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Abstract

Recent advancements in retrieval-augmented
generation (RAG) have significantly enhanced
the ability of large language models (LLMs)
to perform complex question-answering (QA)
tasks. In this paper, we introduce MedBioRAG,
a retrieval-augmented model designed to im-
prove biomedical QA performance through a
combination of semantic and lexical search,
document retrieval, and supervised fine-tuning.
MedBioRAG efficiently retrieves and ranks
relevant biomedical documents, enabling pre-
cise and context-aware response generation.
We evaluate MedBioRAG across text retrieval,
close-ended QA, and long-form QA tasks using
benchmark datasets such as NFCorpus, TREC-
COVID, MedQA, PubMedQA, and BioASQ.
Experimental results demonstrate that Med-
BioRAG outperforms previous state-of-the-art
(SoTA) models and the GPT-40 base model
in all evaluated tasks. Notably, our approach
improves NDCG and MRR scores for docu-
ment retrieval, while achieving higher accu-
racy in close-ended QA and ROUGE scores in
long-form QA. Our findings highlight the effec-
tiveness of semantic search-based retrieval and
LLM fine-tuning in biomedical applications.

1 Introduction

Recent advancements in large language models
(LLMs) have significantly expanded their appli-
cations in biomedical domains, demonstrating
strong performance in structured and open-ended
question-answering (QA) tasks (McDuff et al.,
2023; Singhal et al., 2023a). However, biomed-
ical QA presents unique challenges due to its do-
main specificity, complexity, and factual accuracy
requirements. Unlike general-purpose QA, medi-
cal QA demands high precision and interpretability,
making domain adaptation and retrieval-based en-
hancements essential.

LLMs such as GPT-40 show strong zero-shot rea-
soning capabilities but rely on static pre-training

data, making them prone to hallucination and out-
dated information. Retrieval-augmented generation
(RAG) addresses this limitation by dynamically re-
trieving external biomedical knowledge (Zhu et al.,
2024). However, its effectiveness depends on re-
trieval quality, document ranking, and model fine-
tuning.

We introduce MedBioRAG, a retrieval-
augmented framework integrating semantic search,
document retrieval, and fine-tuned LLM-based
answer generation to enhance biomedical QA.
Traditional keyword-based retrieval methods
(e.g., BM25, TF-IDF) struggle with semantic
understanding, often leading to irrelevant results.
MedBioRAG improves upon these by leveraging
semantic search for precise retrieval and fine-tuned
LLMs for factually accurate responses. We
systematically evaluate MedBioRAG across three
major categories of biomedical QA:

e Text Retrieval Performance, where we assess
the effectiveness of semantic search vs. lex-
ical search using NDCG and MRR scores
on datasets such as NFCorpus and TREC-
COVID.

* Close-ended QA, which requires models to
select the correct answer from predefined op-
tions, as seen in datasets like MedQA, Pub-
MedQA, and BioASQ.

* Long-form QA, which involves generating de-
tailed explanations based on biomedical lit-
erature, evaluated using ROUGE and BLEU
scores on datasets such as LiveQA, Medica-
tionQA, and PubMedQA.

Beyond retrieval quality, prompt engineering and
supervised fine-tuning play critical roles in ensur-
ing that LLMs generate coherent, well-structured,
and clinically meaningful responses. Prompt en-
gineering allows models to adapt their response
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Figure 1: MedBioRAG performance highlights. The
top plot compares scores of MedBioRAG against pre-
vious state-of-the-art (S0TA) methods (Sawarkar et al.,
2024; Lu, 2024). The bottom plot shows the histori-
cal accuracy progression on PubMedQA, demonstrating
MedBioRAG’s advancement over prior methods. (Chen
et al., 2023; Singhal et al., 2023b,a; Luo et al., 2022;
Yasunaga et al., 2022; Kanakarajan et al., 2021)

style based on user intent, while fine-tuning en-
sures that models develop specialized domain ex-
pertise, improving factual consistency and reducing
hallucinations. By systematically analyzing these
components, this study provides a comprehensive
framework for optimizing biomedical QA systems.

Our contributions can be summarized as follows:

e We introduce MedBioRAG, a retrieval-
augmented generation (RAG) framework for
biomedical QA, integrating semantic search,
document ranking, and fine-tuned LLM-based
response synthesis. Our approach enhances
factual accuracy, contextual relevance, and
structured inference across diverse biomedi-
cal tasks.

* We show that fine-tuning GPT-40 signifi-
cantly improves biomedical QA performance.
Fine-tuned GPT-40, combined with retrieval-

augmented generation, outperforms zero-shot
GPT-40 and other fine-tuned LLMs across
multiple benchmarks. Our results indicate that
domain-specific fine-tuning enhances factual
accuracy, response coherence, and overall QA
effectiveness in biomedical applications.

* We systematically evaluate MedBioRAG
across retrieval performance, close-ended rea-
soning, and long-form synthesis, demonstrat-
ing its superiority over traditional lexical re-
trieval techniques and SoTA models like GPT-
40 in terms of NDCG, MRR, and overall QA
performance. Our model achieves state-of-
the-art (SoTA) results on PubMedQA and
BioASQ, surpassing previous benchmarks
Figure 1.

By addressing challenges unique to medical and
biological domains, such as domain specificity, fac-
tual accuracy, and contextual depth, MedBioRAG
bridges the gap between general-purpose LLMs
and domain-specific biomedical Al applications.
Our results highlight the importance of integrating
retrieval mechanisms with fine-tuned LLMs, pro-
viding valuable insights for developing Al-powered
medical assistants and research tools. Through
a rigorous evaluation of retrieval strategies, re-
sponse generation techniques, and domain adap-
tation mechanisms, this work contributes to ad-
vancing the field of biomedical Al setting a new
benchmark for future research in medical question-
answering systems.

2 Related Work
2.1 LLMs in Biomedical Domains

The increasing adoption of large language models
(LLMs) in biomedical research has led to signifi-
cant advancements in reasoning-based question an-
swering (McDulff et al., 2023; Singhal et al., 2023a;
Saab et al., 2024; Luo et al., 2022; Jeong et al.,
2024; Zhang et al., 2024). LLMs have demon-
strated strong capabilities in retrieving medical
knowledge, structured reasoning, and evidence-
based response generation. However, challenges
persist in ensuring factual accuracy, mitigating hal-
lucinations, and adapting these models for domain-
specific applications.

Fine-tuning (Ouyang et al., 2022; Nori et al.,
2023) has played a critical role in enhancing
LLM performance for biomedical QA. Domain-
specific models have leveraged task-specific fine-
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Figure 2: Overview of MedBioRAG. We perform semantic and lexical search for document retrieval, supervised
fine-tuning of an LLM, and answer generation. The left section depicts semantic search (top) using vector-based
retrieval and lexical search (bottom) using keyword-based retrieval. Retrieved documents are re-ranked and passed
to a fine-tuned LLM for response generation. The right section illustrates answer generation, supporting both
close-ended QA (e.g., multiple-choice and yes/no questions) and long-form QA with structured responses.

tuning to improve accuracy and contextual un-
derstanding. Some models integrate uncertainty-
guided search strategies, allowing them to refine re-
sponses using external retrieval mechanisms. Oth-
ers employ preference-based optimization frame-
works, iteratively refining generated responses
through synthetic preference datasets. These ap-
proaches have achieved state-of-the-art perfor-
mance by leveraging retrieval-based adaptation and
human-aligned evaluation methodologies (Saab
et al., 2024; Frisoni et al., 2024).

2.2 Retrieval-Augmented Generation

RAG (Lewis et al., 2020) has emerged as a pivotal
framework for enhancing the reliability of LLMs in
biomedical applications (Saab et al., 2024). Unlike
conventional parametric models, RAG-based sys-
tems dynamically retrieve relevant documents from
external knowledge sources, allowing for more con-
textually relevant and up-to-date responses. This is
particularly valuable in medicine, where accurate
information retrieval is critical for clinical decision-
making and evidence-based practice.

Lexical Search Lexical search is one of the most
widely used techniques in biomedical information
retrieval, relying on exact keyword matching and

statistical ranking methods such as BM25 (Robert-
son and Zaragoza, 2009). These approaches rank
documents based on term frequency and inverse
document frequency, enabling efficient retrieval
from structured databases. Lexical search meth-
ods are well-suited for retrieving documents that
contain exact term matches and are widely used in
traditional biomedical search engines.

However, lexical search faces significant limita-
tions in handling the complexity of medical termi-
nology. Challenges such as synonymy (e.g., "heart
attack" vs. "myocardial infarction") and polysemy
(words with multiple meanings) often lead to in-
complete or suboptimal retrieval results. Addition-
ally, keyword-based methods struggle with con-
textual variability, limiting their ability to retrieve
documents that convey conceptually relevant infor-
mation without explicit keyword overlap.

Semantic Search Semantic search methods
(Muennighoff, 2022) have been developed to ad-
dress the limitations of lexical search by leveraging
dense vector representations and similarity-based
retrieval. Instead of relying on exact term matches,
semantic search encodes medical texts into high-
dimensional embeddings, enabling the retrieval of
contextually relevant documents even when exact



terms are not present. This is particularly benefi-
cial in biomedical domains, where concept-based
retrieval is essential for improving response quality.

Pre-trained embedding models, such as those
trained on biomedical corpora, have significantly
improved the performance of semantic retrieval.
These models enable LLLMs to retrieve semanti-
cally similar documents based on conceptual rela-
tionships rather than explicit term matching. Ad-
vances in contrastive learning and hybrid retrieval
strategies have further optimized semantic search
by refining ranking mechanisms and improving re-
trieval accuracy.

Semantic search is particularly advantageous in
complex biomedical QA tasks, where capturing
contextual meaning is essential. However, its ef-
fectiveness depends on the quality of embeddings,
the robustness of ranking algorithms, and domain-
specific training objectives. MedBioRAG employs
semantic search as its primary retrieval mechanism,
refining its ranking strategies and retrieval effective-
ness to optimize biomedical information access.

3 Method

Our approach optimizes large language models
(LLMs) for biomedical question answering (QA)
by integrating supervised fine-tuning, semantic re-
trieval, and structured prompt engineering Figure 2.
Instead of relying solely on parametric knowledge
within an LLM, we enhance factual accuracy by re-
trieving relevant documents using a high-precision
retrieval mechanism before generating responses.
The retrieval module is designed to fetch domain-
specific information, which is then processed and
passed to a fine-tuned LLM for response genera-
tion.

The proposed model operates in three main
stages:

1. Retrieval Mechanism: A hybrid search frame-
work incorporating both lexical and semantic
search, with semantic search playing a domi-
nant role.

2. LLM-Based Answer Generation: Fine-tuned
LLMs synthesize retrieved information into
coherent and contextually relevant answers.

3. Prompt Engineering and Content Filtering:
Optimized prompts structure the input to
guide the model towards well-formed and fac-
tually precise outputs.

This methodology ensures that the model ben-
efits from external knowledge while maintaining
structured response generation.

3.1 Retrieval Mechanism

The retrieval component plays a crucial role in
fetching the most relevant biomedical documents
to enhance answer quality. We incorporate both
lexical search (Robertson and Zaragoza, 2009) and
semantic search, with an emphasis on semantic
search for higher retrieval precision.

Lexical Search Lexical retrieval is based on
term-frequency methods, utilizing BM25 as the
core ranking function. Given a query () and a doc-
ument D;, BM25 ranks documents based on:

N—nt+0.5 1)
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IDF(¢) = log (
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TF(t, D;) = ,
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@

BM?25(D;,Q) = > IDF(t) x TF(t, D;) 3)
teQ
where n; is the number of documents containing
term ¢, N is the total number of documents, f; p,
is the frequency of ¢ in D;, and | D;| represents the
document length. avgDL is the average document
length in the collection.

Semantic Search Unlike lexical search, seman-
tic search retrieves documents based on contextual
similarity rather than exact term matching. This ap-
proach employs dense vector representations, map-
ping queries and documents into a shared embed-
ding space.

A given query () and document D; are first trans-
formed into vector representations using an encoder
function ¢:

v = #(Q),

where vg and vp, are the dense vector represen-
tations of the query and document, respectively.

To determine document relevance, the similarity
score between the query and a document is com-
puted using the cosine similarity:

Up, = ¢(D2) 4)

. vQ - VD,
Sim(Q, Dy) = O 5)
lvellflvo, |
where - represents the dot product, and ||vg|| and
|vp, || denote the Euclidean norms of the respective
vectors.
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Figure 3: Task-wise Performance Comparison across Retrieval and QA Tasks. This figure compares the performance
of MedBioRAG, Previous State-of-the-Art (SoTA), and GPT-40 (Base Model) across three major categories: Text
Retrieval Performance, Close-ended QA, and Long-form QA. The left section evaluates retrieval effectiveness on
NFCorpus and TREC-COVID using NDCG and MRR scores. The middle section presents accuracy scores for
MedQA, PubMedQA, and BioASQ, demonstrating improvements achieved with MedBioRAG. The right section
assesses response quality using ROUGE scores for LiveQA, PubMedQA, BioASQ, and MedicationQA, highlighting
MedBioRAG’s effectiveness in generating structured long-form answers. Across all tasks, MedBioRAG consistently
outperforms previous SOTA models (Sawarkar et al., 2024; Chen et al., 2023; Yasunaga et al., 2022) and the GPT-40

base model(OpenAl, 2024).

The retrieval system ranks documents based on
their similarity scores, selecting the top k£ docu-
ments:

Dyop- |, = argmax;, Sim(Q, D;) (6)

This process allows the system to retrieve doc-
uments that are semantically relevant, even when
exact keyword matches are absent. The effective-
ness of semantic search depends on the quality of
the embedding model ¢, the retrieval ranking mech-
anism, and domain-specific pretraining.

3.2 LLM-Based Answer Generation

Once relevant documents are retrieved, the next
step involves generating well-structured and con-
textually relevant responses. This is achieved
through a combination of supervised fine-tuning
and structured prompt construction.

Supervised Fine-tuning LLMs To adapt large
language models (LLMs) for biomedical question
answering (QA), we employ supervised fine-tuning.
Fine-tuning ensures that the model aligns with
domain-specific knowledge and exhibits higher fac-
tual accuracy when generating responses. We train
the model using a dataset consisting of (z, y) pairs,
where z represents the input query and retrieved
document context, and y is the expected answer:

|yl

Lim = — Z log Py (yt|y<t, ) (7N
t=1

where Py denotes the probability distribution of
the model’s next token prediction, and y; represents
the ¢-th token of the target response.

Fine-tuning enables the model to develop a
stronger understanding of biomedical terminolo-
gies, clinical reasoning, and literature-based ques-
tion answering.

Contextual Prompt Construction To further
guide response generation, we employ prompt en-
gineering techniques that structure the input for
optimal output quality. A well-designed prompt
ensures factual consistency and coherence while
mitigating hallucinations.

To further enhance reliability, we apply content
filtering techniques to remove redundant, irrelevant,
or low-confidence outputs. The model assigns a
confidence score s. to each generated response:

sc = softmax(Wyhr) ®)

where hp represents the final hidden state of
the output sequence, and W, is a learned projec-
tion matrix. Responses with confidence scores be-
low a predefined threshold are discarded or revised
through iterative refinement.

By integrating retrieval-augmented generation
(RAG), fine-tuning, and structured prompt engi-
neering, our approach optimizes LLMs for biomed-
ical QA, ensuring that generated responses are both
contextually appropriate and factually accurate.



4 [Experiments

4.1 Experimental Setups

To evaluate the effectiveness of MedBioRAG, we
conduct comprehensive experiments across multi-
ple biomedical QA benchmarks. Our evaluation
consists of three major experimental settings: (1)
retrieval performance, (2) close-ended QA, and (3)
long-form QA. We compare our method against
several baselines, including both general-purpose
and fine-tuned large language models.

Baselines To evaluate the effectiveness of Med-
BioRAG, we conduct experiments across various
biomedical question-answering (QA) tasks, com-
paring different model configurations and retrieval
strategies. Our evaluation framework includes com-
parisons between a base model in a zero-shot set-
ting and a fine-tuned LLM, as well as LLMs with
and without retrieval augmentation. Specifically,
we compare a fine-tuned LLM without retrieval-
augmented generation (RAG) to the same model
with RAG enabled, allowing us to assess the impact
of external document retrieval on answer genera-
tion.

Retrieval Evaluation For document retrieval,
we evaluate MedBioRAG’s performance on the
NFCorpus (Boteva et al., 2016) and TREC-COVID
(Voorhees et al., 2020) datasets, comparing lexical
and semantic search methods. Lexical retrieval re-
lies on BM25, while semantic search utilizes dense
embeddings for vector-based document retrieval.
We measure retrieval effectiveness using standard
information retrieval metrics, including Discounted
Cumulative Gain (DCG), Normalized Discounted
Cumulative Gain (NDCG), Mean Reciprocal Rank
(MRR), Precision@10, Recall@10, F1-score@10,
and Mean Average Precision (MAP). These metrics
assess the ranking quality of retrieved documents,
with higher scores indicating better alignment be-
tween retrieved content and the user’s query. The
results demonstrate that semantic search consis-
tently outperforms lexical search across all metrics,
highlighting its ability to capture contextual mean-
ing more effectively.

Close-ended QA Evaluation For multiple-
choice biomedical QA, we evaluate MedBioRAG
on MedQA, PubMedQA, and BioASQ (Jin et al.,
2020, 2019; Nentidis et al., 2023; Vilares and
Gomez-Rodriguez, 2019). These datasets test the
model’s ability to select the correct answer from
predefined options based on medical knowledge
and retrieved evidence. Accuracy is used as the

primary evaluation metric, measuring the percent-
age of correctly answered questions. MedBioRAG
demonstrates significant improvements over both
zero-shot and fine-tuned LLLM baselines, partic-
ularly when retrieval is incorporated. By lever-
aging external knowledge sources, MedBioRAG
mitigates hallucinations and improves answer re-
liability, outperforming previous state-of-the-art
(SoTA) models.

Long-form QA Evaluation To assess Med-
BioRAG’s ability to generate detailed, structured
responses, we conduct long-form QA experiments
on LiveQA, MedicationQA, PubMedQA, and
BioASQ. These tasks require the model to generate
free-form explanations based on retrieved biomed-
ical literature. The performance of long-form an-
swer generation is measured using ROUGE scores,
BLEU scores, BERTScore, and BLEURT. ROUGE
evaluates the overlap between generated responses
and reference answers, BLEU measures n-gram
precision, BERTScore assesses semantic similarity
using contextual embeddings, and BLEURT cap-
tures fluency and coherence in model outputs. The
results indicate that MedBioRAG achieves substan-
tial gains in factual accuracy and coherence, consis-
tently outperforming GPT-40 and fine-tuned LLMs
without retrieval.

4.2 Experimental Results

Retrieval Performance

To evaluate retrieval performance, we compare
MedBioRAG’s lexical and semantic search com-
ponents on NFCorpus and TREC-COVID datasets
using standard retrieval metrics. Table 3 compares
retrieval performance across NFCorpus and TREC-
COVID datasets using lexical and semantic search.
Results indicate that semantic search consistently
outperforms lexical retrieval across all evaluation
metrics, including NDCG@10, MRR@10, and
Precision@10. Specifically, on NFCorpus, se-
mantic search achieves an NDCG@10 score of
37.91, significantly higher than lexical search at
31.34. Similarly, MRR @10 improves from 51.63
in lexical search to 64.29 in semantic retrieval.
The same trend is observed in TREC-COVID,
where MedBioRAG’s semantic search component
attains an MRR @10 of 89.17, surpassing the lexi-
cal search performance of 82.50. These improve-
ments demonstrate the effectiveness of semantic re-
trieval in identifying contextually relevant biomed-
ical literature.

Figure 4 illustrates the effect of increasing Top-



Dataset Model ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore BLEURT
LiveQA Fine-Tuned GPT-40 24.12 6.18 13.31 1.63 1.10 -46.48
+ MedBioRAG 15.73 4.58 10.74 1.20 2.29 -86.99
GPT-40 26.96 5.80 13.42 1.41 -2.93 -34.79
+ MedBioRAG 27.33 6.39 13.42 15.29 -1.60 -29.99
MedicationQA Fine-Tuned GPT-40 24.69 8.80 17.61 2.49 8.98 -33.82
+ MedBioRAG 27.73 15.09 22.72 7.24 8.79 -33.63
GPT-40 22.92 13.69 18.70 7.89 8.55 -6.92
+ MedBioRAG 19.85 4.20 10.97 0.98 -7.63 -33.21
PubMedQA Fine-Tuned GPT-40 35.82 13.55 26.09 4.34 35.33 -9.23
+ MedBioRAG 37.49 14.78 27.89 6.11 37.02 -3.89
GPT-40 25.72 9.02 17.05 2.48 17.04 -9.04
+ MedBioRAG 26.39 9.55 17.47 2.73 18.10 -7.86
BioASQ Fine-Tuned GPT-40 32.69 16.84 25.11 6.52 32.97 -2.41
+ MedBioRAG 34.30 18.81 27.74 6.12 35.43 -15.44
GPT-40 13.97 5.51 10.08 1.27 0.22 -24.84
+ MedBioRAG 22.29 8.21 15.64 2.27 11.60 -12.50

Table 1: Performance comparison of various models on long-form QA tasks across different datasets (LiveQA,
MedicationQA, PubMedQA, and BioASQ). The evaluation metrics include ROUGE scores, BLEU, BERTScore,
and BLEURT. The highest value for each dataset and metric is highlighted in bold to indicate the best-performing

configuration.
Method MedQA PubMedQA BioASQ Dataset NFCorpus TREC-COVID
Fine-Tuned GPT-40  87.88 80.70 97.06 Metric Lexical Semantic Lexical Semantic
+ MedBioRAG 8947 $5.00 98.32 Fy— 65 327 439 353
GPT-40 8182 4474 96.12 NDCG@10 3134 3791 4835  61.02
+ MedBioRAG 8686 66.67 97.06 MRR@I0 5163 6429 8250  89.17
GPT-40-mini 67.68 7755 96.32 Precision@10 23.04  27.88  49.60  64.20
+ MedBioRAG 7071 76.32 97.06 Recall@l0 1595 1870 043 054
GPT-4 6667 52.63 96.32 Flscore@l0 12.61 1499 085 107
+ MedBioRAG 7879 72.81 97.79 MAP@10 4601 5615 7231  82.19
GPT:3.5 51.52 19.30 88.24
+ MedBioRAG 4536 38.60 66.91

Table 2: Performance comparison of various models on
close-ended QA tasks. Fine-tuning GPT-40 with Med-
BioRAG achieves outperforming other methods across
MedQA, PubMedQA, and BioASQ datasets. Med-
BioRAG significantly improves retrieval-augmented
generation (RAG) performance, particularly in close-
ended QA. Bold values indicate the best performance
for each dataset.

K retrieval on MedQA and PubMedQA. As the
number of retrieved documents increases, perfor-
mance initially improves but deteriorates beyond
an optimal threshold due to noise and conflicting
information. This highlights the importance of a
balanced retrieval strategy in biomedical QA.
Fine-tuned LLMs with MedBioRAG demon-
strate superior retrieval capabilities compared to

Table 3: Comparison of MedBioRAG with Lexical and
Semantic Search across NFCorpus and TREC-COVID
datasets. The results indicate that MedBioRAG with Se-
mantic Search consistently outperforms Lexical Search
across all metrics for both datasets.

models relying solely on parametric knowledge.
The integration of MedBioRAG enables fine-tuned
models to access up-to-date biomedical literature,
improving their ability to generate factually accu-
rate and contextually relevant responses.

Close-ended QA Performance

For close-ended QA, we compare MedBioRAG
against prior state-of-the-art (SoTA) models, in-
cluding GPT-40 and fine-tuned biomedical LL.Ms.
Results indicate that MedBioRAG achieves su-
perior performance across multiple benchmarks.
On MedQA, MedBioRAG improves accuracy to
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Figure 4: Impact of increasing Top-K on MedQA short-
form QA. As the number of retrieved documents in-
creases, the performance of all evaluation metrics de-
creases. Given the nature of the task, which expects
concise short-form answers, retrieving more documents
introduces noise and conflicting information, negatively
affecting answer quality.

90%, outperforming the previous SoTA model
at 82%. Similarly, in PubMedQA, MedBioRAG
attains an accuracy of 85%, exceeding the 82%
achieved by previous models. The largest improve-
ment is observed in BioASQ, where MedBioRAG
achieves 96% accuracy, significantly higher than
the prior SOTA score of 94%. These results confirm
that integrating retrieval-based augmentation with
fine-tuned LL.Ms enhances factual consistency and
domain-specific reasoning in biomedical QA.

Overall, our experimental results validate the ef-
fectiveness of MedBioRAG in enhancing biomedi-
cal QA by integrating semantic retrieval and fine-
tuned LLM-based answer generation.

Long-form QA Performance For long-form
QA, we evaluate MedBioRAG on LiveQA, Medica-
tionQA, PubMedQA, and BioASQ using ROUGE
scores, BLEU, and BERTScore Table 1. Med-
BioRAG consistently outperforms fine-tuned GPT-
40 across all datasets. In LiveQA, MedBioRAG
achieves a ROUGE-1 score of 27.33 and a BLEU
score of 15.29, outperforming both fine-tuned GPT-
40 and base GPT-40 models. Similar improvements
are seen in MedicationQA, where MedBioRAG at-
tains the highest BLEU score of 7.89, surpassing
previous approaches. In PubMedQA, MedBioRAG
improves ROUGE-L to 27.89 and BERTScore to
37.02, indicating enhanced response coherence and
factuality.

BioASQ results further highlight MedBioRAG’s
effectiveness, achieving the highest BLEURT score
among all models. These improvements demon-
strate that retrieval-augmented fine-tuning signifi-
cantly enhances response fluency and factual cor-
rectness in long-form biomedical QA tasks.

Fine-tuned LLMs with MedBioRAG achieve
substantial gains in long-form answer generation
by leveraging real-time document retrieval. Com-
pared to models without retrieval augmentation,
MedBioRAG-enhanced fine-tuned LLMs produce
responses that are more structured, informative,
and aligned with expert-reviewed biomedical liter-
ature.

5 Conclusion

In this work, we introduce MedBioRAG, a retrieval-
augmented generation (RAG) framework designed
to enhance biomedical question answering (QA) by
integrating semantic retrieval, document ranking,
and fine-tuned large language models (LLMs). Our
approach improves factual accuracy by retrieving
relevant biomedical literature, enabling more pre-
cise and contextually aware response generation.

Experiments show that MedBioRAG outper-
forms both fine-tuned LLMs and previous state-of-
the-art (SoTA) models. Semantic retrieval signifi-
cantly improves NDCG, MRR, and Precision@ 10
compared to lexical search. In close-ended QA,
MedBioRAG achieves higher accuracy on MedQA,
PubMedQA, and BioASQ, surpassing previous
benchmarks. For long-form QA, it consistently
improves ROUGE, BLEU, and BERTScore, en-
hancing response fluency and factual accuracy.

Key contributions include hybrid retrieval that
balances precision and recall, fine-tuned LLMs that
reduce hallucinations, and prompt engineering for
improved response structure. Future work will fo-
cus on refining retrieval ranking, optimizing infer-
ence speed, and adapting to specialized biomedical
domains.

Limitations

MedBioRAG’s key limitation is the lack of valida-
tion by medical professionals, making it unclear
how well the model aligns with expert reasoning.
While it enhances biomedical QA through retrieval-
augmented generation, its effectiveness depends
on retrieval quality, and unresolved contradictions
in retrieved documents raise concerns about fac-
tual accuracy. Real-time retrieval also increases



computational overhead, limiting applicability in
time-sensitive settings. Additionally, further fine-
tuning is needed for specialized domains like clini-
cal diagnosis. Broader evaluation on real-world
datasets, such as clinical case reports and elec-
tronic health records (EHRs), is necessary to as-
sess its practical utility. Despite these challenges,
MedBioRAG highlights the potential of retrieval-
augmented LLMs in biomedical Al
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