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Abstract— In cluttered real-world workspaces, simple pick-
and-place tasks for robot manipulators can be quite challenging
to solve. Often there is no collision-free trajectory that allows
the robot to grasp and extract the desired object from the
scene. This requires motion planning algorithms to reason about
rearranging some of the movable clutter in the scene so as to
make the task feasible. Our work focuses on solving these pick-
and-place tasks in 3D workspaces where objects may tilt, lean
on each other, topple, and slide. We formulate the problem as a
search over a discrete graph – vertices are configurations of all
movable objects in the scene, and edges encode rearrangement
actions taken to reach one configuration from another. The
search solves a multi-agent pathfinding abstraction of the
problem to generate candidate nonprehensile and prehensile
rearrangement actions. In order to account for complex multi-
body interactions in the scene, and to ensure that object-centric
“interaction constraints” are satisfied during all rearrangement
actions, the search queries a rigid-body physics simulator when
evaluating actions. This helps us guarantee that the solution we
find (i) does not make contact with immovable obstacles, and (ii)
does not tilt movable objects beyond allowed limits nor makes
them fall out of the workspace or move with high velocities.
In addition, we introduce an easy-to-implement parallelisation
scheme to deal with uncertainty in relevant object parameters
(mass and coefficient of friction). We present an extensive
evaluation of this approach in simulation on scenes of varying
difficulty with a PR2 robot.

I. INTRODUCTION

Manipulation Among Movable Objects (MAMO) [1] de-
fines a general class of problems where a robot is given a
manipulation task to complete in the presence of obstructing
clutter in its workspace, some of which is known to be
movable. In order to solve the manipulation task, the robot is
allowed to rearrange the movable clutter while ensuring that
it does not violate any object-centric constraints specified as
part of the problem. These constraints typically encode desir-
able or acceptable qualities of robot-object interactions. For
example, any static or immovable obstacles in the workspace
will have interaction constraints associated with them that
state neither the robot nor any movable object can make
contact with them. Similarly, we can include constraints on
how far the robot is allowed to tilt movable objects, whether
they can be toppled over, and how fast the robot can move
them around when pushing them.

This problem setup can be used to describe common uses
of robot manipulators tasked with packing boxes in ware-
houses, assembling structures in manufacturing industries,
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Fig. 1. An example MAMO problem to retrieve the beer can (object-
of-interest or OoI, yellow outline). The yogurt and almond beverage are
movable objects (blue outlines). All other objects in the scene are immovable
obstacles (red outline).

and assisting humans inside households. As an example,
Fig. 1 shows a MAMO problem a robot may be asked to
solve. The task can be stated very simply – retrieve the can
of beer (object-of-interest or OoI, outlined in yellow) from
the refrigerator shelf. The complexity in solving this problem
arises from the fact that the robot is only allowed to move
the yogurt and almond beverage (movable objects outlined in
blue). Furthermore, it cannot make these objects tilt beyond
25◦ along any axis, topple, or make contact with the (fragile)
immovable obstacles outlined in red (eggs, cup of coffee, and
glass bottles).

Since the goal for the robot is specified with respect
to the OoI only, solving MAMO problems of this nature
requires answers to three additional questions – which objects
should the robot rearrange, where should they be relocated,
and how can they be moved while satisfying all interaction
constraints. Existing approaches simplify the problem in one
of two major ways. If we restrict the robot to rearrange
objects via prehensile (pick-and-place) actions only [1]–
[7], the task is greatly simplified to finding a sequence of
collision-free trajectories that make the OoI retrievable. This
requires relatively simple and computationally cheap colli-
sion checking since once any object is grasped by the robot,
it can be assumed to be rigidly attached to the kinematic
chain for motion planning purposes. However, these methods
do assume access to known grasp poses for all objects, and
known and accessible stable placement locations for them.
Even if this was feasible, not all objects are graspable. In
fact, for our PR2 robot, both the movable objects in Fig. 1



Fig. 2. The robot pushes two movable objects to the right side of the shelf
in order to retrieve the OoI. Even though the movable objects tilt and lean
on each other, they remain within acceptable limits specified in the problem.

are wider than what can fit in one end-effector. Thus the PR2
can only rearrange them via nonprehensile (pushing) actions.

The second simplification used to solve MAMO problems
allows nonprehensile rearrangements, and consequently uses
a physics-based simulator to forward simulate the effect
of robot actions on the configurations of objects in the
scene. However, existing approaches limit nonprehensile
interactions to a planar surface [8]–[14]. This simplification
ignores realistic interaction constraints on objects tilting and
toppling.

In prior work [15]–[17], we have addressed the problem
of nonprehensile rearrangements in 3D workspaces where
objects may tilt, lean, topple, slide etc. The key contri-
bution in these works was formulating an abstract multi-
agent pathfinding (MAPF) relaxation to the MAMO problem
where the movable objects are artificially actuated and are
therefore able to rearrange themselves out of the way of the
robot arm as it retrieves the OoI. This directly informs us
of rearrangement actions that are suitable for the robot to
try, thereby answering the questions of which objects the
robot should rearrange and where they should be moved.
A push action planner uses the MAPF solution to compute
pushing trajectories to realise the suggested rearrangements
in the real-world. Our planning algorithms are given access
to a physics-based simulator (PyBullet [18]) to ensure all
interaction constraints are satisfied while solving the task.
The simulator is used to forward simulate the effect of
any pushing actions and check for any constraint violations.
Fig. 2 shows a solution found by our M4M (“Multi-Agent
Pathfinding for Manipulation Among Movable Objects”)
algorithm [15] being executed in simulation.

This paper builds on the Enhanced-M4M or E-M4M al-
gorithm presented in [16]. E-M4M solves MAMO problems
by formulating a discrete graph search that searches over
orderings of object rearrangements, different rearrangements
of the scene, and different ways to rearrange each object.
E-M4M only allowed the robot to use pushing actions to
rearrange movable objects. In this paper we introduce the use
of pick-and-place style prehensile rearrangements as well.
We also relax the assumption made by M4M and E-M4M
that required perfect knowledge of the physics properties
(mass and coefficient of friction) for all objects.

Algorithm 1 Discrete Search
1: procedure SEARCH(vstart, Vgoal, f )
2: OPEN ← ∅
3: Insert vstart into OPEN with priority f(vstart)
4: while OPEN is not empty and time remains do
5: v ← OPEN.TOP()
6: if v ∈ Vgoal then
7: return RECONSTRUCTPATH(v)

8: for v′ ∈ GETSUCCESSORS(v) do
9: if EVALUATEACTION(v, v′) then

10: Insert/update v′ in OPEN with priority f(v′)

11: return ∅

II. BACKGROUND: DISCRETE GRAPH SEARCH

Algorithm 1 presents a pseudocode for a discrete graph
search algorithm. We will use this to highlight the corre-
sponding key pieces of the E-M4M algorithm. The SEARCH
method is a basic graph search over a discrete graph G =
(V,E) where vertices v ∈ V are the search states (V is
thus the search space) and edges e = (u, v) ∈ E represent
actions/transitions that take us from state u to state v.
SEARCH takes three input arguments – vstart is the start state
or root of the search tree from where we would like to find
a path, Vgoal ⊂ V is the set of goal states where a solution
path may terminate, and f is a priority function that allows
us to preferentially select more promising states (usually in
terms of “closeness” to Vgoal) to grow the graph from.

OPEN is a priority queue that contains states ordered ac-
cording to the function f . The function GETSUCCESSORS :
V → P(V ) returns the set of all states that may be
reached from the input state. As such, the set of states
returned by GETSUCCESSORS(v) can be considered suc-
cessors/neighbours of v in G. In order to check whether
the transition from v to one of its neighbours v′ is valid,
we call EVALUATEACTION(v, v′). If the transition is found
to be valid, we may consider further growing the graph
(towards Vgoal) from v′. Once we reach a state in Vgoal, we
can backtrack from it to vstart along valid edges in the graph
and return the solution path found.

III. E-M4M GRAPH SEARCH

Each state in the E-M4M graph includes the configuration
of all objects in the scene. The corresponding search space
for the E-M4M search is then the space of all rearrange-
ments that may be achieved. A valid edge e = (v, v′)
between two states implies that we have found a robot arm
trajectory that rearranges the objects from configuration v to
v′ while not violating any interaction constraints. E-M4M is
unique in the way it implements the GETSUCCESSORS and
EVALUATEACTION functions for MAMO problems.

For a state v input to GETSUCCESSORS, in order to
determine which other states v′ are its neighbours, E-M4M
formulates and solves an abstract MAPF problem. Specifi-
cally, it first computes a robot arm trajectory that success-
fully retrieves the OoI in the absence of movable objects.
The volume swept by the robot arm along this trajectory
creates a “negative goal region” (NGR) [9] that, if devoid
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Fig. 3. (a) A simulated MAMO problem where the robot must extract the
yellow OoI. (b) The initial negative goal region (NGR) computed for this
scene is shown in gray, with collision models for all other objects shown in
appropriate colours. (c) A 2D projection of the MAPF solution shows that
objects A and B vacate the NGR along the pink paths.

of movable objects, will allow successful retrieval of the
OoI. For the abstract MAPF problem, movable objects are
artificially actuated and tasked with moving themselves out
of the initial NGR while avoiding collisions with each other
and all immovable obstacles. We use Conflict-Based Search
(CBS) [19] as our MAPF solver. Fig. 3 shows a simulated
MAMO problem, the initial NGR for the problem, and a
2D visualisation of the MAPF solution for the problem. For
each object (independent of others) that moves as part of the
MAPF solution, E-M4M creates a successor state where the
desired configuration for that object is the one achieved at
the end of its path in the MAPF solution.

In order to verify whether (i) there exists an action
(robot arm trajectory) corresponding to this transition, and
(ii) whether that action is valid with respect to interaction
constraints, E-M4M queries a nonprehensile push planner
and physics-based simulator within the EVALUATEACTION
function. The EVALUATEACTION function can be broken
down into three main steps. First, E-M4M computes an
appropriate end-effector pose in SE(3) on the basis of the
path found in the MAPF solution and plans a trajectory
to this pose in the configuration space of the robot (while
avoiding collisions with all objects). If this trajectory is
found, it uses inverse kinematics (IK) (along the MAPF
path) to compute the pushing action. If the pushing action
is found (IK does not hit joint limits or any immovable
obstacles), the pushing action is forward simulated in the
physics-based simulator for constraint verification. This helps
not only determine the validity of an edge e = (v, v′) in the
E-M4M search graph, but also the exact state v′ achieved
by the action corresponding to this edge (if valid).

IV. MODIFICATIONS TO E-M4M

A. Adding Prehensile Rearrangement Actions

Given the structure of the E-M4M graph search, it
is straightforward to add different rearrangement actions
that we would like the robot to be capable of execut-
ing. In this paper, we introduce the use of pick-and-place
rearrangement actions within the E-M4M algorithm. The
GETSUCCESSORS routine is mostly unchanged; only the
instantiation of outgoing edges from a state v is modified.
For objects that are “graspable”, i.e. those that will fit inside
the end-effector for our robot, we now create two successor
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Fig. 4. (1)− (2) The movable cylinder in the front is pushed to the left.
(3)− (4) The movable cylinder in the back is picked up and moved to the
right. (5) The movable cylinder in the front is pushed further to the left.
(6) The OoI can now be retrieved.

states v′1 and v′2 corresponding to rearranging an object
by a push action and pick-and-place action respectively.
The edge e = (v, v′1) is evaluated the same as before,
described in Section III. Edges corresponding to pick-and-
place rearrangement actions such as e = (v, v′2) proceed
similarly – we first compute a pick-and-place trajectory, and
if one is found, validate it in the simulator.

In order to compute a pick-and-place trajectory, we do
assume access to known grasp poses for each object. The
rearrangement action itself can then be broken down into
four parts – a trajectory to reach the grasp pose, the grasp
maneuver, a trajectory to reach the placement pose, and the
placement action. For pick-and-place rearrangement actions,
we impose the restriction that the entire trajectory must be
free of collision with all objects (movable or immovable).
The placement pose is obtained from the MAPF solution
path for the object we want to rearrange. Grasping and place-
ment actions are hardcoded movements of the end-effector
relative to the object from the grasp pose and placement
pose repectively. If such a collision-free trajectory is found,
we go on to simulate the grasping and placement actions
in the simulator to ensure that no interaction constraints
are violated. We do not need to simulate any other parts
of the trajectory since by construction they are collision-
free and hence contact-free and therefore cannot violate any
interaction constraints. Fig. 4 shows a sequence of images
where we are able to rearrange the scene with a combination
of nonprehensile and prehensile actions in order to solve the
MAMO problem.

B. Robustness to Object Parameter Uncertainty

Prior to planning, E-M4M assumes perfect knowledge
about which objects are in the scene, where they are, and
what their physical properties (masses, and coefficients of
friction) are. There has been a lot of advancement in lo-
calising objects in a scene with great accuracy [20], [21].
However, accurately perceiving the mass of an object or
computing its coefficient of friction remains a challenge. We
would like to be robust to some bounded uncertainty in these
physical properties of objects.
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Fig. 5. MAMO problems of varying difficulty. The difficulty level is
determined by the number of movable objects that overlap with the initial
NGR we compute (sec:em4m).

Fortunately, our use of a physics-based simulator for action
evaluation makes this easy to implement. Taking inspira-
tion from existing work [22], [23], we utilise parallelised
simulations of the same trajectory in scenes where each
object is instantiated with different values of their mass and
coefficient of friction. To be precise, given some budget
on the number of parallelised simulators we are allowed
to launch, we instantiate multiple copies of each object
within each simulator. For each object copy, we sample
its mass and coefficient of friction from within the known
bounded uncertainty we assumed for that parameter. We
ensure that contacts and collisions within the simulator are
computed appropriately – object copies do not collide with
each other, but they do collide with one copy each of all other
objects. An action is valid or not based on some user-defined
threshold δ ∈ (0, 1] for success. Given N parallel simulators
and M copies of each object, we say that an action is valid
if max(1, ⌊δNM⌋) samples are valid in simulation.

V. EXPERIMENTAL ANALYSIS

We compare the performance of the original version of
E-M4M [16] with the one introduced in this paper. For the
version introduced in this paper, we use N = 2 simulator
instances in parallel each containing M = 4 copies of an
object. With δ = 0.8, we say that an action is valid if it
succeeds in max(1, ⌊0.8× 2× 4⌋) = 6 simulations (out of
2× 4 = 8). E-M4M is effectively run with N = 1, M = 1,
and δ = 1. For planning purposes, including all simulations,
E-M4M uses sampled values for all parameters. However,
to check whether a found solution will succeed in the real-
world, we simulate it with the true object parameters.

Both algorithms are run on the same 36 randomly gen-
erated MAMO scenes containing one OoI, four immovable
obstacles, and varying numbers of movable objects with a
180s planning timeout. The difficulty of a scene is deter-
mined by the number of movable objects that overlap with
the initial NGR we compute (details in Section III) – one
for Easy, two for Medium, and three or more for Hard
problems. Fig. 5 shows an example scene of each difficulty
level. We include 12 scenes from each difficulty level.

Table I shows the result of this quantitative comparison be-
tween the original version of E-M4M and the one presented
in this paper. We present the number of problems solved by
each algorithm, and for the solved problems only we provide
numbers for – the average number of rearrangement ac-
tions in the solution, minimum/median/maximum times spent

TABLE I
MAMO PLANNING WITH E-M4M- PROBLEMS SOLVED, avg ± std

NUMBER OF REARRANGEMENT ACTIONS, AND min/median/max

PLANNING, MAPF, AND SIMULATION TIMES

Metrics Difficulty Planning Algorithms

E-M4M [16] This Paper

Problems
Solved

Easy 11 12
Medium 10 12
Hard 9 8

# Rearrangement
Actions

Easy 2.73 ± 1.0 2.5 ± 0.9
Medium 3.9 ± 1.37 3.42 ± 1.31
Hard 4.22 ± 1.40 3.38 ± 1.3

Total
Time (s)

Easy 6.6 / 11.3 / 57.7 7.2 / 17.0 / 162.5
Medium 10.7 / 37.2 / 149.3 7.5 / 55.2 / 128.0
Hard 35.1 / 80.0 / 108.6 37.0 / 55.6 / 95.5

MAPF
Time (s)

Easy 0.006 / 0.04 / 0.9 0.005 / 0.1 / 1.9
Medium 0.02 / 0.3 / 12.3 0.01 / 0.1 / 3.6
Hard 0.07 / 0.3 / 3.5 0.05 / 0.3 / 0.7

Simulation
Time (s)

Easy 3.3 / 7.1 / 46.5 2.0 / 9.6 / 77.2
Medium 5.7 / 17.6 / 84.6 4.0 / 17.3 / 46.1
Hard 26.7 / 47.0 / 75.9 18.5 / 26.0 / 48.4

overall, solving MAPF problems, and simulating actions. We
can see that with the addition of prehensile rearrangement
actions, and making the algorithm robust to parameter uncer-
tainties, we are able to solve more problems with a smaller
sequence of rearrangement actions on average. Clearly, for
the version of E-M4M presented in this paper, we would
expect the algorithm to spend more time computing trajec-
tories for rearrangement actions to be simulated since in
addition to the pushing trajectories computed by E-M4M,
we are now also computing pick-and-place trajectories. This
is reflected in the amount of the total planning time that is
not spent solving MAPF problems and not spent simulating
actions. The benefit of including prehensile rearrangements
in particular is reflected in less time spent solving MAPF
problems and simulating actions. This is because if we
find a valid pick-and-place rearrangement action, given the
strict conditions required of it (Section IV-A), we exactly
achieve the desired configuration of a movable object as
suggested by our MAPF solver. This results in much greater
progress towards the goal of solving the MAMO problem in
comparison to a push action which is subject to the complex
multi-body contact dynamics that are not modeled by the
MAPF solver and can lead to a successor state much different
than the one the MAPF solver wanted to achieve.

VI. CONCLUSION

This paper extends our prior work on solving MAMO
problems with a graph search algorithm E-M4M [16]. We
introduce the use of prehensile rearrangement actions within
E-M4M, and make it robust to known and bounded uncer-
tainties in physical properties of objects by parallelising the
simulation of actions to check their validity. Quantitatively
we show the improvements these additions provide over the
original E-M4M algorithm.
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