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ABSTRACT

The dominant paradigm for RLHF is online and on-policy RL: synchronously
generating from the large language model (LLM) policy, labelling with a reward
model, and learning using feedback on the LLM’s own outputs. While perfor-
mant, this paradigm is computationally inefficient. Inspired by classical deep RL
literature, we propose separating generation and learning in RLHF. This enables
asynchronous generation of new samples while simultaneously training on old
samples, leading to faster training and more compute-optimal scaling. However,
asynchronous training relies on an underexplored regime, online but off-policy
RLHF: learning on samples from previous iterations of our model. To under-
stand the challenges in this regime, we investigate a fundamental question: how
much off-policyness can we tolerate for asynchronous training to speed up learn-
ing but maintain performance? Among several RLHF algorithms we tested, we
find that online DPO is most robust to off-policy data, and robustness increases
with the scale of the policy model. We study further compute optimizations for
asynchronous RLHF but find that they come at a performance cost, giving rise to
a trade-off. Finally, we verify the scalability of asynchronous RLHF by training
LLaMA 3.1 8B on an instruction-following task 40% faster than a synchronous
run while matching final performance.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) is critical for training AI assistants based
on large language models (LLMs) to ensure they follow instructions (OpenAI, 2022), are helpful
and harmless (Bai et al., 2022a), and are factually accurate (Roit et al., 2023). As LLMs have
increased in size and capability, the scale and complexity of RL fine-tuning for LLMs has also
substantially increased. State-of-the-art LLMs are often fine-tuned for weeks (Llama Team, 2024;
Google Deepmind, 2024), presumably with large amounts of compute resources.

Yet the dominant paradigm for RLHF, online on-policy RL (Ouyang et al., 2022), is computationally
inefficient. Online RL methods generate a batch of responses from the model, get feedback on this
batch (e.g. from a reward model), and update on-policy with feedback on exactly this model’s re-
sponses, before generating the next batch. Recent offline methods efficiently learn directly from
a fixed dataset of responses and feedback (Rafailov et al., 2023) but they underperform online
methods (Xu et al., 2024). Since feedback on a model’s own generations is crucial to good per-
formance (Tang et al., 2024a), we propose generating responses online but learning off-policy on
previous iterations’ feedback. By running both processes asynchronously and leveraging new effi-
cient generation libraries (Kwon et al., 2023), we can greatly reduce compute time.

This work makes a first step into efficient, asynchronous RLHF, demonstrates strong results and
finds insights on the widely-used RLHF benchmark, TLDR summarization (Stiennon et al., 2020)

1. We propose asynchronous RLHF and demonstrate that it requires off-policy learning, an
underexplored direction for RLHF research. Moreover, we show that RLHF performance
generally degrades with more off-policyness.

2. We evaluate many popular RLHF losses and find that Online DPO is most robust to off-
policy data and robustness improves with the size of the policy model.
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Figure 1: Asynchronous off-policy RLHF is more computationally efficient, and matches the
win-rate of synchronous on-policy RLHF on TLDR across model scales. On 4×A100 GPUs, it
results in training a 2.8B Pythia model 25% faster and improvements in speed increase with scale.

3. We scale model sizes and show that asynchronous RLHF training speed scales better than
synchronous RLHF. We achieve the same performance as synchronous state-of-the-art
methods ∼ 25% faster with 2.8B models (Figure 1).

4. We demonstrate ways to further optimize compute efficiency in generation-constrained and
training-constrained scenarios. In our setup, we improve further and achieve nearly the
same performance ∼ 250% faster with 2.8B models.

5. In Appendix B, we scale up further and train a general purpose chatbot using LLaMA
3.1 8B. Asynchronous RLHF achieves equal performance as measured by GPT-4o while
training ∼ 40% than a synchronous approach that leverages fast LLM generation libraries.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

RLHF is a method to align models with hard-to-quantify human preferences using human or syn-
thetic feedback (Christiano et al., 2017; Bai et al., 2022b). In the standard setup for LLMs (Ziegler
et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022), we first gather a dataset of prompts x and
two responses y, y′ (e.g. from our model) and have humans judge which response is better and
which is worse. Next, we learn a reward model rϕ(x, y) on the dataset to approximate human judge-
ment of responses. Finally, we train our model by learning online: iteratively generating responses
to prompts, labelling responses with the reward model, and using RL to optimize the reward. As
LLMs are initialized from pretrained weights, RLHF seeks to optimize the reward while maintaining
pretrained model abilities. We add a Kullback-Lieber divergence (KL) loss to the objective to keep
the model πθ close to the initial model πinit in order to reduce reward model overoptimization (Gao
et al., 2022) and alignment tax (Askell et al., 2021).

max
πθ

Ey∼πθ(x) [r(x, y)− βKL[πθ(y|x)∥πinit(y|x)]]

The standard method for this approach is Proximal Policy Optimization (PPO; Schulman et al.,
2015) which uses an actor-critic framework to optimize the objective. REINFORCE Leave-One-Out
(RLOO; Ahmadian et al., 2024) simplifies PPO by reducing to REINFORCE (Williams, 1992) and
empirically estimating a baseline using multiple samples instead of using a value network. Recently
Guo et al. (2024); Calandriello et al. (2024) find competitive performance with Online DPO on the
RLHF objective. They sample two online continuations, rank them with the reward model (y+, y−),
and update with direct preference optimization (DPO; Rafailov et al., 2023).

2.2 ASYNCHRONOUS DEEP RL

Prior work in deep reinforcement learning (DRL) has focused mostly on multi-step environments
that run on CPU (Bellemare et al., 2013; Tassa et al., 2018; Lillicrap et al., 2019). These algorithms
are typically on-policy, meaning the training data comes from rolling out the latest policy. This
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Figure 2: Asynchronous vs Synchronous RLHF. Top: The current RLHF paradigm synchronously
generates and then trains, leveraging the same GPUs for both. This means using slow training
libraries for LLM generation. Bottom: We propose Cleanba-style (Huang et al., 2023) asynchronous
RLHF, separating generation and training to different GPUs. This allows leveraging LLM inference
libraries e.g. vllm (Kwon et al., 2023), to greatly reduce generation time. Training time increases
because we are learning on only one GPU but the overall runtime for three updates is lower. The
caveat is that asynchronous learning requires off-policy training: learning on data created by our
model at a previous timestep e.g. θt+1 is updated using data generated by θt

makes the training synchronous: the learner updates can only occur after policy rollouts, which is
slow and can under-utilize hardware resources such as GPUs. To improve throughput and scalabil-
ity, methods were proposed to parallelize the actor’s and learner’s computation (Mnih et al., 2016;
Espeholt et al., 2018; Berner et al., 2019). Learners and actors can run faster independently but this
introduces off-policy data, that is, the rollout data comes from slightly outdated policies. Despite the
benefits of asynchronous DRL, to our knowledge, published RLHF works are always synchronous
and asynchronous RLHF is severely under-explored.

2.3 EFFICIENT LLM TRAINING AND GENERATION

As LLMs have become a more mature technology, a significant effort has focused on improving the
efficiency and speed of LLM training and inference. Although some techniques can be leveraged
for both (e.g. FlashAttention (Dao et al., 2022)), the problem of efficient training and generation
are quite separate and require different methods (Liu et al., 2024). Efficient LLM training involves
sharding large models, reducing optimizer states, pipeline batching, and speeding up backpropoga-
tion (Rasley et al., 2020; Rajbhandari et al., 2020). Efficient LLM generation focuses custom ker-
nels, effective management of the KV cache, continuous batching (Kwon et al., 2023), and specula-
tive decoding (Cai et al., 2024). As methods have advanced, the backends have diverged and current
state-of-the-art libraries for LLM training are separate from LLM inference.

3 ASYNCHRONOUS OFF-POLICY RLHF

On-policy RLHF is Computationally Inefficient The dominant paradigm for RLHF is fully on-
line, on-policy RL: synchronously generate samples then train on these samples using a reward
signal (Figure 2, top). To do so, we either (1) use the training library models for both training and
inefficient generation, or (2) have generation and training GPUs alternate with some GPUs being
idle while the others are working.1 The second option is clearly inefficient. However, the first option
does not take into account the divergence between efficient LLM training and generation strategies,
as discussed in §2.3. Although training libraries can be used for inference, they are woefully out-
matched – comparing Hugging Face transformers (Wolf et al., 2020), the most popular library for
training, with vllm (Kwon et al., 2023), a library for inference, we find that vllm is 12× faster than

1A naive approach is to include both training and generation representations of a model on each GPU but
given ever larger LLMs, this isn’t feasible memory-wise. A more advanced approach can interleave training
and generation (Mei et al., 2024) to utilize both tools. But the latest inference tools, like vllm, reserve large
amounts of GPU memory for KV caches that may be difficult to free and build/optimize execution graphs that
will take time to load and unload. Fundamentally, we can do much better optimization and leverage more
existing tools for training and inference if they are put on separate GPUs.
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Figure 3: Trade-off between Win-Rate and KL in Off-Policy PPO. PPO win-rate is highest when
learning is fully on-policy (generate then train on N = 1 mini-batches). As we increase N , our
model must take more steps on data generated by the same old policy, and performance decreases.
This increases off-policyness and reduces win-rate. Left: Gold win-rate over training Middle: KL
(perplexity) over training, higher is further from initial model Right: Gold win-rate vs KL

transformers at generating 1024 batches of a modest 128 tokens with a 7B model. Empirically, this
gap increases superlinearly with model size. Neither option on-policy training is attractive.

3.1 OFF-POLICY RLHF

To optimize compute efficiency, it is crucial to separate generation and training on separate GPUs,
so each may take full advantage of their optimizations. The clear solution is to use both generation
and training GPUs simultaneously and asynchronously. As shown in Figure 2, this requires training
on samples that were already generated by our model at a previous iteration, also known as off-
policy RL. First, we investigate how off-policy learning affects RLHF methods and then we apply
our learnings to optimize compute efficiency for asynchronous RLHF.

Empirical Setup We experiment on the widely-used RLHF benchmark, TLDR Summarization
(Stiennon et al., 2020), which provides an SFT dataset of Reddit posts with summaries (Völske et al.,
2017) and a feedback dataset of paired summaries where one is rated higher by humans. We follow
Gao et al. (2022); Tang et al. (2024a) to create a controlled TLDR setup where we can accurately
measure improvements on preferences as well as reward model overoptimization. We relabel the
feedback dataset using a well-trained 6.7B “gold” reward model from Huang et al. (2024) so that it
acts as a ground truth labeller for our task. Following Huang et al. (2024), we finetune Pythia 410m
(Biderman et al., 2023) on the SFT dataset to produce SFT policies and, from the SFT checkpoint,
train a reward model on the relabelled dataset. Finally, we train an RLHF policy from the SFT
checkpoint using the fixed reward model. We run all methods with a mini-batch size of 512 for 256
steps, so approximately 130,000 samples or “episodes” are seen over the course of training.

Evaluation At inference time, we evaluate success by the win rate, according to our gold model,
of generated summaries over the human-written summaries in the SFT dataset. To evaluate align-
ment tax, we measure how far our RLHF policy has drifted from its SFT initialization using an
approximation of the Kullback-Lieber divergance (KL), we measure the SFT model’s perplexity on
the RLHF policy’s summaries.

3.2 OFF-POLICY WIN-RATE AND KL

To evaluate robustness to off-policy data, we modify the on-policy RLHF setup to incorporate vary-
ing levels of off-policyness. Whereas the on-policy setup generates one mini-batch, labels with
reward model, and updates, we propose to generate N mini-batches. Each iteration therefore con-
sists of N mini-batch updates. The first update is fully on-policy as the model has not changed from
generation time. After each mini-batch update and gradient step, the model moves further away
from the policy that generated the data. Larger N increases the level of off-policyness.

First, we show the performance of the standard online baseline, PPO, as learning becomes more off-
policy. We vary N from 1 (on-policy) to 64 (very off-policy) and plot the gold win-rate and KL over
training in Figure 3 (left and middle). We corroborate prior work (Tang et al., 2024a; Tajwar et al.,
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Figure 4: Robustness of RLHF Losses to Off-Policyness. Online DPO is more robust to off-
policyness than PPO, RLOO (Left) or Best-of-2 SFT (Right). Performance is shown across levels
of off-policyness as mediated by number of mini-batches N ∈ {1, 2, 4, 8, 16}. With higher N
increasing off-policyness, Online DPO retains much more performance than other methods, as evi-
denced by off-policy points still being clustered close to optimal performance.

2024) and find that very off-policy data (and therefore offline data) is worse than on-policy. We
extend those results and also find that on-policyness is proportional to learning success for RLHF,
with a logarithmic dropoff such that N = 1 and N = 2 are quite similar. To accurately compare
methods, we plot win-rate and KL against each other in a pareto curve (Noukhovitch et al., 2023) in
Figure 3 (right). We find all values of N conform to the same general curve. For PPO, off-policyness
did not change the pareto frontier, the fundamental tradeoff of win-rate vs KL of our method, but
does slow down how training progresses along the frontier.

3.3 ROBUSTNESS OF RLHF LOSSES TO OFF-POLICYNESS

Next, we investigate which RLHF loss is most robust to off-policyness, potentially allowing more
asynchronous training. We compare current popular methods, namely PPO, RLOO, and Online
DPO across a range of off-policyness (N = 1, 2, 4, 8, 16) in Figure 4 (left). Although PPO is best
at on-policy RL (N = 1), its performance is greatly reduced when moving to off-policy learning, as
is RLOO’s. Online DPO is clearly the most robust to off-policyness. It is able to achieve a higher
win-rate at lower KL for slightly off-policy learning (N = 4) and is the only method to achieve any
reasonably amount of learning in highly off-policy scenarios (N = 64).

Both PPO and RLOO only sample 1 completion per prompt whereas Online DPO samples 2. To
disentangle this effect, we also run a simple Best-of-2 baseline (Gao et al., 2022) that samples 2
completions and does supervised finetuning on the completion with the higher reward. We find that
Best-of-2 also does not retain performance (Figure 4, right), implying that Online DPO’s robustness
may be due to the contrastive nature of the loss.

3.4 SCALING MODEL SIZE WITH OFF-POLICY RLHF

We scale our setup to Pythia model sizes 410m, 1b, and 2.8b to investigate how scaling affect off-
policy RLHF with Online DPO. For clarity, we now plot the off-policy pareto curve by taking the
final win-rate and KL at each of N ∈ {1, 2, 4, 8, 16, 32, 64}.
Scaling Policy. First, we scale the policy size with a 410m, 1B and 2.8B model while keeping a
410m reward model and show results in Figure 5 (left). As policy size increases, more points on the
off-policy pareto frontier are clustered towards the best-performing point. For example, 410m has
two points (N = 16, 32) far from the optimal area and a wide spread, whereas 2.8b’s worst point
(N = 64) is still quite close to optimal. This means scaling policy size increases robustness: more
off-policy runs can approach the best possible win-rate and KL tradeoff.

Scaling Reward Model. Next, we scale the reward model across 410m, 1b, and 2.8b while keeping
a 410m policy and show results in Figure 5 (right). Following Gao et al. (2022), increasing reward
model size allows achieving the same win-rate at a lower KL, reducing overoptimization. Though
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Figure 5: Scaling Model Size with Off-Policy RLHF. Plotting the final win-rate vs KL for N =
1 → 64 mini-batches, covering a spectrum of on-policy to off-policy RL. Scaling policy size (left)
improves off-policy robustness as seen by tighter clustering of points. But scaling reward model size
(right) does not, even though it reduces overoptimization, achieving reward with smaller KL.

Figure 6: Asynchronous RLHF can be training-bound (left) or generation-bound (right). In
practice, generation and training speeds differ so a challenge of asynchronous learning is how best
to balance usage and leverage idle compute time to further improve training.

points are clustering in terms of KL, they are not clustering in terms of gold win-rate. More off-
policy points do not achieve relatively better performance, as evidenced by the 410m reward model
achieving the highest win-rate for the most off-policy point (N = 64). Therefore, we observe that it
is only policy scale, not reward model scale, that increases robustness to off-policy learning.

3.5 SCALING ASYNCHRONOUS OFF-POLICY RLHF

We apply our learnings to an actual asynchronous RLHF setup. Our results suggest we should aim
to be as on-policy as possible so we adapt the simplest, most on-policy asynchronous RL frame-
work, Cleanba (Huang et al., 2023). At time step t, we generate completions for prompts with our
current model, yt ← θt(x), and train on completions generated by our model one timestep back,
maxθ r(x, yt−1) + βKL, as shown in Figure 2. We run both methods on 4 A100 GPUs. For
synchronous RLHF, we use all 4 GPUs for both generation and training with Hugging Face trans-
formers. For asynchronous RLHF, we reserve one GPU for generation using the vllm library, and
the rest for Online DPO training using Hugging Face transformers. We train the same three scales
of model 410m, 1B, and 2.8B and set the policy and reward size to be the same.

Across scales, we find that our one-step off-policy, asynchronous RLHF matches the final win-rate
vs KL performance of fully on-policy, synchronous RLHF. In terms of compute, we plot the final
gold win-rate against the clock time necessary to reach it in Figure 1. Our method is more efficient
at every model size and due to vllm, improvements scale such that at 2.8B, our run is 25% faster.

4 OPTIMIZING ASYNCHRONOUS RLHF

Though we find a significant speedup, we are still under-utilizing compute. Our asynchronous learn-
ing setup assumes training and generation take approximately similar amounts of time. If training
and generation speeds are mismatched, some GPU time will be spent idling, as shown in Figure 6.
We propose a solution to take advantage of idling time in each scenario.
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Figure 7: Optimizing Generation-Bound RLHF. We can leverage extra training GPU cycles to do
multiple updates on the same generated mini-batch (“ppo epochs”). Left: At 410m and 1B scales,
more updates per batch increases the win-rate achieved at any given episode, making training more
data efficient. Right: Across scales, more updates change the pareto frontier and cause models to
achieve the same win-rate at a higher KL.

4.1 GENERATION-BOUND RLHF

Generation and obtaining reward signal can be fundamentally slower than inference. In the classic
RLHF setup, generation is autoregressive and scales linearly with the length of the response to
generate, whereas reward model inference can be constant. Recent work shows that reward may
require human labelling (Llama Team, 2024), output chain-of-thought reasoning (Zhang et al., 2024;
Ankner et al., 2024), or executing external tools such as Learn verifiers (Google Deepmind, 2024).
In this scenario, we have extra training compute cycles and ask the question, “is it useful to train
more on existing data?”. Following previous work with PPO (Ouyang et al., 2022), we experiment
with taking multiple updates on the same batch of generated data i.e. “ppo epochs” (Schulman et al.,
2015). In our asynchronous TLDR setup, we generate N = 1 mini-batches and perform T = 1, 2, 3
updates per mini-batch.

We plot results across different scales in Figure 7 (left). At 410m and 1B scales, models achieve
a higher win-rate for the same number of generated samples, showing that multiple updates make
training more sample efficient. This means that extra training time can be used to increase win-
rate. But measuring the final points on the pareto frontier in Figure 7 (right), we find that increasing
updates per mini-batch also increases drift in terms of KL. Therefore, in generation-bound scenarios,
multiple updates may increase the win-rate with the same compute-time but incur higher KL.

4.2 TRAINING-BOUND RLHF

The other option is if training is slower than generation. In our 2.8B experiments above, training on
3 GPUs takes twice the time of generating on 1 GPU, so our generation GPU is idling for half the
time. We believe that we can sample more continuations to improve Online DPO training. Inspired
by the findings of Pace et al. (2024) for reward model training, we propose to generate K samples
instead of 2 at each timestep and apply the DPO objective on only on the highest and lowest rewarded
completions. In this way, our generation and reward model inference takes K/2 times longer while
our training remains the same. For TLDR, we experiment with K = 4 and find the margin of reward
between our highest and lowest samples is approximately 2× larger than our standard K = 2 setup.
We believe this can provide a more clear gradient for our training and, indeed, find that training
proceeds much faster, so we reduce the learning rate 2× and also train for half the number of steps.

We plot the win-rate against compute time across our three scales in Figure 8 (left). We find that we
can achieve the same gold win-rate in just over half the time. As we were training-bound, increasing
the number of generations, while keeping training samples fixed, did not significantly increase our
per-step training time. And K = 4 asynchronous training allows us to reduce training steps by half,
training 2.5× faster than synchronous. The caveat is that achieving this win-rate comes at a cost
of higher KL as shown in Figure 8 (right). Though difference in KL decreases with scale, we still
find a visible difference at 2.8B. Similar to generation-bound, optimizing training-bound RLHF can
improve speed but at the cost of KL.
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Figure 8: Optimizing Training-Bound RLHF. We can leverage extra generation GPU cycles to
sample K completions per prompt instead of 2. Left: Sampling K = 4 improves the gradient such
that we can train for half the number of steps and, across scales, achieve the same final win-rate at a
fraction of the compute time. Right: The trade-off is that increasing K causes models to drift more
in terms of KL in order to achieve the same win-rate.

5 RELATED WORK

The most popular attempts at making RLHF more efficient comes in the form of recent offline
methods i.e. direct preference optimization (Rafailov et al., 2023, DPO) and followups (Tang et al.,
2024b; Rafailov et al., 2024). By directly optimizing a policy using the feedback dataset, their
method avoids costly online generation and is much more compute-efficient. But recent works have
shown that it is worse than online methods at achieving high reward (Xu et al., 2024) exactly because
it eschews online generations (Tang et al., 2024a). Online and, specifically, on-policy data generated
by the the model being trained is key to achieving high reward while maintain pretrained model
capabilities (Tajwar et al., 2024; Tang et al., 2024b; Agarwal et al., 2023).

Our investigation therefore focuses on optimizing online RLHF methods but not exactly on-policy
data. RLHF with off-policy data, generated from previous versions of our model, has been scarcely
attempted as no previous methods have focused on asynchronous learning. Munos et al. (2023)
provides theoretical arguments for learning from generations by an exponential moving average
of the model, however, in practice, Calandriello et al. (2024) finds this to be equal or worse than
learning on-policy. Though Tang et al. (2024a) focus on online vs offline methods, they include an
additional experiment in the appendix that implies that the more off-policy the data is, the worse
the performance for online RLHF methods. We greatly extend this direction and investigate which
methods perform best off-policy as well as how off-policy learning is affected by model scale.

This work demonstrates novel issues for efficiency with RLHF and proposes practical ways to tackle
them. Complementary to our work, Mei et al. (2024) focus on the engineering challenges of efficient,
synchronous RLHF and propose clever distributed training techniques to account for generation,
reward model inference, and training. Hu et al. (2024) provide another engineering solution that
leverages vllm to improve generation speed. In contrast to these works, our proposed asynchronous
RLHF may remove some of the engineering challenges of synchronous RLHF (e.g. by separating
generation and learning), which can make future engineering approaches even more efficient.

6 CONCLUSION

This work makes a first step towards and demonstrates the computational efficiency of asynchronous
RLHF. We show how it induces an off-policy regime and how we can still maintain performance.
Previously in deep RL, as environments became more complex and model sizes increased, asyn-
chronous learning became the dominant paradigm (Mnih et al., 2016; Berner et al., 2019). In RLHF,
model sizes are increasing and recent works have proposed more complex multi-turn environment
setups (Shani et al., 2024; Kumar et al., 2024). As such, it seems likely that asynchronous RLHF will
become a computational necessity and we believe it important to change RLHF research towards this
new paradigm along with the research and engineering challenges it presents.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist,
and Olivier Bachem. Generalized Knowledge Distillation for Auto-regressive Language Models,
October 2023. URL http://arxiv.org/abs/2306.13649. arXiv:2306.13649 [cs].
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A EXPERIMENT DETAILS

A.1 TLDR SUMMARIZATION

Experiments on TLDR Summarization are trained using the Hugging Face trl library(von Werra
et al., 2023) which leverages Pytorch (Paszke et al., 2019), Accelerate (Gugger et al., 2022), and
Datasets (Lhoest et al., 2021). The base models used are the “dedupep” versions of Pythia 410m,
1B, and 2.8B. We follow Huang et al. (2024) for all dataset preprocessing and supervised finetuning
hyperparameters. We relabel the dataset with Huang et al. (2024) 6.7B reward model by getting
the score for each pair of completions and assigning the completion with the higher score as the
“chosen” completion y+, the other being the “rejected” completion y−. We show the baseline
results after supervised finetuning, before RLHF training in Table 1.

Model Win Rate KL (Perplexity)

SFT 410m 25.36% 1.075
SFT 1B 26.82% 1.071
SFT 2.8B 35.16% 1.068

Table 1: The win-rate and perplexity of models after supervised finetuning, before RLHF training

For RLHF training, we follow the hyperparameters and suggestions of Huang et al. (2024) with
slight modifications. For PPO, see hyperparameters in Table 2.

Hyperparameter Value

Learning Rate 3 × 10-6

Learning Rate Schedule Linear
Generation Temperature 0.7
Batch Size (effective) 512
Max Token Length 1,024
Max Prompt Token Length 512
Response Length 128
Number of PPO Epochs 1
Total Episodes 131,072
KL penalty coefficient 0.05
Penalty Reward Value for Completions
Without an EOS Token -1.0

Table 2: PPO Training Hyperparameters

We use the same hyperparameters for all methods with the following method-specific modifications

• RLOO sets k = 2

• Online DPO sets β = 0.1

• Best-of-2 sets learning rate to 1 × 10-6 as it tends to overfit quickly

A.2 NO ROBOTS INSTRUCTION-FOLLOWING

Large-scale experiments were trained with Open Instruct (Wang et al., 2023; Ivison et al., 2023;
2024)2. We finetune LLaMA 3.1 (Llama Team, 2024) on a dataset of 10,000 human-written demon-
strations for instructions, No Robots (Rajani et al., 2023) to create our SFT checkpoint. The SFT
hyperparameters are in Table 3.

Given this SFT checkpoint, we generate a synthetic preference dataset using GPT4-o. First, we gen-
erate 3 demonstrations with temperature 0.7 per prompt from the SFT model, totaling 4 generations

2https://github.com/allenai/open-instruct
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Hyperparameter Value
Model Meta-Llama-3.1-8B
Max Sequence Length 4,096
Batch Size (effective) 128
Learning Rate 5.0 × 10-6

Learning Rate Schedule Linear
Learning Rate Warmup Ratio 0.03
Learning Rate Weight Decay 0.0
Number of Epochs 2

Table 3: No Robot SFT Model Training Hyperparameters

per prompt when counting the reference completion in the dataset. We create 6 pairs (4 choose 2)
of completions per prompt and use GPT-4o as a judge (Zheng et al., 2023) to create a synthetic
preference dataset. We train a reward model on this dataset from the LLaMA 3.1 SFT checkpoint,
using hyperparameters from Table 4.

Hyperparameter Value
Model The Trained No Robot SFT Checkpoint
Learning Rate 3 × 10-6

Learning Rate Schedule Linear
Batch Size (effective) 256
Max Sequence Length 1,024
Number of Epochs 1

Table 4: Reward Modeling Hyperparameters

Given the SFT model and reward model, we then train Online DPO on 8 H100s synchronously
on-policy and asynchronously off-policy for 100,000 episodes. For each sample, we generate a
completion of up to 1024 tokens per prompt, an appropriate length for the task. Since our model
is larger and we generate more tokens, generation using the huggingface transformers library is
considerably slower than vllm (i.e., 20x slower in preliminary testing), and infeasible. So for both
sync and async, we reserve one GPU for generation with vllm and the remaining seven for training.
Synchronous on-policy learning idles the generation GPU while training and vice versa, whereas
asynchronous trains off-policy as previously. Table 5 has the hyperparameters.

Hyperparameter Value
Model The Trained No Robot SFT Checkpoint
Reward Model The Trained RM Checkpoint
Learning Rate 8 × 10-7

Learning Rate Schedule Linear
Generation Temperature 0.7
Batch Size (effective) 256
Max Token Length 1,024
Max Prompt Token Length 512
Number of Epochs 1
Total Episodes 100,000
Beta (DPO coefficient) 0.03
Response Length 1,024
Penalty Reward Value for Completions
Without an EOS Token -10.0

Table 5: Online DPO Training Hyperparameters
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For an additional evaluation, we also generate completions on the trained online DPO checkpoints
and compare these completions with human-written completions using GPT4-o as a judge. The win
rate and average length of generated responses for all models are in Table 6. The async online DPO
checkpoint actually obtains exactly the same win rate as the sync online DPO checkpoints. This is
perhaps less surprising since both models have very similar KL and scores at the end of the training,
as indicated in Figure 9.

Model Win Rate Average Response Sequence Length

SFT 31.80% 198.40
Async Online DPO 57.20% 290.55
Sync Online DPO 57.20% 286.21
Human N/A 179.726

Table 6: The trained models’ GPT4-o win rate against the human-written responses on the test split
of the No Robots dataset (Rajani et al., 2023)

B LARGE-SCALE ASYNCHRONOUS RLHF

B.1 LARGE-SCALE GENERAL INSTRUCTION-FOLLOWING

Finally, we verify our findings at a larger scale by training an helpful instruction-following chatbot
with RLHF. First, we create and label a preference dataset. We finetune LLaMA 3.1 (Llama Team,
2024) on a dataset of 10,000 human-written demonstrations for instructions, No Robots (Rajani
et al., 2023) to create our SFT checkpoint. Then, we generate another 3 demonstrations per prompt
from our model, totaling 4 generations per prompt when counting the reference completion in the
dataset. We create 6 pairs (4 choose 2) of completions per prompt and use GPT-4o as a judge (Zheng
et al., 2023) to create a synthetic preference dataset. We train a reward model on this dataset from
the LLaMA 3.1 SFT checkpoint.

We train Online DPO on 8 H100s synchronously on-policy and asynchronously off-policy for
100,000 episodes. For each sample, we generate a completion of up to 1024 tokens per prompt,
an appropriate length for the task. Since our model is larger and we generate more tokens, gen-
eration using the huggingface transformers library is > 20× slower than vllm, and infeasible. So
for both sync and async, we reserve one GPU for generation with vllm and the remaining seven for
training. Synchronous on-policy learning idles the generation GPU while training and vice versa,
whereas asynchronous trains off-policy as previously.

We plot the reward and KL over training in Figure 9 and find that async achieves the same reward
as sync while being 38% faster. Asynchronous learning also drifts less in terms of KL, potentially
highlighting benefits to slightly off-policy data. We run a final evaluation of our models’ abilities by
generating completions for the prompts in the No Robots test set. Using GPT-4o as a judge (Zheng
et al., 2023), we compare our model’s completions to the human-written responses in the dataset.
Asynchronous off-policy achieves the exact same win-rate as synchronous on-policy, 57.2%, up
from 31.8% by the SFT model. While both sync and async demonstrate improved generation skills,
asynchronous RLHF is faster. Overall, we confirm that asynchronous RLHF is faster while being
equally performant at large scale.

B.2 PRACTICAL CONSIDERATIONS AND FUTURE DIRECTIONS

Interestingly, our asynchronous speedup could be even faster. For the synchronous experiments,
vllm generation takes 21 seconds and training takes 33 seconds. We have 233 steps of training, so it
takes roughly (21 + 33) seconds ∗ 233 ≈ 209 minutes. In an ideal setup, we expect asynchronous
RLHF to train at the speed of the slower process, training i.e. 33 seconds ∗ 233 ≈ 128 minutes,
roughly 63% faster than the synchronous training time. In practice, though, we find asynchronous
training to take 151 minutes: 26 seconds for generation and 39 seconds for training. We note two
possible reasons for the slowdown:
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Figure 9: Large-Scale Asynchronous RLHF. Comparing synchronous and asynchronous online
DPO for training an 8B general-purpose chatbot. Asynchronous learning achieves the same reward
model score at a lower KL and 30% faster.

1. Global interpreter lock (GIL): With Python, only one thread can execute at any given
time and we run a threads for each of generation and training. This issue is mitigated when
we call torch operations, which can run in parallel internally. However, GIL does occur
additional blocking for our generation and learning.

2. Communication between training and generation: The generation process must pass
generated completions to training and the training process must pass updated model pa-
rameters to generation. The latter can be expensive and passing policy parameters is a
synchronous GPU call which can slow down training.

Although these issues are outweighed by our improvements, solving them may be important moti-
vation for future work. For example, the latter issue can be mitigated by reducing the frequency of
synchronization between generation and learning. One potential solution is generating more mini-
batches of data and learning more off-policy as in § 3.2.

17


	Introduction
	Background
	Reinforcement Learning from Human Feedback
	Asynchronous Deep RL
	Efficient LLM Training and Generation

	Asynchronous Off-Policy RLHF
	Off-Policy RLHF
	Off-Policy Win-Rate and KL
	Robustness of RLHF Losses to Off-Policyness
	Scaling Model Size with Off-Policy RLHF
	Scaling Asynchronous Off-Policy RLHF

	Optimizing Asynchronous RLHF
	Generation-Bound RLHF
	Training-Bound RLHF

	Related Work
	Conclusion
	Experiment Details
	TLDR Summarization
	No Robots Instruction-Following

	Large-Scale Asynchronous RLHF
	Large-Scale General Instruction-Following
	Practical Considerations and Future Directions


