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Abstract

Attention patterns in Large Language Models often exhibit clear structure, and
analysis of these structures may provide insight into the functional roles of the
attention heads that produce these patterns. However, there is little work addressing
ways to analyze these structures, identify features to classify them, or categorize
attention heads using the patterns they produce. To address this gap, we 1) create a
meaningful embedding of attention patterns; 2) use this embedding of attention
patterns to embed the underlying attention heads themselves in a meaningful latent
space; and 3) investigate the correspondence between known classes of attention
heads, such as name mover heads and induction heads, with the groupings emerging
in our embedding of attention heads.

1 Introduction

As Large Language Models (LLMs) [23| 33]] become ever more powerful and widely deployed,
ensuring the safety and security of these systems becomes paramount. Mechanistic interpretability
aims to help us understand the internals of Al systems in order to make them more trustworthy and
safe, by mapping those internals to human-comprehensible algorithms and concepts [27, 25]. A key
obstacle to interpretability is the sheer number of components present in modern LLMs, making the
manual inspection of the components prohibitively time consuming. Recent advances in using Sparse
Autoencoders (SAEs) to decode the meanings of residual stream vectors have relied on the automatic
tagging of learned sparse features with legible explanations using LLMs [6} 2], but no such automatic
tagging exists for attention patterns. SAEs have been used to attempt to identify the role of attention
heads [[15} [12], but SAEs are themselves not without issues [[16]]. Furthermore, this approach discards
any spatial information from the attention patterns.

Despite the presence of polysemanticity [7] in attention heads [[7,[14], manual inspection of attention
patterns can prove valuable in determining the function of the attention head that produced them
(20528, [13]][35} Figure 16]. Despite the presence of clearly visible structures in a variety of attention
heads and a variety of categories of attention heads identified [20}, 33}, [13] [8] 26 [10]], to
our knowledge a taxonomy of attention patterns and the heads that produce them has not yet been
developed [37]]. In this work, we embed the attention pattern matrices themselves using handcrafted
features, and observe clear structure in the latent space of the embedding (section 2)). Using these
embeddings of patterns, we construct a metric of distance between attention heads, projecting this
new embedding of attention heads to a viewable low-dimensional space where we compare our
unsupervised embedding with known classes of attention heads (section 3)).

By contrast with previous work|[5} [34} 136, 21]], our method focuses on the attention pattern matrices
themselves and does not rely on any token or residual stream information. Attempts to categorize
heads only by the tokens or features of the residual stream they attend to [[15] are limited because
heads may attend to similar parts of the residual stream but be quite different in their broader
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functionality A1 vs As), or, on the other hand, they may attend to vastly different parts
of the residual stream but be similar in functionality Az vs A3). Itis our hope that this
work will accelerate research in interpretability by providing an incredibly chea;ﬂ way to cluster the
functionality of attention heads.

This paper contains extensive links to our accompanying website: attention-motifs.github.io,
which contains interactive versions of many figures, as well as a variety of tools that may be useful to
researchers in interpretability. Use of interactive figures and tools requires only a web browser. In
particular, the browser tool at | attention-motifs.github.io/s/head-info | allows the user
to enter any head from the listed models and see the attention patterns produced by the
head, links to other works which mention the head, the location in embedding space of this head, and
information and links to attention heads nearby in embedding space.

Ay: capitals attend to preceding country tokens A, all tokens attend to preceding countries A3: all tokens attend to preceding years

Figure 1: An artificially constructed example of classes of heads whose classification based on their
attention patterns or functionality differs from a classification based on QK or pure token analysis,
to explain our intuition. A; (left) has capital cities attend to their countries (“Tokyo” to “Japan”,
“Paris” to “France”; A, (center) has any token attend to tokens denoting a country; As (right) has any
token attend to tokens denoting a year. If we were to analyze the actual tokens each head attends to,
or analyze the QK circuit itself, we might conclude that A; and A, are more similar to each other
than to A3. Inspection of the attention patterns suggests that As and A3 both exhibit a “vertical bars”
pattern, while A; exhibits a diagonal pattern. The similarity of the “vertical bars” pattern observed
for A5 and As indicate that the heads are performing the same function: both heads always attend to a
certain class of token — despite those classes being entirely different between the two heads. Note that
these are not actual attention patterns from trained models, and are provided only for illustrative
purposes. See for examples of actual attention patterns.

2 Embedding patterns

2.1 Type signature of the embedding

Dot-product attention for autoregressive transformer models [33]] over some input residual stream
X € R™*? can be written as

XWoWEXT —00 j>i
attention(X) := o (Q\de + M) Woy (X) where M, ;= {0 0 j zz
A
(H

where ¢ is the row-wise softmax function, and M is the autoregressive masking matrix. The attention
pattern is the output of the softmax, the matrix A € R™*™. Examples of these attention patterns can

be seen in

'All experiments were performed on a laptop with an 8-core i9-11950H CPU, 64GB RAM, and A5000
Mobile GPU with 16GB VRAM, requiring several minutes. Preliminary experiments with features which were
eventually discarded took up to several hours.


https://attention-motifs.github.io
 https://attention-motifs.github.io/s/head-info 

55

56
57

58

59
60
61
62

63
64

We can define the set of all possible attention patterns as

AT=T1
P = U Pn where P, = A e R Ai,j € [0, 1] 2)
neN Ai,i+k =0 VkeN

The attention pattern of the head at layer L and index H, for an LLM with parameters 6 and given a
prompt s is given by
LLMg, 10 (8) € Pjs| € Ps) or, equivalently LLM[h;](s) € Py 3)

Where h; is a particular head from a particular model — for example, LOH1 from

If we entertain the hypothesis that there is a feature of the structure of LLMy 1, ps(s) that is invariant
to our dataset sample s ~ D and indicates the function of the head LLMy 1, 5s, we expect that there
exists an embedding function £, which maps attention patterns to a meaningful latent space in which
the location of the head represents the structure we care about.

E:P =R “

In [subsection 2.3 we describe the results of finding such a function £ by using PCA[22] to reduce
the dimensionality of a large set of features (described in[subsection 2.2)).

LOHO
L1HO
L2HO

L3HO l
1
|

1 : I i 1 i
L4HO l ! L, 1 ' '.
= | i . i

Figure 2: Actual attention patterns from [gpt2-small] Each row corresponds to a different head
in the model. Each column represents one of 6 random prompts. Note that each head displays
the same motif regardless of the input prompt. Interactive version, with prompt information:
attention-motifs.github.io/s/fig/patterns-example .


https://attention-motifs.github.io/s/fig/patterns-example
https://attention-motifs.github.io/s/heads/gpt2-small.L0H0
https://attention-motifs.github.io/s/heads/gpt2-small.L1H0
https://attention-motifs.github.io/s/heads/gpt2-small.L2H0
https://attention-motifs.github.io/s/heads/gpt2-small.L3H0
https://attention-motifs.github.io/s/heads/gpt2-small.L4H0
 https://attention-motifs.github.io/s/fig/patterns-example 
 https://attention-motifs.github.io/s/fig/patterns-example 
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2.2 Motivation for chosen features

In order to find a suitable embedding £, we use handcrafted features to compute about attention
patterns. In particular, these features include basic statistics (mean, variance, etc.) about the values on
the diagonal and first column of the attention pattern, as well as similar features about the distributions
of values in gram matrices of the pattern and skew of the pattern. Features, along with their importance
and covariance, are shown in

Our motivation for this choice of features is that visually, some of the most common motifs in
attention patterns include:

» Large values along the diagonal, meaning every token attends to itself.  See
gpt2-small:LOH1|, gpt2-small:LOH3|, gpt2-small:L1H11|. This motivates includ-
ing statistics about the diagonal values trace(A).

* Large values on the first token, sometimes known as an “attention sink™ [38]]. Since the
first token in autoregressive attention cannot contain information about any token besides
itself, it is speculated that these attention sinks are a way for the head to “shut off.” See
gpt2-small:L3H4|, gpt2-small:L5H1, gpt2-small:L11H9. This motivates including
statistics about the values in the first column A[:, 0].

3

* “vertical bars,” meaning that the same tokens from the context are attended to regardless of
the current token. See gpt2-small:LOHO , |gpt2-small:L1H9, gpt2-small:L10HO .
This motivates including statistics about the gram matrix AA* . If vertical bars are present
in A, then rows are likely very similar, causing the gram matrix to have large value

Horizontal bars, although rarer, motivate including the gram matrix of the transpose A7 A.

* “recent tokens” where most of the attention is concentrated somewhere close to the diagonal
(but not entirely on it), regardless of the current token. We assume that these heads rely
primarily on positional embedding information in their QK circuit. See gpt2-small:LOH4
, [gpt2-small:L2H3|, |gpt2-small:L3H2 . This motivates the inclusion of statistics about
the gram matrix S(A)S(A)* of the “skewed” attention pattern where for

A€ Py, S(A)[i, j+ (n—i—1)] := Ali, ]

S(A)[i, 7] indicates how much token j is attending to the token (n — i + 1) tokens before it,
and the gram matrix captures how similar this pattern is between rows: S(A)S(A)T will
have larger values if each token attends to tokens a similar number of tokens behind it.

The above list is not meant to cover all of the motifs observed, nor are the examples given ex-

haustive. We leave most the details of these features, denoted E:P > R?2, to the code:
attention-motifs.github.io/s/feature-info .

2.3 Computing features and the embedding

We apply £ to a dataset of > 10° of attention patterns from open-weight pretrained LLMs (see
[Table 1)) across 128 pieces of text sampled from the “Pile” dataset [9, [19]. We assemble from
the ouput of & a table where each row has a column identifying the attention head (h;), a column
identifying the prompt used (si), and columns with normalized scalar values for the computed
features. Performing a principal component analysis (PCA) on the normalized feature columns, we
find that around 68% of the variance is explained by the first 3 principal components, and nearly 90%
by the first 10 . We construct our embedding £ as the first 16 principal components of £

Plotting the embedding of each pattern in the first 3 components shows us that the distributions
for all model overlap, which is a desired propert of our embedding function . Fur-
thermore, we see in that all attention patterns from a given head appear to occupy a
well-defined region of embedding space. Interactive visualizations of this embedding can be found at
attention-motifs.github.io/embed,

By “vertical bars”, we mean that A[i, j] and A[k, 5] are correlated. If this is the case, then [AA”]; j, is more
likely to be large, as [AAT]; 1, = A[i,:] - Alk, :].

3In general, we expect and see roughly the same motifs in patterns across all language models. If patterns
from different models were mapped to wholly different parts of embedding space, this would not be useful for
finding similar heads across different models.


https://attention-motifs.github.io/s/heads/gpt2-small.L0H1
https://attention-motifs.github.io/s/heads/gpt2-small.L0H3
https://attention-motifs.github.io/s/heads/gpt2-small.L1H11
https://attention-motifs.github.io/s/heads/gpt2-small.L3H4
https://attention-motifs.github.io/s/heads/gpt2-small.L5H1
https://attention-motifs.github.io/s/heads/gpt2-small.L11H9
https://attention-motifs.github.io/s/heads/gpt2-small.L0H0
https://attention-motifs.github.io/s/heads/gpt2-small.L1H9
https://attention-motifs.github.io/s/heads/gpt2-small.L10H0
https://attention-motifs.github.io/s/heads/gpt2-small.L0H4
https://attention-motifs.github.io/s/heads/gpt2-small.L2H3
https://attention-motifs.github.io/s/heads/gpt2-small.L3H2
 https://attention-motifs.github.io/s/feature-info 
 https://attention-motifs.github.io/s/feature-info 
 https://attention-motifs.github.io/s/feature-info 
https://attention-motifs.github.io/embed
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Figure 3:  Different views of the first 3 PC axes of £. Top group: colored by model,
Bottom group: with certain heads selected — all points of a given color are the embed-
dings of the attention pattern, for different prompts, of that head. Interactive versions:
attention-motifs.github.io/s/fig/pca-view

3 Embedding heads

Our embedding £ : P — R tells us something about how similar attention patterns are to each other,
but what we want is a distance metric that tells us about similarities between attention heads. Each
head corresponds to a cloud of points in R€, each point corresponding to that head’s attention pattern
given a prompt s from our dataset D, and we want some notion of similarity between these point
clouds. In this work, we consider the naive metric:

dist(hy, hy) = ﬁ 3 5<LLM[hi](s)) - 5<LLM[hj](s)) )
seD

taking the mean distance between the embeddings of the patterns produced by the heads h;, h; over
prompts s from the dataset D. We discuss the potential of other metrics in

We compute this distance matrix D[i, j] = dist(h;, h;) for all pairs of heads h;, h; (Figure 11), and
project to a viewable low dimensional space using UMAP, Isomap, and ¢-SNE .


https://attention-motifs.github.io/s/fig/pca-view/model
https://attention-motifs.github.io/s/fig/pca-view/model
https://attention-motifs.github.io/s/fig/pca-view/cls
https://attention-motifs.github.io/s/fig/pca-view/cls
https://attention-motifs.github.io/s/fig/pca-view/cls
https://attention-motifs.github.io/s/fig/pca-view/cls
 https://attention-motifs.github.io/s/fig/pca-view 
 https://attention-motifs.github.io/s/fig/pca-view 
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3.1 Comparing with previously identified classes

In this space, we find that known classes of attention heads are generally grouped together. We
assemble a mapping from 6 “head types” to identified heads in[gpt2-small]based on the work of
[35] and [[15)]. Noting that these two works are not always in agreement about the classes of heads for
classes which they both identify (Induction, Duplicate Token, and Previous Token heads), we will
consider a head to be in one of these classes if either work identifies it as such.

We find that when projecting via Isomap [31] with 16 neighbors, groupings of heads with known
functionality become particularly apparent (Figure 5)). In|Figure 6|and [Figure 4] we see that heads
nearby in our embedding exhibit similar attention patterns. Notably, although [35]] only finds “Backup
Name Mover” heads after knocking out the initial name mover heads, our method groups together
all varieties of name mover heads. Our projection does not perfectly group together known classes,
nor do we expect it to. As described in it is conceivable that two heads determined to
be similar through QK circuit analysis (or potentially circuit analysis) might have quite different
attention patterns, or for the inverse case to be true. We elaborate on this point in

gpt2-small:L11H9

gpt2-medium:L12HO

gpt2-medium:L16H15 |
i i
i I
Figure 4: gpt2-small:L11H9 is originally identified by [35] as a “Backup Name
Mover”, while the other heads heads are nearby heads which are not described as
name movers or otherwise in the literature to our knowledge. More information:
attention-motifs.github.io/s/fig/groups/name-mover |.

“gpt2-small’ head embeddings via Isomap, n_neighbors=16 head embeddings of all models via Isomap, n_neighbors=16

previous_token ® duplicate_token

duplicate_token 40 unknown

inhibition previous_token

unknown 30 e induction

15 induction successor

@ name_movers 2 ’ inhibition
successor . @® name_movers

Dimension 1
«
Dimension 1

-10 0 10 20 30 -40 -20 0 20 40 60
Dimension 0 Dimension 0

Figure 5: Embeddings of heads via the distance matrix. Left: Only heads from
Right: heads from models. Projection via Isomap, with 16 neighbors. More pro-
jections can be viewed in the appendix (Figure 12| [Figure 13) or on the website:
attention-motifs.github.io/s/fig/head-embed



https://attention-motifs.github.io/s/fig/groups/name-mover
https://attention-motifs.github.io/s/heads/gpt2-small.L11H9
https://attention-motifs.github.io/s/heads/gpt2-medium.L12H0
https://attention-motifs.github.io/s/heads/gpt2-medium.L16H15
https://attention-motifs.github.io/s/heads/gpt2-small.L11H9
 https://attention-motifs.github.io/s/fig/groups/name-mover 
 https://attention-motifs.github.io/s/fig/groups/name-mover 
 https://attention-motifs.github.io/s/fig/head-embed 
 https://attention-motifs.github.io/s/fig/head-embed 
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Figure 7: The primary interface for interacting with the head embeddings. We allow searching for
any head among the supported models, viewing heads by their classifications, filtering by model or
layer, and viewing heads which are near or far in head embedding space.
attention-motifs.github.io/vl/vis/attnpedia/index.html?head_viewing=gpt2-small~L4~H11


https://attention-motifs.github.io/s/fig/groups/previous-token
https://attention-motifs.github.io/s/heads/gpt2-medium.L11H9
https://attention-motifs.github.io/s/heads/pythia-1b.L3H5
https://attention-motifs.github.io/s/heads/gpt2-small.L4H11
https://attention-motifs.github.io/s/heads/Llama-3.2-1B.L0H2
https://attention-motifs.github.io/s/heads/gpt2-small.L4H11
 https://attention-motifs.github.io/s/fig/groups/previous-token 
 https://attention-motifs.github.io/s/fig/groups/previous-token 
https://attention-motifs.github.io/v1/vis/attnpedia/index.html?head_viewing=gpt2-small~L4~H11
https://attention-motifs.github.io/v1/vis/attnpedia/index.html?head_viewing=gpt2-small~L4~H11
https://attention-motifs.github.io/v1/vis/attnpedia/index.html?head_viewing=gpt2-small~L4~H11
https://attention-motifs.github.io/v1/vis/attnpedia/index.html?head_viewing=gpt2-small~L4~H11
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4 Conclusion

4.1 Limitations and future work

Our work is not mechanistic in nature, and does not aim to be. We do not provide a mechanistic
analysis of whether heads near in embedding space to a known class (e.g. induction heads) fulfill the
same role. Nor does our method use any token or residual stream information, and this is also by

design. More on our motivation behind this is explained in

This work only uses the models described in[Table T} a selected variety of GPT-like autoregressive
transformer architectures. A limited dataset of 128 samples from the “Pile” [9] dataset is use(ﬂ

Metrics

The distance metric defined in[Equation 5]is not the only possible metric, and we do not consider the
distribution of distances for each pair of points, only the mean. In particular, Gromov-Wasserstein
(4, [17] distances and variants may provide a unique perspective. Consider heads h;, h; and inputs
$1, S2. To motivate this, we define

f(hi,hj,su,8v> = ‘(S’(LLM[hz](Su)) — €<LLM[hj](Sv)) .

Consider the case that:

* f(hi,hj,s1,s1) and f(hi, hj, s2, s2) are both very large
* f(hs, hj,s1,52) and f(h;, hj, s2, 1) are both very small

For example, we could have & (LLM[h;](s1)) = & (LLM[h,](s2)) and & (LLM[A](s2)) =
& (LLM[h;](s1)). If this is the case, then would compute distance between h; and
h; to be very large, while a Gromov-Wasserstein or other “earth-mover” metric would compute it to
be small. What this tells us in practice is that ~; and h; are in some sense complimentary, producing
a similar distribution of patterns over the entire dataset but vastly different patterns for any given
pattern s; or s3. We believe exploring other such distance metrics, and in particular comparing
multiple metrics, would be a fruitful area of work.

Features

Certain features were considered but not used due to computational cost or lack of importance
in the PCA. Discarded features include statistics about the absorption times when treating the at-
tention pattern as an absorbing markov chain, various Fourier statistics, and network-theoretic
analyses of the attention pattern as an adjacency matrix. An autoencoder approach was also
considered, but not pursued further due to the lack of interpretability about the resulting embed-
ding space. Importance of features in relation to each individual PCA axis can be found at
attention-motifs.github.io/s/fig/feat-importance |, but a detailed analysis of the influ-
ence of various features on the resulting groupings of heads is absent from this work.

Supervised classification

A supervised approach to classification of attention heads by their patterns is likely impractical.
Manual inspection and labeling of attention patterns does not appear to be practical, since a large
number of attention patterns contain structure that is difficult to describe. Using the labels of known
classes of attention patterns may be useful to condition the embedding of attention heads from the
distance matrix, but was not explored in this work. A key obstacle is the relatively small number
of labels, and the small subset of models for which they exist (gpt2-small]is often described as
the “model organism” of interpretability). The differences in produced attention patterns between
models may further complicate any attempts at a supervised approach, if one wishes their method to
generalize to new models.

Limitations of attention patterns as a tool for interpretability

It may be the case that attention patterns themselves are not useful for interpretability. Perhaps
polysemanticity makes studying attention patterns of individual heads entirely useless, or perhaps the

*See | attention-motifs.github.io/s/pile-info|.
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OV circuit sometimes negates the attention in a way that makes the patterns unimportant. We believe
our work provides some evidence to the contrary, but acknowledge this possibility. If this is in fact
the case, however, it is still important to investigate this line of research and see how much useful
information can be extracted from the attention patterns alone.

4.2 Broader impacts

Risks from the misuse and misalignment of Al systems are widely discussed in the literature, as is the
application of interpretability to mitigate those risks [25]. Work in interpretability is often constrained
by high computational costs [6, 3], and it is our view that there is a niche for low-cost methods to
work in concert with more expensive ones. Our work helps fill this niche, by providing a way to
identify potentially similar heads across many different models, thereby leveraging the identification
of a small number of heads that is found to be of interest using other, more expensive, methods.

4.3 Contributions

We present a method for embedding and clustering the attention patterns of attention heads in
pretrained LLMs, and show that this corresponds with visually apparent motifs in the attention
patterns (the “eyeball norm’). We utilize this embedding of attention patterns to create an embedding
of the attention heads themselves, and show that this embedding groups together some known classes
of attention heads.

One interpretation of why attention in LLMs is multi-headed is because different “views” of token
similarity may be required E} In the same sense, we aim to complement existing methodology by
providing a different view on what properties attention heads possess. We anticipate that this method
will accelerate research in interpretability by providing an interpretable, extensible, and incredibly
inexpensive method to find heads across many models which may be similar in role to a head whose
functionality has been identified.

’E.g., one attention head might view countries and their capitals as similar (“Paris” — “France”, “Tokyo” —
“Japan”) , while another may view countries as similar if they are on the same continent (“Japan” <> “Vietnam”,
“France” <+ “Spain”)
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A.1 Models used

Model Name

Parameter count

Layers

Heads (per layer)

Citation

gpt2-small
gpt2-medium
Llama-3.2-1B
pythia-1b
gemma-2b
gemma-2-2b

85M
302M
1.1B
805M
2.1B
2.1B

12
24
16
16
18
26

12
16
32
8
8
8

[24]
[24]
[L1]
(i
1301

Table 1: Models used in experiments. Model loading, inference, and activation inspection was done
via the TransformerLens [18]] package.

A.2 Feature covariance and importance
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Figure 8: Importance (top) and covariance (bottom) of all features.
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A.3 Feature PCA
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Figure 9: Variance explained by PCA (&) of the feature space & of all attention patterns.
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Figure 10: Different projections of the PCA of the embedding space, colored by model. Note that
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A.4 Head Embeddings
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Figure 11: Pairwise distance D between all heads computed via Models are de-
noted by colored blocks on the top and left, with lighter colors representing earlier layers and
darker colors representing later ones. Each pair of attention heads is exactly one pixel, and the
different numbers of layers and heads per layer causes the difference in size between the colored
blocks. Red gridlines separate the models from each other. It is of note that for most models,
there is a clear distinction between early layer heads and later layer heads. More information:
attention-motifs.github.io/s/fig/head-dists-heatmap

17


 https://attention-motifs.github.io/s/fig/head-dists-heatmap 
 https://attention-motifs.github.io/s/fig/head-dists-heatmap 

isomap, n_neighbors=2

Head Embeddings Comparison
colored by 'type.group' (7 categories)

umap, n_nelghbors=2

tsne, n_neighbors=2

100
Y
»
0 ° e 'YX
.
0 (Y 15 . 5o
10 0 * & L] 25
H 8o i s .
H 2 oo °
B o 8 os °
£ . £
5 5 o
° . 25
0| @ o °
o ° ° -s0i @y Py
2 " » ® o
o0 0ge
s
o °°0 o
0 10
100
o B 0 ) ) ) ) T T = 3 3 ) 5 = o B 3 ? I : 5
Dimension o Dimension o Dimension o
isomap, n_neighbors=4 umap, n_neighbors=4 tsne, n_nelghbors=4
15 L4
n .
.
e
0
10 . L] » P9 o
- ° - o2
{ PR
2 -e [ X V3 L ] [ 2 .
£ . £ rx} g, .
.
') L ]
o -
10 & . iy 4
° ) - oo
" ¥ .
20
o EY ) S0 s o Wo 1 B = 3 )
o
.
2 0 i
2 LJ
10 ¢ e °
- .| e o - °
g » g 50 ° -
8 & o 8 @ 5 °
. ’ Ze £ ) °
£ L £ g F3 ° ]
o
£ ‘. . 5 . q i § &
.
° a O‘. °
-
- ° &
10 .
° 2 s -6 i °
e L]
20
EN o 0 ) ) ) ) 7 3 T 5 : o - En = 3
Dimension Dimension Dimension
isomap. n_neighbors=16 umap, n_neighbors=16 tsne, n_neighbors=16
2 0
®
» B ° . &
15 &
6 .
10 L N
P - o | 3
g g § 2
[ ° § °
£ 8o 4 ° £, ¢
o &°® . o L) . ® L °
o [} - e o0
s o ° N L4
. o8 "
-0 %
D) oo
[ “ -
s o
o o ) B ) ) 1] 3 : G En o = 3
Dimension 0 Dimension 0 Dimension 0
isomap, n_neighbors=32 umap, n_neighbors=32 tsne, n_neighbors=32
o
o
15 ° 6
;
0 %y .
e
. P
- - -2
: L4 55 5 o & ¢
] 2 .
§ § o
E o o °® £ £ °
° ¢ -2
[ ] . o)
-
e : S0 ® a%ty . o
(] ®
-10 4 ® e (]
: . 2 (] -6 .
° * L4
15
o ) o ) % ) o : 3 5 o s S0 35 oo 25 o 75
Dimension 0 Dimension 0 Dimension 0
isomap, n_neighbors=64 umap, n_neighbors=64 tsne, n_neighbors=64
s
2
15 .
.
2 «
10 @
. ° ®e
] ) s
- “n -
5 s 5 5
. o
E L] Eol @ L] E (LY -
° ede g . o 2 é
° . ° ° °
I Y . P - )
e
° 8 04 * ©
10 .I.o 2
® o °® o
- = 3 H = B3 % 3 W I 5 T 3 T5 S s B s o

To
Dimension 0

)
Dimension 0

wrknown @ ihibiton @) Induction @) previous token

duplicate.token

o0 25
Dimension 0

Figure 12: 2D Embeddings via Isomap (left), UMAP (center), and ¢-SNE (right) for var-
ious neighborhood sizes (top to bottom, small to large) of the 144 attention heads of
Legend of known head classes at the bottom, unknown heads in grey. See

attention-motifs.github.io/s/fig/head-embed/gpt2-small | for an interactive version

of the 3D embeddings.
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Figure 13:

embeddings.

2D Embeddings via Isomap (left), UMAP (center), and ¢-SNE (right) for var-
ious neighborhood sizes (top to bottom, small to large) of all attention heads from all
See
attention-motifs.github.io/s/fig/head-embed/all | for an interactive version of the 3D
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