
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Robust Target Objective (Set–Robust Formulation). We define the uncertainty set over targets as
the product of bounded parameter and representation variations:

T =
{
(∆W,λ) : ∥∆W∥F ≤ ρ, λ ∈ [λmin, 1]

|S|
}
. (3)

Maximizing untargeted transferability reduces to the consensus-robust optimization:

max
δ∈Bϵ

min
(∆W,λ)∈T

L
(
fW+∆W (x+ δ; {zblend

ℓ (λℓ)}), y
)
. (4)

This “consensus–robust” objective requires an adversarial perturbation δ to induce high loss uniformly
across nearby parameterizations and a range of representation blends.

3.2 Practical Approximations for Consensus Robustness

Direct optimization of Eq. (4) is intractable as T spans infinitely many perturbations. We approximate
it via two first-order channels.

Parameter Channel: Parameter Channel: Linearization. For small ∆W , a first–order Taylor
expansion of the loss around W yields

L(fW+∆W (·), y) ≈ L(fW (·), y) +∇WL(fW (·), y) ·∆W, (5)

where “·” denotes the Frobenius inner product: A · B ≜ ⟨A,B⟩F = tr(A⊤B) =
∑

i AiBi.
Sensitivity to ∆W satisfies ∥∇WL∥F ≤ Cout∥JW ∥F ≤

√
2∥∇W fW ∥F , where JW = ∇W fW .

Hence the worst-case linearized loss shift under ∥∆W∥F ≤ ρ is at most Cout∥∇W fW ∥F ρ. This
identifies ∥∇W fW ∥2F as a key quantity governing sensitivity to parameter perturbations and motivates
its use as a regularization term in our practical formulation described later.

Representation Channel: Monte Carlo Feature Blending. We approximate robustness to repre-
sentation drift by averaging the loss under random feature blends. At each step, for each ℓ ∈ S we
optionally enable blending and, if enabled, draw λℓ uniformly from [λmin, 1] and form zblendℓ as in
Eq. (2). This Monte Carlo procedure provides an unbiased estimator of the gradient of the consensus
(expected) loss with respect to δ, and will serve as a building block in our practical formulation
introduced later.

3.3 Theoretical Analysis: A Lower–Bound Certificate for the Robust Target

We show that the approximation in Section 3.2 yields a computable lower bound—up to constants—on
the robust target in Eq. (4), linking our practical surrogate to the original worst–case objective.

Notation. Let LW (x, δ;λ) := L
(
fW (x+δ; {zblend

ℓ (λℓ)}), y
)

and denote the loss gradient with respect
to parameters by gW (x, δ;λ) := ∇WLW (x, δ;λ). Let JW (x, δ;λ) := ∇W fW (x+ δ; {zblend

ℓ (λℓ)})
be the Jacobian of the logits.

Assumptions. Fix ε, ρ > 0 and λmin ∈ (0, 1). We assume: (i) Twice–differentiability in W and
a uniform Hessian spectral bound along W →W + ∆W : ∥HW∗(x, δ;λ)∥2 ≤ M for all δ ∈ Bε,
∥∆W∥F ≤ ρ, λ ∈ [λmin, 1]

|S|, and some W ∗ = W + τ∆W , τ ∈ (0, 1). (ii) For each blended
layer ℓ ∈ S, the task loss is Lipschitz in the blended feature with constant Lz

ℓ :
∣∣LW (x, δ;λ) −

LW (x, δ;λ′)
∣∣ ≤ Lz

ℓ

∥∥zblendℓ (λℓ)− zblendℓ (λ′
ℓ)
∥∥ when λ and λ′ differ only in coordinate ℓ. (iii) The

feature drift at layer ℓ is uniformly bounded for δ ∈ Bε:
∥∥zℓ(x + δ;W ) − zℓ(x;W )

∥∥ ≤ Bℓ(ε).
A sufficient condition is that the layer mapping to zℓ is L̂ℓ–Lipschitz in the input, in which case
Bℓ(ε) ≤ L̂ℓε. (iv) The loss gradient with respect to logits is bounded: ∥∇fL(f, y)∥ ≤ Cout (e.g.,
Cout ≤ 2 for cross–entropy with softmax).

Parameter Channel: Lower Bound for the Min over ∆W . For any λ and any δ ∈ Bε, Taylor’s
theorem and Assumption (i) give, for all ∥∆W∥F ≤ ρ,

LW+∆W (x, δ;λ) ≥ LW (x, δ;λ)−
∥∥gW (x, δ;λ)

∥∥
F
∥∆W∥F − 1

2M∥∆W∥2F .

Taking the minimum over ∥∆W∥F ≤ ρ and using Assumption (iv) and the chain rule, ∥gW ∥ ≤
Cout∥JW ∥, yields

min
∥∆W∥F≤ρ

LW+∆W (x, δ;λ) ≥ LW (x, δ;λ) − ρCout

∥∥JW (x, δ;λ)
∥∥
F

− 1
2Mρ2. (6)
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Representation Channel: Min–Mean Bound for Blending. By Assumptions (ii)–(iii), the loss
is Lipschitz in each λℓ with constant Cℓ := Lz

ℓ Bℓ(ε), since ∥zblendℓ (λℓ) − zblendℓ (λ′
ℓ)∥ = |λℓ −

λ′
ℓ| ∥zadvℓ − zorigℓ ∥ ≤ |λℓ − λ′

ℓ|Bℓ(ε). Hence, over the hypercube λ ∈ [λmin, 1]
|S| endowed with the

ℓ1 metric, ∣∣LW (x, δ;λ)− LW (x, δ;λ′)
∣∣ ≤

∑
ℓ∈S

Cℓ |λℓ − λ′
ℓ|. (7)

It follows that the range of LW (x, δ; ·) over [λmin, 1]
|S| is at most (1−λmin)

∑
ℓ∈S Cℓ, and therefore,

for any probability distribution Pλ supported on [λmin, 1]
|S|,

min
λ∈[λmin,1]|S|

LW (x, δ;λ) ≥ Eλ∼Pλ

[
LW (x, δ;λ)

]
− (1− λmin)

∑
ℓ∈S

Cℓ. (8)

In particular, this holds for the layer–wise Bernoulli–plus–uniform sampling scheme used by CORTA.

Combined Certificate. Combining Eqs. (6) and (8) and then taking expectation over λ ∼ Pλ yields,
for any δ ∈ Bε,

min
∥∆W∥F≤ρ,

λ∈[λmin,1]
|S|

L
(
fW+∆W

(
x+ δ; {zblend

ℓ (λℓ)}
)
, y

)
≥ Eλ∼Pλ

[
L
(
fW

(
x+ δ; {zblend

ℓ (λℓ)}
)
, y

)]
− ρCout Eλ∼Pλ

[∥∥JW (x, δ;λ)
∥∥
F

]
− 1

2Mρ2 − (1− λmin)
∑
ℓ∈S

Lz
ℓ Bℓ(ε).

(9)

Finally, by Jensen’s inequality, Eλ∥JW ∥F ≤
√
Eλ∥JW ∥2F , so controlling the second moment of

the Jacobian suffices to bound its expected norm; hence a squared–norm regularizer is a principled
surrogate.

Interpretation. The bound in Eq. (9) shows that maximizing the expected blended loss and penalizing
the Jacobian norm ∥∇W fW ∥2F provably increases a certified lower bound on the true robust objective,
up to additive terms that depend only on model smoothness, ρ, and blending/feature-drift constants.

4 COnsensus–Robust Transfer Attack (CORTA)

Guided by the lower-bound certificate in Eq. (9), CORTA constructs an input perturbation δ that simul-
taneously (i) forces the surrogate to misclassify, (ii) maintains a high loss under random representation
blends, and (iii) limits sensitivity of the logits to parameter perturbations (decision-boundary variation).
After presenting the optimization objective, we detail its practical realization—Parameter–Stability
Regularization—followed by the iterative generation of adversarial examples.

4.1 Optimization Objective

Let JW (x+δ)≡∇W fW (x+δ) denote the logits’ Jacobian with respect to parameters. For untargeted
attacks1, CORTA solves

δ⋆ = argmin
δ∈Bε

{
− E{λℓ∼U [λmin,1]}

[
LCE

(
fW (x+ δ; {zblend

ℓ }), y
)]︸ ︷︷ ︸

representation channel

+ β
∥∥JW (x+ δ)

∥∥2
F︸ ︷︷ ︸

parameter channel

}
, (10)

where U denotes the uniform distribution and λmin ∈ (0, 1) is a hyperparameter. The first term
maximizes the expected cross-entropy loss under random feature blends (estimated via Monte Carlo),
encouraging robustness to representation drift. The second term penalizes the squared Frobenius
norm of the logits’ Jacobian with respect to parameters, reducing sensitivity to decision-boundary
variation. The trade-off coefficient β>0 is tuned empirically.

1The targeted variant removes the negative sign in front of the expectation and replaces LCE with the
target-class loss.
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4.2 Representation Channel: Stochastic Feature Blending

Let S be a set of latent layers whose activations are exposed for blending. During each attack iteration
we perform the following Monte-Carlo procedure:

1. For every ℓ ∈ S, sample a Bernoulli variable τℓ ∼ Bernoulli(pb) with blending probability
pb∈ [0, 1].

2. If τℓ = 1, draw λℓ∼U [λmin, 1] and mix the adversarial and clean activations:

zblendℓ = λℓ z
adv
ℓ + (1− λℓ) z

orig
ℓ ; (11)

otherwise set zblendℓ = zadvℓ .

The stochastic switch τℓ explores a neighborhood of possible representation drifts while preserving
the adversarial signal when blending is disabled. As pb→0 or 1, CORTA reduces to ordinary PGD or
full feature blending, respectively.

4.3 Adversarial Example Generation

Starting from a random initialization δ0∼U [−ε, ε], we refine the perturbation for T iterations. For
clarity we present the basic I-FGSM update, but any gradient-based refinement, such as MI-FGSM [6]
or NI-FGSM [7], can be plugged in unchanged, as CORTA is optimizer-agnostic.

δi+1 = clipε

(
δi + α sign

(
∇δi

[
LCE

(
fW (x+ δi; {zblendℓ }), y

)
− β ∥JW (x+ δi)∥2F

]))
, (12)

where α is the step size and clipε projects the perturbation onto the ℓ∞ ball of radius ε centered at
x. The blended features in Eq. (11) are recomputed at each iteration, so the optimization implicitly
minimizes the expectation in Eq. (10). By jointly penalizing parameter sensitivity and injecting
stochastic feature blending, CORTA generates adversarial examples that transfer reliably across
diverse architectures and training procedures.

5 Experiments

5.1 Experimental Setting

Datasets. We follow [16] and evaluate on two benchmarks: an ImageNet-compatible dataset2 and
CIFAR-100 [33]. All reported results are averaged over the entire ImageNet-compatible dataset and
the full CIFAR-100 test set.

Models. Target models: We use diverse architectures, including CNNs (ResNet-50 [34], WideResNet-
101 [35], BiT-M-R50 [36], BiT-M-R101 [36]) and vision transformers (ViT-Base [37], DeiT-Base [38],
Swin-Base [39], Swin-Small [39]).

Surrogate models: For both CORTA and other non-ensemble baselines, we use a single surrogate
model—ResNet-18 for CNN-based attacks and ViT-Tiny for ViT-based attacks. For checkpoint-
ensemble attacks, we follow [17], which also adopts a single surrogate (either ResNet-18 or ViT-Tiny)
but aggregates multiple checkpoints from the same model architecture. For ensemble-based attacks
such as Ens and AdaEA, we follow [40] and adopt a multi-architecture surrogate setup comprising
four models: ResNet-18, Inception-v3, ViT-Tiny, and DeiT-Tiny. All models are pretrained and
obtained from PyTorch Image Models [41].

Attack Baselines. We compare against strong transfer-based black-box attacks: ensemble-based
(Ens [14], AdaEA [16], Checkpoints [17]), feature-level (DHF [23], BFA [29]), input transformation
(Admix [12]), and gradient-based (ANDA [24]). Official code and default settings are used unless
otherwise specified.

Defenses. We evaluate CORTA against adversarial training [42, 43] and input transformation-based
defenses, including JPEG compression [44], Randomized Resizing and Padding (R&P) [45], Bit

2https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/
examples/nips17_adversarial_competition/dataset
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Table 1: TSRs (%) on CIFAR-100 and ImageNet with I-FGSM, using ResNet-18 as the surrogate
except for Ens and AdaEA, which use 2 CNN and 2 ViT surrogates. Bold indicates best performance.

Dataset Attack
CNN ViT

RN-50 WRN-101 BiT-50 BiT-101 Avg. ViT-B Deit-B Swin-B Swin-S Avg.

CIFAR-100

Admix 81.5 88.6 72.4 72.4 78.7 31.3 33.0 41.6 57.1 40.8
Ens 92.0 87.4 83.3 73.3 84.0 75.2 89.1 78.8 85.4 82.1
AdaEA 86.3 82.6 76.3 67.0 78.1 64.0 79.0 68.7 81.3 73.3
DHF 90.2 92.3 79.1 75.0 84.1 39.3 33.7 36.5 57.9 41.9
BFA 89.9 92.5 77.0 73.2 83.2 40.6 36.5 39.9 58.5 43.9
ANDA 88.6 94.2 77.9 77.6 84.6 40.3 39.5 44.6 58.3 45.7
Checkpoints 90.3 97.7 94.7 91.3 93.5 64.0 61.7 54.7 73.0 63.4
Ours 97.3 98.8 98.2 96.2 97.6 96.8 93.5 97.9 97.1 96.3

ImageNet

Admix 91.9 83.6 79.5 71.1 81.5 26.4 38.6 29.6 36.3 32.7
Ens 71.2 63.2 62.5 54.9 63.0 42.9 62.9 26.6 36.6 42.3
AdaEA 73.5 61.4 59.1 50.9 61.2 36.9 53.8 25.0 33.4 37.3
DHF 96.8 92.8 90.8 84.6 91.3 37.8 51.3 43.5 52.6 46.3
BFA 97.9 95.8 93.6 89.6 94.2 43.0 53.2 47.8 57.3 50.3
ANDA 94.4 86.1 81.7 73.3 83.9 36.8 52.2 38.8 47.0 43.7
Checkpoints 95.5 95.7 95.9 90.6 94.4 45.1 56.0 40.4 51.2 48.2
Ours 98.5 95.8 95.5 92.4 95.5 47.6 63.8 54.2 64.1 57.4

Table 2: TSRs (%) on ImageNet with I-FGSM, using ViT-Tiny as the surrogate, except for Ens and
AdaEA, which use 2 CNN and 2 ViT surrogates. Bold indicates best performance.

Attack
CNN ViT

RN-50 WRN-101 BiT-50 BiT-101 Avg. ViT-B Deit-B Swin-B Swin-S Avg.
Admix 37.7 43.9 49.7 42.7 43.5 48.5 63.9 26.6 31.9 42.7
Ens 71.2 63.2 62.5 54.9 63.0 42.9 62.9 26.6 36.6 42.3
AdaEA 73.5 61.4 59.1 50.9 61.2 36.9 53.8 25.0 33.4 37.3
DHF 46.0 52.4 55.6 49.4 50.9 64.0 76.5 32.9 40.8 53.6
BFA 51.1 56.3 59.5 52.8 54.9 72.9 85.8 34.5 44.9 59.5
ANDA 58.4 65.5 68.5 62.0 63.6 65.0 74.3 39.7 47.4 56.6
Checkpoints 41.0 42.9 49.8 41.0 43.7 54.9 81.9 26.7 34.9 49.6
Ours 63.6 70.4 74.4 68.3 69.2 77.8 87.8 50.7 58.4 68.7

Depth Reduction (Bit-R) [46], Feature Distillation (FD) [47], and Neural Representation Purifier
(NRP) [48].

Evaluation Metrics. We report Transfer Success Rate (TSR): the attack success rate on the target
model for adversarial examples that are misclassified by the surrogate.

Implementation Details. All attacks are untargeted and evaluated under an L∞ bound of ϵ = 16/255
for T = 100 iterations with a step size of α = 1.6/255. The regularization weight is set to β = 0.1,
chosen to balance the magnitudes of the two loss terms in Eq. 10 on the surrogate model. The
blending probability is set to pb = 0.5 based on surrogate optimization performance, and the
blending proportion λ is sampled from U [0.25, 1] to ensure sufficient feature mixing without reducing
generation success. Stochastic feature blending is applied to all layers for CNN surrogates and to all
linear layers for ViT surrogates. I-FGSM is used as the default method for generating adversarial
examples. All experiments are implemented in PyTorch and conducted on two NVIDIA RTX 3090
GPUs.

5.2 Adversarial Transferability

Attack on Standard Target Models. Table 1 compares CORTA and baselines on CIFAR-100 and
ImageNet across CNN and ViT targets, using ResNet-18 as the surrogate for all methods except
ensemble-based Ens and AdaEA, which use two CNN plus two ViT surrogates (see Section 5.1).

CORTA achieves the highest TSRs for every target model, across both CNN and ViT targets. On
CNN targets, it attains average TSRs of 97.6% (CIFAR-100) and 95.5% (ImageNet), outperforming
the best baselines by 13.0% and 1.1%, respectively. On ViT targets, despite using only a single
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CNN surrogate, CORTA achieves 96.3% (CIFAR-100) and 57.4% (ImageNet), surpassing even
the ensemble-based methods—which utilize ViT surrogates—by 14.2% and 7.1%. Notably, when
transferring from ResNet-18 to Swin-B on CIFAR-100, CORTA achieves a 19.1% higher TSR (97.9%
vs. 78.8%) compared to ensemble-based Ens, the strongest baseline.

These results demonstrate CORTA’s strong transferability across datasets and model families. As
most prior work focuses on ImageNet [12, 23, 24], subsequent experiments primarily report ImageNet
results for consistency.

Table 2 reports TSRs on ImageNet using ViT-Tiny as the surrogate for all methods, except for
ensemble-based Ens and AdaEA, which continue to use two CNN plus two ViT surrogates. CORTA
consistently achieves the best overall performance, with average TSR gains of 5.6% on CNN targets
and 9.2% on ViT targets over the strongest alternatives. Furthermore, CORTA outperforms all
baselines on nearly every individual target model, with the only exception being RN-50, where it
remains competitive and is surpassed only by the ensemble-based Ens and AdaEA. These results
underscore CORTA’s robustness and effectiveness across different surrogate architectures. We also
report error bars in Appendix A.

Table 3: TSRs (%) on ImageNet with I-FGSM against various defenses, using ResNet-18 as surrogate
except for Ens and AdaEA (2 CNN and 2 ViT surrogates). Bold indicates best performance. Left:
TSRs for adversarially trained models. Right: average TSRs for input transformation defenses.

Attack Adversarial Training Defense Input Transformation-Based Defenses
Inc-v3ens3 Inc-v3ens4 Inc-v2ens Avg. R&P Bit-R JPEG NRP FD Avg.

Admix 54.1 52.6 38.9 48.5 59.2 56.5 52.1 25.2 57.8 50.2
Ens 37.3 36.0 22.7 32.0 48.3 46.6 43.6 24.4 50.7 42.7
AdaEA 30.6 30.1 19.4 26.7 45.5 50.4 39.4 23.9 47.0 41.2
DHF 63.3 60.6 45.4 56.4 70.5 68.1 58.3 28.4 68.2 58.7
BFA 69.3 62.8 49.4 60.5 76.2 72.0 62.7 33.1 72.6 63.3
ANDA 55.7 53.2 39.5 49.5 67.6 62.6 58.2 26.0 63.9 55.7
Checkpoints 73.9 72.4 57.4 67.9 76.4 71.8 69.3 28.9 72.2 63.7
Ours 76.5 72.8 60.1 69.8 78.1 75.6 70.8 41.2 76.3 68.4

Table 4: CORTA’s TSRs (%) on ImageNet with ResNet-18 as surrogate, using different adversarial
example generation methods. ∆ indicates improvement over I-FGSM.

Base
CNN ViT

RN-50 WRN-101 BiT-50 BiT-101 Avg. (∆) ViT-B DeiT- B Swin-B Swin-S Avg. (∆)
I-FGSM 98.5 95.8 95.5 92.4 95.5 47.6 63.8 54.2 64.1 57.4
MI-FGSM 98.7 96.3 95.7 93.3 96.0 (+0.5) 52.7 68.2 56.8 67.0 61.2 (+3.8)
DIM-FGSM 98.8 96.8 96.7 95.9 97.0 (+1.5) 67.1 80.4 71.0 79.0 74.3 (+16.9)

Attack on Defended Target Models. To further assess practical effectiveness, we evaluate all
methods against two categories of defenses: (i) adversarial training, using three adversarially trained
models, and (ii) input transformation-based defenses. The results are summarized in Table 3.

CORTA achieves the highest TSRs across both defense types. Specifically, it obtains an average TSR
of 69.8% against adversarially trained models and 68.4% against input transformation defenses. In
comparison to the strongest baseline methods, these results represent improvements of 1.9% and
4.7%, respectively.

These gains demonstrate that CORTA not only transfers effectively under standard conditions but
also maintains strong robustness against advanced defense strategies.

Table 5: Generation success rates on ImageNet with ResNet-18 surrogate.

Dataset Admix Ens AdaEA DHF BFA ANDA Checkpoints Ours
ImageNet 97.0 100 100 99.4 99.4 96.3 100 69.9
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Table 6: Computation time (s) per adversarial sample on ImageNet with ResNet-18 surrogate.

Dataset Admix Ens AdaEA DHF BFA ANDA Checkpoints Ours
ImageNet 1.3 5.2 18.8 2.0 1.8 2.1 17.2 1.7

Generating Adversarial Examples with Advanced Strategies. CORTA uses I-FGSM as the default
method, but it is compatible with stronger adversarial example generation methods. We compare
I-FGSM with two enhanced variants: MI-FGSM [6] and DI [10], on ImageNet with ResNet-18 as
the surrogate. As shown in Table 4, integrating MI-FGSM improves average TSRs from 95.5% to
96.0% on CNN targets and from 57.4% to 61.2% on ViT targets. Combining MI-FGSM with input
diversity (DIM-FGSM) further boosts transferability, achieving 97.0% on CNN and 74.3% on ViT
targets—absolute gains of 1.5% and 16.9%, respectively. These results demonstrate that CORTA
benefits from stronger gradient-based attacks, further enhancing transferability across both CNN and
ViT models.

5.3 Generation Success Rate on Surrogate

In addition to the TSRs reported above, we evaluate the generation success rate (GSR), defined as
the proportion of adversarial examples that successfully mislead the surrogate model during attack
generation. Table 5 presents the results: most baselines (Ens, AdaEA, DHF, BFA, Checkpoint)
achieve nearly 100% success, whereas CORTA attains a lower rate of 69.9%.

Why is CORTA’s surrogate success lower? This reduction mainly stems from two factors intrinsic
to its set-robust formulation:

1. Dual-objective optimization. Unlike most baselines that optimize a single loss, CORTA jointly
optimizes two objectives—representation and parameter channels—making the optimization
problem more challenging.

2. Feature blending interference. The feature blending operation integrates the original sample’s
latent features, which can partially conflict with the adversarial perturbation objective, reducing
surrogate success rates.

Is this lower surrogate success a practical problem? Not really—the key metric is transfer success
rate (TSR), not surrogate success. In practice, attackers can simply discard unsuccessful examples
on the surrogate and retain only those that succeed. This adds only modest overhead: generating
the same number of successful examples requires optimizing about 1.43 times more samples (e.g.,
100/69.9 compared to attacks achieving 100% surrogate success).

5.4 Computational Cost

Beyond transfer success rates and surrogate generation success rates, computational efficiency is
also crucial. Table 6 reports the average time to generate an adversarial example. CORTA, requiring
only a single surrogate, matches the speed of other single-model attacks and is significantly faster
than ensemble-based methods. Thus, CORTA achieves superior transferability without additional
computational overhead.

5.5 Ablation Study

CORTA Components. We evaluate the contributions of Parameter–Stability Regularization and
Stochastic Feature Blending by comparing CORTA with: both components, each component individ-
ually, and neither (i.e., standard I-FGSM). Table 7 shows that both components are essential, with the
best TSRs achieved when combined.

Hyperparameter Sensitivity. We assess the impact of three hyperparameters—parameter stability
weight β, blending lower bound λmin, and blending probability pb—by generating adversarial
examples on ImageNet (ResNet-18 surrogate) and evaluating TSRs on CNN and ViT targets. As
shown in Figs. 1–3, CORTA maintains stable performance for β in [0.01, 0.1], pb in [0.5, 1], and
λmin in [0.1, 0.3]. These results indicate moderate sensitivity and robust performance across a range
of hyperparameter values.
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Table 7: Impact of CORTA components on ImageNet (ResNet-18 surrogate). •: used; ◦: absent.
Bold indicates best performance.

Ablation CNN ViT
Representation Parameter RN-50 WRN-101 BiT-50 BiT-101 Avg. ViT-B Deit-B Swin-B Swin-S Avg.

◦ ◦ 61.1 48.2 41.7 33.3 46.1 10.8 16.5 12.9 15.7 14.0
◦ • 65.3 58.2 46.4 39.0 52.2 12.1 19.3 14.1 15.4 15.2
• ◦ 97.1 92.8 91.3 85.0 91.5 44.6 58.0 48.3 58.4 52.3
• • 98.5 95.8 95.5 92.4 95.5 47.6 63.8 54.2 64.1 57.4
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6 Limitation

A potential limitation of our method is the need to compute second-order derivatives for each sample
independently during backpropagation. Although frameworks like PyTorch and TensorFlow support
automatic differentiation, their second-order computations typically aggregate curvature across a batch
rather than compute per-sample values, limiting batch parallelization and increasing computational
overhead. Nevertheless, as shown in Section 5.4, CORTA’s single-surrogate optimization keeps the
overall time cost practical.

Another limitation is that optimizing adversarial examples on the surrogate model with CORTA can be
more challenging than with other single-model methods. For example, on ImageNet, CORTA achieves
a generation success rate of 69.9%, compared to 96.3% for ANDA. However, this reflects performance
on the surrogate model, while our goal is to generate adversarial examples that successfully attack
the target model. As long as the generation cost on the surrogate is low and the resulting examples
are effective against the target model, a reasonably lower generation success rate on the surrogate
model does not diminish the practical effectiveness of our approach.

7 Conclusion

We introduced a consensus-robust framework for transfer-based untargeted adversarial attacks,
explicitly addressing two underexplored factors limiting transferability: decision-boundary variation
and feature representation drift. Our formulation models a neighborhood of plausible targets through
parameter perturbations and representation blending, leading to a principled set-robust objective
tailored for untargeted transfer attacks.

To make this objective tractable, we proposed two scalable first-order approximations with theoretical
guarantees and instantiated them as CORTA, an efficient attack requiring only a single surrogate.
CORTA integrates sensitivity regularization with stochastic feature blending, enabling attacks that
are significantly more transferable across model families and training variations.

Extensive experiments on CIFAR-100 and ImageNet show that CORTA surpasses both single-
surrogate and ensemble-based attacks while requiring only one surrogate model. For example, on
CIFAR-100, transferring from ResNet-18 to Swin-B, CORTA achieves a 97.9% TSR, exceeding the
strongest baseline by 19.1 points despite using far fewer resources.

Looking ahead, a key direction is extending this framework to targeted attacks, which imposes much
stricter requirements: crafting perturbations that not only transfer but also steer predictions toward
a specific target class under significant model variability. This extension poses a challenging but
critical step toward building comprehensive evaluations of adversarial robustness.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our training setup is described in detail in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have detailed the computer resources in Section 5 .
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics, and our research complies with
the guidelines outlined therein.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our proposed method offers a unified transfer-based framework that emulates
target variability, addressing a critical need in the field of adversarial machine learning.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The code used in the paper is properly attributed to its original sources, with
references provided to the original papers and code repositories.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Error Bars

Reporting confidence intervals offers greater transparency into the reliability of experimental results,
particularly given the inherent randomness in adversarial attack evaluations. To capture this variability,
we repeated the experiments from Table 1 and Table 2 on 100 randomly selected samples, running each
setting 20 times with different random seeds. All reported values are presented as mean ± standard
deviation. The corresponding results with error bars are summarized in Table 8 and Table 9.

Table 8: Mean ± standard deviation of TSRs (%) on CIFAR-100 and ImageNet with I-FGSM, using
ResNet-18 as the surrogate except for Ens and AdaEA, which use 2 CNN and 2 ViT surrogates.

Dataset Attack
CNN Models ViT Models

RN-50 WRN-101 BiT-50 BiT-101 Avg. ViT-B DeiT-B Swin-B Swin-S Avg.

CIFAR-100

Admix 84.2±4.1 92.5±2.5 75.6±4.3 75.6±3.9 82.0±1.9 39.3±4.3 33.0±2.8 37.0±5.0 52.7±4.0 40.5±2.3
Ens 91.0±1.1 82.0±0.4 86.2±1.1 76.8±0.9 84.0±0.7 70.2±0.7 84.6±0.5 70.0±1.3 85.3±2.7 77.5±0.8
AdaEA 88.0±1.7 80.2±1.1 82.1±1.8 71.9±1.5 80.6±0.7 61.8±1.3 79.8±1.7 63.0±2.1 78.0±2.4 70.7±1.2
DHF 90.8±0.8 89.1±1.4 77.0±2.5 72.3±1.9 82.3±0.9 37.0±2.2 27.5±2.3 25.4±1.8 52.0±2.1 35.5±1.1
BFA 86.2±0.8 89.4±0.8 70.2±1.0 68.2±0.6 79.5±0.5 34.0±0.7 30.7±0.9 27.1±0.4 50.9±1.0 36.6±0.5
ANDA 94.8±1.3 97.3±0.8 77.9±1.2 82.5±0.8 88.1±0.5 42.0±1.8 34.6±0.9 35.7±1.6 49.0±1.8 40.3±0.8
Ours 98.8±1.4 100.0±0.0 99.8±0.7 96.8±0.9 98.7±0.6 98.8±1.4 95.4±1.4 93.3±1.3 94.9±1.5 95.4±0.6

ImageNet

Admix 91.4±1.7 83.3±2.7 81.8±2.7 67.3±3.0 81.0±1.1 21.8±3.4 34.3±2.4 24.1±3.0 31.6±2.9 28.0±1.7
Ens 69.6±1.1 65.9±1.7 65.0±2.1 52.2±1.2 63.2±0.4 44.8±2.0 66.8±0.7 24.9±1.9 36.0±1.4 43.1±0.5
AdaEA 73.8±2.2 66.6±2.2 61.0±3.0 46.4±3.8 62.0±1.6 36.6±2.2 54.2±2.4 23.2±1.8 28.4±2.7 35.6±1.4
DHF 98.8±0.6 96.2±1.0 95.4±1.6 88.3±2.0 94.7±0.7 38.8±2.4 52.6±2.8 40.1±2.2 52.4±2.6 46.0±1.5
BFA 99.5±0.6 97.5±0.6 95.5±0.6 90.2±1.0 95.9±0.4 39.0±0.8 52.5±0.6 44.2±1.7 56.2±1.5 49.6±0.4
ANDA 95.5±0.5 87.9±0.6 86.6±1.2 70.3±0.7 85.1±0.5 37.9±1.1 53.4±0.9 35.9±1.5 46.8±1.0 43.5±0.6
Ours 99.9±0.4 98.1±1.4 97.5±1.4 89.3±2.0 96.0±1.0 45.6±3.4 65.9±2.8 52.4±2.9 65.2±2.4 56.9±1.8

Table 9: Mean ± standard deviation of TSRs (%) on ImageNet using ViT-Tiny as the surrogate,
except for Ens and AdaEA, which use 2 CNN and 2 ViT surrogates.

Attack
CNN Models ViT Models

RN-50 WRN-101 BiT-50 BiT-101 Avg. ViT-B DeiT-B Swin-B Swin-S Avg.
Ens 69.6±1.1 65.9±1.7 65.0±2.1 52.2±1.2 63.2±0.4 44.8±2.0 66.8±0.7 24.9±1.9 36.0±1.4 43.1±0.5
AdaEA 73.8±2.2 66.6±2.2 61.0±3.0 46.4±3.8 62.0±1.6 36.6±2.2 54.2±2.4 23.2±1.8 28.4±2.7 35.6±1.4
Admix 39.8±2.8 48.8±2.4 47.4±4.1 39.4±2.4 43.9±1.6 48.6±2.5 66.6±2.3 23.8±1.9 28.4±2.1 41.8±1.3
DHF 43.8±2.5 51.6±2.6 55.8±3.7 45.7±3.5 49.2±1.8 71.0±2.6 79.0±2.3 30.0±3.5 38.1±4.1 54.5±1.8
BFA 55.0±0.0 60.6±0.5 63.7±1.0 50.6±0.5 57.5±0.0 75.4±0.5 90.6±0.5 40.7±1.0 46.4±0.5 63.3±0.4
ANDA 55.6±0.8 64.5±0.5 73.2±0.9 62.8±0.4 64.0±0.3 68.9±0.6 78.0±0.2 42.6±0.5 54.7±0.8 61.0±0.2
Ours 62.7±3.8 71.2±4.0 73.1±3.0 63.4±3.7 67.6±2.0 82.8±4.8 90.5±3.0 52.3±4.3 63.9±4.2 72.4±2.3
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