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Abstract

Attention patterns in Large Language Models often exhibit clear structure, and
analysis of these structures may provide insight into the functional roles of the
heads that produce these patterns. However, there is little work addressing ways to
systematically analyze or categorize attention heads using the patterns they produce.
To address this gap, we 1) create a meaningful embedding of attention patterns;
2) use this embedding of attention patterns to construct a useful distance metric
between the attention heads themselves; and 3) investigate the correspondence
between known classes of attention heads, such as name mover heads and induction
heads, with the groupings emerging in our embedding of attention heads.
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Figure 1: Attention patterns from diverse data and models are collected, features about them are
computed, and the patterns are embedded in a meaningful latent space. Each head has a corresponding
cloud of points, with one for each sample. For each pair of heads, the mean pairwise distance samples
in their clouds is used to construct a distance matrix. This distance matrix can be used to embed the
heads themselves, or as a tool to find similar heads to a head of interest.

1 Introduction

As Large Language Models (LLMs) [Radford et al., 2018, Vaswani et al., 2017] become ever more
powerful and widely deployed, ensuring the safety and security of these systems becomes paramount.
Mechanistic interpretability aims to help us understand the internals of AI systems in order to make
them more trustworthy and safe, by mapping those internals to human-comprehensible algorithms
and concepts [Sharkey et al., 2025, Räuker et al., 2023]. A key obstacle to interpretability is the large
number of components present in modern LLMs, making the manual inspection of the components
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prohibitively time consuming. Recent advances in using Sparse Autoencoders (SAEs) to decode the
meanings of residual stream vectors have relied on the automatic tagging of learned sparse features
with legible explanations using LLMs [Cunningham et al., 2023, Braun et al., 2024], but no such
automatic tagging exists for attention patterns. SAEs have been used to attempt to identify the role of
attention heads [Krzyzanowski et al., 2024, He et al., 2025], but have their own limitations [Leask
et al., 2025], and these approaches discard any spatial information from the attention patterns.

Despite the presence of polysemanticity [Elhage et al., 2022] in attention heads [Elhage et al., 2022,
Janiak et al., 2023], manual inspection of attention patterns can prove valuable in determining the
function of the attention head that produced them [Olsson et al., 2022, Spies et al., 2025, Ivanitskiy
et al., 2023][Wang et al., 2022, Figure 16]. Despite the presence of clearly visible structures in a
variety of attention heads (Figure 3) and a variety of categories of attention heads identified [Olsson
et al., 2022, Wang et al., 2022, Krzyzanowski et al., 2024, Ferrando and Voita, 2024, Ren et al.,
2024, García-Carrasco et al., 2024], to our knowledge a taxonomy of attention patterns and the
heads that produce them has not yet been developed [Zheng et al., 2024]. In this work, we embed
the attention pattern matrices themselves using handcrafted features, and observe clear structure in
the latent space of the embedding (section 2). Using these embeddings of patterns, we construct a
metric of distance between attention heads, projecting this new embedding of attention heads to a
viewable low-dimensional space where we compare our unsupervised embedding with known classes
of attention heads (section 3).

By contrast with previous work [Clark et al., 2019, Vig, 2019, Yeh et al., 2023, Park et al., 2019], our
method takes as input only the attention pattern matrices themselves, and does not directly utilize any
token or residual stream information. Attempts to categorize heads only by the tokens or features of
the residual stream they attend to [Krzyzanowski et al., 2024] are limited because heads may attend to
similar parts of the residual stream but be quite different in their broader functionality (Figure 2, A1

vs A2), or, on the other hand, they may attend to vastly different parts of the residual stream but be
similar in functionality (Figure 2, A2 vs A3). It is our hope that this work will accelerate research in
interpretability by providing an incredibly cheap2 way to cluster the functionality of attention heads.
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A1: capitals attend to preceding country tokens
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A2: all tokens attend to preceding countries
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A3: all tokens attend to preceding years

Figure 2: An artificially constructed example of classes of heads whose classification based on
their attention patterns or functionality differs from a circuit or feature based classification, to explain
our intuition. A1 (left) has capital cities attend to their countries (“Tokyo” to “Japan”, “Paris” to
“France”; A2 (center) has any token attend to tokens denoting a country; A3 (right) has any token
attend to tokens denoting a year. If we were to analyze the actual tokens each head attends to, or
analyze the features attended to, we might conclude that A1 and A2 are more similar to each other
than to A3. Inspection of the attention patterns suggests that A2 and A3 both exhibit a “vertical bars”
pattern, while A1 exhibits a diagonal pattern. The similarity of the “vertical bars” pattern observed
for A2 and A3 indicate that in some sense the heads are performing the same function: both heads
always attend to a certain class of token – despite those classes being entirely different between the
two heads. Note that these are not actual attention patterns from trained models, and are provided
only for illustrative purposes. See Figure 3 for examples of actual attention patterns.

2All experiments were performed on a laptop with an 8-core i9-11950H CPU, 64GB RAM, and A5000
Mobile GPU with 16GB VRAM, requiring several minutes. Preliminary experiments with features which were
eventually discarded took up to several hours.
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1.1 Paper Website

This paper contains extensive links to our accompanying website: attention-motifs.github.io,
which contains interactive versions of many figures, as well as a variety of tools for interpretability
researchers. Use of interactive figures and tools requires only a web browser. In particular, the
browser tool at attention-motifs.github.io/s/head-info allows the user to enter any head
from the listed models (Table 1) and see the attention patterns produced by the head, links to other
works which mention the head, the location in embedding space of this head, and information and
links to attention heads nearby in embedding space.

2 Embedding patterns

2.1 Type signature of the embedding

Attention for autoregressive transformer models [Vaswani et al., 2017] over some input activation
X ∈ Rn×d can be written as

attention(X) := σ

(
XWQW

T
KXT

√
d

+M

)
︸ ︷︷ ︸

A

·WOV (X) where Mi,j :=

{
−∞ j > i

0 j ≤ i

where d is the model dimension, n is the sequence length, σ is the row-wise softmax function, and M
is the autoregressive masking matrix. The attention pattern is the output of the softmax, the matrix
A ∈ Rn×n. Examples of these attention patterns can be seen in Figure 3.

We can define the set of all possible attention patterns as

P =
⋃
n∈N

Pn where Pn =

A ∈ Rn×n

∣∣∣∣∣∣
A1⃗ = 1⃗
Ai,j ∈ [0, 1]
Ai,i+k = 0 ∀ k ∈ N

 (1)

The attention pattern of the head at layer L and index H , for an LLM with parameters θ and given a
prompt s is given by

LLMθ,L,M (s) ∈ P|s| ∈ P|s| or, equivalently LLM[hi](s) ∈ P|s| (2)

Where hi is a particular head from a particular model – for example, L0H1 from pythia-1b.

If we entertain the hypothesis that there are properties of the structure of LLMθ,L,M (s) that are
invariant to our dataset sample s ∼ D and indicates the role of the head LLMθ,L,M , we expect that
there exists an embedding function E : P → Rc, which maps attention patterns to a meaningful latent
space in which the location of the head represents the structure we care about. We note that a useful
embedding should accommodate varied input sequence lengths.3 In subsection 2.3, we describe the
results of finding such a function E by using PCA[Pearson, 1901] to reduce the dimensionality of a
large set of features (described in subsection 2.2).

2.2 Motivation for chosen features

In order to find a suitable embedding E , we use handcrafted features to compute about attention
patterns. In particular, these features include basic statistics (mean, variance, etc.) about the values on
the diagonal and first column of the attention pattern, as well as similar features about the distributions
of values in gram matrices of the pattern and skew of the pattern. Features, along with their importance
and covariance, are shown in Figure 10.

3This requirement to work with varied input lengths was a key motivation for our choice of handcrafted
features, as opposed to a purely learned method, such as a convolutional autoencoder.
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L0H0
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Figure 3: Actual attention patterns from gpt2-small. Each row corresponds to a different head
in the model. Each column represents one of 6 random prompts. Note that each head displays
the same motif regardless of the input prompt. Interactive version, with prompt information:
attention-motifs.github.io/s/fig/patterns-example .

Our motivation for the choice of features is that visually, some of the most common motifs in attention
patterns include:

• Large values along the diagonal, meaning every token attends to itself. See
gpt2-small:L0H1 , gpt2-small:L0H3 , gpt2-small:L1H11 . This motivates includ-
ing statistics about the diagonal values trace(A).

• Large values on the first token, sometimes known as an “attention sink” [Zuhri et al., 2025].
Since the first token in autoregressive attention cannot contain information about any token
besides itself, it is speculated that these attention sinks are a way for the head to “shut off.”
See gpt2-small:L3H4 , gpt2-small:L5H1 , gpt2-small:L11H9 . This motivates
including statistics about the values in the first column A[:, 0].

• “vertical bars,” meaning that the same tokens from the context are attended to regardless of
the current token. See gpt2-small:L0H0 , gpt2-small:L1H9 , gpt2-small:L10H0 .
This motivates including statistics about the gram matrix AAT . If vertical bars are present
in A, then rows are likely very similar, causing the gram matrix to have large values4.
Horizontal bars, although rarer, motivate including the gram matrix of the transpose ATA.

• “recent tokens,” where most of the attention is concentrated somewhere close to the diagonal
(but not entirely on it), regardless of the current token. We speculate that these heads rely
primarily on positional embedding information in their QK circuit. See gpt2-small:L0H4
, gpt2-small:L2H3 , gpt2-small:L3H2 . This motivates the inclusion of statistics about

4By “vertical bars”, we mean that A[i, j] and A[k, j] are correlated. If this is the case, then [AAT ]i,k is more
likely to be large, as [AAT ]i,k = A[i, :] ·A[k, :].
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the gram matrix S(A)S(A)T of the “skewed” attention pattern where for

A ∈ Pn, S(A)
[
i, j + (n− i− 1)

]
:= A[i, j]

S(A)[i, j] indicates how much token j is attending to the token (n− i+ 1) tokens before it,
and the gram matrix captures how similar this pattern is between rows: S(A)S(A)T will
have larger values if each token attends to tokens a similar number of tokens behind it.

The above list is not meant to cover all of the motifs observed, nor are the examples given ex-
haustive. We leave most of the details of these features, denoted Ê : P → R92, to the code:
attention-motifs.github.io/s/feature-info .

Figure 4: Different views of the first 3 PC axes of E . Top group: colored by model,
Bottom group: with certain heads selected – all points of a given color are the embed-
dings of the attention pattern, for different prompts, of that head. Interactive versions:
attention-motifs.github.io/s/fig/pca-view

2.3 Computing features and the embedding

We apply Ê to a dataset of > 105 of attention patterns from open-weight pretrained LLMs (see
Table 1) across 128 pieces of text sampled from the “Pile” dataset [Gao et al., 2020, Neel Nanda,
2022]. We assemble from the ouput of Ê a table where each row has a column identifying the attention
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head (hi), a column identifying the prompt used (sk), and columns with normalized scalar values for
the computed features. Performing a principal component analysis (PCA) on the normalized feature
columns, we find that around 68% of the variance is explained by the first 3 principal components,
and nearly 90% by the first 10 (Figure 11). We construct our embedding E as the first 16 principal
components of Ê .

Plotting the embedding of each pattern in the first 3 components shows us that the distributions
for all models overlap, which is a desired property5 of our embedding function (Figure 4). Fur-
thermore, we see in Figure 4 that all attention patterns from a given head appear to occupy a
well-defined region of embedding space. Interactive visualizations of this embedding can be found at
attention-motifs.github.io/embed.

3 Embedding heads

Our embedding E : P → Rc tells us something about how similar attention patterns are to each other,
but what we want is a distance metric that tells us about similarities between attention heads. Each
head corresponds to a cloud of points in Rc, each point corresponding to that head’s attention pattern
given a prompt s from our dataset D, and we want some notion of similarity between these point
clouds. In this work, we consider the naive metric:

dist(hi, hj) :=
1

|D|
∑
s∈D

∣∣∣∣∣E(LLM[hi](s)
)
− E

(
LLM[hj ](s)

)∣∣∣∣∣ (3)

taking the mean distance between the embeddings of the patterns produced by the heads hi, hj over
prompts s from the dataset D. We discuss the potential of other metrics in subsection 4.1.

We compute the distance matrix D for all pairs of heads hi, hj (Figure 13),

D[i, j] = dist(hi, hj) (4)

and project to a viewable low dimensional space using UMAP, Isomap, and t-SNE [Tenenbaum et al.,
2000, van der Maaten and Hinton, 2008].

3.1 Comparing with previously identified classes

In this space, we find that known classes of attention heads are generally grouped together. We
assemble a mapping from 6 “head types” to identified heads in gpt2-small based on the work of
[Wang et al., 2022] and [Krzyzanowski et al., 2024]. Noting that these two works are not always
in agreement about the classes of heads for classes which they both identify (Induction, Duplicate
Token, and Previous Token heads), we will consider a head to be in one of these classes if either work
identifies it as such.

We find that when projecting via Isomap [Tenenbaum et al., 2000] with 16 neighbors, groupings of
heads with known functionality become particularly apparent (Figure 7). In Figure 6 and Figure 5, we
see that heads nearby in our embedding exhibit similar attention patterns. Notably, although [Wang
et al., 2022] only finds “Backup Name Mover” heads after knocking out the initial name mover heads,
our method groups together all varieties of name mover heads.

Precision and recall metrics for recovering known classes are not presented in this work. This is in
part due to the extreme sparsity of known classes of attention heads, making the statistical significance
of such metrics of limited use. Primarily, however, we refer to the counterexample described in
Figure 2 for motivation as to why our method is an entirely different way of looking at attention
heads. Tt is conceivable that two heads determined to be similar through QK circuit analysis (or
potentially circuit analysis) might have quite different attention patterns, or for the inverse case to be
true. We elaborate on this point in section 4.

5In general, we expect and see roughly the same motifs in patterns across all language models. If patterns
from different models were mapped to wholly different parts of embedding space, this would not be useful for
finding similar heads across different models.
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gpt2-small:L11H9

gpt2-medium:L12H0

gpt2-medium:L16H15

Figure 5: gpt2-small:L11H9 is originally identified by [Wang et al., 2022] as a “Backup
Name Mover”, while the other heads heads are nearby heads which are not described as
name movers or otherwise in the literature to our knowledge. More information:
attention-motifs.github.io/s/fig/groups/name-mover .

Home Pattern Lens Classifications Pattern Embeddings Head Embeddings Head Embedding Table

Filter Visible Heads:

Prompts: 5 Nearby heads: 2 Most distant: 0

Randomize prompts Same-class heads: 1 Random heads: 0

Head Distance
rank /n_heads

Classifications mZchIq2U2B9hEk5da1ZufA

285 tokens
mdAf8xyozIrldjawlVNscA

109 tokens
ymuzM3WTMkgNmDwPWYR7nw

17 tokens
dM5b5fXlaPKHKYvtFbMnPw

130 tokens
HdR-022_soPf1-
m2KTYWLw

102 tokens

gpt2-
small:L4:H11

gpt2-
medium:L4:H13

No classifications

pythia-1b:L3:H5 No classifications

gpt2-small:L2:H2

Current Head: gpt2-small:L4:H11
Pattern Lens: current head | all displayed heads

Switch to | Add to current viewSearch heads (e.g., gpt2-small:L5:H3)

Models ( 6 / 6 ) ▼ Layers ( 26 / 26 ) ▼

0.000
(Current)

0/1519

IOI:Previous Token

SAE-survey:Previous Token

3.885

2/1519

4.072

3/1519

9.995

7/1519

IOI:Previous Token

?

Figure 6: The primary interface for interacting with the head embeddings. We allow searching for any
head among the supported models, viewing heads by their classifications, filtering by model or layer,
and viewing heads which are near or far in head embedding space. Displayed is gpt2-small:L4H11
and detected similar heads. gpt2-small:L4H11 is identified by both [Wang et al., 2022] and
[Krzyzanowski et al., 2024] as a “Previous Token Head”, while the other heads are nearby heads
which are not described as previous token heads or otherwise in the literature to our knowledge. More
information: attention-motifs.github.io/s/fig/groups/previous-token .
attention-motifs.github.io/v1/vis/attnpedia/index.html?head_viewing=gpt2-small~L4~H11
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Figure 7: Embeddings of heads via the distance matrix. Left: Only heads from gpt2-small.
Right: heads from all models. Projection via Isomap, with 16 neighbors. More pro-
jections can be viewed in the appendix (Figure 14, Figure 15) or on the website:
attention-motifs.github.io/s/fig/head-embed

Home Pattern Lens Classifications Pattern Embeddings Head Embeddings Head Embedding Table

Filter Visible Heads:

Prompts: 5 Nearby heads: 3 Most distant: 0

Randomize prompts Same-class heads: 0 Random heads: 0

Head Distance
rank /n_heads

Classifications 0Y4YJAAQXVeCknNRgVHcBw

109 tokens
iATvjWd81F6QZuklbwXC-w

122 tokens
CYGZJmHJ7Dj8LOuItQg1KQ

104 tokens
iOMtL1a3s4c4yM_8FMiCYQ

43 tokens
JXr91BWskA5zy5XCXvcGmQ

102 tokens

gpt2-small:L5:H2 No classifications

gpt2-small:L6:H11 No classifications

gpt2-medium:L6:H6 No classifications

gpt2-small:L7:H8 No classifications

Current Head: gpt2-small:L5:H2
Pattern Lens: current head | all displayed heads

Switch to | Add to current viewSearch heads (e.g., gpt2-small:L5:H3)

Models ( 6 / 6 ) ▼ Layers ( 26 / 26 ) ▼

0.000 (Current)

0/1519

2.785

2/1519

3.052

3/1519

3.097

4/1519

?

Figure 8: gpt2-small:L5H2 and detected similar heads, displaying both banded and attention
sink features. These heads, to our knowledge, are not described or discussed in the literature. The
vast majority of heads are not described, yet our method finds similarities nonetheless. We encourage
the reader to explore the tool.
attention-motifs.github.io/v1/vis/attnpedia/index.html?head_viewing=gpt2-small~L5~H2
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4 Conclusion

Metrics

The distance metric defined in Equation 3 is not the only possible metric, and we do not consider the
distribution of distances for each pair of points, only the mean. In particular, Gromov-Wasserstein
[Chhoa et al., 2025, Mémoli, 2011] distances and variants may provide a unique perspective. Consider
heads hi, hj and inputs s1, s2. To motivate this, we define

f(hi, hj , su, sv) :=

∣∣∣∣E(LLM[hi](su)
)
− E

(
LLM[hj ](sv)

)∣∣∣∣.
Consider the case that:

• f(hi, hj , s1, s1) and f(hi, hj , s2, s2) are both very large
• f(hi, hj , s1, s2) and f(hi, hj , s2, s1) are both very small

For example, we could have E (LLM[hi](s1)) = E (LLM[hj ](s2)) and E (LLM[hi](s2)) =
E (LLM[hj ](s1)). If this is the case, then Equation 3 would compute distance between hi and
hj to be very large, while a Gromov-Wasserstein or other “earth-mover” metric would compute it to
be small. What this tells us in practice is that hi and hj are in some sense complimentary, producing
a similar distribution of patterns over the entire dataset but vastly different patterns for any given
pattern s1 or s2. We believe exploring other such distance metrics, and in particular comparing
multiple metrics, would be a fruitful area of work.

Features

Certain features were considered but not used due to computational cost or lack of importance
in the PCA. Discarded features include statistics about the absorption times when treating the at-
tention pattern as an absorbing markov chain, various Fourier statistics, and network-theoretic
analyses of the attention pattern as an adjacency matrix. An autoencoder approach was also
considered, but not pursued further due to the lack of interpretability about the resulting embed-
ding space. Importance of features in relation to each individual PCA axis can be found at
attention-motifs.github.io/s/fig/feat-importance , but a detailed analysis of the influ-
ence of various features on the resulting groupings of heads is absent from this work.

Supervised classification

A supervised approach to classification of attention heads by their patterns is likely impractical.
Manual inspection and labeling of attention patterns does not appear to be practical, since a large
number of attention patterns contain structure that is difficult to describe. Using the labels of known
classes of attention patterns may be useful to condition the embedding of attention heads from the
distance matrix, but was not explored in this work. A key obstacle is the relatively small number
of labels, and the small subset of models for which they exist (gpt2-small is often described as
the “model organism” of interpretability). The differences in produced attention patterns between
models may further complicate any attempts at a supervised approach, if one wishes their method to
generalize to new models.

4.1 Limitations and future work

We do not yet provide a mechanistic analysis of whether heads near in embedding space to a known
class (e.g. induction heads) fulfill the same role. Our method does not directly use any token or
activation information, and this is also by design. More on our motivation behind this is explained in
subsection 4.3. This work only uses the models described in Table 1, a selected variety of GPT-like
autoregressive transformer architectures. A dataset of 128 samples from the “Pile” [Gao et al., 2020]
dataset is used. 6

6See attention-motifs.github.io/s/pile-info .
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Limitations of attention patterns as a tool for interpretability

It may be the case that attention patterns themselves are not useful for interpretability. Perhaps
polysemanticity makes studying attention patterns of individual heads entirely useless, or perhaps the
OV circuit sometimes negates the attention in a way that makes the patterns unimportant. We believe
our work provides some evidence to the contrary, but acknowledge this possibility. If it is in fact
the case that attention patterns are not useful, however, we believe that this is a hypothesis at least
worth testing. Our work provides the foundation for doing so, by creating a tool for researchers to
investigate if there is any correlation in the heads they study between head functionality and attention
pattern structure.

4.2 Broader impacts

Risks from the misuse and misalignment of AI systems are widely discussed in the literature, as is the
application of interpretability to mitigate those risks [Räuker et al., 2023]. Work in interpretability is
often constrained by high computational costs [Cunningham et al., 2023, Braun et al., 2025], and it
is our view that there is a niche for low-cost methods to work in concert with more expensive ones.
Our work helps fill this niche, by providing a way to identify potentially similar heads across many
different models, thereby leveraging the identification of a small number of heads that is found to be
of interest using other, more expensive, methods.

4.3 Contributions

We present a method for embedding the attention patterns of attention heads in pretrained LLMs, and
show that this corresponds with visually apparent motifs in the attention patterns. We utilize this
embedding of attention patterns to create an embedding of the attention heads themselves, and show
that this embedding groups together some known classes of attention heads. Most importantly, we
present easy-to-use tools (attention-motifs.github.io) that utilize our method, and allow researchers to
explore the embedding space of heads, explore known classifications, and find attention heads with
similar patterns to any given head.

One interpretation of why attention in LLMs works best when multi-headed is because different
“views” of token similarity may be required. E.g., one attention head might view countries and their
capitals as similar (“Paris” → “France”, “Tokyo” → “Japan”) , while another may view countries as
similar if they are on the same continent (“Japan” ↔ “Vietnam”, “France” ↔ “Spain”). In the same
sense, we aim to complement existing methodology by providing a different view on what properties
attention heads possess. We anticipate that this method will accelerate research in interpretability by
providing an interpretable, extensible, and inexpensive method to find heads across many models
which may be similar in role to a head whose functionality has been identified.
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Home Pattern Lens Classifications Pattern Embeddings Head Embeddings Head Embedding Table

Filter Visible Heads:

Prompts: 5 Nearby heads: 2 Most distant: 0

Randomize prompts Same-class heads: 1 Random heads: 0

Head Distance
rank /n_heads

Classifications MvAhqnS0TNvuUVqnWRc6iw

123 tokens
H4HDgYJYSOVMPefeS6ScXw

90 tokens
NisOZ7c7c0Epw0W_G6uRzA

89 tokens
ZqzGtKBPmG10xFlsCKPulA

92 tokens
iOMtL1a3s4c4yM_8FMiCYQ

43 tokens

gpt2-small:L5:H5

gpt2-
medium:L5:H8

No classifications

gemma-2-2b:L6:H2 No classifications

gpt2-small:L5:H1

Current Head: gpt2-small:L5:H5
Pattern Lens: current head | all displayed heads

Switch to | Add to current viewSearch heads (e.g., gpt2-small:L5:H3)

Models ( 6 / 6 ) ▼ Layers ( 26 / 26 ) ▼

0.000
(Current)

0/1519

IOI:Induction

SAE-survey:Induction

greater-than:YY Identifier

3.026

2/1519

3.217

3/1519

8.898

872/1519

SAE-survey:Induction

greater-than:YY Identifier

?

Figure 9: Another view of the interface. Displayed is gpt2-small:L5H5 , identified by both Wang
et al. [2022] and Krzyzanowski et al. [2024] as an induction head Olsson et al. [2022]. By the “eyeball
norm,” these patterns look nearly identical for any given prompt.
attention-motifs.github.io/v1/vis/attnpedia/index.html?head_viewing=gpt2-small~L5~H5

A.1 Models used

Model Name Parameter count Layers Heads (per layer) Citation
gpt2-small 85M 12 12 Radford et al. [2019]
gpt2-medium 302M 24 16 Radford et al. [2019]
Llama-3.2-1B 1.1B 16 32 Grattafiori et al. [2024]
pythia-1b 805M 16 8 Biderman et al. [2023]
gemma-2b 2.1B 18 8 Team et al. [2024a]
gemma-2-2b 2.1B 26 8 Team et al. [2024b]

Table 1: Models used in experiments. Model loading, inference, and activation inspection was done
via the TransformerLens Nanda and Bloom [2022] package.
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A.2 Feature covariance and importance
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Figure 10: Importance (top) and covariance (bottom) of all features.

A.3 Feature PCA
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Figure 11: Variance explained by PCA (E) of the feature space Ê of all attention patterns.
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Figure 12: Different projections of the PCA of the embedding space, colored by model. Note that
each model has a similar distribution in this space.
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A.4 Head Embeddings
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Figure 13: Pairwise distance D between all heads computed via Equation 3. Models are de-
noted by colored blocks on the top and left, with lighter colors representing earlier layers and
darker colors representing later ones. Each pair of attention heads is exactly one pixel, and the
different numbers of layers and heads per layer causes the difference in size between the colored
blocks. Red gridlines separate the models from each other. It is of note that for most models,
there is a clear distinction between early layer heads and later layer heads. More information:
attention-motifs.github.io/s/fig/head-dists-heatmap
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Figure 14: 2D Embeddings via Isomap (left), UMAP (center), and t-SNE (right) for var-
ious neighborhood sizes (top to bottom, small to large) of the 144 attention heads of
gpt2-small. Legend of known head classes at the bottom, unknown heads in grey. See
attention-motifs.github.io/s/fig/head-embed/gpt2-small for an interactive version
of the 3D embeddings.
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Figure 15: 2D Embeddings via Isomap (left), UMAP (center), and t-SNE (right) for var-
ious neighborhood sizes (top to bottom, small to large) of all attention heads from all
models. Legend of known head classes at the bottom, unknown heads in grey. See
attention-motifs.github.io/s/fig/head-embed/all for an interactive version of the 3D
embeddings.
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