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Abstract001

Recent advancements in retrieval-augmented002
generation (RAG) have significantly enhanced003
the ability of large language models (LLMs)004
to perform complex question-answering (QA)005
tasks. In this paper, we introduce MedBioRAG,006
a retrieval-augmented model designed to im-007
prove biomedical QA performance through a008
combination of semantic and lexical search,009
document retrieval, and supervised fine-tuning.010
MedBioRAG efficiently retrieves and ranks011
relevant biomedical documents, enabling pre-012
cise and context-aware response generation.013
We evaluate MedBioRAG across text retrieval,014
close-ended QA, and long-form QA tasks using015
benchmark datasets such as NFCorpus, TREC-016
COVID, MedQA, PubMedQA, and BioASQ.017
Experimental results demonstrate that Med-018
BioRAG outperforms previous state-of-the-art019
(SoTA) models and the GPT-4o base model020
in all evaluated tasks. Notably, our approach021
improves NDCG and MRR scores for docu-022
ment retrieval, while achieving higher accu-023
racy in close-ended QA and ROUGE scores in024
long-form QA. Our findings highlight the effec-025
tiveness of semantic search-based retrieval and026
LLM fine-tuning in biomedical applications.027

1 Introduction028

Recent advancements in large language models029

(LLMs) have significantly expanded their appli-030

cations in biomedical domains, demonstrating031

strong performance in structured and open-ended032

question-answering (QA) tasks (McDuff et al.,033

2023; Singhal et al., 2023a). However, biomed-034

ical QA presents unique challenges due to its do-035

main specificity, complexity, and factual accuracy036

requirements. Unlike general-purpose QA, medi-037

cal QA demands high precision and interpretability,038

making domain adaptation and retrieval-based en-039

hancements essential.040

LLMs such as GPT-4o show strong zero-shot rea-041

soning capabilities but rely on static pre-training042

data, making them prone to hallucination and out- 043

dated information. Retrieval-augmented generation 044

(RAG) addresses this limitation by dynamically re- 045

trieving external biomedical knowledge (Zhu et al., 046

2024). However, its effectiveness depends on re- 047

trieval quality, document ranking, and model fine- 048

tuning. 049

We introduce MedBioRAG, a retrieval- 050

augmented framework integrating semantic search, 051

document retrieval, and fine-tuned LLM-based 052

answer generation to enhance biomedical QA. 053

Traditional keyword-based retrieval methods 054

(e.g., BM25, TF-IDF) struggle with semantic 055

understanding, often leading to irrelevant results. 056

MedBioRAG improves upon these by leveraging 057

semantic search for precise retrieval and fine-tuned 058

LLMs for factually accurate responses. We 059

systematically evaluate MedBioRAG across three 060

major categories of biomedical QA: 061

• Text Retrieval Performance, where we assess 062

the effectiveness of semantic search vs. lex- 063

ical search using NDCG and MRR scores 064

on datasets such as NFCorpus and TREC- 065

COVID. 066

• Close-ended QA, which requires models to 067

select the correct answer from predefined op- 068

tions, as seen in datasets like MedQA, Pub- 069

MedQA, and BioASQ. 070

• Long-form QA, which involves generating de- 071

tailed explanations based on biomedical lit- 072

erature, evaluated using ROUGE and BLEU 073

scores on datasets such as LiveQA, Medica- 074

tionQA, and PubMedQA. 075

Beyond retrieval quality, prompt engineering and 076

supervised fine-tuning play critical roles in ensur- 077

ing that LLMs generate coherent, well-structured, 078

and clinically meaningful responses. Prompt en- 079

gineering allows models to adapt their response 080
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Figure 1: MedBioRAG performance highlights. The
top plot compares scores of MedBioRAG against pre-
vious state-of-the-art (SoTA) methods (Sawarkar et al.,
2024; Lù, 2024). The bottom plot shows the histori-
cal accuracy progression on PubMedQA, demonstrating
MedBioRAG’s advancement over prior methods. (Chen
et al., 2023; Singhal et al., 2023b,a; Luo et al., 2022;
Yasunaga et al., 2022; Kanakarajan et al., 2021)

style based on user intent, while fine-tuning en-081

sures that models develop specialized domain ex-082

pertise, improving factual consistency and reducing083

hallucinations. By systematically analyzing these084

components, this study provides a comprehensive085

framework for optimizing biomedical QA systems.086

Our contributions can be summarized as follows:087

• We introduce MedBioRAG, a retrieval-088

augmented generation (RAG) framework for089

biomedical QA, integrating semantic search,090

document ranking, and fine-tuned LLM-based091

response synthesis. Our approach enhances092

factual accuracy, contextual relevance, and093

structured inference across diverse biomedi-094

cal tasks.095

• We show that fine-tuning GPT-4o signifi-096

cantly improves biomedical QA performance.097

Fine-tuned GPT-4o, combined with retrieval-098

augmented generation, outperforms zero-shot 099

GPT-4o and other fine-tuned LLMs across 100

multiple benchmarks. Our results indicate that 101

domain-specific fine-tuning enhances factual 102

accuracy, response coherence, and overall QA 103

effectiveness in biomedical applications. 104

• We systematically evaluate MedBioRAG 105

across retrieval performance, close-ended rea- 106

soning, and long-form synthesis, demonstrat- 107

ing its superiority over traditional lexical re- 108

trieval techniques and SoTA models like GPT- 109

4o in terms of NDCG, MRR, and overall QA 110

performance. Our model achieves state-of- 111

the-art (SoTA) results on PubMedQA and 112

BioASQ, surpassing previous benchmarks 113

Figure 1. 114

By addressing challenges unique to medical and 115

biological domains, such as domain specificity, fac- 116

tual accuracy, and contextual depth, MedBioRAG 117

bridges the gap between general-purpose LLMs 118

and domain-specific biomedical AI applications. 119

Our results highlight the importance of integrating 120

retrieval mechanisms with fine-tuned LLMs, pro- 121

viding valuable insights for developing AI-powered 122

medical assistants and research tools. Through 123

a rigorous evaluation of retrieval strategies, re- 124

sponse generation techniques, and domain adap- 125

tation mechanisms, this work contributes to ad- 126

vancing the field of biomedical AI, setting a new 127

benchmark for future research in medical question- 128

answering systems. 129

2 Related Work 130

2.1 LLMs in Biomedical Domains 131

The increasing adoption of large language models 132

(LLMs) in biomedical research has led to signifi- 133

cant advancements in reasoning-based question an- 134

swering (McDuff et al., 2023; Singhal et al., 2023a; 135

Saab et al., 2024; Luo et al., 2022; Jeong et al., 136

2024; Zhang et al., 2024). LLMs have demon- 137

strated strong capabilities in retrieving medical 138

knowledge, structured reasoning, and evidence- 139

based response generation. However, challenges 140

persist in ensuring factual accuracy, mitigating hal- 141

lucinations, and adapting these models for domain- 142

specific applications. 143

Fine-tuning (Ouyang et al., 2022; Nori et al., 144

2023) has played a critical role in enhancing 145

LLM performance for biomedical QA. Domain- 146

specific models have leveraged task-specific fine- 147
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Figure 2: Overview of MedBioRAG. We perform semantic and lexical search for document retrieval, supervised
fine-tuning of an LLM, and answer generation. The left section depicts semantic search (top) using vector-based
retrieval and lexical search (bottom) using keyword-based retrieval. Retrieved documents are re-ranked and passed
to a fine-tuned LLM for response generation. The right section illustrates answer generation, supporting both
close-ended QA (e.g., multiple-choice and yes/no questions) and long-form QA with structured responses.

tuning to improve accuracy and contextual un-148

derstanding. Some models integrate uncertainty-149

guided search strategies, allowing them to refine re-150

sponses using external retrieval mechanisms. Oth-151

ers employ preference-based optimization frame-152

works, iteratively refining generated responses153

through synthetic preference datasets. These ap-154

proaches have achieved state-of-the-art perfor-155

mance by leveraging retrieval-based adaptation and156

human-aligned evaluation methodologies (Saab157

et al., 2024; Frisoni et al., 2024).158

2.2 Retrieval-Augmented Generation159

RAG (Lewis et al., 2020) has emerged as a pivotal160

framework for enhancing the reliability of LLMs in161

biomedical applications (Saab et al., 2024). Unlike162

conventional parametric models, RAG-based sys-163

tems dynamically retrieve relevant documents from164

external knowledge sources, allowing for more con-165

textually relevant and up-to-date responses. This is166

particularly valuable in medicine, where accurate167

information retrieval is critical for clinical decision-168

making and evidence-based practice.169

Lexical Search Lexical search is one of the most170

widely used techniques in biomedical information171

retrieval, relying on exact keyword matching and172

statistical ranking methods such as BM25 (Robert- 173

son and Zaragoza, 2009). These approaches rank 174

documents based on term frequency and inverse 175

document frequency, enabling efficient retrieval 176

from structured databases. Lexical search meth- 177

ods are well-suited for retrieving documents that 178

contain exact term matches and are widely used in 179

traditional biomedical search engines. 180

However, lexical search faces significant limita- 181

tions in handling the complexity of medical termi- 182

nology. Challenges such as synonymy (e.g., "heart 183

attack" vs. "myocardial infarction") and polysemy 184

(words with multiple meanings) often lead to in- 185

complete or suboptimal retrieval results. Addition- 186

ally, keyword-based methods struggle with con- 187

textual variability, limiting their ability to retrieve 188

documents that convey conceptually relevant infor- 189

mation without explicit keyword overlap. 190

Semantic Search Semantic search methods 191

(Muennighoff, 2022) have been developed to ad- 192

dress the limitations of lexical search by leveraging 193

dense vector representations and similarity-based 194

retrieval. Instead of relying on exact term matches, 195

semantic search encodes medical texts into high- 196

dimensional embeddings, enabling the retrieval of 197

contextually relevant documents even when exact 198
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terms are not present. This is particularly benefi-199

cial in biomedical domains, where concept-based200

retrieval is essential for improving response quality.201

Pre-trained embedding models, such as those202

trained on biomedical corpora, have significantly203

improved the performance of semantic retrieval.204

These models enable LLMs to retrieve semanti-205

cally similar documents based on conceptual rela-206

tionships rather than explicit term matching. Ad-207

vances in contrastive learning and hybrid retrieval208

strategies have further optimized semantic search209

by refining ranking mechanisms and improving re-210

trieval accuracy.211

Semantic search is particularly advantageous in212

complex biomedical QA tasks, where capturing213

contextual meaning is essential. However, its ef-214

fectiveness depends on the quality of embeddings,215

the robustness of ranking algorithms, and domain-216

specific training objectives. MedBioRAG employs217

semantic search as its primary retrieval mechanism,218

refining its ranking strategies and retrieval effective-219

ness to optimize biomedical information access.220

3 Method221

Our approach optimizes large language models222

(LLMs) for biomedical question answering (QA)223

by integrating supervised fine-tuning, semantic re-224

trieval, and structured prompt engineering Figure 2.225

Instead of relying solely on parametric knowledge226

within an LLM, we enhance factual accuracy by re-227

trieving relevant documents using a high-precision228

retrieval mechanism before generating responses.229

The retrieval module is designed to fetch domain-230

specific information, which is then processed and231

passed to a fine-tuned LLM for response genera-232

tion.233

The proposed model operates in three main234

stages:235

1. Retrieval Mechanism: A hybrid search frame-236

work incorporating both lexical and semantic237

search, with semantic search playing a domi-238

nant role.239

2. LLM-Based Answer Generation: Fine-tuned240

LLMs synthesize retrieved information into241

coherent and contextually relevant answers.242

3. Prompt Engineering and Content Filtering:243

Optimized prompts structure the input to244

guide the model towards well-formed and fac-245

tually precise outputs.246

This methodology ensures that the model ben- 247

efits from external knowledge while maintaining 248

structured response generation. 249

3.1 Retrieval Mechanism 250

The retrieval component plays a crucial role in 251

fetching the most relevant biomedical documents 252

to enhance answer quality. We incorporate both 253

lexical search (Robertson and Zaragoza, 2009) and 254

semantic search, with an emphasis on semantic 255

search for higher retrieval precision. 256

Lexical Search Lexical retrieval is based on 257

term-frequency methods, utilizing BM25 as the 258

core ranking function. Given a query Q and a doc- 259

ument Di, BM25 ranks documents based on: 260

IDF(t) = log

(
N − nt + 0.5

nt + 0.5
+ 1

)
(1) 261

TF(t,Di) =
(k1 + 1)ft,Di

k1(1− b+ b · |Di|
avgDL ) + ft,Di

(2) 262

BM25(Di, Q) =
∑
t∈Q

IDF(t)× TF(t,Di) (3) 263

where nt is the number of documents containing 264

term t, N is the total number of documents, ft,Di 265

is the frequency of t in Di, and |Di| represents the 266

document length. avgDL is the average document 267

length in the collection. 268

Semantic Search Unlike lexical search, seman- 269

tic search retrieves documents based on contextual 270

similarity rather than exact term matching. This ap- 271

proach employs dense vector representations, map- 272

ping queries and documents into a shared embed- 273

ding space. 274

A given query Q and document Di are first trans- 275

formed into vector representations using an encoder 276

function ϕ: 277

vQ = ϕ(Q), vDi = ϕ(Di) (4) 278

where vQ and vDi are the dense vector represen- 279

tations of the query and document, respectively. 280

To determine document relevance, the similarity 281

score between the query and a document is com- 282

puted using the cosine similarity: 283

Sim(Q,Di) =
vQ · vDi

∥vQ∥∥vDi∥
(5) 284

where · represents the dot product, and ∥vQ∥ and 285

∥vDi∥ denote the Euclidean norms of the respective 286

vectors. 287
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Figure 3: Task-wise Performance Comparison across Retrieval and QA Tasks. This figure compares the performance
of MedBioRAG, Previous State-of-the-Art (SoTA), and GPT-4o (Base Model) across three major categories: Text
Retrieval Performance, Close-ended QA, and Long-form QA. The left section evaluates retrieval effectiveness on
NFCorpus and TREC-COVID using NDCG and MRR scores. The middle section presents accuracy scores for
MedQA, PubMedQA, and BioASQ, demonstrating improvements achieved with MedBioRAG. The right section
assesses response quality using ROUGE scores for LiveQA, PubMedQA, BioASQ, and MedicationQA, highlighting
MedBioRAG’s effectiveness in generating structured long-form answers. Across all tasks, MedBioRAG consistently
outperforms previous SoTA models (Sawarkar et al., 2024; Chen et al., 2023; Yasunaga et al., 2022) and the GPT-4o
base model(OpenAI, 2024).

The retrieval system ranks documents based on288

their similarity scores, selecting the top k docu-289

ments:290

Dtop- k = argmaxk Sim(Q,Di) (6)291

This process allows the system to retrieve doc-292

uments that are semantically relevant, even when293

exact keyword matches are absent. The effective-294

ness of semantic search depends on the quality of295

the embedding model ϕ, the retrieval ranking mech-296

anism, and domain-specific pretraining.297

3.2 LLM-Based Answer Generation298

Once relevant documents are retrieved, the next299

step involves generating well-structured and con-300

textually relevant responses. This is achieved301

through a combination of supervised fine-tuning302

and structured prompt construction.303

Supervised Fine-tuning LLMs To adapt large304

language models (LLMs) for biomedical question305

answering (QA), we employ supervised fine-tuning.306

Fine-tuning ensures that the model aligns with307

domain-specific knowledge and exhibits higher fac-308

tual accuracy when generating responses. We train309

the model using a dataset consisting of (x, y) pairs,310

where x represents the input query and retrieved311

document context, and y is the expected answer:312

LLM = −
|y|∑
t=1

logPθ(yt|y<t, x) (7)313

where Pθ denotes the probability distribution of 314

the model’s next token prediction, and yt represents 315

the t-th token of the target response. 316

Fine-tuning enables the model to develop a 317

stronger understanding of biomedical terminolo- 318

gies, clinical reasoning, and literature-based ques- 319

tion answering. 320

Contextual Prompt Construction To further 321

guide response generation, we employ prompt en- 322

gineering techniques that structure the input for 323

optimal output quality. A well-designed prompt 324

ensures factual consistency and coherence while 325

mitigating hallucinations. 326

To further enhance reliability, we apply content 327

filtering techniques to remove redundant, irrelevant, 328

or low-confidence outputs. The model assigns a 329

confidence score sc to each generated response: 330

sc = softmax(WohT ) (8) 331

where hT represents the final hidden state of 332

the output sequence, and Wo is a learned projec- 333

tion matrix. Responses with confidence scores be- 334

low a predefined threshold are discarded or revised 335

through iterative refinement. 336

By integrating retrieval-augmented generation 337

(RAG), fine-tuning, and structured prompt engi- 338

neering, our approach optimizes LLMs for biomed- 339

ical QA, ensuring that generated responses are both 340

contextually appropriate and factually accurate. 341
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4 Experiments342

4.1 Experimental Setups343

To evaluate the effectiveness of MedBioRAG, we344

conduct comprehensive experiments across multi-345

ple biomedical QA benchmarks. Our evaluation346

consists of three major experimental settings: (1)347

retrieval performance, (2) close-ended QA, and (3)348

long-form QA. We compare our method against349

several baselines, including both general-purpose350

and fine-tuned large language models.351

Baselines To evaluate the effectiveness of Med-352

BioRAG, we conduct experiments across various353

biomedical question-answering (QA) tasks, com-354

paring different model configurations and retrieval355

strategies. Our evaluation framework includes com-356

parisons between a base model in a zero-shot set-357

ting and a fine-tuned LLM, as well as LLMs with358

and without retrieval augmentation. Specifically,359

we compare a fine-tuned LLM without retrieval-360

augmented generation (RAG) to the same model361

with RAG enabled, allowing us to assess the impact362

of external document retrieval on answer genera-363

tion.364

Retrieval Evaluation For document retrieval,365

we evaluate MedBioRAG’s performance on the366

NFCorpus (Boteva et al., 2016) and TREC-COVID367

(Voorhees et al., 2020) datasets, comparing lexical368

and semantic search methods. Lexical retrieval re-369

lies on BM25, while semantic search utilizes dense370

embeddings for vector-based document retrieval.371

We measure retrieval effectiveness using standard372

information retrieval metrics, including Discounted373

Cumulative Gain (DCG), Normalized Discounted374

Cumulative Gain (NDCG), Mean Reciprocal Rank375

(MRR), Precision@10, Recall@10, F1-score@10,376

and Mean Average Precision (MAP). These metrics377

assess the ranking quality of retrieved documents,378

with higher scores indicating better alignment be-379

tween retrieved content and the user’s query. The380

results demonstrate that semantic search consis-381

tently outperforms lexical search across all metrics,382

highlighting its ability to capture contextual mean-383

ing more effectively.384

Close-ended QA Evaluation For multiple-385

choice biomedical QA, we evaluate MedBioRAG386

on MedQA, PubMedQA, and BioASQ (Jin et al.,387

2020, 2019; Nentidis et al., 2023; Vilares and388

Gómez-Rodríguez, 2019). These datasets test the389

model’s ability to select the correct answer from390

predefined options based on medical knowledge391

and retrieved evidence. Accuracy is used as the392

primary evaluation metric, measuring the percent- 393

age of correctly answered questions. MedBioRAG 394

demonstrates significant improvements over both 395

zero-shot and fine-tuned LLM baselines, partic- 396

ularly when retrieval is incorporated. By lever- 397

aging external knowledge sources, MedBioRAG 398

mitigates hallucinations and improves answer re- 399

liability, outperforming previous state-of-the-art 400

(SoTA) models. 401

Long-form QA Evaluation To assess Med- 402

BioRAG’s ability to generate detailed, structured 403

responses, we conduct long-form QA experiments 404

on LiveQA, MedicationQA, PubMedQA, and 405

BioASQ. These tasks require the model to generate 406

free-form explanations based on retrieved biomed- 407

ical literature. The performance of long-form an- 408

swer generation is measured using ROUGE scores, 409

BLEU scores, BERTScore, and BLEURT. ROUGE 410

evaluates the overlap between generated responses 411

and reference answers, BLEU measures n-gram 412

precision, BERTScore assesses semantic similarity 413

using contextual embeddings, and BLEURT cap- 414

tures fluency and coherence in model outputs. The 415

results indicate that MedBioRAG achieves substan- 416

tial gains in factual accuracy and coherence, consis- 417

tently outperforming GPT-4o and fine-tuned LLMs 418

without retrieval. 419

4.2 Experimental Results 420

Retrieval Performance 421

To evaluate retrieval performance, we compare 422

MedBioRAG’s lexical and semantic search com- 423

ponents on NFCorpus and TREC-COVID datasets 424

using standard retrieval metrics. Table 3 compares 425

retrieval performance across NFCorpus and TREC- 426

COVID datasets using lexical and semantic search. 427

Results indicate that semantic search consistently 428

outperforms lexical retrieval across all evaluation 429

metrics, including NDCG@10, MRR@10, and 430

Precision@10. Specifically, on NFCorpus, se- 431

mantic search achieves an NDCG@10 score of 432

37.91, significantly higher than lexical search at 433

31.34. Similarly, MRR@10 improves from 51.63 434

in lexical search to 64.29 in semantic retrieval. 435

The same trend is observed in TREC-COVID, 436

where MedBioRAG’s semantic search component 437

attains an MRR@10 of 89.17, surpassing the lexi- 438

cal search performance of 82.50. These improve- 439

ments demonstrate the effectiveness of semantic re- 440

trieval in identifying contextually relevant biomed- 441

ical literature. 442

Figure 4 illustrates the effect of increasing Top- 443
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Dataset Model ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore BLEURT

LiveQA Fine-Tuned GPT-4o 24.12 6.18 13.31 1.63 1.10 -46.48
+ MedBioRAG 15.73 4.58 10.74 1.20 2.29 -86.99

GPT-4o 26.96 5.80 13.42 1.41 -2.93 -34.79
+ MedBioRAG 27.33 6.39 13.42 15.29 -1.60 -29.99

MedicationQA Fine-Tuned GPT-4o 24.69 8.80 17.61 2.49 8.98 -33.82
+ MedBioRAG 27.73 15.09 22.72 7.24 8.79 -33.63

GPT-4o 22.92 13.69 18.70 7.89 8.55 -6.92
+ MedBioRAG 19.85 4.20 10.97 0.98 -7.63 -33.21

PubMedQA Fine-Tuned GPT-4o 35.82 13.55 26.09 4.34 35.33 -9.23
+ MedBioRAG 37.49 14.78 27.89 6.11 37.02 -3.89

GPT-4o 25.72 9.02 17.05 2.48 17.04 -9.04
+ MedBioRAG 26.39 9.55 17.47 2.73 18.10 -7.86

BioASQ Fine-Tuned GPT-4o 32.69 16.84 25.11 6.52 32.97 -2.41
+ MedBioRAG 34.30 18.81 27.74 6.12 35.43 -15.44

GPT-4o 13.97 5.51 10.08 1.27 0.22 -24.84
+ MedBioRAG 22.29 8.21 15.64 2.27 11.60 -12.50

Table 1: Performance comparison of various models on long-form QA tasks across different datasets (LiveQA,
MedicationQA, PubMedQA, and BioASQ). The evaluation metrics include ROUGE scores, BLEU, BERTScore,
and BLEURT. The highest value for each dataset and metric is highlighted in bold to indicate the best-performing
configuration.

Method MedQA PubMedQA BioASQ

Fine-Tuned GPT-4o 87.88 80.70 97.06
+ MedBioRAG 89.47 85.00 98.32

GPT-4o 81.82 44.74 96.12
+ MedBioRAG 86.86 66.67 97.06

GPT-4o-mini 67.68 77.55 96.32
+ MedBioRAG 70.71 76.32 97.06

GPT-4 66.67 52.63 96.32
+ MedBioRAG 78.79 72.81 97.79

GPT-3.5 51.52 19.30 88.24
+ MedBioRAG 45.36 38.60 66.91

Table 2: Performance comparison of various models on
close-ended QA tasks. Fine-tuning GPT-4o with Med-
BioRAG achieves outperforming other methods across
MedQA, PubMedQA, and BioASQ datasets. Med-
BioRAG significantly improves retrieval-augmented
generation (RAG) performance, particularly in close-
ended QA. Bold values indicate the best performance
for each dataset.

K retrieval on MedQA and PubMedQA. As the444

number of retrieved documents increases, perfor-445

mance initially improves but deteriorates beyond446

an optimal threshold due to noise and conflicting447

information. This highlights the importance of a448

balanced retrieval strategy in biomedical QA.449

Fine-tuned LLMs with MedBioRAG demon-450

strate superior retrieval capabilities compared to451

Dataset NFCorpus TREC-COVID

Metric Lexical Semantic Lexical Semantic

DCG@10 2.65 3.27 4.39 5.55
NDCG@10 31.34 37.91 48.35 61.02
MRR@10 51.63 64.29 82.50 89.17
Precision@10 23.04 27.88 49.60 64.20
Recall@10 15.95 18.70 0.43 0.54
F1-score@10 12.61 14.99 0.85 1.07
MAP@10 46.01 56.15 72.31 82.19

Table 3: Comparison of MedBioRAG with Lexical and
Semantic Search across NFCorpus and TREC-COVID
datasets. The results indicate that MedBioRAG with Se-
mantic Search consistently outperforms Lexical Search
across all metrics for both datasets.

models relying solely on parametric knowledge. 452

The integration of MedBioRAG enables fine-tuned 453

models to access up-to-date biomedical literature, 454

improving their ability to generate factually accu- 455

rate and contextually relevant responses. 456

Close-ended QA Performance 457

For close-ended QA, we compare MedBioRAG 458

against prior state-of-the-art (SoTA) models, in- 459

cluding GPT-4o and fine-tuned biomedical LLMs. 460

Results indicate that MedBioRAG achieves su- 461

perior performance across multiple benchmarks. 462

On MedQA, MedBioRAG improves accuracy to 463
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Figure 4: Impact of increasing Top-K on MedQA short-
form QA. As the number of retrieved documents in-
creases, the performance of all evaluation metrics de-
creases. Given the nature of the task, which expects
concise short-form answers, retrieving more documents
introduces noise and conflicting information, negatively
affecting answer quality.

90%, outperforming the previous SoTA model464

at 82%. Similarly, in PubMedQA, MedBioRAG465

attains an accuracy of 85%, exceeding the 82%466

achieved by previous models. The largest improve-467

ment is observed in BioASQ, where MedBioRAG468

achieves 96% accuracy, significantly higher than469

the prior SoTA score of 94%. These results confirm470

that integrating retrieval-based augmentation with471

fine-tuned LLMs enhances factual consistency and472

domain-specific reasoning in biomedical QA.473

Overall, our experimental results validate the ef-474

fectiveness of MedBioRAG in enhancing biomedi-475

cal QA by integrating semantic retrieval and fine-476

tuned LLM-based answer generation.477

Long-form QA Performance For long-form478

QA, we evaluate MedBioRAG on LiveQA, Medica-479

tionQA, PubMedQA, and BioASQ using ROUGE480

scores, BLEU, and BERTScore Table 1. Med-481

BioRAG consistently outperforms fine-tuned GPT-482

4o across all datasets. In LiveQA, MedBioRAG483

achieves a ROUGE-1 score of 27.33 and a BLEU484

score of 15.29, outperforming both fine-tuned GPT-485

4o and base GPT-4o models. Similar improvements486

are seen in MedicationQA, where MedBioRAG at-487

tains the highest BLEU score of 7.89, surpassing488

previous approaches. In PubMedQA, MedBioRAG489

improves ROUGE-L to 27.89 and BERTScore to490

37.02, indicating enhanced response coherence and491

factuality.492

BioASQ results further highlight MedBioRAG’s 493

effectiveness, achieving the highest BLEURT score 494

among all models. These improvements demon- 495

strate that retrieval-augmented fine-tuning signifi- 496

cantly enhances response fluency and factual cor- 497

rectness in long-form biomedical QA tasks. 498

Fine-tuned LLMs with MedBioRAG achieve 499

substantial gains in long-form answer generation 500

by leveraging real-time document retrieval. Com- 501

pared to models without retrieval augmentation, 502

MedBioRAG-enhanced fine-tuned LLMs produce 503

responses that are more structured, informative, 504

and aligned with expert-reviewed biomedical liter- 505

ature. 506

5 Conclusion 507

In this work, we introduce MedBioRAG, a retrieval- 508

augmented generation (RAG) framework designed 509

to enhance biomedical question answering (QA) by 510

integrating semantic retrieval, document ranking, 511

and fine-tuned large language models (LLMs). Our 512

approach improves factual accuracy by retrieving 513

relevant biomedical literature, enabling more pre- 514

cise and contextually aware response generation. 515

Experiments show that MedBioRAG outper- 516

forms both fine-tuned LLMs and previous state-of- 517

the-art (SoTA) models. Semantic retrieval signifi- 518

cantly improves NDCG, MRR, and Precision@10 519

compared to lexical search. In close-ended QA, 520

MedBioRAG achieves higher accuracy on MedQA, 521

PubMedQA, and BioASQ, surpassing previous 522

benchmarks. For long-form QA, it consistently 523

improves ROUGE, BLEU, and BERTScore, en- 524

hancing response fluency and factual accuracy. 525

Key contributions include hybrid retrieval that 526

balances precision and recall, fine-tuned LLMs that 527

reduce hallucinations, and prompt engineering for 528

improved response structure. Future work will fo- 529

cus on refining retrieval ranking, optimizing infer- 530

ence speed, and adapting to specialized biomedical 531

domains. 532

Limitations 533

MedBioRAG’s key limitation is the lack of valida- 534

tion by medical professionals, making it unclear 535

how well the model aligns with expert reasoning. 536

While it enhances biomedical QA through retrieval- 537

augmented generation, its effectiveness depends 538

on retrieval quality, and unresolved contradictions 539

in retrieved documents raise concerns about fac- 540

tual accuracy. Real-time retrieval also increases 541

8



computational overhead, limiting applicability in542

time-sensitive settings. Additionally, further fine-543

tuning is needed for specialized domains like clini-544

cal diagnosis. Broader evaluation on real-world545

datasets, such as clinical case reports and elec-546

tronic health records (EHRs), is necessary to as-547

sess its practical utility. Despite these challenges,548

MedBioRAG highlights the potential of retrieval-549

augmented LLMs in biomedical AI.550
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