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ABSTRACT

Large language models (LLMs) are often modified after release through post-
processing such as post-training or quantization, which makes it challenging to
determine whether one model is derived from another. Existing provenance de-
tection methods have two main limitations: (1) they embed signals into the base
model before release, which is infeasible for already published models, or (2) they
compare outputs across models using hand-crafted or random prompts, which are
not robust to post-processing. In this work, we propose LLMPrint, a novel de-
tection framework that constructs fingerprints by exploiting LLMs’ inherent vul-
nerability to prompt injection. Our key insight is that by optimizing fingerprint
prompts to enforce consistent token preferences, we can obtain fingerprints that
are both unique to the base model and robust to post-processing. We further de-
velop a unified verification procedure that applies to both gray-box and black-box
settings, with statistical guarantees. We evaluate LLMPrint on five base models
and around 700 post-trained or quantized variants. Our results show that LLM-
Print achieves high true positive rates while keeping false positive rates near zero.

1 INTRODUCTION

Large language models (LLMs) are rapidly advancing and increasingly deployed in real-world prod-
ucts (Google, 2025; OpenAI, 2025; Microsoft, 2023). As models proliferate across organizations,
questions of provenance–specifically, verifying whether a given model has been derived from a par-
ticular released model–become critical. Establishing provenance is important both for safeguarding
intellectual property (Tramèr et al., 2016; Wang & Gong, 2018; Carlini et al., 2024), since train-
ing a competitive LLM requires substantial compute, data, and engineering effort, and for ensuring
accountability by detecting unauthorized redistribution. However, reliably establishing provenance
is far from trivial, especially once models have been altered through post-processing such as post-
training or quantization. For clarity, we refer to the released model under protection as the base
model, and to any model under investigation as a suspect model.

Existing LLM provenance detection methods fall into two main categories. Proactive meth-
ods (Wang et al., 2025; Wu et al., 2025a; Gloaguen et al., 2025; Wanli et al., 2025) embed signals
into the base model during training–such as watermarks or injected fingerprints–prior to release.
These methods require modifying the base model and are therefore inapplicable to models that have
already been released. Passive methods (Gubri et al., 2024; Nikolic et al., 2025; Wu et al., 2025b;
Yoon et al., 2025; Ren et al., 2025; Pasquini et al., 2025), by contrast, avoid altering the base model
and instead design prompts to elicit inherent behaviors that can be compared between the base and
suspect models. For instance, some approaches measure agreement over large pools of randomly
sampled prompts (Nikolic et al., 2025), while others craft prompts to expose lexical, stylistic, or
reasoning patterns (Pasquini et al., 2025; Ren et al., 2025). However, such fingerprints may inad-
vertently match models derived from different bases or fail to persist under post-processing such as
post-training or quantization, leading to false positives and false negatives. Moreover, most prior
work assumes either full white-box access to parameters of the suspect model (Wu et al., 2025b;
Yoon et al., 2025) or the most restrictive black-box access to its API (Gubri et al., 2024; Nikolic
et al., 2025; Ren et al., 2025; Pasquini et al., 2025). The practically important gray-box setting–
where the suspect model’s API exposes per-token log-likelihoods–remains largely unexplored.

In this work, we propose LLMPrint, a new provenance detection framework that overcomes these
limitations. Our key insight is to exploit the inherent vulnerability of LLMs to prompt injection (Liu
et al., 2024), where carefully designed prompts override a model’s default behavior and force it to
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Figure 1: Overview of LLMPrint.

perform an injected task. We repurpose this vulnerability for provenance detection by constructing
what we call fingerprint prompts. Each fingerprint prompt encodes a simple injected task: it enforces
a preference between a randomly chosen pair of tokens when the base model generates its first token
given the prompt. Conceptually, this can be viewed as reframing the first-token generation of an
LLM as a classification problem: given a prompt, the model selects one token from its vocabulary,
with its unique decision boundary partitioning the prompt space into regions corresponding to dif-
ferent output tokens. From this perspective, each fingerprint prompt (Figure 1, left) is optimized
to lie close to the decision boundary between the target token pair (w+

j , w
−
j ), making it unique to

the base model, while remaining distant from regions associated with other tokens, which enhances
robustness to post-processing. Fingerprint verification then reduces to checking whether a suspect
model preserves these same token preferences under the fingerprint prompts (Figure 1, right).

We evaluate LLMPrint on five open-source base models, covering 463 post-trained and 233 quan-
tized suspect models. Across both gray-box and black-box access to the suspect model, LLMPrint
achieves high true positive rates while keeping false positive rates close to zero. Compared with prior
methods–including TRAP (Gubri et al., 2024) and LLMmap (Pasquini et al., 2025), which operate
in the black-box setting, and IPGuard (Cao et al., 2021), a fingerprinting method originally designed
for classifiers–LLMPrint consistently performs better. We further analyze failure cases and find that
post-trained or quantized variants incorrectly identified as not derived from their base model tend
to exhibit large performance drops on widely used benchmarks such as MMLU (Hendrycks et al.,
2021), HellaSwag (Zellers et al., 2019), and PIQA (Bisk et al., 2020) that measure general-purpose
capability. This suggests that such failures are mainly due to significant degradation of the suspect
models themselves rather than limitations of LLMPrint. Our main contributions are as follows:

• Fingerprint construction via prompt injection. We introduce a novel way to construct finger-
prints for LLMs by exploiting their inherent vulnerability to prompt injection. Optimized finger-
print prompts enforce consistent pairwise token preferences, yielding fingerprints that are both
unique to the base model and robust to post-processing.

• Unified and statistically grounded verification. We develop a verification framework that func-
tions under the most restrictive black-box access to the suspect model, while further improving
in the practical gray-box setting. Our framework leverages either repeated sampling or per-token
log-likelihoods, calibrates decision thresholds using validation suspect models not derived from
the base model, and provides statistical guarantees for provenance verification.

• Comprehensive empirical evaluation. We conduct large-scale experiments on five base models
and around 700 suspect models, demonstrating that LLMPrint outperforms prior approaches such
as TRAP, LLMmap, and IPGuard. In rare failure cases, we observe that suspect models misclassi-
fied as not derived from their base typically show signs of overall quality degradation, suggesting
that these errors reflect weaknesses of the suspect models rather than of our fingerprints.

2 RELATED WORK

2.1 LLM PROVENANCE DETECTION

We review existing methods for LLM provenance detection from two complementary perspectives:
(i) whether the approach modifies the base model–categorized as passive versus proactive–and (ii)
the level of access to the suspect model, ranging from white-box to gray-box to black-box. Table 1
summarizes representative methods across these dimensions.
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Table 1: Summary of LLM provenance detection methods. We compare our LLMPrint with TRAP
and LLMmap, since other methods are either not applicable to our setting or cannot be reliably
reproduced due to lacking experimental details and open-source implementations.

Method Modification of base model Access to suspect model Venue Available time
Passive Proactive White-box Gray-box Black-box

TRAP (Gubri et al., 2024) ✓ ✓ ACL 2024-08

Nikolic et al. (2025) ✓ ✓ arXiv 2025-02

Wu et al. (2025b) ✓ ✓ arXiv 2025-07

Yoon et al. (2025) ✓ ✓ arXiv 2025-07

FPEdit (Wang et al., 2025) ✓ ✓ arXiv 2025-08

EditMF (Wu et al., 2025a) ✓ ✓ arXiv 2025-08

Gloaguen et al. (2025) ✓ ✓ arXiv 2025-05

CoTSRF (Ren et al., 2025) ✓ ✓ arXiv 2025-05

Wanli et al. (2025) ✓ ✓ arXiv 2025-08

LLMmap (Pasquini et al., 2025) ✓ ✓ USENIX Security 2025-02

Our LLMPrint ✓ ✓ ✓ – –

Modification of the base model (passive vs. proactive): Proactive methods embed signals (e.g.,
watermarks or injected fingerprints) into the base model during training or post-training to enable
subsequent verification. Examples include domain-specific watermarking (Gloaguen et al., 2025),
localized knowledge editing for natural-language fingerprints (Wang et al., 2025), and training-free
editing approaches such as EditMF (Wu et al., 2025a) and implicit fingerprints (Wanli et al., 2025).
These methods modify the base model’s parameters or sampling distribution, which can inevitably
degrade utility, and they are inapplicable to legacy base models that have already been released.

In contrast, passive methods do not alter the base model but instead design prompts to elicit inher-
ent behaviors (i.e., fingerprints) and then compare outputs between the base and suspect models.
For example, TRAP (Gubri et al., 2024) optimizes prompts to induce the base model to output a
specific string and checks whether the suspect model reproduces the same output. Nikolic et al.
(2025) sample large pools of random prompts and test whether the suspect model matches the base
model’s next-token predictions. LLMmap (Pasquini et al., 2025) employs hand-crafted prompts to
elicit lexical or stylistic patterns, while CoTSRF (Ren et al., 2025) extracts chain-of-thought and
analyzes structural statistics of reasoning outputs. However, these fingerprints often lack uniqueness
to the base model and its post-processed versions (leading to false positives) or robustness to post-
processing (leading to false negatives). Gradient- and attention-based fingerprints (Wu et al., 2025b;
Yoon et al., 2025) instead rely on internal gradients or attention statistics, but they require white-box
access to the suspect model, which is rarely available in deployment.

Unlike these approaches, our LLMPrint exploits an inherent prompt-injection vulnerability of the
base model and turns it into a unique and robust fingerprint.

Access to the suspect model (white-box vs. gray-box vs. black-box): Another key dimension is
the level of access to the suspect model. White-box approaches (Wu et al., 2025b; Yoon et al., 2025)
assume access to the model parameters. Black-box approaches assume the most restricted setting,
where only final text outputs are observable; examples include statistical provenance testing (Nikolic
et al., 2025), CoTSRF (Ren et al., 2025), domain-specific watermarking (Gloaguen et al., 2025),
EditMF (Wu et al., 2025a), and LLMmap (Pasquini et al., 2025). Gray-box approaches assume
access to token-level output distributions, a setting often realized in practice since many commercial
APIs (e.g., GPT models) expose per-token log-likelihoods or top-k probabilities. This provides
richer information than pure text outputs, while still restricting access to model parameters.

To the best of our knowledge, no prior provenance detection methods have exploited the gray-box
setting. Our method requires no white-box access, remains effective even in the most restricted
black-box scenario, and further benefits from gray-box access when available.

2.2 PROMPT INJECTION

Prompt injection (Greshake et al., 2023; Liu et al., 2024) exposes an inherent vulnerability of LLMs:
carefully crafted prompts can steer a model to perform a specified injected task. Different injected
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tasks, together with their associated prompts, reveal distinct facets of a model’s vulnerability and
thus expose model-specific characteristics. Unlike jailbreak attacks (Zou et al., 2023), which perturb
unsafe prompts to bypass refusals and induce harmful outputs, injected tasks in prompt injection
need not be tied to harmful content.

To realize an injected task, prompts can be constructed using either heuristic-based or optimization-
based approaches. Heuristic-based approaches rely on manually designed patterns, such as context-
ignoring separators or fake completions. Representative methods include Naive Attack (Willison,
2022), Context Ignoring (Perez & Ribeiro, 2022), Fake Completion (Willison, 2023), and Combined
Attack (Liu et al., 2024), the latter concatenating multiple heuristics and shown to be the most
effective among this family (Liu et al., 2024). While simple and broadly applicable, such heuristics
are suboptimal at reliably steering an LLM to perform the injected task.

Optimization-based approaches (Hui et al., 2024; Shi et al., 2024; Pasquini et al., 2024; Jia et al.,
2025) instead frame prompt injection as an optimization problem. Given an injected task, a loss
function quantifies how well the model’s output satisfies the task, and the prompt is iteratively opti-
mized to minimize this loss. A widely adopted technique is the Greedy Coordinate Gradient (GCG)
algorithm (Zou et al., 2023), which incrementally adjusts the prompt to reduce the loss and better
align the output with the injected task.

LLMPrint leverages this vulnerability not offensively, but defensively–transforming prompt injec-
tion into a tool for LLM provenance detection. Specifically, LLMPrint constructs unique and robust
fingerprints by designing novel injected tasks and optimizing their associated prompts with GCG.

3 PROBLEM FORMULATION

We study the problem of LLM provenance detection: given a base modelMB and a suspect model
MS , determine whether MS is derived from MB . A suspect model is considered derived from
a base model if it is obtained through post-processing operations–such as post-training (Hu et al.,
2022; Ouyang et al., 2022) or quantization (Zhu et al., 2024; Lin et al., 2024) that maps floating-point
weights to lower-precision formats–rather than being trained independently from scratch.

Positive and negative suspect models: We call MS a positive suspect model if it is derived
fromMB via post-processing, and a negative suspect model if it is independently trained and thus
unrelated to MB . The provenance detection problem is therefore a binary decision task: given
(MB ,MS), decide whetherMS is positive or negative.

Fingerprint-based detection: Our method addresses this task by extracting a fingerprint fromMB

and then verifying whetherMS preserves the same fingerprint. For the fingerprint to be effective, it
must satisfy two key properties: uniqueness and robustness. Uniqueness means that the fingerprint
of MB should not be extractable from the suspect model MS if it is negative; robustness means
that the fingerprint ofMB should be extractable fromMS if it is positive.

Access assumptions: Since the base model owner is typically the party performing provenance
detection, the detector generally has full white-box access to the base modelMB . In contrast, the
suspect modelMS is from another party and may be deployed as a cloud service with only limited
API access. We therefore consider two access scenarios forMS :

• Gray-box access: The detector can queryMS for token-level probabilities, as supported by APIs
that expose per-token log-likelihoods or top-k probabilities.

• Black-box access: The detector can only access the generated tokens from MS in response to
queries, corresponding to deployment settings where APIs do not expose logits.

4 OUR LLMPRINT

4.1 OVERVIEW

Our LLMPrint determines whether a suspect model MS is positive or negative with respect to a
base model MB . It consists of two components: (i) fingerprint construction, where we generate
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fingerprint prompts that encode a statistical fingerprint of MB ; and (ii) fingerprint verification,
where we test whetherMS preserves this fingerprint under gray-box or black-box access.

Motivation: LLMs are inherently vulnerable to prompt injection: carefully crafted inputs can
override their default behavior and steer them toward performing an injected task. We exploit this
vulnerability as a fingerprint by strategically defining n injected tasks, each enforcing a preference
between a randomly selected token pair (w+

j , w
−
j ). For each pair (w+

j , w
−
j ), we optimize a finger-

print prompt such that, when provided as input, the base model assigns a higher probability to w+
j

than to w−
j when generating the first predicted token. If a suspect model reproduces these prefer-

ences under the same fingerprint prompts, it is likely derived from the base model.

This process can also be understood from a classification perspective. For the first predicted token,
an LLM with a vocabulary of size K can be seen as a K-class classifier: the prompt is the input,
and the predicted token is the class output. Each classifier is uniquely identified by its decision
boundary, which partitions the prompt space into regions where all prompts within a region induce
the same first token. Accordingly, our fingerprint prompts are located near the decision boundary
of the base model. In particular, the fingerprint prompt for a token pair (w+

j , w
−
j ) lies near the

boundary separating the regions for w+
j and w−

j .

Our LLMPrint constructs fingerprint prompts with two goals: (i) uniqueness, by extracting fin-
gerprint prompts near the base model’s decision boundary so they are discriminative across base
models, and (ii) robustness, by ensuring that a fingerprint prompt for (w+

j , w
−
j ) lies far from the

regions of all other tokens, making it stable under post-processing of the base model.

4.2 FINGERPRINT CONSTRUCTION

Formulate an optimization problem: For each token pair (w+
j , w

−
j ) in an injected task, we con-

struct a fingerprint prompt pj of the form pj = p ∥ sj where p is a fixed instruction template and
sj is a fixed-length suffix to be optimized. In our experiments, we set p to the simple instruction
“Randomly output a word from your vocabulary”, which anchors the injected task and ensures a
consistent context across token pairs. We optimize only the suffix sj : keeping p fixed reduces the
search space and stabilizes optimization, while optimizing the entire fingerprint prompt pj empiri-
cally leads to weaker detection performance, as we demonstrate in our experiments.

Our goal is to optimize sj such that it yields a fingerprint prompt with both uniqueness and robust-
ness. Specifically, we design a loss function Lu(sj) to quantify uniqueness, and a loss function
Lr(sj) to quantify robustness. Uniqueness requires that the model consistently prefers w+

j over
w−

j , but only by a small margin so that the fingerprint prompt lies close to the base model’s decision
boundary. We therefore designLu with two complementary terms. The first term,− log σ(z+j −z−j ),
encourages the base model to assign higher probability to w+

j than to w−
j , where σ denotes the sig-

moid function, and z+j and z−j are the logits assigned by the base model to w+
j and w−

j , respectively,
when generating the first token given pj as input; this smooth formulation avoids hard constraints
and provides stable gradients for optimization. The second term, |z+j − z−j |, discourages the margin
from growing too large, ensuring that the fingerprint prompt remains near the decision boundary and
thus discriminative across different base models. Formally, we have:

Lu(sj) = − log σ(z+j − z−j ) + α
⃓⃓
z+j − z−j

⃓⃓
, (1)

where α > 0 is a hyperparameter that balances the two terms.

Robustness requires that the fingerprint prompt for (w+
j , w

−
j ) not only lies near the boundary sepa-

rating w+
j and w−

j , but also stays far from the regions corresponding to all other tokens. Otherwise,
the comparison between w+

j and w−
j could be overshadowed by unrelated tokens, making the fin-

gerprint unstable under post-processing. To capture this, we penalize cases where the collective
probability mass of all other tokens exceeds that of the token pair. Instead of using a hard maxi-
mum over the logits, we adopt the smooth approximation log

∑︁
k∈V\{w+

j ,w−
j } e

zk , where V denotes
the base model’s vocabulary. This formulation aggregates the influence of all other tokens while
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remaining differentiable and stable for optimization. Formally, we have:

Lr(sj) = max
(︂
0, log

∑︂
k∈V\{w+

j ,w−
j }

ezk − z+j

)︂
. (2)

This term ensures that z+j remains larger than the aggregate contribution of all other tokens’ logits,
thereby keeping w+

j and w−
j competitive and the pairwise decision meaningful.

Balancing the two loss functions yields our final objective:

min
sj
L(sj) = Lu(sj) + β Lr(sj), (3)

where β > 0 trades off uniqueness and robustness.

Solve the optimization problem: The optimization problem in Equation 3 is non-convex and in-
volves discrete token choices, rendering it intractable for direct optimization via gradient descent.
We therefore adopt the Greedy Coordinate Gradient (GCG) algorithm, a method widely used in
adversarial prompt optimization (Zou et al., 2023). GCG iteratively updates the suffix sj by re-
placing individual tokens with candidates that most reduce the objective, while keeping the suffix
length fixed. The full procedure is summarized in Algorithm 1 in Appendix, which outputs a set of
fingerprint prompts {pj}nj=1 that collectively constitute the fingerprint of the base model.

4.3 FINGERPRINT VERIFICATION

Given a suspect modelMS , our goal is to determine whether it preserves the fingerprint of a base
modelMB . To this end, we unify gray-box and black-box settings into a single verification frame-
work. The complete procedure is summarized in Algorithm 2 in Appendix.

Given a set of fingerprint prompts {pj}nj=1 and corresponding token pairs (w+
j , w

−
j ), we extract two

n-bit strings: a reference bit string b = (b1, . . . , bn) from the base modelMB and a predicted bit
string b̂ = (b̂1, . . . , b̂n) from the suspect modelMS . For each j, the base modelMB assigns a ref-
erence bit bj = 1[z+j ≥ z−j ], where z+j and z−j denote the logits of w+

j and w−
j as the first predicted

token when taking pj as input. For the suspect modelMS , the predicted bit b̂j is obtained either
(i) directly from token-level log probabilities in the gray-box setting, or (ii) by repeated sampling
and comparing empirical frequencies in the black-box setting. This yields a bit string b̂ forMS that
can be compared against the reference bit string b. We quantify agreement via bitwise accuracy:
A(MB ,MS) = 1

n

∑︁n
j=1 1[b̂j = bj ].

However, raw agreement alone is insufficient to reliably distinguish positive suspect models from
negative ones. First, different LLMs may coincidentally agree on a subset of fingerprint prompts
due to shared pretraining corpora or similar architectures. Second, stochasticity in generation and
optimization artifacts during fingerprint prompt construction can introduce noise, potentially inflat-
ing or deflating raw accuracy. To address this, we introduce a statistical baseline that captures the
expected accuracy of negative suspect models. Specifically, we define a validation negative suspect
model set {Mi}ki=1, which serves two purposes: (i) it provides an empirical distribution of bitwise
accuracies A(MB ,Mi) under negative suspect models, enabling us to estimate how much agree-
ment can occur by chance; and (ii) it supports the selection of a principled threshold τ that balances
false positives and false negatives. We model the accuracies A(MB ,Mi) as samples from a Gaus-
sian distribution with mean µ and variance σ2. Given a z-score z, we define the detection threshold
as τ = µ + z · σ. A suspect model is then declared positive if A(MB ,MS) ≥ τ , and negative
otherwise. The difference between gray-box and black-box verification lies in how the bit string b̂ is
computed (Line 2 of Algorithm 2). We next elaborate on the details for these two settings.

Gray-box verification: In the gray-box setting, we assume access to the token-level log proba-
bilities from the suspect modelMS . We denote by PMS

(w | p) the probability assigned byMS

to token w conditioned on prompt p. For each fingerprint prompt pj , we query MS to obtain

ℓ̂
+

j = logPMS
(w+

j | pj) and ℓ̂
−
j = logPMS

(w−
j | pj). If the API only returns the top-k proba-

bilities, we set ℓ̂
+

j or ℓ̂
−
j to the reported log probability if the token appears in the top-k list, and to

6
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0 otherwise. The predicted bit is then defined as b̂j = 1[ ℓ̂
+

j ≥ ℓ̂
−
j ]. We further evaluate this top-k

case in our experiments to assess LLMPrint’s performance under limited probability access.

Black-box verification: In the black-box setting, we rely on repeated sampling to estimate the
bit string b̂. For each fingerprint prompt pj and corresponding token pair (w+

j , w
−
j ), we query the

suspect model T times, each time recording the first token generated by the model in response to pj .
Let c+j and c−j denote the number of times w+

j and w−
j are generated as the first token, respectively,

across the T trials. We then define b̂j as b̂j = 1[ c+j ≥ c−j ]. Equivalently, this can be seen as
comparing the empirical frequencies c+j /T and c−j /T of the two tokens under pj .

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Base models: We evaluate our method on five widely used open-source LLMs of different fam-
ilies and scales: Llama-3-8B (Meta, 2024), Mistral-7B-v0.3 (Mistral, 2024), Qwen3-8B (Qwen,
2025), DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek, 2025) (abbreviated as DeepSeek-R1), and
SmoLLM2-135M (HuggingFaceTB, 2025). These models span parameter counts from 135M to
8B and cover both recent state-of-the-art architectures (e.g., Llama, Mistral, Qwen) and smaller dis-
tilled or lightweight variants (e.g., DeepSeek-R1, SmoLLM2). This diverse selection allows us to
assess whether LLMPrint generalizes across different model families and parameter scales.

Table 2: Number of post-trained and quantized
positive and negative suspect models for each base
model.

Base model Type Post-training Quantization

Meta-Llama-3-8B Positive 90 24
Negative 373 206

Mistral-7B-v0.3 Positive 103 64
Negative 360 166

Qwen3-8B Positive 48 69
Negative 415 161

DeepSeek-R1 Positive 102 63
Negative 361 167

SmoLLM2-135M Positive 120 10
Negative 343 220

Suspect models: For each base model above,
we collect a set of its post-trained and quan-
tized variants as suspect models. For post-
trained models, we gather popular checkpoints
from Hugging Face by ranking repositories ac-
cording to download counts, ensuring coverage
of widely used variants. For quantized mod-
els, we follow the same procedure but restrict
our choice to the GGUF format (Gerganov &
Documentation, 2024), which has become the
community standard and guarantees consistent
compatibility across toolchains, thereby facili-
tating reproducibility. We distinguish between
two types of suspect models. For a base model,
the positive suspect models are post-trained or
quantized versions derived from the given base model, while negative suspect models are post-
trained or quantized versions derived from other base models. Table 2 summarizes our dataset.

Baseline methods: We compare LLMPrint with four baselines: TRAP (Gubri et al., 2024),
LLMmap (Pasquini et al., 2025), IPGuard (Cao et al., 2021), and Combined Attack (Liu et al.,
2024) (denoted LLMPrint-CA). Implementation details of them are in Appendix A.2.

Evaluation metrics: We evaluate detection performance using the true positive rate (TPR) and
false positive rate (FPR). For a given base model, TPR is defined as the fraction of positive suspect
models–those actually derived from the base model–that are correctly detected as positive. Con-
versely, FPR is the fraction of negative suspect models–those not derived from the base model–that
are incorrectly detected as positive.

Parameter setting for LLMPrint: Details of the parameter settings for fingerprint construction
and verification appear in Appendix A.3.

5.2 MAIN RESULTS

Our LLMPrint achieves both uniqueness and robustness goals: Table 3 reports the TPR and
FPR of LLMPrint under both gray-box and black-box verification. The results demonstrate that
LLMPrint reliably detects whether a suspect model is derived from its base across both post-training
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Table 3: TPR and FPR of LLMPrint for post-training and quantization.

Base model
Gray-box Black-box

Post-training Quantization Post-training Quantization
TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓

Meta-Llama-3-8B 0.956 0 0.875 0 0.944 0 0.833 0
Mistral-7B-v0.3 0.903 0 0.906 0 0.893 0 0.984 0.012
Qwen3-8B 0.958 0 0.957 0 0.938 0.015 0.812 0
DeepSeek-R1 0.951 0.006 0.952 0 0.961 0 0.889 0
SmoLLM2-135M 0.967 0 0.900 0.005 0.867 0 0.900 0

Table 4: Average benchmark accuracy drops between misdetected positive suspect models and their
base models. Avg. Max Drop is computed as follows: for each misdetected positive suspect model,
we calculate its accuracy difference from the base on MMLU, HellaSwag, and PIQA, take the largest
drop among the three, and then average over all suspects of the same base model.

Base model Gray-box Black-box
MMLU HellaSwag PIQA Avg. Max Drop MMLU HellaSwag PIQA Avg. Max Drop

Meta-Llama-3-8B -0.144 -0.087 -0.058 -0.144 -0.070 -0.034 -0.022 -0.076
Mistral-7B-v0.3 -0.196 -0.136 -0.109 -0.197 -0.217 -0.153 -0.121 -0.219
Qwen3-8B -0.088 -0.008 -0.024 -0.088 -0.088 -0.008 -0.024 -0.088
DeepSeek-R1 -0.045 -0.018 -0.010 -0.053 -0.054 -0.015 -0.007 -0.058
SmoLLM2-135M -0.017 -0.083 -0.125 -0.125 -0.013 -0.037 -0.072 -0.072

and quantization. In the gray-box setting, the TPR exceeds 90% for all five base models, reaching
up to 96.7% on SmoLLM2-135M, while the FPR remains essentially zero. In the black-box set-
ting, LLMPrint remains effective: the TPR stays above 81.2% across all base models, while the
FPR is consistently below 1.5%. These results collectively demonstrate that LLMPrint attains (i)
uniqueness–FPRs are at or near zero even against large pools of negative suspect models–and (ii)
robustness–high TPRs persist under post-training and quantization.

Table 5: TPR and FPR of different detection
methods in the black-box setting, using Meta-
Llama-3-8B as the base model.

Method Post-training Quantization
TPR ↑ FPR ↓ TPR ↑ FPR ↓

IPGuard 0 0 0 0
TRAP 0.596 0.500 0.792 0.594
LLMmap 0.789 0.082 0.333 0.563
LLMPrint-CA 0.011 0.008 0 0
LLMPrint 0.944 0 0.833 0

Our LLMPrint outperforms baseline prove-
nance detection methods: Table 5 reports
the TPR and FPR of LLMPrint and other base-
line methods under black-box verification, for
which these methods were originally designed.
TRAP and LLMmap achieve moderate TPRs
but suffer from high FPRs, exceeding 50% in
some cases. This is consistent with their de-
sign goals: TRAP relies on fixed-string outputs
that are fragile under post-processing, while
LLMmap depends on lexical or stylistic pat-
terns that are not sufficiently discriminative
across different base models. IPGuard, de-
signed for conventional classifiers, fails entirely
in this setting, while LLMPrint-CA also performs poorly. In contrast, LLMPrint achieves high TPR
with zero FPR, showing that LLMPrint provides unique and robust fingerprint prompts.

5.3 FAILURE ANALYSIS

Table 4 presents the average benchmark score differences between post-trained positive suspect
models, which were incorrectly detected as negative under gray-box or black-box verification, and
their corresponding base models, evaluated on three widely used benchmarks (MMLU, HellaSwag,
and PIQA) that measure general-purpose capabilities. The results reveal a clear pattern: missed de-
tections primarily occur when the positive suspect models have already suffered substantial degra-
dation after post-processing. For example, post-trained variants of Mistral-7B-v0.3 drop nearly 20%
(gray-box) and 21% (black-box). Even for smaller base models like SmoLLM2-135M, the misde-
tected suspects show substantial drops–for instance, more than 12% on PIQA (gray-box). These
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Table 7: Performance of LLMPrint under prompt-injection detectors for Meta-Llama-3-8B.

Detector Bypass rate ↑
Gray-box Black-box

Post-training Quantization Post-training Quantization

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓
DataSentinel 0.950 0.956 0 0.875 0 0.944 0 0.833 0
PPL-Detector 0.807 0.944 0 0.875 0 0.922 0 0.833 0

findings indicate that failures are not due to fragile fingerprints but instead reflect that the suspect
models have drifted far from the behavior of their base, making reliable detection inherently difficult.

5.4 ABLATION STUDY

Top-k probability vs. full distribution: We evaluate LLMPrint in a restricted gray-box setting
where the API only exposes the top-k log-probabilities per token instead of the full distribution,
following the design of mainstream services such as ChatGPT that return top-20 probabilities.

Table 6: Performance of LLMPrint when only
top-20 probabilities per token are available.

Access setting Post-training Quantization

TPR ↑ FPR ↓ TPR ↑ FPR ↓
Top-20 probabilities 0.956 0 0.833 0
Full distribution 0.956 0 0.875 0

Table 6 shows that using only top-20 proba-
bilities yields almost identical detection per-
formance as the full distribution: the TPR re-
mains the same for post-training and drops only
marginally from 87.5% to 83.3% for quantiza-
tion, while the FPR remains zero in both cases.
It demonstrates that LLMPrint remains highly
effective even under realistic API constraints.

Fingerprint verification under prompt-
injection detectors: We further examine
whether fingerprint verification remains effective when suspect models employ detectors to identify
and reject injected/fingerprint prompts. Table 7 reports results with two detectors, DataSentinel (Liu
et al., 2025), which is the state-of-the-art, and PPL-Detector (Alon & Kamfonas, 2023). Our
LLMPrint achieves high bypass rates under both DataSentinel (95.0%) and PPL-Detector (80.7%),
indicating that most fingerprint prompts bypass these detectors. More importantly, the effectiveness
of LLMPrint is largely preserved with the bypassed fingerprint prompts: across both gray-box and
black-box settings, TPR remains above 92% with FPR close to zero. These results demonstrate
that LLMPrint remains reliable even when suspect models employ safety guardrails against prompt
injection. Implementation details of the detectors are provided in Appendix A.4.

Other ablation studies: We conducted additional ablation studies to better understand key design
choices in LLMPrint. First, the fixed base prompt p is essential–removing it reduces TPR due to
destabilized optimization. Second, category-based token pair selection outperforms random sam-
pling, as semantically grouped pairs yield more balanced probabilities and stronger fingerprints.
Third, a few hundred fingerprint prompts (n ≈ 300) suffice for stable performance. Fourth, varying
the loss weights α and β illustrates their trade-offs between uniqueness and robustness. Across a
broad range of values, LLMPrint maintains high TPR with low FPR, while extreme settings can
shift the balance and degrade performance. Finally, in the black-box setting, the number of queries
T governs bit estimate reliability: moderate values (e.g., T = 100) achieve high TPR with low FPR,
while larger T slightly increases FPR. Full results and figures appear in Appendix A.5.

6 CONCLUSION

In this work, we show that exploiting the inherent vulnerability of LLMs to prompt injection en-
ables reliable detection of whether a suspect model is derived from a given base model. This is
achieved by constructing optimized fingerprint prompts that enforce consistent pairwise token pref-
erences, yielding signals that are unique to the base model and robust under post-processing such
as post-training and quantization. Extensive evaluation across five base models and around 700 sus-
pect models demonstrates that our LLMPrint achieves high true positive rates with near-zero false
positives, consistently outperforming prior provenance detection methods.
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7 ETHICS STATEMENT

Our work proposes a provenance detection method aimed at safeguarding intellectual property and
ensuring accountability in LLM deployment. Although our method is not an attack, it could in
principle be misused by adversaries to gain additional information about suspect models, potentially
aiding the design of stronger attacks. We emphasize that our intent is defensive, and all experiments
were conducted on publicly available models and datasets without human subjects or private data.

8 REPRODUCIBILITY STATEMENT

In Section 5.1, we specify the base models used in our experiments, all of which are open-sourced
and available on Hugging Face. The three benchmarks evaluated in this work are also publicly
accessible. In addition, we provide details on token pair selection and fingerprint prompt creation.
Our results can be reproduced using this information together with the publicly available resources.
To further support reproducibility, we will release our code and datasets upon the paper acceptance.
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A APPENDIX

A.1 USE OF LLMS

We used LLMs exclusively for light editing of the manuscript, such as improving grammar and
phrasing for readability. They were not involved in designing the research, running experiments,
analyzing data, or forming scientific conclusions.

Algorithm 1 Fingerprint Construction

Require: Base modelMB , token pair set {(w+
j , w

−
j )}nj=1, base prompt p, and initial suffix sinit

Ensure: Fingerprint prompt set {pj}nj=1

1: P ← ∅
2: for j = 1, 2, · · · , n do
3: sj ← GCG(L(sinit), p, sinit)
4: pj ← p ∥ sj
5: P ← P ∪ {pj}
6: end for
7: return P

Algorithm 2 Fingerprint Verification

Require: Fingerprint prompt set {pj}nj=1, token pair set {(w+
j , w

−
j )}nj=1, base modelMB , suspect

modelMS , validation negative suspect model set {Mi}ki=1, and z-score z
Ensure: Verification result

1: For each j = 1, . . . , n, queryMB with pj to obtain preference on (w+
j , w

−
j ) and set

bj ← 1[w+
j preferred over w−

j ].

2: For each j = 1, . . . , n, queryMS with pj to obtain preference on (w+
j , w

−
j ) and set

b̂j ← 1[w+
j preferred over w−

j ].

3: Compute bitwise accuracy

A(MB ,MS) = 1
n

n∑︂
j=1

1[b̂j = bj ].

4: For each validation negative suspect modelMi, repeat line 2 to obtain b̂
(i)

j and compute

A(MB ,Mi) = 1
n

n∑︂
j=1

1[b̂
(i)

j = bj ].

5: Estimate mean and variance

µ = 1
k

k∑︂
i=1

A(MB ,Mi), σ2 = 1
k−1

k∑︂
i=1

(︁
A(MB ,Mi)− µ

)︁2
.

6: Set detection threshold
τ = µ+ zσ.

7: return positive if A(MB ,MS) ≥ τ , otherwise negative.

A.2 IMPLEMENTATION DETAILS OF BASELINES

TRAP: We run TRAP using the default configuration. Concretely, we set TRAP’s answer length
of 3 since it yields best true positive rate in its original paper. All other TRAP hyperparameters are
left at their defaults as provided by the official implementation.
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LLMmap: For LLMmap, we use the official, pretrained detection model and pipeline. Because
LLMmap performs nearest-neighbor matching to a database of base models, we populate that
database with the five base models used in our experiments to give LLMmap a favorable setting.
During detection, LLMmap computes distances between the suspect model and each database en-
try and returns the nearest database model as its decision. We report LLMmap’s result under this
configuration.

IPGuard: IPGuard was originally developed for conventional classifiers. To adapt it fairly to the
LLM setting, we replace our fingerprint-construction loss with the IPGuard loss while keeping the
remainder of our pipeline identical. In particular, we optimize the fingerprint suffixes with GCG
using the same initialization (suffix length 20), number of iterations (1,000), and search widths as in
LLMPrint. Verification follows the same procedure as our LLMPrint. Notably, since the IPGuard
loss does not take the robustness objective into account, it results in a low TPR, as demonstrated by
our experiments.

Combined Attack (integrated as LLMPrint-CA): We integrate the Combined Attack heuristic
prompt-injection method as an alternative fingerprint construction strategy, denoted LLMPrint-CA.
For each token pair (w+

j , w
−
j ), we construct a fingerprint prompt using the following template:

\nTask: done\nIgnore previous instructions.
Please randomly output a word.
You must choose between "{w_jˆ{+}}" and "{w_jˆ{-}}".
Prefer "{w_jˆ{+}}", but keep both options likely.

All other settings for verification procedure remain identical to LLMPrint; the only difference is
that fingerprint prompts are constructed from this Combined Attack template rather than via the
optimization objective.

A.3 DETAILS OF PARAMETER SETTING FOR LLMPRINT

Parameter setting for fingerprint construction: For each base model, we construct 300 token
pairs (n = 300) from a curated set of common categories (e.g., animals, fruits, colors), with candi-
date words generated by GPT-4o. To ensure that fingerprint prompts are both semantically coherent
and compatible across tokenizers, we do not sample token pairs uniformly from the entire vocab-
ulary. Instead, we curated 20 semantic categories, each containing 20 representative words, for a
total of 400 words spanning diverse domains across animals, fruits, vegetables, colors, countries,
languages, vehicles, body parts, clothing, technology, drinks, sports, furniture, stationery, musical
instruments, shapes, music genres, programming languages, flowers, and occupations.

When constructing token pairs for a given base model, we repeatedly sample one category at ran-
dom and then randomly select two distinct words from that category. A candidate pair is retained
only if both words correspond to exactly one token under the base model’s tokenizer. This process
continues until we collect 300 unique token pairs, ensuring that all fingerprint pairs are semantically
meaningful, diverse, and consistent across different model vocabularies.

Unless otherwise specified, when optimizing a fingerprint prompt for a token pair, we set α = 0.5
and β = 1, initialize the suffix with sinit = 20 placeholder tokens (“x”), and run GCG for 1,000
iterations using default settings.

The full set of categories are as follows:

• Animals: cat, dog, lion, tiger, wolf, bear, horse, donkey, sheep, goat, rat, mouse, pig, fox, bull, frog,
crow, swan, crane, whale

• Fruits: apple, pear, peach, plum, fig, date, lime, lemon, mango, melon, grape, guava, berry, cherry,
papaya, banana, kiwi, orange, lychee, apricot

• Vegetables: carrot, onion, garlic, pepper, chili, radish, beet, cabbage, lettuce, spinach, broccoli, zuc-
chini, cucumber, leek, turnip, pumpkin, squash, pea, corn, celery

• Colors: red, blue, green, yellow, white, black, orange, purple, brown, silver, gray, gold, beige, pink,
teal, navy, maroon, lime, cyan, violet

• Countries: france, italy, spain, germany, greece, turkey, brazil, canada, japan, china, india, nepal,
kenya, uganda, rwanda, egypt, norway, sweden, poland, ireland
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• Languages: english, french, spanish, italian, german, russian, arabic, hebrew, hindi, bengali, polish,
turkish, swahili, portuguese, chinese, japanese, korean, thai, vietnamese, dutch

• Vehicles: car, bus, truck, train, plane, ship, bike, scooter, yacht, ferry, tram, taxi, canoe, kayak, glider,
rocket, subway, rickshaw, sedan, coupe

• Body parts: head, arm, leg, foot, hand, ear, eye, nose, mouth, back, chest, hip, brow, cheek, chin, lip,
tooth, tongue, knee, elbow

• Clothing: shirt, pants, dress, skirt, coat, hat, sock, shoe, glove, tie, belt, scarf, hoodie, jacket, sweater,
bra, brief, short, apron, visor

• Technology: phone, laptop, tablet, router, modem, camera, printer, scanner, keyboard, mouse, joy-
stick, console, monitor, speaker, headset, charger, battery, cable, remote, server

• Drinks: water, soda, juice, coffee, tea, beer, wine, whisky, vodka, latte, cocoa, mocha, cider, tonic,
lager, sake, mead, punch, rum, cola

• Sports: soccer, tennis, rugby, hockey, boxing, racing, skiing, surfing, golf, cricket, fencing, archery,
bowling, cycling, judo, karate, wrestling, polo, diving, badminton

• Furniture: table, chair, sofa, couch, shelf, desk, bed, stool, cabinet, dresser, closet, bench, cupboard,
cradle, hammock, ottoman, sideboard, vanity, bookcase, wardrobe

• Stationery: pen, pencil, ruler, eraser, paper, notebook, marker, binder, envelope, folder, stapler, scis-
sors, highlighter, sharpener, chalk, card, clip, staple, label, crayon

• Musical instruments: piano, guitar, violin, cello, trumpet, trombone, saxophone, clarinet, flute, harp,
drum, horn, oboe, bassoon, banjo, organ, tuba, bugle, lyre, mandolin

• Shapes: circle, square, triangle, rectangle, diamond, pentagon, hexagon, octagon, cylinder, sphere,
cube, cone, torus, rhombus, trapezoid, ellipse, polygon, oval, star, cross

• Music genres: rock, pop, jazz, blues, reggae, techno, hiphop, funk, disco, metal, country, gospel,
opera, trance, house, swing, rap, soul, folk, edm

• Programming languages: python, java, javascript, csharp, ruby, php, swift, kotlin, rust, go, typescript,
fortran, cobol, julia, dart, clojure, scala, perl, groovy, haskell

• Flowers: rose, lily, tulip, daisy, orchid, iris, violet, poppy, peony, marigold, hyacinth, lavender, car-
nation, begonia, sunflower, dahlia, zinnia, aster, cosmos, jasmine

• Occupations: doctor, lawyer, teacher, pilot, nurse, farmer, writer, actor, singer, dancer, soldier, tailor,
chef, barber, driver, baker, guard, clerk, banker, painter

Parameter setting for fingerprint verification: For calibration, we collect 13 validation negative
suspect models spanning a broad range of families and sizes, including Qwen, Gemma, Bloom, Phi,
OPT, Falcon, DistilGPT2, and GPT2. These validation models are entirely disjoint from all base
and suspect models used for testing. The full list is as follows: Qwen2.5-3B-Instruct, Gemma-3-
1B-It, Bloom-560M, Phi-2, OPT-350M, Phi-3-Mini-128K-Instruct, OPT-1.3B, DistilGPT2, GPT2,
Qwen2-7B, Falcon3-7B-Base, Gemma-2B, and Qwen2.5-7B-Instruct. This collection provides a
diverse set of unrelated families, ensuring reliable threshold calibration across architectures.

We set z = 1.64 for both the gray-box and black-box settings. Statistically, this corresponds to a
one-sided 95% confidence level for distinguishing base-derived suspects from unrelated models. In
the black-box case, we query each suspect model T = 100 times to estimate every predicted bit b̂j ,
which provides stable empirical estimates while keeping query costs moderate.

A.4 IMPLEMENTATION DETAILS OF PROMPT-INJECTION DETECTORS

DataSentinel: For DataSentinel (Liu et al., 2025), we adopt the official implementation and use its
default configuration. In particular, the detector employs a fine-tuned Mistral-7B-v0.1 model as the
underlying LLM, which is also the default setting released by the authors. Fingerprint prompts are
passed to DataSentinel without modification, and we record whether they are blocked or passed.

PPL-Detector: For PPL-Detector, we follow Alon & Kamfonas (2023) and use GPT-2 as the
reference model to compute perplexity scores. To calibrate the detection threshold, we randomly
sample 1,000 questions from the MMLU benchmark and compute their perplexities under GPT-2.
The threshold is then set to the 99.9th percentile of this distribution, ensuring that almost all natu-
ral MMLU questions are accepted while unusually high-perplexity inputs are flagged. Fingerprint
prompts are considered blocked if their perplexity exceeds this threshold.
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Figure 2: Ablation studies of LLMPrint on Meta-Llama-3-8B. Results are reported on post-trained
suspect models.

A.5 ADDITIONAL ABLATION STUDIES

Necessity of base prompt p: We first study the role of the fixed base prompt p (“Randomly output
a word from your vocabulary”) in fingerprint construction. In the variant w/o base prompt p +
category token pairs, we discard p entirely and directly optimize the fingerprint prompt from scratch.

Table 8: Comparing variants of LLMPrint on Meta-
Llama-3-8B under gray-box verification.

Variant of LLMPrint TPR ↑ FPR ↓
w/o base prompt p + category token pairs 0.911 0
w/ base prompt p + random token pairs 0.800 0.003
w/ base prompt p + category token pairs 0.956 0

As shown in Table 8, this leads to a drop
in TPR (91.1% vs. 95.6%). This indi-
cates that the base prompt anchors the in-
jected task and provides a consistent con-
text across token pairs, stabilizing opti-
mization.

Category vs. random token pairs: We
then compare our category-based token
pair selection with a random alternative.
In the random variant w/ base prompt p +
random token pairs, two tokens are sampled uniformly from the vocabulary, while category-based
ensures that both tokens come from the same semantic category (e.g., two animals or two colors).
Table 8 shows that random sampling reduces TPR to 80.0%, since randomly paired tokens are of-
ten highly imbalanced in probability and cannot be adjusted effectively. Category-based pairs yield
more balanced log probabilities, producing stronger and more reliable fingerprints.

Impact of number of fingerprint prompts n: Figure 2a shows the TPR and FPR when varying
the number of fingerprint prompts from 1 to 500. The TPR increases rapidly with more prompts and
stabilizes around 95% once n ≥ 300, while the FPR remains 0 throughout. This shows that a few
hundred fingerprint prompts are sufficient for verification.

Impact of α and β: Figures 2b and 2c illustrate how α and β trade off uniqueness and robustness.
For α, very small values push prompts far from the decision boundary and raise FPR, while very
large values place them too close and lower TPR. For β, underweighting robustness increases FPR,
whereas moderate to larger values maintain high TPR with low FPR. Overall, LLMPrint performs
well across a broad range of settings, with performance only degrading at extreme values.

Impact of number of queries T in black-box verification: Figure 2d shows the effect of varying
T . With too few queries, bit estimates are noisy and TPR is low. As T increases, TPR improves
and saturates near 95% when T ≥ 100. However, larger T slightly increases FPR (e.g., 9.3% at
T = 200), as excessive sampling raises the chance of spurious agreement with the base model.
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