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Horizontal Federated Heterogeneous Graph Learning:
A Multi-Scale Adaptive Solution to Data Distribution Challenges

Anonymous Author(s)∗

Abstract
Federated heterogeneous graph learning, an extension of federated
learning, enables effective representation of complex multidimen-
sional relationships while preserving data privacy. In horizontal
federated heterogeneous graph learning, data from different par-
ties often differ in topology and semantic distributions, causing
sensitivity to distribution imbalance and amplifying the complex-
ity of the topological structure. This interaction makes it difficult
for models to learn shared representations, leading to increased
instability during training. To address these challenges, this paper
proposes a novel multi-scale adaptive horizontal federated hetero-
geneous graph learning method MAFedHGL. A random masking
mechanism forces the model to infer missing connections. The
model also captures multi-hop and multi-path connections using
high-order topology mining, enhancing robustness against struc-
tural heterogeneity. Dynamic semantic consistency modeling uses
a masking matrix to recover and integrate diverse node attributes,
ensuring both global and local semantic consistency. Using cluster-
ing coefficients as aggregation weights enables clients with richer
structural information to contribute more effectively to the global
model, improving adaptability and performance across varying data
distributions in horizontal federated heterogeneous graph learning.
Extensive experiments on multiple public heterogeneous graph
datasets validate that the proposed method outperforms state-of-
the-art methods in both performance and robustness across various
data distribution scenarios.

CCS Concepts
• Computing methodologies→ Distributed artificial intelli-
gence; • Security and privacy→ Distributed systems security; •
Networks → Network privacy and anonymity.

Keywords
federated heterogeneous graph learning, federated learning, het-
erogeneous information network
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1 INTRODUCTION
In real-world applications, heterogeneous graphs (HGs) are often
derived from multiple data sources, involving sensitive information
such as users’ social connections, transaction data, or academic col-
laboration networks [43, 44]. Privacy and security concerns make
traditional centralized training models difficult to apply directly.
Federated learning (FL) solves this issue by allowing participants
to train models locally, sharing only model parameters instead of
raw data [2, 27]. By overcoming the limitations of data silos, FL
improves the training effectiveness of heterogeneous graph neural
network (HGNN). This feature is crucial in domains such as health-
care, finance, and social networks, where sensitive data is prevalent.
FL preserves privacy while leveraging diverse data sources, leading
to better model performance [18, 22]. Integrating FL with HGNN
allows exploitation of heterogeneous data richness while comply-
ing with strict privacy regulations, advancing HGNN applications
in privacy-sensitive fields [6, 23].

Federated heterogeneous graph learning (FHGL) combines FL
and HGNN to address HG data distribution across participants.
Each participant trains a model locally on its own HG data, trans-
mitting the model parameters to a central server for aggregation
through the FL framework. FHGL is well-suited for scenarios with
distributed HG data. For instance, banks and financial institutions
can enhance the performance of models for financial risk manage-
ment and fraud detection through local training, all while safe-
guarding user privacy.

In a FL environment, the non-independent and identically dis-
tributed (non-IID) nature of data exacerbates the challenges of
model robustness and adaptability, particularly in cases of imbal-
anced feature and label distributions [1, 20]. Compared to tradi-
tional Euclidean data, such as images or text, training HGNN in FL
settings faces more complex data heterogeneity issues [9, 21, 26].
Horizontal federated heterogeneous graph learning (HFHGL) is a
special case of FHGL where participants possess HG structures of
similar types, with nodes and edges sharing the same schema, but
each holding distinct data samples. The distribution characteristics
of heterogeneous data further amplify the difficulty of HFHGL, that
intensify the challenges introduced below.

First, the FL framework magnifies the structural sensitivity of
HGNN [6, 13, 46]. Clients may hold significantly different types and
numbers of nodes and edges, leading to diverse local topological
structures across clients. HGNN is highly sensitive to graph struc-
ture, and this sensitivity is even more pronounced in heterogeneous
graphs, where varying topological information can drastically affect
the learning outcomes. When there are large structural differences
between clients’ local graphs, the global model may struggle to cap-
ture the overall characteristics of the heterogeneous graph, making
it difficult to generalize effectively across all clients. Secondly, se-
mantic complexity is another critical challenge in training HGNN
[29, 50]. Heterogeneous graphs are composed of multiple types of
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nodes and edges, and the semantics of each node type depend on
the relationships and types of neighboring nodes. These neighbor-
hood relationships often vary significantly between clients. This
relationship dependency makes it difficult to unify the embedding
representations across clients. In the FL setting, where clients hold
data with varying semantic information, the global model may
struggle to align these diverse semantic patterns. The discrepancy
in the semantic information captured by different clients can hinder
the global model’s ability to effectively aggregate and generalize
across all participants, further complicating the training process.
The heterogeneity in both structural and semantic aspects of the
data in FL scenarios poses unique challenges for HGNN, making
it more difficult to achieve optimal performance. Moreover, tra-
ditional FL often adopts simple averaging aggregation methods,
which assume that the data across clients is homogeneous and of
similar importance [36]. However, in the context of FHGL, average
aggregation strategies fail to distinguish between the quality and
structural complexity of data from different clients. The graph struc-
tural characteristics of different clients in heterogeneous graphs
may vary significantly, and simple averaging can result in the loss
of critical information from some local graphs. In extreme cases,
some clients may have poor graph structures, and including these
clients in average aggregation can introduce unnecessary noise
into the global model.

To address the challenges in HFHGL, we propose a novel Multi-
scaleAdaptiveHorizontal FederatedHeterogeneousGraphLearning
method MAFedHGL. Through High-order Topology Mining (HTM),
the model captures multi-hop and multi-path connections between
nodes, enabling comprehensive analysis of multi-scale features
in complex graph structures. During the training process, a local
structure-based random masking mechanism is employed, where
portions of the edge information are hidden, forcing the model to
infer the missing connections from the remaining structure. This
design compels the model to focus on long-range correlations be-
tween distant nodes, supplementing the missing information with
indirect connections, such as multi-hop paths or more intricate
topological patterns representing high-order structures. By learn-
ing these high-order structures, the model effectively uncovers the
latent topological relationships across different scales, enhancing
the robustness of HFHGL in dealing with structural heterogeneity
across different clients. In terms of semantic modeling, we address
missing semantic relationships by fully utilizing the complex se-
mantic information inherent in heterogeneous graphs, achieving
adaptive Semantic Consistency Modeling (SCM). A dynamic mask-
ing matrix is used to obscure node semantic attributes, with the
HGNN recovering the missing information. This approach helps
the model aggregate the attributes of different types of nodes, in-
tegrating complicated topological structures to ensure both global
and local semantic consistency. This process not only enhances
the feature representation of local nodes but also strengthens the
model’s global semantic understanding by integrating multi-level
semantic relationships, making it more resilient in distributed HG
environments. Additionally, we introduce clustering coefficients as
aggregation weights for clients, measuring the tightness of node-
to-neighbor connections. In this way, during federated aggregation,
clients with more complex structural information contribute more
to the global model, allowing the model to dynamically adapt to

varying data distribution scenarios and improving the overall per-
formance and robustness of the global model. With this design, the
model demonstrates stronger generalization ability and stability
when addressing the issue of distribution heterogeneity in HFHGL.

In summary, the main contributions of this paper are as follows:

(1) To the best of our knowledge, this is the first study on hor-
izontal federated heterogeneous graph learning, which is
of significant practical value in real-word. We further for-
malize the concept of horizontal federated heterogeneous
graph learning.

(2) We construct high-order topology mining and semantic
consistency modeling to address the issue of poor model ro-
bustness caused by imbalanced client data distribution and
large graph structural differences in a multi-scale and adap-
tive way. We further propose a federated heterogeneous
graph aggregation strategy, assigning higher weights to
clients with tightly connected structures, thus enhancing
the aggregation effect.

(3) Experiments on four public heterogeneous graph datasets,
with tailored partitioning strategies for horizontal feder-
ated learning, demonstrate that our method consistently
achieves high model performance across various data dis-
tributions while maintaining robustness across multiple
trials.

2 RELATEDWORKS
2.1 Heterogeneous Graph Neural Network
HGNN are essential for processing graph data with complex struc-
tures, involving various types of nodes and edges [32]. In recent
years, research progress in HGNN has primarily focused on cap-
turing complex structures, handling heterogeneous information,
and improving model robustness. Hin2Vec [5] propose a metapath-
based heterogeneous information network embedding model that
learns embeddings by exploiting the relationships between different
types of nodes. Similarly, MAGNN [7] further capture the composite
relationships in HG by defining multiple metapaths to achieve node
embeddings. To address the structural challenges of HG, methods
like [14, 47] use graph transformation networks to learn effective
node representations based on new graph structures. Some studies
[11, 40, 48, 52] use hierarchical attentionmechanisms at node and se-
mantic levels to effectively model the importance of metapaths and
node relationships. Additionally, frameworks such as [12, 30, 39, 53]
leverage generative adversarial networks (GANs) to enhance the
robustness of heterogeneous graph embeddings. HGMAE [37] in-
troduces dynamic masking strategies in self-supervised learning,
bypassing the complexity of negative sampling in traditional con-
trastive learning, thus improving robustness and generalization.
Although these methods have made significant strides in process-
ing HG’s structural and semantic information, they still struggle
with distributed data handling and privacy protection. Most current
methods depend on centralized data processing, resulting in data
heterogeneity, low communication efficiency, and privacy risks in
distributed environments.

2
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2.2 Federated Learning
As FL continues to evolve, recent research has introduced various
methods to tackle challenges posed by data heterogeneity and non-
IID data. Some studies propose contrastive learning techniques
to narrow the gap between local and global models, addressing
local update drift due to data distribution differences [3, 8, 17].
MOON [19] notably improves model representation consistency,
leading to better convergence in non-IID data settings. Other stud-
ies incorporate knowledge distillation techniques [33, 45, 54] to
mitigate performance degradation that can occur with direct model
aggregation. For instance, FedFTG [51] utilizes data-free knowledge
distillation by leveraging a generator on the server side to fine-tune
the global model. Methods like [1, 9, 16, 20, 26] reduce variance in
local updates by introducing control variables and proximal terms,
alleviating the negative impact of heterogeneous data on federated
learning convergence. Research on data prototypes [4, 25, 28, 49]
shows that it helps alleviate performance degradation caused by
data heterogeneity and enhances personalized learning. FedPROTO
[35] propose a prototype-based federated learning approach, which
aggregates class prototypes from clients to form a global prototype,
guiding local learning. Additionally, robust aggregation algorithms
[22, 41] enhance model aggregation by controlling aggregation
weights. For example, FedAW [36] achieves better performance and
convergence by adjusting aggregation weights based on the quality
of local data. Although these methods tackle data heterogeneity in
model training, they struggle with non-Euclidean data, especially
graph data. The complex topology and node relationships in graphs
cause local model updates to drift more easily, making it harder for
the global model to capture overall data characteristics.

2.3 Federated Graph Learning
Research on federated graph learning (FGL) begin as a response to
privacy concerns when training graph neural network (GNN) across
multiple distributed clients. It focuses on collaborative training by
sharing model parameters instead of data [24, 29, 34]. Early stud-
ies primarily focus on homogeneous graph neural networks. Some
methods [10, 31, 42, 46] achieve semi-supervised node classification
while preserving data privacy, balancing communication overhead
and model convergence speed. As research progressed, more works
begin to focus on FL on subgraph data. FedSAGE [50] compensates
for missing links between subgraphs by generating missing neigh-
bors, enhancing the model’s generalization capabilities. To tackle
data heterogeneity, researchers propose FedLit [43], which handles
link heterogeneity in graphs through an edge clustering module
and a multi-channel graph convolution network. Subsequently, FL
has gradually expanded into the domain of HGNN. HG, compared
to homogeneous graphs, have more complex node and edge types,
posing greater challenges in FL scenarios. FedHRec [44] aims to
address privacy-preserving recommendation problems by using a
FL framework that keeps users’ private data on clients while shar-
ing part of the heterogeneous information network on the server.
FedHGN [6] introduced mode weight decoupling and coefficient
alignment to optimize the FL process on HG, where the schema
of HG differs across clients. Although scenarios where clients pos-
sess different schemas present a complex and worthwhile research
challenge, in real-world applications, uniform client schemas often

do not have significant privacy concerns. For example, in collabo-
rations between different banks, it is relatively straightforward to
align the fields they collect in user records. However, the specific
fields associated with individual users, which may differ across
banks, often entail higher privacy requirements and distributional
variance.

3 PRELIMINARY
This section will introduce the fundamental concepts involved in
this paper.

Definition 1. Heterogeneous graph. A heterogeneous graph
(HG) G is defined as a graph with multiple types of nodes and edges,
represented as: G = (V, E,A𝑉 ,A𝐸 ) where A𝑉 : V → T𝑉 and
A𝐸 : E → T𝐸 map each node/edge to a specific type in set T𝑉 and T𝐸

Definition 2. Meta-path. A meta-path 𝑃 is a sequence of node

types𝑇 and edge types 𝑅, formally represented as: 𝑃 = (𝑇1
𝑅1−−→ 𝑇2

𝑅2−−→
. . .

𝑅𝑛−1−−−−→ 𝑇𝑛), where 𝑇𝑖 ∈ T𝑉 and 𝑅𝑖 ∈ T𝐸 .

Definition 3. Heterogeneous Graph Neural Network. A het-
erogeneous graph neural network (HGNN) is a neural network de-
signed to handle HG, where nodes and edges belong to different types.
The objective of a HGNN is to learn node embeddings H𝑣 ∈ R𝑑 , 𝑑
is the dimension of the embedding. The network is built based on
a message-passing mechanism which updates node representations
H(𝑙 )
𝑣 for each node 𝑣 at layer 𝑙 by aggregating information from their

neighbors N (𝑙 )
𝑣 .

m(𝑙 )
𝑣 = AGGREGATE(𝑙 )

𝑢∈N (𝑙 )
𝑣

({
𝑓A𝐸 (𝑒𝑣𝑢 )

(
H(𝑙 )
𝑢 ,H(𝑙 )

𝑣 ,W(𝑙 )
A𝐸 (𝑒𝑣𝑢 )

)})
,

(1)
H(𝑙+1)
𝑣 = UPDATE(𝑙 )

(
H(𝑙 )
𝑣 ,m(𝑙 )

𝑣

)
, (2)

where 𝑓A𝐸 (𝑒𝑣𝑢 ) is a message-passing function that depends on the

type of the edge 𝑒𝑣𝑢 ,W
(𝑙 )
A𝐸 (𝑒𝑣𝑢 ) is a type-specific weight matrix. Then,

relationships between different types of nodes can be captured through
meta-paths 𝑃 , whereW(𝑙 )

𝑃
is the weight matrix for meta-path 𝑃 .

H(𝑃,𝑙+1)
𝑣 = AGGREGATE(𝑙 )

𝑃

({
𝑓𝑃

(
H(𝑙 )
𝑢 ,H(𝑙 )

𝑣 ,W(𝑙 )
𝑃

)
| 𝑢 ∈ N𝑃

𝑣

})
,

(3)
To combine multiple meta-paths, the representations from different

meta-paths can be combined using a weighted sum or an attention
mechanism, where 𝜎𝑃 is the attention weight for meta-path 𝑃 .

H(𝑙+1)
𝑣 =

∑︁
𝑃∈P

𝜎𝑃H
(𝑃,𝑙+1)
𝑣 , (4)

Definition 4. Federated Heterogeneous Graph Learning. Fed-
erated heterogeneous graph learning (FHGL) is a distributed machine
learning approach that enables 𝐾 participants (e.g., devices or servers)
to collaboratively train a global HGNN 𝑤 without sharing their lo-
cal HG. The goal of a FHGL is to minimize the following objective
function:

min
𝑤

𝐹 (𝑤) =
𝐾∑︁
𝑘=1

𝛼𝑘𝐹𝑘 (𝑤), (5)

where 𝐹 (𝑤) is the global objective function, representing global HGNN’s
performance across all participants’ HG. 𝐹𝑘 (𝑤) is the local objective

3
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Figure 1: Framework of proposed MAFedHGL. The key methods of MAFedHGL include high-order topological structure mining,
consistent semantic modeling, and a clustering coefficient-based aggregation strategy. HTM enhances the model’s perception
of multi-hop and indirect connections, allowing it to effectively capture global structural information of the graph. Through
CSM, MAFedHGL learns to recover missing information by dynamically masking partial node attributes, ensuring semantic
consistency across clients. What’s more, the clustering coefficient-based federated aggregation strategy adjusts the aggregation
weights according to the structural tightness of each client’s graph, enabling the global model to focus more on valuable graph
structures.

function of participant 𝑘 , representing the HGNN’s performance on
that participant’s local HG. 𝛼𝑘 is the aggregate weight for client 𝑘 .

Based on the above definitions, we then present our task of this
paper:

For a FHGL system with 𝐾 clients, each client holds a dataset
𝐷𝑘 = {G𝑘 ,X𝑘 ,Y𝑘 ,A𝑘

𝑉
,A𝑘

𝐸
}, where X𝑘 represents the local node

feature set, denoted as X𝑘 = {𝑋𝑘
𝑇1
, 𝑋𝑘
𝑇2
, ..., 𝑋𝑘

𝑇|A𝑉 |
}, Y𝑘 represents

the corresponding label features, as Y𝑘 = {𝑌𝑘
𝑇1
, 𝑌𝑘
𝑇2
, ..., 𝑌𝑘

𝑇|A𝑉 |
}, and

G𝑘 = (V𝑘 , E𝑘 ,A𝑉 ,A𝐸 ). Specifically, we denote the node features
𝑋𝑘
𝑇𝑡𝑎𝑟𝑔𝑒𝑡

and labels 𝑌𝑘
𝑇𝑡𝑎𝑟𝑔𝑒𝑡

corresponding to the target node type
𝑇𝑡𝑎𝑟𝑔𝑒𝑡 to be classified as 𝑋 and 𝑌 respectively. The learning objec-
tive is to classify the nodes based on their features, in other word,
to find the optimal function 𝐹 (𝑤). On each client, the local function
𝐹𝑘 (𝑤) can be represented as:

𝐹𝑘 (𝑤) = L𝑘
𝑐𝑙

= −
∑︁

𝑣∈V𝑘
train

𝑌𝑣 log𝑌𝑣, (6)

Definition 5. Horizontal Federated Heterogeneous Graph
Learning.Horizontal federated heterogeneous graph learning (FHGL)
is a specific category of FHGL, where participants share the same
types of HG structures, which means A𝑘

𝑉
= A𝑉 ,A𝑘

𝐸
= A𝐸 ,T𝑘𝑉 =

T𝑉 ,T𝑘𝐸 = T𝐸 , but the nodes and edges contained in each participant’s
graph are not identical, particularly with regard to the target samples
for classification in federated heterogeneous graph node classification
task.

4 METHODOLOGY
In this section, we provide a detailed explanation of the implemen-
tation of MAFedHGL. Specifically, MAFedHGL introduces mask-
based high-order topology mining and consistency semantic model-
ing to assist clients in learning HG node embeddings. Subsequently,
aggregation weights are assigned to each client based on the clus-
tering coefficient of its local graph, improving the stability of the
aggregation process. The framework of MAFedHGL is illustrated
in Figure 1.

4.1 Higher-order Topology Mining
In HG, relationships between nodes are not solely determined by
direct neighbor connections; rather, complex higher-order topolog-
ical relationships exist. These higher-order relationships refer to
the interactions between nodes formed through multi-hop, multi-
path, or indirect connections. By mining higher-order topological
structures, a model can effectively capture these multi-scale graph

4
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structure features, thereby enhancing its understanding of the over-
all graph morphology.

In local HGNN training, information of edges in the input graph
are selectively hidden at random. This can be represented as

A𝑚𝑎𝑠𝑘𝑒𝑑 = M𝐸 ⊙ A, (7)

where M𝐸 is the masking matrix, and ⊙ denotes element-wise mul-
tiplication. The model then performs hierarchical learning through
a heterogeneous graph convolutional network, where each layer
captures information from local neighborhoods to higher-order
topological structures

H(𝐿) = 𝜎
(
D̃
− 1

2
𝑚𝑎𝑠𝑘𝑒𝑑

Ã𝑚𝑎𝑠𝑘𝑒𝑑 D̃
− 1

2
𝑚𝑎𝑠𝑘𝑒𝑑

H(𝐿−1)W(𝐿−1)
)
, (8)

where Ã𝑚𝑎𝑠𝑘𝑒𝑑 = A𝑚𝑎𝑠𝑘𝑒𝑑 + I and D̃𝑚𝑎𝑠𝑘𝑒𝑑 is the degree matrix
corresponding to the adjacency matrix Ã𝑚𝑎𝑠𝑘𝑒𝑑 . During the hier-
archical learning process, the convolution operation is repeatedly
stacked, allowing node features to propagate from adjacent nodes
to more distant ones. This mechanism forces the model not only
to rely on local direct connection information but also to infer the
hidden features from the remaining graph structure. The hidden
information of edge relationship information drives the model to
learn how to capture topological information from distant nodes
or higher-order graph paths.

The model needs to learn the similarity between nodes under
a given meta-path and use this similarity to determine whether a
higher-order topological relationship exists. Given two nodes 𝑣 and
𝑢, connected through a meta-path 𝑝 , the model needs to predict
whether there is relationship between 𝑣 and 𝑢 by:

𝐴𝑃𝑣𝑢 = 𝑓 (ℎ𝑃𝑣 , ℎ𝑃𝑢 ), (9)

where 𝐴𝑃𝑣𝑢 represents the higher-order topological index of nodes
𝑣 and 𝑢 based on meta-path 𝑝 , and 𝑓 (·) is the cosine similarity
function.

To extract higher-order topological information from the meta-
path, the model aggregates different types of node features along
meta-path 𝑝 . The feature representation of node 𝑣 under meta-path
𝑝 , denoted as ℎ𝑃𝑣 , can be expressed as

ℎ𝑃𝑣 =
∑︁
𝑢∈N𝑃

𝑣

𝜂𝑃𝑢𝑣ℎ𝑢 , (10)

where 𝜂𝑃𝑢𝑣 is the attention weight between 𝑣 and𝑢 under meta-path
𝑃 .

To optimize the accuracy of higher-order topology mining, the
loss is computed based on edge reconstruction. The model mini-
mizes the following loss function:

LE = −
∑︁

(𝑣,𝑢 ) ∈V
[𝐴𝑣𝑢𝑙𝑜𝑔𝐴𝑃𝑣𝑢 + (1 −𝐴𝑣𝑢 )𝑙𝑜𝑔(1 −𝐴𝑃𝑣𝑢 )], (11)

By learning higher-order topological structures, the model can
understand not only local node relationships but also capture the
global distribution of the graph. This enables the model to form a
globally consistent understanding of the entire graph when dealing
with complex heterogeneous graphs, thus enhancing its reasoning
and generalization capabilities.

4.2 Consistency Semantic Modeling
From the perspective of consistency semantic modeling (CSM), the
model focuses on recovering masked node attribute information
by predicting the masked target attributes. CSM aims to learn both
global and local semantic information of nodes and establish a
adaptive semantic representation of the nodes. The objective of
CSM is to ensure that even in cases where partial node or edge
information is missing, the model can recover the missing attributes
by leveraging other visible information in the graph. This requires
the model to not only comprehend the local node-edge structure
but also to construct a consistent semantic representation in the
global context.

Randomly masking parts of certain node attributes forces the
model to rely on the unmasked attributes of other nodes, as well as
the topological relationships between nodes, to infer the masked
information. To further enhance the robustness and generalization
ability of the model when handling HG, the model dynamically
adjusts the masking ratio during training based on the complexity
of different nodes or features, rather than using a fixed masking
ratio. Thus, during the heterogeneous graph convolution, the node
representation is updated as:

H0 = M𝑁X, (12)

where M𝑁 = 𝜑 · 𝑒𝑥𝑝−𝜆𝑟 , 𝜑 is the initial masking rate, 𝜆 is the rate
controlling how the masking ratio changes over the training epochs,
and 𝑟 is the current global training epoch.

At the early stages of training, the model applies a higher mask-
ing rate that more features are masked, forcing the model to learn
from a limited amount of input features or neighborhood infor-
mation. As training progresses, the dynamic masking rate gradu-
ally decreases, allowing the model to utilize more node features,
thereby improving its accuracy in reconstruction tasks. In this way,
the model progressively transitions to handling scenarios with less
masking, enhancing its adaptability to complex graph structures.

To ensure the randomness of information masking and the sta-
bility of model convergence, before applying feature masking, a
portion of node samples will retain their features unaffected with a
certain probability 𝜙𝑢𝑛 . Additionally, with a certain probability 𝜙𝑟𝑒 ,
some sample features will be replaced by the unmasked features of
neighboring nodes.

Once the node representations are updated through the aggre-
gation operation, the model attempts to recover the masked target
attributes. The recovered attributes can be represented as:

𝑥𝑣 = 𝑔(ℎ (𝐿)𝑣 ), (13)

where 𝑥𝑣 is the target feature of node ℎ
(𝐿)
𝑣 is the final represen-

tation generated through multi-layer aggregation, and 𝑔(·) is the
decoding function responsible for mapping the high-dimensional
node representation back to the attribute space.

To ensure that the recovered attributes closely match the true
attributes, the model adopts an attribute reconstruction loss func-
tion to measure the discrepancy between the recovered values and
the ground truth:

LV =
1

|V𝑚𝑎𝑠𝑘𝑒𝑑 |
∑︁

𝑣∈V𝑚𝑎𝑠𝑘𝑒𝑑

| |𝑥𝑣 − 𝑥𝑣 | |22, (14)
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where V𝑚𝑎𝑠𝑘𝑒𝑑 represents the set of masked nodes. This loss func-
tion enables the model to minimize the difference between the
predicted and true attributes, thus improving the accuracy of the
recovery process.

The ultimate learning objective L𝑘 on the client 𝑘 can be de-
fined as the weighted sum of the high-order topology loss L𝑘E ,
consistency semantic loss L𝑘V , and classification loss L𝑘

𝑐𝑙
:

L𝑘 = L𝑘
𝑐𝑙
+ 𝛾EL𝑘E + 𝛾VL𝑘V , (15)

where 𝛾E , 𝛾V are the aggregation weights corresponding to L𝑘E ,
L𝑘V respectively.

4.3 Federated Clustering Coefficient
Aggregation

In HG, the structure of different types of nodes and edges is com-
plex, and in FL environments, the data distribution across clients
can vary significantly. The clustering coefficient is a metric used
to measure the tightness of connections between a node and its
neighbors, reflecting local structural properties of the graph. In-
troducing clustering coefficient into FHGL can effectively capture
the strength of connections between nodes within the local graph
structures of each client.

We proposes a meta-path-based method, which involves defining
a specific meta-path to calculate clustering coefficient 𝐶𝑘 for client
𝑘 . Suppose we choose a specific meta-path 𝑃 , we can compute the
number of triangles and triples along this meta-path, and thereby
calculate 𝐶𝑘 , follow formula as:

𝐶 =
∑︁
𝑃

∑︁
𝑣

|{(𝑢,𝑤) : 𝑢,𝑤 ∈ N𝑃 (𝑣), (𝑢,𝑤) ∈ E𝑃 }|
|N𝑃 (𝑣) | ( |N𝑃 (𝑣) | − 1) , (16)

where 𝐸𝑝 represents the set of edges conforming to the meta-path
𝑃 .

The global server collects 𝐶𝑘 from each client and calculates the
aggregation weight of the client based on the number of nodes and
the 𝐶𝑘 in the local graph. The aggregate weight for client 𝑘 is thus
defined as:

𝛼𝑘 =
𝐶𝑘 · |V𝑘 |∑
𝑘 {𝐶𝑘 · |V𝑘 |}

. (17)

A higher 𝐶𝑘 in a client’s local graph indicates more tightly con-
nected nodes, which may contain more valuable structural infor-
mation. By assigning higher aggregation weights to clients whose
subgraphs exhibit higher 𝐶𝑘 , the global model can be guided to fo-
cus more on these valuable subgraphs, allowing the model to learn
useful features from the complex graph structures more effectively.

4.4 Privacy Analysis
In MAFedHGL, each client sends only the model weights to the
central server, rather than the original HG data. The central server
is responsible solely for aggregating these local models to gener-
ate a global model, significantly reducing the risk of data privacy
breaches. Additionally, the server collects clustering coefficients
from each client. However, relying solely on clustering coefficients
and model parameters does not allow inference on the local data,
thus satisfying the privacy requirements of FL. Although the de-
signed local models attempt to reconstruct local data to learn latent
features, both adjacency and node information are masked, and

node attributes are further perturbed through feature swapping.
These techniques increase data obfuscation and incompleteness, re-
ducing the dependency on real data during training and mitigating
the potential risk of privacy leakage.

5 EXPERIEMENTS
5.1 Experimental Setup
Datasets.We conducted experiments on four publicly available HG
datasets: ACM [47], DBLP [7], IMDB [47], and Yelp [12]. These
datasets encompass various domains, including academia, movie re-
views, and E-commerce, each with distinct structural and semantic
characteristics. This diversity provides a comprehensive valida-
tion of our method’s effectiveness and robustness across different
application scenarios.

Table 1: The partitioning details of client datasets, showing
the number of nodes |V𝑘 |, ratio between number of edges and
nodes |E𝑘 |/|V𝑘 |, and 𝐶𝑘 . It is evident that as the heterogene-
ity of the target node distribution increases, the disparity
in data volume between clients becomes more pronounced.
Notably, 𝐶𝑘 effectively evaluates the information density of
heterogeneous graphs on each client under different levels
of heterogeneity.

Datasets Partition |V𝑘 | |E𝑘 |/|V𝑘 | 𝐶𝑘

ACM

Uniform 2201±112 2.350±0.081 1.95±0.54
𝛽=10 2201±295 2.351±0.079 2.12±0.53
𝛽=1 2117±841 2.382±0.176 2.87±0.95
𝛽=0.1 1948±1415 2.321±0.362 4.30±2.15

DBLP

Uniform 4291±1557 1.742±0.253 0.07±0.06
𝛽=10 4294±1717 1.735±0.253 0.08±0.07
𝛽=1 4218±2162 1.760±0.236 0.11±0.10
𝛽=0.1 3972±3750 1.802±0.240 0.16±0.15

IMDB

Uniform 2317±253 2.053±0.227 0.31±0.15
𝛽=10 2307±366 2.055±0.233 0.34±0.23
𝛽=1 2223±942 2.061±0.269 0.48±0.32
𝛽=0.1 2025±1583 2.038±0.310 1.26±1.00

Yelp

Uniform 1637±234 9.053±3.855 18.95±9.50
𝛽=10 1628±266 9.028±4.062 18.77±9.32
𝛽=1 1538±497 8.850±4.570 20.18±10.75
𝛽=0.1 1326±913 8.130±5.403 21.92±14.85

Data Partitioning. Our focus is on the scenario where clients
share the same schema, but the distribution of nodes and edges
varies. To construct a FL environment, we partitioned the HG
datasets by simulating the methods used for Euclidean data in FL,
distributing nodes and their corresponding edges across different
clients. We adopt two data partitioning methods. In the Uniform
approach, target nodes are evenly divided into 𝐾 subsets, and the
subgraph corresponding to each subset is assigned to a client as
a HG. In the Dirichlet approach, target nodes are partitioned us-
ing a Dirichlet distribution 𝐷 (𝛽), also constructing subgraphs,
which leads to significant differences in label distributions of target
nodes across clients, thereby affecting the distribution of node types,
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Table 2: Accuracy results for 4 datasets with different partitioning methods, showing the mean and standard deviation of
accuracy across different data partition scenarios on 4 datasets. A higher mean indicates better performance, while a lower
standard deviation reflects greater stability across repeated experiments.

Dataset Partition FedAvg FedProx MOON SCAFFOLD FedDyn FedAW FedWT FedPROTO FedTGP FedGCN FedSAGE FedLit FedHGN MAFedHGL

ACM
Uniform 79.57±2.47 77.15±2.39 77.97±4.80 79.27±2.81 64.75±1.71 79.53±2.01 80.36±2.33 74.27±6.64 78.47±3.35 57.43±5.29 65.58±2.23 64.82±1.39 65.46±1.82 83.20±1.30
𝛽=10 79.03±2.17 76.69±1.28 76.39±1.30 79.48±1.11 65.26±2.03 80.70±1.29 80.17±1.43 71.91±4.79 79.18±4.68 62.91±6.93 67.10±2.42 71.63±1.32 72.62±1.36 83.60±0.49
𝛽=1 83.84±3.64 81.58±3.34 81.59±3.36 85.07±2.06 74.98±3.65 84.97±2.54 85.13±2.82 77.39±4.79 82.54±4.22 71.11±4.56 72.23±2.58 82.18±2.87 84.66±3.36 87.32±1.69
𝛽=0.1 96.68±2.12 95.88±2.89 95.79±3.30 96.50±2.04 97.20±1.82 96.94±2.08 96.00±1.95 95.32±3.27 95.98±2.55 74.27±5.62 75.98±2.36 93.07±3.69 96.56±2.37 97.34±1.62

DBLP
Uniform 53.96±1.66 53.66±1.69 53.71±2.73 54.73±2.97 49.29±3.14 54.05±2.68 53.74±2.63 60.03±2.43 61.39±2.68 53.50±4.51 58.08±2.18 48.10±3.09 48.32±2.29 66.80±1.11
𝛽=10 54.62±2.75 54.43±1.52 54.39±2.59 55.56±2.94 55.75±2.31 54.78±2.53 54.93±2.40 60.94±2.47 61.94±2.90 55.98±3.68 58.29±2.13 50.31±2.86 51.02±2.09 67.59±1.16
𝛽=1 64.05±3.71 64.01±2.57 64.12±2.60 66.04±3.35 64.73±2.17 64.67±3.87 64.77±2.78 66.74±2.53 67.06±2.86 59.88±3.81 61.39±2.08 51.76±3.57 54.55±4.05 73.61±1.72
𝛽=0.1 84.30±7.56 82.25±5.62 80.41±6.57 84.33±5.76 84.25±5.23 84.43±5.57 76.49±8.11 81.29±5.37 82.97±5.24 75.31±2.91 78.18±3.03 61.37±3.99 59.17±6.14 87.52±4.03

IMDB
Uniform 44.40±2.91 44.22±2.80 44.46±2.77 44.79±2.53 39.42±4.42 44.27±3.04 44.33±3.11 44.94±3.42 44.73±3.50 42.38±5.75 43.43±2.56 37.42±1.65 36.46±1.20 48.67±2.37
𝛽=10 46.61±2.51 46.44±2.59 46.30±2.20 47.53±3.11 48.09±7.32 46.62±2.51 46.66±2.36 47.36±2.32 47.32±2.33 46.54±4.91 47.71±2.26 39.86±2.64 39.27±1.94 51.78±1.66
𝛽=1 55.91±6.96 55.92±5.93 56.35±6.43 60.19±4.57 51.13±4.83 56.37±6.52 56.47±5.26 57.91±5.39 57.05±4.28 48.62±5.42 53.26±2.66 53.46±5.89 53.55±6.89 60.26±3.60
𝛽=0.1 60.02±6.95 60.19±5.57 60.28±4.99 62.32±4.89 58.01±5.44 60.01±4.70 59.85±4.63 60.15±5.48 60.85±4.96 51.75±3.13 57.41±2.11 62.68±7.65 62.18±6.60 64.42±4.75

Yelp
Uniform 68.91±3.99 70.30±2.24 70.44±3.09 73.24±2.59 54.54±4.42 70.37±3.50 71.08±3.20 66.36±10.02 69.43±3.44 63.23±3.92 65.48±2.61 72.92±2.64 73.58±2.56 75.37±1.64
𝛽=10 70.48±3.06 72.49±2.88 70.67±3.84 74.85±3.34 57.47±3.47 71.28±2.83 71.49±2.19 61.40±9.89 64.13±4.18 64.72±4.12 67.71±2.39 74.83±2.51 74.69±2.45 77.10±2.07
𝛽=1 77.86±5.16 78.18±5.93 77.40±5.80 80.01±4.86 72.58±6.78 79.64±4.97 79.86±4.54 67.29±9.41 70.48±5.39 68.62±5.23 71.23±2.24 77.52±5.22 79.36±5.50 82.25±3.61
𝛽=0.1 87.29±6.08 88.01±3.39 88.89±4.32 87.62±3.38 84.63±5.03 88.22±2.30 87.85±3.82 80.26±7.91 83.71±5.48 72.29±4.99 73.89±2.37 85.46±5.55 88.29±4.83 91.16±2.99

Table 3: Convergence round results for 4 datasets with different partitioningmethods, showing themean and standard deviation
of convergence rounds, where a lower mean signifies faster convergence, a lower standard deviation reflects greater stability
across repeated experiments.

Dataset Partition FedAvg FedProx MOON SCAFFOLD FedDyn FedAW FedWT FedPROTO FedTGP FedGCN FedSAGE FedLit FedHGN MAFedHGL

ACM
Uniform 180 ± 33 195 ± 33 174 ± 42 181 ± 35 184 ± 27 162 ± 44 172 ± 40 141 ± 50 138 ± 40 472 ± 62 553 ± 102 401 ± 32 389 ± 31 107 ± 31
𝛽=10 140 ± 29 149 ± 32 154 ± 39 143 ± 32 156 ± 56 124 ± 22 133 ± 29 90 ± 21 107 ± 28 461 ± 38 523 ± 96 310 ± 40 295 ± 64 86 ± 20
𝛽=1 147 ± 37 148 ± 28 161 ± 45 156 ± 34 161 ± 48 116 ± 27 131 ± 31 116 ± 42 138 ± 23 424 ± 67 546 ± 78 332 ± 56 316 ± 38 96 ± 21
𝛽=0.1 152 ± 28 166 ± 30 179 ± 34 182 ± 29 258 ± 38 133 ± 28 183 ± 47 124 ± 35 134 ± 46 416 ± 31 528 ± 76 407 ± 68 256 ± 90 83 ± 26

DBLP
Uniform 254 ± 50 281 ± 32 248 ± 39 273 ± 13 198 ± 25 241 ± 38 253 ± 32 164 ± 22 187 ± 31 277 ± 72 379 ± 74 289 ± 63 277 ± 53 121 ± 18
𝛽=10 207 ± 31 191 ± 38 189 ± 44 195 ± 25 187 ± 17 187 ± 25 178 ± 32 162 ± 48 170 ± 35 283 ± 68 367 ± 72 316 ± 27 310 ± 23 92 ± 14
𝛽=1 147 ± 28 164 ± 47 140 ± 36 144 ± 37 186 ± 44 136 ± 42 140 ± 48 156 ± 32 192 ± 28 223 ± 52 298 ± 82 249 ± 43 252 ± 41 117 ± 18
𝛽=0.1 139 ± 38 134 ± 39 135 ± 44 139 ± 19 173 ± 54 142 ± 28 133 ± 31 184 ± 25 176 ± 39 201 ± 57 328 ± 76 326 ± 94 251 ± 97 86 ± 22

IMDB
Uniform 114 ± 22 123 ± 22 113 ± 20 128 ± 28 127 ± 32 125 ± 24 113 ± 25 109 ± 21 118 ± 26 254 ± 68 289 ± 32 220 ± 20 224 ± 40 82 ± 18
𝛽=10 135 ± 28 121 ± 24 127 ± 28 127 ± 22 138 ± 31 143 ± 25 157 ± 42 98 ± 32 102 ± 31 255 ± 63 292 ± 41 224 ± 23 223 ± 21 69 ± 11
𝛽=1 146 ± 24 161 ± 28 154 ± 40 159 ± 27 143 ± 32 164 ± 31 97 ± 30 132 ± 29 134 ± 28 231 ± 37 276 ± 35 218 ± 20 212 ± 26 72 ± 22
𝛽=0.1 144 ± 26 157 ± 33 168 ± 42 178 ± 33 156 ± 35 181 ± 42 96 ± 23 82 ± 33 89 ± 29 198 ± 41 263 ± 38 212 ± 74 183 ± 65 76 ± 24

Yelp
Uniform 269 ± 53 316 ± 90 246 ± 40 317 ± 103 252 ± 46 243 ± 31 231 ± 34 266 ± 22 262 ± 32 321 ± 42 489 ± 54 349 ± 60 370 ± 69 207 ± 36
𝛽=10 299 ± 43 270 ± 66 265 ± 82 273 ± 40 234 ± 52 257 ± 47 223 ± 32 278 ± 36 235 ± 29 382 ± 67 483 ± 56 328 ± 56 377 ± 78 203 ± 30
𝛽=1 256 ± 42 240 ± 62 219 ± 55 250 ± 75 184 ± 47 220 ± 24 169 ± 57 221 ± 43 187 ± 53 372 ± 56 429 ± 47 247 ± 54 287 ± 66 159 ± 49
𝛽=0.1 258 ± 53 238 ± 62 207 ± 50 330 ± 86 267 ± 43 287 ± 64 150 ± 33 143 ± 43 162 ± 32 328 ± 39 419 ± 50 212 ± 41 188 ± 34 117 ± 42

edges, and edge types. A smaller value of 𝛼 results in greater dispar-
ities in data distribution across clients. Unless otherwise specified,
we set 𝐾 = 5, data detail for clients are shown in Table 1.

Baseline. To validate the effectiveness of the proposed method,
we designed several baseline algorithms for comparison, includ-
ing FHGL algorithms such as FedHGN [6] and FedLit [43], FGL
algorithms like FedSage [50] and FedGCN [46], and traditional FL
algorithms that are effective for Non-IID data, such as FedAvg [27],
FedProx [20], SCAFFOLD [16], MOON [19], FedDyn [1], FedAW
[36], FedWT [36], FedPROTO [35], and FedTGP [49]. Among them,
FGL baselines convert local HG data into homogeneous graphs
for training, while FL algorithms designed for Euclidean data, like
FedAvg, use HGNN for local learning.

Implementation details.Our implementation of HGNs is based
on the DGL [38] library, while the processing of HG data relies on
the OpenHGNN [15] library. GPU acceleration is performed on
NVIDIA RTX 2080 TI. In each set of experiments, 10 repetitions
are conducted, and the convergence criterion for accuracy and loss
is set to 10 rounds without change. To ensure the fairness of the
experiments, all methods use the same learning rate of 0.001 and
the same number of local training epochs set to 10. The hidden
embedding dimension of HGNN 64, the number of HGNN layers is
set to 2. Both 𝛾E and 𝛾V for MAFedHGL are set to 1.

5.2 Overall Performance
Both Table 2 and Table 3 demonstrate that MAFedHGL outperforms
all baseline methods on performance and convergence speed, ex-
hibiting strong robustness to variations in datasets and partitioning
methods. This indicates that MAFedHGL can capture complex cor-
relations between multi-hop and multi-path nodes, strengthening
the model’s robustness to HG structures across different clients.
By leveraging HGNN to infer missing semantic information and
effectively integrating semantic patterns from different clients, it
ensures global semantic consistency. MAFedHGL evaluates the con-
nectivity between each client’s nodes and their neighbors, assigning
higher weights to clients with more complex structural information.
This avoids the negative impact of structural discrepancies between
clients on the global model, enabling the model to dynamically
adapt to varying data distributions and enhancing its robustness
and generalization ability. In HG scenarios, clients’ graph structures
can differ significantly, including variations in node and edge types
and quantities. Due to HGNN’s sensitivity to graph structure, tradi-
tional FL methods and federated graph learning struggle to capture
these local structural differences, leading to poor generalization of
the global model. Consequently, these methods may perform well
in some cases but poorly in others. Both FedLit and FedHGN exhibit
strong capabilities in extracting topological features, particularly in
scenarios with smaller 𝛽 , where HFHGL approaches become more
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akin to vertical federated heterogeneous graph learning. However,
it was also observed that these methods perform poorly when deal-
ing with the DBLP dataset, which has a lower clustering coefficient.
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Figure 2: Performance comparison under various masking
rate on ACM dataset.

5.3 Parameter Analysis
MAFedHGL forces the model to learn latent features by masking
the adjacency matrix and node features, with 𝑀𝐸 and 𝑀𝑉 repre-
senting the corresponding masking ratios. We conduct experiments
to determine the optimal masking ratios, and the results on the
ACM dataset are shown in Figure 2. It can be observed that the
optimal value of𝑀𝐸 under different data partitions is consistently
around 0.5, whereas𝑀𝑉 performs better with dynamic partitioning,
and there is no single value that achieves optimal results across all
partitions. The same pattern was observed in other datasets as well.
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Figure 3: Performance comparison under various 𝜙𝑢𝑛 and 𝜙𝑟𝑒
on ACM dataset.

We also conduct parameter experiments on 𝜙𝑟𝑒 and 𝜙𝑢𝑛 to in-
vestigate whether node feature perturbation should be retained
or replaced with features from other nodes. The results on the

ACM dataset are shown in Figure 3, where we find that 𝜙𝑟𝑒 and
𝜙𝑢𝑛 exhibit similar distribution trends under different partitions.
Therefore, for each dataset, we determine the values of these two
parameters through tuning.

Table 4: Results of different model variants.

Dataset Partition w/o HTM w/o SCM w/o CCA MAFedHGL

ACM

Uniform 81.03±2.80 81.96±1.39 82.16±1.85 83.30±1.39
𝛽=10 81.15±1.67 82.05±2.13 82.46±1.23 83.67±0.52
𝛽=1 85.45±2.61 86.10±1.20 86.42±1.70 87.33±1.76
𝛽=0.1 95.30±2.18 96.19±1.46 96.58±1.76 97.36±1.70

DBLP

Uniform 64.79±1.79 64.84±1.28 65.61±1.21 66.83±1.17
𝛽=10 65.38±2.28 67.34±1.20 67.08±1.95 67.68±1.19
𝛽=1 71.45±2.02 72.42±1.97 72.62±1.92 73.66±1.74
𝛽=0.1 85.94±5.29 86.51±4.33 86.83±4.78 87.56±4.09

IMDB

Uniform 47.14±2.54 47.47±2.11 48.14±2.37 48.74±2.48
𝛽=10 49.63±2.60 50.52±1.55 50.63±2.08 51.86±1.75
𝛽=1 57.95±5.13 60.08±4.96 59.61±4.35 60.31±3.66
𝛽=0.1 62.16±6.12 62.50±6.18 63.50±5.55 64.49±4.76

Yelp

Uniform 73.09±2.15 73.55±2.27 74.11±1.67 75.40±1.70
𝛽=10 74.37±3.25 75.71±2.85 76.00±2.59 77.14±2.12
𝛽=1 80.00±4.74 79.83±4.72 80.79±4.60 82.29±3.62
𝛽=0.1 88.32±3.34 88.71±2.91 89.78±3.14 91.17±3.08

5.4 Ablation Study
MAFedHGL employs three main strategies: High-order Topology
Mining (HTM), Semantic Consistency Modeling (SCM), and Clus-
tering Coefficient Aggregation (SSA). We perform ablation experi-
ments to evaluate the contribution of each strategy to the model.
The results, shown in Table 4, indicate that removing any of the
three strategies leads to a performance drop, confirming their ef-
fectiveness. Among them, the removal of HTM causes the most
significant performance decline, while removing SSA results in the
least decrease in stability across repeated experiments.

6 CONCLUSION
In this paper, we first explore the emerging field of horizontal feder-
ated heterogeneous graph learning, addressing the challenges posed
by distributed heterogeneous data. We propose a novel method,
Multi-scale Adaptive Horizontal Federated Heterogeneous Graph
Learning MAFedHGL, aimed at enhancing model robustness and
performance in the face of imbalanced client data distributions and
significant structural differences in graphs. By employing high-
order topology mining to uncover latent relationships and dynamic
semantic consistency modeling to address missing semantic con-
nections, we introduc a clustering coefficient-based aggregation
strategy, which assigns weights to clients based on the tightness
of their node-to-neighbor connections. MAFedHGL effectively im-
proves feature representation and global understanding across par-
ticipants. Experimental results on multiple public heterogeneous
graph datasets demonstrated that MAFedHGL consistently achieves
high performance while maintaining robustness across diverse data
scenarios, highlighting its potential for practical applications in
privacy-sensitive domains.
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