
Influence Functions for Scalable Data Attribution in
Diffusion Models

Bruno Mlodozeniec∗,1,2 Runa Eschenhagen1 Juhan Bae3,4 Alexander Immer2,5
David Krueger6 Richard Turner1,7

1University of Cambridge 2Max Planck Institute for Intelligent Systems, Tübingen
3University of Toronto 4Vector Institute 5ETH Zurich

6MILA 7The Alan Turing Institute

Abstract

Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and
interpretability. We aim to help address such challenges in diffusion models
by developing an influence function framework. Influence function-based data
attribution methods approximate how a model’s output would have changed if
some training data were removed. In supervised learning, this is usually used
for predicting how the loss on a particular example would change. For diffusion
models, we focus on predicting the change in the probability of generating a
particular example via several proxy measurements. We show how to formulate
influence functions for such quantities and how previously proposed methods can be
interpreted as particular design choices in our framework. To ensure scalability of
the Hessian computations in influence functions, we systematically develop K-FAC
approximations based on generalised Gauss-Newton matrices tailored to diffusion
models. We recast previously proposed methods as specific design choices in our
framework, and show that our recommended method outperforms previous data
attribution approaches on common evaluations, such as the Linear Data-modelling
Score (LDS) or retraining without top influences.

1 Introduction

Generative modelling for continuous data modalities — like images, video, and audio — has advanced
rapidly propelled by improvements in diffusion-based approaches. Many companies now offer easy
access to AI-generated bespoke image content. However, the use of these models for commercial
purposes creates a need for understanding how the training data influences their outputs. In cases
where the model’s outputs are undesirable, it is useful to be able to identify, and possibly remove, the
training data instances responsible for those outputs. Furthermore, as copyrighted works often make
up a significant part of the training corpora of these models [26], concerns about the extent to which
individual copyright owners’ works influence the generated samples arise. Some already characterise
what these companies offer as “copyright infringement as a service” [23], which has caused a flurry
of high-profile lawsuits [23, 24]. This motivates exploring tools for data attribution that might be
able to quantify how each group of training data points influences the models’ outputs. Influence
functions [13, 2] offer precisely such a tool. By approximating the answer to the question, “If the
model was trained with some of the data excluded, what would its output be?”, they can help finding
data points most responsible for a low loss on an example, or a high probability of generating a
particular example. However, they have yet to be scalably adapted to the general diffusion modelling
setting.

∗Correspondence to: bkm28@cam.ac.uk

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:bkm28@cam.ac.uk

Generated
sample

Top
influences

Most
neutral

Negative
influences

.

Figure 1: Most influential training data points as identified by K-FAC Influence Functions for samples
generated by a denoising diffusion probabilistic model trained on CIFAR-10. The top influences are
those whose omission from the training set is predicted to most increase the loss of the generated
sample. Negative influences are those predicted to most decrease the loss, and the most neutral are
those that should change the loss the least.

Influence functions work by locally approximating how the loss landscape would change if some of
the training data points were down-weighted in the training loss (illustrated in Figure 3). However,
to locally approximate the shape of the loss landscape, influence functions require computing
and inverting the Hessian of the training loss, which is computationally expensive. One common
approximation of the training loss’s Hessian is the generalised Gauss-Newton matrix [GGN, 25, 19].
The GGN has not been clearly formulated for the diffusion modelling objective before and cannot be
uniquely determined based on its general definition. Moreover, to compute and store a GGN for large
neural networks further approximations are necessary.

In this work, we describe a scalable approach to influence function-based data attribution in diffusion
models, using a Kronecker-Factored Approximate Curvature [K-FAC, 10, 20] approximation of
GGNs as Hessian approximations. We articulate a design space based on influence functions, unify
previous methods for data attribution in diffusion models [7, 30] through our framework, and argue
for the design choices that distinguish our method from previous ones. One important design choice is
the GGN used as the Hessian approximation. We formulate different GGN matrices for the diffusion
modelling objective and discuss their implicit assumptions. We empirically ablate variations of the
GGN and other design choices in our framework and show that our proposed method outperforms
the existing data attribution methods for diffusion models as measured by common data attribution
metrics like the Linear Data-modelling Score [21] or retraining without top influences. Finally,
we discuss interesting empirical observations that challenge our current understanding of influence
functions in the context of diffusion models.

2 Background

This section introduces the general concepts of diffusion models, influence functions, and the GGN.

2.1 Diffusion Models

Diffusion models are a class of probabilistic generative models that fit a model pθ(x) parameterised by
parameters θ ∈ Rdparam to approximate a training data distribution q(x), with the primary aim being to
sample new data x ∼ pθ(·) [27, 11, 29]. This is usually done by augmenting the original data x with
T fidelity levels as x(0:T) = [x(0), . . . , x(T)] with an augmentation distribution q(x(0:T)) that satisfies
the following criteria: 1) the highest fidelity x(0) equals the original training data q(x(0)) = q(x), 2)
the lowest fidelity x(T) has a distribution that is easy to sample from, and 3) predicting a lower fidelity
level from the level directly above it is simple to model and learn. To achieve the above goals, q is
typically taken to be a first-order Gaussian auto-regressive (diffusion) process with hyperparameters
λt set so that the law of x(T) approximately matches a standard Gaussian distribution N (0, I). The
more detailed overview is presented in Appendix A.

In the setting described above, the diffusion model training loss for a given timestep ℓt(θ, x
(0))

simplifies to Ex(t),ϵ(t)
[
∥ϵ(t) − ϵtθ(x

(t))∥2
]

– a mean squared error loss between the noise ϵ(t) added

2

to the data, and a prediction ϵtθ(x
(t)) for the noise that has been added to the data. This leads to a

training loss ℓ for the diffusion model that is a sum of per-diffusion timestep training losses:

ℓ(θ, x) = Et̃ [ℓt̃(θ, x)] t̃ ∼ Uniform([T]).

The parameters are then optimised to minimise the loss averaged over a training dataset D={xn}Nn=1:

θ⋆(D) = argmin
θ

LD(θ) LD(θ)
def
=

1

N

N∑

n=1

ℓ(θ, xn). (1)

2.2 Influence Functions

The aim of influence functions is to answer questions of the sort “how would my model behave
were it trained on the training dataset with some datapoints removed”. To do so, they approximate
the change in the optimal model parameters in Equation (1) when some training examples (xj)j∈I ,
I = {i1, . . . , iM} ⊆ [N], are removed from the dataset D. To arrive at a tractable approximation, it
is useful to consider a continuous relaxation of this question: how would the optimum change were
the training examples (xj)j∈I down-weighted by ε ∈ R in the training loss:

r−I(ε) = argmin
θ

1

N

N∑

n=1

ℓ(θ, xn)− ε
∑

j∈I
ℓ(θ, xj) (2)

The function r−I : R → Rdparam (well-defined if the optimum is unique) is the response function.
Setting ε to 1⁄N recovers the minimum of the original objective in Equation (1) with examples
(xi1 , . . . , xiM) removed.

Under suitable assumptions (see Appendix B), by the Implicit Function Theorem [15], the response
function is continuous and differentiable at ε = 0. Influence functions can be defined as a linear
approximation to the response function r−I by a first-order Taylor expansion around ε = 0:

r−I(ε) = r−I(0) +
dr−I(ε′)

dε′

∣∣∣
ε′=0

ε + o(ε)

= θ⋆(D) +
∑

j∈I

(
∇2

θ⋆LD(θ
⋆)
)−1 ∇θ⋆ℓ(θ⋆, xj)ε + o(ε),

(3)

as ε → 0. See Appendix B for a formal derivation and conditions. The optimal parameters with
examples (xi)i∈I removed can be approximated by setting ε to 1⁄N and dropping the o(ε) terms.

Usually, we are not directly interested in the change in parameters in response to removing some
data, but rather the change in some measurement function m(θ⋆(D), x′) at a particular test input x′

(e.g. per-example test loss). We can further make a first-order Taylor approximation to m(·, x′) at
θ⋆(D) — m(θ, x′) = m(θ⋆, x′) +∇⊺

θ⋆m(θ⋆, x′)(θ − θ⋆) + o (∥θ − θ⋆∥2) — and combine it with
Equation (3) to get a simple linear estimate of the change in the measurement function:

m(r−I(ε), x
′) = m(θ⋆, x′) +

∑

j∈I
∇⊺

θ⋆m(θ⋆, x′)
(
∇2

θ⋆LD(θ
⋆)
)−1 ∇θ⋆ℓ(θ⋆, xj)ε+ o(ε). (4)

2.2.1 Generalised Gauss-Newton matrix

Computing the influence function approximation in Equation (3) requires inverting the Hessian
∇2

θLD(θ) ∈ Rdparam×dparam . In the context of neural networks, the Hessian itself is generally compu-
tationally intractable and approximations are necessary. A common Hessian approximation is the
generalised Gauss-Newton matrix (GGN). We will first introduce the GGN in an abstract setting
of approximating the Hessian for a general training loss L(θ) = Ez [ρ(θ, z)], to make it clear how
different variants can be arrived at for diffusion models in the next section.

In general, if we have a function ρ(θ, z) of the form hz ◦ fz(θ), with hz a convex function, the GGN
for an expectation Ez[ρ(θ, z)] is defined as

GGN(θ) = Ez

[
∇⊺

θfz(θ)
(
∇2

fz(θ)
hz(fz(θ))

)
∇θfz(θ)

]
,

where ∇θfz(θ) is the Jacobian of fz . Whenever fz is (locally) linear, the GGN is equal to the
Hessian Ez[∇2

θρ(θ, z)]. Therefore, we can consider the GGN as an approximation to the Hessian in

3

which we “linearise” the function fz . Note that any decomposition of ρ(θ, z) results in a valid GGN
as long as hz is convex [19]. We give two examples below.

Option 1. A typical choice would be for fz to be the neural network function on a training datapoint
z, and for hz to be the loss function (e.g. ℓ2-loss), with the expectation Ez being taken over the
empirical (training) data distribution; we call the GGN for this split GGNmodel. The GGN with this
split is exact for linear neural networks (or when the model has zero residuals on the training data)
[19].

fz := mapping from parameters to model output
hz := loss function (e.g. ℓ2-loss)

→ GGNmodel(θ) (5)

Option 2. Alternatively, a different GGN can be defined by using a trivial split of the loss ρ(θ, z)
into the identity map hz := id and the loss fz := ρ(·, z), and again taking the expectation over the
empirical data distribution. With this split, the resulting GGN is

fz := ρ(·, z)
hz := id

→ GGNloss(θ) = Ez

[
∇θρ(θ, z)∇

⊺
θρ(θ, z)

]
. (6)

This is also called the empirical Fisher [17]. Note that GGNloss is only equal to the Hessian under the
arguably more stringent condition that ρ(·, z) — the composition of the model and the loss function
— is linear. This is in contrast to GGNmodel, for which only the mapping from the parameters to
the model output needs to be (locally) linear. Hence, we might prefer to use GGNmodel for Hessian
approximation whenever we have a nonlinear loss, which is the case for diffusion models.

3 Scalable influence functions for diffusion models

In this section, we discuss how we adapt influence functions to the diffusion modelling setting in a
scalable manner. We also recast data attribution methods for diffusion models proposed in prior work
[7, 30] as the result of particular design decisions in our framework, and argue for our own choices
that distinguish our method from the previous ones.

3.1 Approximating the Hessian

In diffusion models, we want to compute the Hessian of the loss of the form

LD(θ) = Exn
[ℓ(θ, xn)] = Exn

[
Et̃

[
Ex(t̃),ϵ(t̃)

[
∥ϵ(t̃) − ϵt̃θ(x

(t̃))∥2
]]]

,

where Exn [·] =
(

1
N

∑N
n=1 ·

)
is the expectation over the empirical data distribution. We will describe

how to formulate different GGN approximations for this setting.

Option 1. To arrive at a GGN approximation, as discussed in Section 2.2.1, we can partition
the function θ 7→ ∥ϵ(t) − ϵtθ(x

(t))∥2 into the model output θ 7→ ϵtθ(x
(t)) and the ℓ2-loss function

∥ϵ(t) − ·∥2. This results in the GGN:

fz := ϵt̃θ(x
(t̃))

hz := ∥ϵ(t̃) − ·∥2
→ GGNmodel

D (θ) = Exn

[
Et̃

[
Ex(t̃),ϵ(t̃)

[
∇⊺

θ ϵ
t̃
θ

(
x(t̃)
)
(2I)∇θϵ

t̃
θ

(
x(t̃)
)]]]

, (7)

where I is the identity matrix. This correspond to “linearising” the neural network ϵtθ. For diffusion
models, the dimensionality of the output of ϵt̃θ is typically very large (e.g. 32×32×3 for CIFAR), so
computing the Jacobians ∇θϵ

t
θ explicitly is still intractable. However, we can express GGNmodel

D as

FD(θ) = Exn

[
Et̃

[
E
x
(t̃)
n

[
Eϵmod

[
gn(θ)gn(θ)

⊺]]]]
, ϵmod ∼ N

(
ϵt̃θ

(
x(t̃)
n

)
, I
)

(8)

where gn(θ) = ∇θ∥ϵmod − ϵt̃θ(x
(t̃)
n)∥2 ∈ Rdparam ; see Appendix C for the derivation. This formulation

lends itself to a Monte Carlo approximation, since we can now compute gradients using auxiliary
targets ϵmod sampled from the model’s output distribution, as shown in Equation (8). FD can be
interpreted as a kind of Fisher information matrix [1, 19], but it is not the Fisher for the marginal
model distribution pθ(x).

4

Option 2. Analogously to Equation (6), we can also consider the trivial decomposition of ℓ(·, x) into
the identity map and the loss, effectively “linearising” ℓ(·, x). The resulting GGN is:

fz := ℓ(·, xn)

hz := id
→ GGNloss

D (θ) = Exn [∇θℓ(θ, xn)∇⊺
θℓ(θ, xn)], (9)

where ℓ(θ, x) is the diffusion training loss defined in Equation (11). This Hessian approximation
GGNloss

D turns out to be equivalent to the ones considered in the previous works on data attribution
for diffusion models [7, 30, 18]. In contrast, in this work, we opt for GGNmodel

D in Equation (7), or
equivalently FD, since it is arguably a better-motivated approximation of the Hessian than GGNloss

D
(c.f. Section 2.2.1).

In Zheng et al. [30], the authors explored substituting different (theoretically incorrect) training loss
functions into the influence function approximation. In particular, they found that replacing the loss
∥ϵ(t) − ϵtθ(x

(t))∥2 with the square norm loss ∥ϵtθ(x(t))∥2 (effectively replacing the “targets” ϵ(t) with
0) gave the best results. Note that the targets ϵ(t) do not appear in the expression for GGNmodel

D
in Equation (7). Hence, in our method substituting different targets would not affect the Hessian
approximation. In Zheng et al. [30], replacing the targets only makes a difference to the Hessian
approximation because they use GGNloss

D (an empirical Fisher) to approximate the Hessian.

K-FAC for diffusion models We further approximate the GGN with a K-FAC matrix, the details of
which we describe in Appendix D.1.

3.2 What to measure

For diffusion models, arguably the most natural question to ask might be, for a given sample x
generated from the model, how did the training samples influence the probability of generating a
sample x? For example, in the context of copyright infringement, we might want to ask if removing
certain copyrighted works would substantially reduce the probability of generating x. With influence
functions, these questions could be interpreted as setting the measurement function m(θ, x) to be
the (marginal) log-probability of generating x from the diffusion model: log pθ(x). Computing the
marginal log-probability and the gradients thereof is challenging, however. Hence, in this work, we
consider a couple of proxies:

1. Loss. Approximate log pθ(x) with the diffusion loss ℓ(θ, x) in Equation (11) on that
particular example. This corresponds to the ELBO with reweighted per-timestep loss terms
(see Figure 17).

2. Probability of sampling trajectory. If the entire sampling trajectory x(0:T) that gen-
erated sample x is available, consider the probability of that trajectory pθ(x

(0:T)) =

p(xT)
∏T

t=1 pθ(x
(t−1)|x(t)).

3. ELBO. Approximate log pθ(x) with an Evidence Lower-Bound [11, eq. (5)].

4 Experiments

Evaluating Data Attribution. To evaluate the proposed data attribution methods, we primarily
focus on two metrics: Linear Data Modelling Score (LDS) and retraining without top influences.
These metrics are described in Appendix E. In all experiments, we look at measurements on samples
generated by the model trained on D. We primarily focus on Denoising Diffusion Probabilistic
Models (DDPM) [11] throughout. The LDS results are described below, whereas the retraining
without top influences results are shown in Appendix J. An ablation over the Hessian approximation
is shown in Appendix K.

Baselines We compare influence functions with K-FAC and GGNmodel
D (MC-Fisher; Equation (8))

as the Hessian approximation (K-FAC Influence) to TRAK as formulated for diffusion models in
[7, 30]. We describe the remaining baselines in Appendix M.1.

LDS. The LDS results attributing the loss and ELBO measurements are shown in Figures 2a and 2b.
K-FAC Influence outperforms TRAK in all settings. K-FAC Influence using the loss measurement
also outperforms the benchmark-tuned changes in D-TRAK in all settings as well. In Figures 2a
and 2b, we report the results for both the best damping values from a sweep (see Appendix H), as well
as for “default” values following recommendations in previous work (see Appendix M.5). TRAK and
D-TRAK appear to be more sensitive to tuning the damping factor than K-FAC Influence. They often

5

5.3% ±0.7

10.3% ±0.8

21.5% ±0.9

20.9% ±0.9

50.3% ±0.2

(1.3%)

(21.5%)

(0.1%)

0 20 40 60 80 100

Rank Correlation % (LDS)

CIFAR-2

2.7% ±0.8

8.9% ±0.8

18.3% ±0.7

15.4% ±0.8

41.2% ±0.3

(5.2%)

(14.4%)

(0.9%)

0 20 40 60 80 100

Rank Correlation % (LDS)

Exact Retraining

D-TRAK

K-FAC Influence

TRAK

CLIP Cosine Similarity

CIFAR-10

(a) LDS results on the loss measurement.

8.0% ±0.7

5.3% ±0.8

10.9% ±0.8

18.5% ±0.9

23.0% ±0.8

43.7% ±0.7

(0.9%)

(10.9%)

(0.9%)

(23.0%)

0 20 40 60 80 100

Rank Correlation % (LDS)

CIFAR-2

3.6% ±0.7

3.6% ±0.6

5.8% ±0.8

10.5% ±0.7

14.7% ±0.7

16.4% ±0.3

(2.1%)

(5.8%)

(0.6%)

(11.8%)

0 20 40 60 80 100

Rank Correlation % (LDS)

Exact Retraining

K-FAC Influence (m. loss)

D-TRAK

K-FAC Influence

TRAK

CLIP Cosine Similarity

CIFAR-10

(b) LDS results on the ELBO measurement.

Figure 2: Linear Data-modelling Score (LDS) for different data attribution methods. Methods that
substitute in incorrect measurement functions into the approximation are separated and plotted with .
Where applicable, we plot results for both the best Hessian-approximation damping value with and a
“default” damping value with . The numerical results are reported in black for the best damping value,
and for the “default” damping value in (gray). “(m. loss)” implies that the appropriate measurement
function was substituted with the loss ℓ(θ, x) measurement function in the approximation. Results for
the exact retraining method (oracle), are shown with . Standard error in the LDS score estimate is
indicated with ‘±’, where the mean is taken over different generated samples x on which the change
in measurement is being estimated.

don’t perform at all if the damping factor is too small, and take a noticeable performance hit if the
damping factor is not tuned to the problem or method (see Figures 6 and 8 in Appendix H). However,
in most applications, tuning the damping factor would be infeasible, as it requires retraining the
model many times over to construct an LDS benchmark, so this is a significant limitation. In contrast,
for K-FAC Influence, we find that generally any sufficiently small value works reasonably well if
enough samples are taken for estimating the loss and measurement gradients (see Figures 5 and 7).

One peculiarity in the LDS results, similar to the findings in [30], is that substituting the loss
measurement for the ELBO when predicting changes in ELBO actually works better than using the
correct measurement (see Figure 2b). We discuss this, and related challenges, in Appendix F.

5 Discussion

In this work, we extended the influence functions approach to the diffusion modelling setting, and
showed different ways in which the GGN Hessian approximation can be formulated. Our proposed
method with recommended design choices improves performance compared to existing techniques
across various data attribution evaluation metrics. Nonetheless, experimentally, we are met with two
contrasting findings: on the one hand, influence functions in the diffusion modelling setting appear to
be able to identify important influences. The surfaced influential examples do significantly impact
the training loss when retraining the model without them (Figure 18), and they appear perceptually
very relevant to the generated samples. On the other hand, they fall short of accurately predicting the
numerical changes in measurements after retraining. Despite these shortcomings, influence functions
can still offer valuable insights: they can serve as a useful exploratory tool for understanding model
behaviour in a diffusion modelling context, and can help guide data curation, identifying examples
most responsible for certain behaviours.

6

References
[1] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2),

1998.
[2] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger Grosse. If Influence Functions

are the Answer, Then What is the Question?, September 2022.
[3] Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via

approximate unrolled differentiation, 2024. URL https://arxiv.org/abs/2405.12186.
[4] Alberto Bernacchia, Mate Lengyel, and Guillaume Hennequin. Exact natural gradient in deep

linear networks and its application to the nonlinear case. In NeurIPS, 2018.
[5] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and

Lindenstrauss. Random Structures & Algorithms, 22(1):60–65, January 2003. ISSN 1042-9832,
1098-2418. doi: 10.1002/rsa.10073.

[6] Runa Eschenhagen, Alexander Immer, Richard E. Turner, Frank Schneider, and Philipp Hennig.
Kronecker-Factored Approximate Curvature for modern neural network architectures. In
NeurIPS, 2023.

[7] Kristian Georgiev, Joshua Vendrow, Hadi Salman, Sung Min Park, and Aleksander Madry. The
Journey, Not the Destination: How Data Guides Diffusion Models, December 2023.

[8] Roger Grosse and James Martens. A Kronecker-factored approximate Fisher matrix for convo-
lution layers. In ICML, 2016.

[9] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina
Nguyen, Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying
Large Language Model Generalization with Influence Functions, August 2023.

[10] Tom Heskes. On “natural” learning and pruning in multilayered perceptrons. Neural Computa-
tion, 12(4), 2000.

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In
Advances in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran
Associates, Inc., 2020.

[12] Zahra Kadkhodaie, Florentin Guth, Eero P. Simoncelli, and Stéphane Mallat. Generalization in
diffusion models arises from geometry-adaptive harmonic representations, April 2024.

[13] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1885–1894.
PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/koh17a.html.

[14] Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo, and Percy Liang. On the Accuracy of
Influence Functions for Measuring Group Effects, November 2019.

[15] Steven G. Krantz and Harold R. Parks. The Implicit Function Theorem. Birkhäuser, Boston,
MA, 2003. ISBN 978-1-4612-6593-1 978-1-4612-0059-8. doi: 10.1007/978-1-4612-0059-8.

[16] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Techni-
cal report, University of Toronto, 2009. URL http://www.cs.utoronto.ca/~kriz/
learning-features-2009-TR.pdf.

[17] Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical Fisher
approximation for natural gradient descent. In NeurIPS, 2019.

[18] Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. DataInf: Efficiently Estimating Data
Influence in LoRA-tuned LLMs and Diffusion Models. In The Twelfth International Conference
on Learning Representations, October 2023.

[19] James Martens. New insights and perspectives on the natural gradient method. JMLR, 21(146),
2020.

[20] James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored
approximate curvature. In ICML, 2015.

[21] Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry.
TRAK: Attributing Model Behavior at Scale, April 2023.

7

https://arxiv.org/abs/2405.12186
https://proceedings.mlr.press/v70/koh17a.html
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

[23] Joseph Saveri and Matthew Butterick. Image generator litigation. https://
imagegeneratorlitigation.com/, 2023. Accessed: 2024-07-06.

[24] Joseph Saveri and Matthew Butterick. Language model litigation. https://llmlitigation.
com/, 2023. Accessed: 2024-07-06.

[25] Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7), 2002.

[26] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk,
and Jenia Jitsev. Laion-5b: An open large-scale dataset for training next generation image-text
models, 2022. URL https://arxiv.org/abs/2210.08402.

[27] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
Unsupervised Learning using Nonequilibrium Thermodynamics, November 2015.

[28] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models,
October 2022.

[29] Richard E. Turner, Cristiana-Diana Diaconu, Stratis Markou, Aliaksandra Shysheya, Andrew
Y. K. Foong, and Bruno Mlodozeniec. Denoising diffusion probabilistic models in six simple
steps, 2024.

[30] Xiaosen Zheng, Tianyu Pang, Chao Du, Jing Jiang, and Min Lin. Intriguing Properties of Data
Attribution on Diffusion Models, March 2024.

8

https://arxiv.org/abs/2103.00020
https://imagegeneratorlitigation.com/
https://imagegeneratorlitigation.com/
https://llmlitigation.com/
https://llmlitigation.com/
https://arxiv.org/abs/2210.08402

A Background on denoising diffusion probabilistic models

Diffusion models are a class of probabilistic generative models that fit a model pθ(x) parameterised
by parameters θ ∈ Rdparam to approximate a training data distribution q(x), with the primary aim
being to sample new data x ∼ pθ(·) [27, 11, 29].

This is usually done by augmenting the original data x with T fidelity levels as x(0:T) =
[x(0), . . . , x(T)] with an augmentation distribution q(x(0:T)) that satisfies the following criteria:
1) the highest fidelity x(0) equals the original training data q(x(0)) = q(x), 2) the lowest fidelity
x(T) has a distribution that is easy to sample from, and 3) predicting a lower fidelity level from
the level directly above it is simple to model and learn. In that case, the reverse conditionals
q(x(t−1)|x(t:T)) = q(x(t−1)|x(t)) are first-order Markov, and if the number of fidelity levels T is
high enough, they can be well approximated by a diagonal Gaussian, allowing them to be modelled
with a parametric model with a simple likelihood function, hence satisfying (3) [29]. The marginals
q(x(t)|x(0)) = N

(
x(t)|

(∏t
t′=1 λt′

)
x(0),

(
1−

∏t
t′=1 λ

2
t′

)
I
)

also have a simple Gaussian form,
allowing for the augmented samples to be sampled as:

x(t) =
∏t

t′=1
λtx

(0) +
(
1−

∏t

t′=1
λ2
t′

)1/2

ϵ(t), with ϵ(t) ∼ N (0, I). (10)

Diffusion models are trained to approximate the reverse conditionals pθ(x(t−1)|x(t)) ≈ q(x(t−1)|x(t))
by maximising log-probabilities of samples x(t−1) conditioned on x(t), for all timesteps t = 1, . . . , T .
We can note that q(x(t−1)|x(t), x(0)) has a Gaussian distribution with mean given by:

µt−1|t,0(x
(t), ϵ(t)) =

1

λt

(
x(t) − 1− λ2

t(
1−

∏t
t′=1 λ

2
t′
)1/2 ϵ

(t)

)
, with ϵ(t)

def
=

(
x(t) −

∏t
t′=1 λt′x

(0)
)

(1−
∏t

t′=1 λ
2
t′)

1/2

as in Equation (10). In other words, the mean is a mixture of the sample x(t) and the noise
ϵ(t) that was applied to x(0) to produce it. Hence, we can choose to analogously parameterise
pθ(x

(t−1)|x(t)) as N
(
x(t−1)|µt−1|t,0

(
x(t), ϵtθ(x

(t))
)
, σ2

t I
)
. That way, the model ϵ(t)θ (x(t)) simply

predicts the noise ϵ(t) that was added to the data to produce x(t). The variances σ2
t are usually

chosen as hyperparameters [11]. With that parameterisation, the negative expected log-likelihood
Eq(xt−1,x(t)|x(0))

[
− log p(x(t−1)|x(t))

]
, up to scale and shift independent of θ or x(0), can be written

as [11, 29]:2

ℓt(θ, x
(0)) = Eϵ(t),x(t)

[∥∥∥ϵ(t) − ϵtθ

(
x(t)
)∥∥∥

2
] ϵ(t) ∼ N (0, I)

x(t) =
∏t

t′=1
λtx

(0) +
(
1−

∏t

t′=1
λ2
t′

)1/2

ϵ(t)

(11)

2Note that the two random variables x(t), ϵ(t) are deterministic functions of one-another.

9

B Derivation of Influence Functions

In this section, we state the implicit function theorem (Appendix B.1). Then, in Appendix B.2, we
introduce the details of how it can be applied in the context of a loss function L(ε,θ) parameterised
by a continuous hyperparameter ε (which is, e.g., controlling how down-weighted the loss terms on
some examples are, as in Section 2.2).

−4 −3 −2 −1 0 1 2 3 4

θ
0

1

2N

1

N

ε

1
N

∑N
n=1 `(xn, θ)

1
N

∑N
n=1 `(xn, θ)− 1

2N
`(xj , θ)

1
N

∑N
n=1 `(xn, θ)− 1

N
`(xj , θ)

L(ε, θ)

Linear Extrapolation

Minimum

Figure 3: Illustration of the influence function approximation for a 1-dimensional parameter space θ ∈
R. Influence funcitons consider the extended loss landscape L(ε, θ) def

= 1
N

∑N
n=1 ℓ(xn, θ)− εℓ(xj , θ),

where the loss ℓ(xj , θ) for some datapoint xj (alternatively, group of datapoints) is down-weighted
by ε. By linearly extrapolating how the optimal set of parameters θ would change around ε = 0 (),
we can predicted how the optimal parameters would change when the term ℓ(xj , θ) is fully removed
from the loss ().

B.1 Implicit Function Theorem

Theorem 1 (Implicit Function Theorem [15]) Let F : Rn × Rm → Rm be a continuously
differentiable function, and let Rn × Rm have coordinates (x,y). Fix a point (a,b) =
(a1, . . . , an, b1, . . . , bm) with F (a,b) = 0, where 0 ∈ Rm is the zero vector. If the Jacobian
matrix ∇yF (a,b) ∈ Rm×m of y 7→ F (a,y)

[∇yF (a,b)]ij =
∂Fi

∂yj
(a,b),

is invertible, then there exists an open set U ⊂ Rn containing a such that there exists a unique
function g : U → Rm such that g(a) = b, and F (x, g(x)) = 0 for all x ∈ U . Moreover, g is
continuously differentiable.

Remark 1 (Derivative of the implicit function) Denoting the Jacobian matrix of x 7→ F (x,y) as:

[∇xF (x,y)]ij =
∂Fi

∂xj
(x,y),

the derivative ∂g
∂x : U → Rm×n of g : U → Rm in Theorem 1 can be written as:

∂g(x)

∂x
= − [∇yF (x, g(x))]

−1 ∇xF (x, g(x)). (12)

This can readily be seen by noting that, for x ∈ U :

F (x′, g(x′)) = 0 ∀x′ ∈ U ⇒ dF (x, g(x))

dx
= 0.

Hence, since g is differentiable, we can apply the chain rule of differentiation to get:

0 =
dF (x, g(x))

dx
= ∇xF (x, g(x)) +∇yF (x, g(x))

∂g(x)

∂x
.

Rearranging gives equation Equation (12).

10

B.2 Applying the implicit function theorem to quantify the change in the optimum of a loss

Consider a loss function L : Rn × Rm → R that depends on some hyperparameter ε ∈ Rn (in
Section 2.2, this was the scalar by which certain loss terms were down-weighted) and some parameters
θ ∈ Rm. At the minimum of the loss function L(ε,θ), the derivative with respect to the parameters
θ will be zero. Hence, assuming that the loss function is twice continuously differentiable (hence
∂L
∂ε is continuously differentiable), and assuming that for some ε′ ∈ Rn we have a set of parameters
θ⋆ such that ∂L

∂ε (ε
′,θ⋆) = 0 and the Hessian ∂2L

∂θ2 (ε
′,θ⋆) is invertible, we can apply the implicit

function theorem to the derivative of the loss function ∂L
∂ε : Rn×Rm → Rm, to get the existence of a

continuously differentiable function g such that ∂L
∂ε (ε, g(ε)) = 0 for ε in some neighbourhood of ε′.

Now g(ε) might not necessarily be a minimum of θ 7→ L(ε,θ). However, by making the further
assumption that L is strictly convex we can ensure that whenever ∂L

∂θ (ε,θ) = 0, θ is a unique
minimum, and so g(ε) represents the change in the minimum as we vary ε. This is summarised in the
lemma below:

Lemma 1 Let L : Rn × Rm → R be a twice continuously differentiable function, with coordinates
denoted by (ε,θ) ∈ Rn × Rm, such that θ 7→ L(ε,θ) is strictly convex ∀ε ∈ Rn. Fix a point
(ε′,θ⋆) such that ∂L

∂θ (ε
′,θ⋆) = 0. Then, by the Implicit Function Theorem applied to ∂L

∂θ , there
exists an open set U ⊂ Rn containing θ⋆ such that there exists a unique function g : U → Rm such
that g(ε′) = θ⋆, and g(ε) is the unique minimum of θ 7→ L(ε,θ) for all ε ∈ U . Moreover, g is
continuously differentiable with derivative:

∂g(ε)

∂ε
= −

[
∂2L
∂θ2

(ε, g(ε))

]−1
∂2L
∂ε∂θ

(ε, g(ε)) (13)

Remark 2 For a loss function L : R× Rm of the form L(ε,θ) = L1(θ) + εL2(θ) (such as that in
Equation (2)), ∂2L

∂ε∂θ (ε, g(ε)) in the equation above simplifies to:

∂2L
∂ε∂θ

(ε, g(ε)) =
∂L2

∂θ
(g(ε)) (14)

The above lemma and remark give the result in Equation (3). Namely, in section 2.2:

L(ε,θ) = 1

N

N∑

i=1

ℓ(θ, xi)

︸ ︷︷ ︸
L1

L2︷ ︸︸ ︷

− 1

M

M∑

j=1

ℓ(θ, xij) ε
eq. (14)
=⇒ ∂2L

∂ε∂θ
= − 1

M

M∑

j=1

∂

∂θ
ℓ(θ, xij)

eq. (13)
=⇒ ∂g(ε)

∂ε
=

[
∂2L
∂θ2

(ε, g(ε))

]−1
1

M

M∑

j=1

∂

∂θ
ℓ(θ, xij)

C Derivation of the Fisher “GGN” formulation for Diffusion Models

As discussed in Section 2.2.1 partitioning the function θ 7→ ∥ϵ(t) − ϵtθ(x
(t))∥2 into the model output

θ 7→ ϵtθ(x
(t)) and the ℓ2 loss function is a natural choice and results in

GGNmodel
D (θ)

=
1

N

N∑

n=1

Et̃

[
Ex(t̃),ϵ(t̃)

[
∇⊺

θ ϵ
t̃
θ

(
x(t̃)
)
∇2

ϵt̃θ(x(t̃))

∥∥∥ϵ(t̃) − ϵt̃θ

(
x(t̃)
)∥∥∥

2

∇θϵ
t̃
θ

(
x(t̃)
)]]

=
2

N

N∑

n=1

Et̃

[
Ex(t̃),ϵ(t̃)

[
∇⊺

θ ϵ
t̃
θ

(
x(t̃)
)
I∇θϵ

t̃
θ

(
x(t̃)
)]]

. (15)

Note that we used
1

2
∇2

ϵt̃θ(x(t̃))

∥∥∥ϵ(t̃) − ϵt̃θ

(
x(t̃)
)∥∥∥

2

= I.

11

We can substitute I with

I = Eϵmod

[
−1

2
∇2

ϵt̃θ(x(t̃)) log p
(
ϵmod|ϵt̃θ

(
x(t̃)
))]

, p
(
ϵmod|ϵt̃θ

(
x(t̃)
))

= N
(
ϵmod|ϵt̃θ

(
x(t̃)
)
, I
)
,

where the mean of the Gaussian is chosen to be the model output ϵt̃θ
(
x(t̃)
)

. Furthermore, by using
the “score” trick:

Eϵmod

[
∇2

ϵt̃θ(x(t̃)) log p
(
ϵmod|ϵt̃θ

(
x(t̃)
))]

= −Eϵmod

[
∇ϵt̃θ(x(t̃)) log p

(
ϵmod|ϵt̃θ

(
x(t̃)
))

∇⊺
ϵt̃θ(x(t̃)) log p

(
ϵmod|ϵt̃θ

(
x(t̃)
))]

= −Eϵmod

[
1

2
∇ϵt̃θ(x(t̃))

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2 1

2
∇⊺

ϵt̃θ(x(t̃))

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2
]
,

we can rewrite:

∇⊺
θ ϵ

t̃
θ

(
x(t̃)
)
∇θϵ

t̃
θ

(
x(t̃)
)

= −2∇⊺
θ ϵ

t̃
θ

(
x(t̃)
)
Eϵmod

[(
∇2

ϵt̃θ(x(t̃)) log p
(
ϵmod|ϵt̃θ

(
x(t̃)
)))]

∇θϵ
t̃
θ

(
x(t̃)
)

=
1

2
Eϵmod

[
∇⊺

θ ϵ
t̃
θ

(
x(t̃)
)
∇ϵt̃θ(x(t̃))

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2

∇⊺
ϵt̃θ(x(t̃))

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2

∇θϵ
t̃
θ

(
x(t̃)
)]

=
1

2
Eϵmod

[
∇θ

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2

∇⊺
θ

∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2
]
,

where the last equality follows by the chain rule of differentiation. We can thus rewrite the expression
for the GGN in Equation (15) as

GGNmodel
D (θ)

=
1

N

N∑

n=1

Et̃

[
Ex(t̃),ϵ(t̃),ϵmod

[
∇θgn(θ)∇θgn(θ)

⊺]]
g(θ)

def
=
∥∥∥ϵmod − ϵt̃θ

(
x(t̃)
)∥∥∥

2

.

D Details on approaches to improving scalability of influence functions for
diffusion

D.1 K-FAC for diffusion models

While FD(θ) and GGNloss
D do not require computing full Jacobians or the Hessian of the neural

network model, they involve taking outer products of gradients of size Rdparam , which is still intractable.
Kronecker-Factored Approximate Curvature [10, 20, K-FAC] is a common scalable approximation
of the GGN to overcome this problem. It approximates the GGN with a block-diagonal matrix,
where each block corresponds to one neural network layer and consists of a Kronecker product
of two matrices. Due to convenient properties of the Kronecker product, this makes the inversion
and multiplication with vectors needed in Equation (4) efficient enough to scale to large networks.
K-FAC is defined for linear layers, including linear layers with weight sharing like convolutions [8].
This covers most layer types in the architectures typically used for diffusion models. When weight
sharing is used, there are two variants – K-FAC-expand and K-FAC-reduce [6]. For our recommended
method, we choose to approximate the Hessian with a K-FAC approximation of FD, akin to Grosse
et al. [9].

For the parameters θl of layer l, the GGN FD in Equation (8) is approximated by

FD(θl) ≈
1

N2

N∑

n=1

Et̃

[
E
x
(t̃)
n ,ϵ(t̃)

[
a(l)n a(l)

⊺
n

]]
⊗

N∑

n=1

Et̃

[
E
x
(t̃)
n ,ϵ(t̃),ϵ

(t̃)
mod

[
b(l)n b(l)

⊺
n

]]
, (16)

with a
(l)
n ∈ Rdl

in being the inputs to the lth layer for data point x(t̃)
n and b

(l)
n ∈ Rdl

out being the
gradient of the ℓ2-loss w.r.t. the output of the lth layer, and ⊗ denoting the Kronecker product.3 The

3For the sake of a simpler presentation this does not take potential weight sharing into account.

12

approximation trivially becomes an equality for a single data point and also for deep linear networks
with ℓ2-loss [4, 6]. We approximate the expectations in Equation (16) with Monte Carlo samples
and use K-FAC-expand whenever weight sharing is used since the problem formulation of diffusion
models corresponds to the expand setting in Eschenhagen et al. [6]; in the case of convolutional
layers this corresponds to Grosse & Martens [8]. Lastly, to ensure the Hessian approximation is
well-conditioned and invertible, we follow standard practice and add a damping term consisting of a
small scalar damping factor times the identity matrix. We ablate these design choices in Section 4
(Figures 5, 7 and 19).

D.2 Gradient compression and query batching

In practice, we recommend computing influence function estimates in Equation (4) by first computing
and storing the approximate Hessian inverse, and then iteratively computing the preconditioned inner
products ∇⊺

θ⋆m(θ⋆, x)
(
∇2

θ⋆LD(θ⋆)
)−1 ∇θ⋆ℓ(θ⋆, xj) for different training datapoints xj . Following

Grosse et al. [9], we use query batching to avoid recomputing the gradients ∇θ⋆ℓ(θ⋆, xj) when
attributing multiple samples x. We also use gradient compression; we found that compression by
quantisation works much better for diffusion models compared to the SVD-based compression used
by Grosse et al. [9] (see Appendix G), likely due to the fact that gradients ∇θℓ(θ, xn) are not low-rank
in this setting.

E Evaluating Data Attribution

LDS measures how well a given attribution method can predict the relative magnitude in the change
in a measurement as the model is retrained on (random) subsets of the training data. For an attribution
method a(D,D′, x) that approximates how a measurement m(θ⋆(D), x) would change if a model
was trained on an altered dataset D′, LDS measures the Spearman rank correlation between the
predicted change in output and actual change in output after retraining on different subsampled
datasets:

spearman

[(
a(D, D̃i, x)

)M
i=1

;
(
m(θ⋆(D̃i), x)

)M
i=1

]
,

where D̃i are independently subsampled versions of the original dataset D, each containing 50% of
the points sampled without replacement. However, a reality of deep learning is that, depending on the
random seed used for initialisation and setting the order in which the data is presented in training,
training on a fixed dataset can produce different models with functionally different behaviour. Hence,
for any given dataset D′, different measurements could be obtained depending on the random seed
used. To mitigate the issue, Park et al. [21] propose to use an ensemble average measurement after
retraining as the “oracle” target:

LDS = spearman

[(
a(D, D̃i, x)

)M
i=1

;
(1

K

∑K

k=1
m(θ̃⋆k(D̃i), x)

)M
i=1

]
, (17)

where θ̃⋆k(D′) ∈ Rdparam are the parameters resulting from training on D′ with a particular seed k.

Retraining without top influences, on the other hand, evaluates the ability of the data attribution
method to surface the most influential data points – namely, those that would most negatively affect
the measurement m(θ⋆(D′), x) under retraining from scratch on a dataset D′ with these data points
removed. For each method, we remove a fixed percentage of the most influential datapoints from
D to create the new dataset D′, and report the change in the measurement m(θ⋆(D′), x) relative to
m(θ⋆(D), x) (measurement by the model trained on the full dataset D).

F Potential challenges to use of influence functions for diffusion models

One peculiarity in the LDS results, similar to the findings in [30], is that substituting the loss
measurement for the ELBO measurement when predicting changes in ELBO actually works better
than using the correct measurement (see Figure 2b “K-FAC Influence (measurement loss)”).4 To

4Note that, unlike Zheng et al. [30], we only change the measurement function for a proxy in the influence
function approximation, keeping the Hessian approximation and training loss gradient in Equation (4) the same.

13

try and better understand the properties of influence functions, in this section we perform multiple
ablations and report different interesting phenomena that give some insight into the challenges of
using influence functions in this setting.

As illustrated in Figure 17, gradients of the ELBO and training loss measurements, up to a constant
scaling, consist of the same per-diffusion-timestep loss term gradients ∇θℓt(θ, x), but with a different
weighting. To try and break-down why approximating the change in ELBO with the training loss
measurement gives higher LDS scores, we first look at predicting the change in the per-diffusion-
timestep losses ℓt while substituting different per-diffusion-timestep losses into the K-FAC influence
approximation. The results are shown in Figure 9, leading to the following observation:

Observation 1 Higher-timestep losses ℓt(θ, x) act as better proxies for lower-timestep losses.

More specifically, changes in losses ℓt can in general be well approximated by substituting measure-
ments ℓt′ into the influence approximation with t′ > t. In some cases, using the incorrect timestep
t′ > t even results in significantly better LDS scores than the correct timestep t′ = t.

Based on Observation 1, it is clear that influence function-based approximations have limitations
when being applied to predict the numerical change in loss measurements. We observe another
pattern in how they can fail:

Observation 2 Influence functions predict both positive and negative influence on loss, but, in
practice, removing data points predominantly increases loss.

We show in Figures 13 and 14 that influence functions tend to overestimate how often removal of
a group data points will lead to improvements in loss on a generated sample (both for aggregate
diffusion training loss in Section 2.1, and the per-diffusion-timestep loss in Equation (11)).

Lastly, although ELBO is perhaps the measurement with the most direct link to the marginal
probability of sampling a particular example, we find some peculiarities on the diffusion modelling
tasks considered. The below observation in particular puts the usefulness of estimating the change in
ELBO for data attribution into question:

Observation 3 For sufficiently large training set sizes, ELBO is close to constant on generated
samples, irrespective of which examples were removed from the training data.

As illustrated in Figure 15, ELBO measurement is close to constant for any given sample generated
from the model, no matter which 50% subset of the training data is removed. In particular, it is
extremely rare that one sample is more likely to be generated than another by one model (as measured
by ELBO), and is less likely to be generated than another by a different model trained on a different
random subset of the data. Our observation mirrors that of Kadkhodaie et al. [12] who found that,
if diffusion models are trained on non-overlapping subsets of data of sufficient size, they generate
near-identical images when sampling with the same noise. This suggests that Observation 3 is not
necessarily a deficiency of the ELBO measurement as a proxy for marginal log-probability; the
different models are in fact learning nearly identical distributions.

G Gradient compression ablation

In Figure 4, we ablate different compression methods by computing the per training datapoint influ-
ence scores with compressed query (measurement) gradients, and looking at the Pearson correlation
and the rank correlation to the scores compute with the uncompressed gradients. We hope to see
a correlation of close to 100%, in which case the results for our method would be unaffected by
compression. We find that using quantisation for compression results in almost no change to the
ordering over training datapoints, even when quantising down to 8 bits. This is in contrast to the
SVD compression scheme used in Grosse et al. [9]. This is likely because the per-example gradients
naturally have a low-rank (Kronecker) structure in the classification, regression, or autoregressive
language modelling settings, such as that in Grosse et al. [9]. On the other hand, the diffusion training
loss and other measurement functions considered in this work do not have this low-rank structure.
This is because computing them requires multiple forward passes; for example, for the diffusion
training loss we need to average the mean-squared error loss in Equation (11) over multiple noise

14

0% 10% 20% 30% 40% 50% 60% 70%

Compression ratio

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
a
n
k

co
rr

el
a
ti

o
n

to
u
n
co

m
p
re

ss
ed

sc
o
re

s

Rank 1

Rank 2

Rank 5

Rank 10

Rank 20

Rank 50
Rank 100 Rank 150

int8 int16

Figure 4: Comparison of gradient compression methods for the influence function approximation.

samples ϵ(t) and multiple diffusion timesteps. We use 8 bit quantisation with query gradient batching
[9] for all KFAC experiments throughout this work.

H Damping LDS ablations

We report an ablation over the LDS scores with GGN approximated with different damping factors
for TRAK/D-TRAK and K-FAC influence in Figures 5 to 8. The reported damping factors for TRAK
are normalised by the dataset size so that they correspond to the equivalent damping factors for our
method when viewing TRAK as an altenrative approximation to the GGN (see Section 3.1).

10−9 10−7 10−5 10−3 10−1 101

Damping factor

0.00

0.05

0.10

0.15

0.20

R
a
n
k

co
rr

el
a
ti

o
n

(L
D

S
)

Loss 100 samples

Loss 250 samples

Loss 1000 samples

Loss 2500 samples

ELBO 250 samples

ELBO 1000 samples

ELBO 2500 samples

CIFAR-2 - K-FAC Influence

Figure 5: Effect of damping on the LDS scores for K-FAC influence on CIFAR-2. In this plot,
K-FAC GGN approximation was always computed with 1000 samples, and the number of samples
used for computing a Monte Carlo estimate of the training loss/measurement gradient is indicated on
the legend.

15

10−9 10−7 10−5 10−3 10−1 101 103 105

Damping factor

0.00

0.05

0.10

0.15

0.20

R
a
n
k

co
rr

el
a
ti

o
n

(L
D

S
)

Target Measure Train.Loss

Loss Loss Loss

Loss Sq.Norm Sq.Norm (D-TRAK)

ELBO ELBO* Loss

ELBO Sq.Norm Sq.Norm (D-TRAK)

CIFAR-2 - TRAK Influence

Figure 6: Effect of damping on the LDS scores for TRAK (random projection) based influence on
CIFAR-2. 250 samples were used for Monte Carlo estiamtion of all quantities (GGN and the training
loss/measurement gradients). In the legend: Target indicates what measurement we’re trying to
predict the change in after retraining, Measure indicates what measurement function was substituted
into the influence function approximation, and Train.Loss indicates what function was substituted
for the training loss in the computation of the GGN and gradient of the training loss in the influence
function approximation.

10−9 10−7 10−5 10−3 10−1 101

Damping factor

0.00

0.05

0.10

0.15

R
a
n
k

co
rr

el
a
ti

o
n

(L
D

S
)

Loss 250 samples

ELBO* 250 samples

CIFAR-10 - K-FAC Influence

Figure 7: Effect of damping on the LDS scores for K-FAC based influence on CIFAR-10. 100
samples were used for computing the K-FAC GGN approximation, and 250 for computing a Monte
Carlo estimate of the training loss/measurement gradients. × indicates a NaN result (the computation
was not sufficiently numerically stable with that damping factor).

I Empirical ablations for challenges to use of influence functions for diffusion
models

In this section, we describe the results for the observations discussed in Appendix F.

Observation 1 is based on Figures 9 and 10. Figure 9 shows the LDS scores on CIFAR-2 when
attributing per-timestep diffusion losses ℓt (see Equation (11)) using influence functions, whilst
varying what (possibly wrong) per-timestep diffusion loss ℓt′ is used as a measurement function in
the influence function approximation (Equation (4)). Figure 10 is a counter-equivalent to Figure 14
where instead of using influence functions to approximate the change in measurement, we actually
retrain a model on the randomly subsampled subset of data and compute the measurement.

A natural question to ask with regards to Observation 1 is: does this effect go away in settings where
the influence function approximation should more exact? Note that, bar the non-convexity of the
training loss function LD, the influence function approximation in Equation (4) is a linearisation
of the actual change in the measurement for the optimum of the training loss functions with some
examples down-weighted by ε around ε = 0. Hence, we might expect the approximation to be

16

10−10 10−8 10−6 10−4 10−2 100

Damping factor

0.00

0.05

0.10

0.15

R
a
n
k

co
rr

el
a
ti

o
n

(L
D

S
)

Target Measure Train.Loss

Loss Loss Loss

Loss Sq.Norm Sq.Norm (D-TRAK)

Loss Sq.Norm Loss

ELBO* Loss Loss

ELBO* ELBO* Loss

ELBO* Sq.Norm Sq.Norm (D-TRAK)

CIFAR-10 - TRAK Influence

Figure 8: Effect of damping on the LDS scores for TRAK (random projection) based influence
on CIFAR-10. 250 samples were used for Monte Carlo estiamtion of all quantities (GGN and the
training loss/measurement gradients). In the legend: Target indicates what measurement we’re
trying to predict the change in after retraining, Measure indicates what measurement function was
substituted into the influence function approximation, and Train.Loss indicates what function was
substituted for the training loss in the computation of the GGN and gradient of the training loss in the
influence function approximation.

`1 `10 `20 `50 `80 `100 `200 `500 `800 `999

Square
norm

Influence measurement

`1

`10

`20

`50

`80

`100

`200

`500

`800

`999

T
ru

e
m

ea
su

re
m

en
t

14.4 12.6 10.4 9.6 9.1 8.5 7.8 13.1 5.0 4.7 -12.8

4.8 10.5 12.0 11.5 10.5 9.8 10.0 14.7 3.0 2.7 -4.7

2.1 6.8 9.6 12.0 12.0 11.8 12.3 15.6 2.7 2.6 -1.7

0.4 2.0 3.7 9.4 13.9 15.4 16.8 15.2 2.4 2.3 2.0

0.2 1.0 1.5 6.7 12.7 15.5 19.7 15.1 2.7 2.4 2.5

0.3 0.7 0.9 5.5 11.5 14.8 21.1 15.2 2.9 2.6 2.6

0.9 0.6 0.4 2.7 7.1 10.4 22.7 17.7 3.5 3.0 1.0

2.1 1.5 1.7 2.1 3.1 4.1 12.1 43.8 5.1 4.2 -1.6

5.0 2.4 1.4 0.7 0.4 0.5 2.8 22.8 56.4 50.2 -3.0

4.2 0.7 0.3 0.0 0.5 0.5 1.6 10.3 17.5 17.2 -0.0

−40

−20

0

20

40

R
a
n
k

co
rr

el
a
ti

o
n

(%
)

Figure 9: Rank correlation (LDS scores) between influence function estimates with different mea-
surement functions and different true measurements CIFAR-2. The plot shows how well different
per-timestep diffusion losses ℓt work as measurement functions in the influence function approxima-
tion, when trying to approximate changes in the actual measurements when retraining a model.

more exact when instead of fully removing some data points from the dataset (setting ε = 1/N), we
instead down-weight their contribution to the training loss by a smaller non-zero factor. To investigate
whether this is the case, we repeat the LDS analysis in Figures 9 and 10, but with ε = 1/2N; in other
words, the training loss terms corresponding to the “removed” examples are simply down-weighted
by a factor of 1/2 in the retrained models. The results are shown in Figures 11 and 12. Perhaps
somewhat surprisingly, a contrasting effect can be observed, where using per-timestep diffusion losses
for larger times yields a higher absolute rank correlation, but with the opposing sign. The negative
correlation between measurement ℓt, ℓt′ for t ̸= t′ can also be observed for the true measurements
in the retrained models in Figure 12. We also observe that in this setting, influence functions fail
completely to predict changes in ℓt with the correct measurement function for t ≤ 200.

Observation 2 Figure 13 shows the changes in losses after retraining the model on half the data
removed against the predicted changes in losses using K-FAC Influence for two datasets: CIFAR-2
and CIFAR-10. In both cases, for a vast majority of retrained models, the loss measurement on a

17

`1 `10 `20 `50 `80 `100 `200 `500 `800 `999

Influence measurement

`1

`10

`20

`50

`80

`100

`200

`500

`800

`999

T
ru

e
m

ea
su

re
m

en
t

32.3 20.3 13.9 7.9 6.4 6.1 6.1 7.1 4.0 0.6

19.9 30.3 28.2 19.4 15.5 14.1 12.2 10.1 3.6 -0.0

13.8 28.6 32.4 27.4 22.5 20.5 16.6 11.4 3.0 0.1

8.0 20.4 28.3 36.3 34.9 33.1 26.2 13.4 2.5 1.3

6.7 16.7 23.8 35.8 39.1 39.0 33.3 14.7 2.6 1.6

6.4 15.5 21.9 34.3 39.5 40.6 37.1 15.6 2.7 1.7

6.9 14.2 18.9 28.8 35.8 39.3 48.6 23.6 2.9 1.6

9.4 13.6 15.1 17.2 18.5 19.3 27.8 74.9 7.2 2.8

4.3 4.0 3.3 2.9 2.9 3.0 3.0 6.5 51.2 14.7

-0.1 -0.4 -0.2 0.7 1.1 1.2 1.1 1.7 10.4 7.8
−60

−40

−20

0

20

40

60

R
a
n
k

co
rr

el
a
ti

o
n

(%
)

Figure 10: Rank correlation between true measurements for losses at different diffusion timesteps on
CIFAR-2.

`1 `10 `20 `50 `80 `100 `200 `500 `800 `999

Square
norm

Influence measurement

`1

`10

`20

`50

`80

`100

`200

`500

`800

`999

T
ru

e
m

ea
su

re
m

en
t

-2.9 -1.0 -0.6 -0.5 -1.1 -1.3 -3.0 -8.3 -3.1 -2.6 0.1

-3.6 -3.8 -3.5 -3.0 -2.5 -2.9 -7.7 -23.4 -9.5 -8.1 2.7

-2.6 -3.4 -3.6 -3.0 -2.8 -3.3 -9.4 -28.8 -11.1 -9.6 2.4

-1.9 -2.8 -3.1 -2.9 -3.3 -4.0 -10.7 -33.5 -11.4 -9.8 1.3

-1.8 -2.4 -2.6 -2.4 -2.9 -3.7 -10.6 -34.7 -10.9 -9.2 1.0

-1.9 -2.2 -2.4 -2.3 -2.8 -3.5 -10.4 -35.2 -10.8 -9.1 1.2

-2.0 -1.7 -2.0 -2.0 -2.2 -2.8 -7.9 -34.8 -10.1 -8.6 1.3

0.6 0.1 0.2 0.3 1.0 1.7 6.1 15.7 -0.9 -0.9 -0.3

3.6 2.5 1.9 1.4 0.6 0.3 1.5 16.8 43.9 38.3 -2.5

6.5 5.8 4.0 3.2 1.9 1.4 1.6 7.2 10.1 8.6 -11.3 −40

−30

−20

−10

0

10

20

30

40

R
a
n
k

co
rr

el
a
ti

o
n

(%
)

Figure 11: Rank correlation (LDS scores) between influence function estimates with different
measurement functions and different true measurements CIFAR-2, but with the retrained models
trained on the full dataset with a random subset of examples having a down-weighted contribution
to a training loss by a factor of ×0.5.

sample increases after retraining. On the other hand, the influence functions predict roughly evenly
that the loss will increase and decrease. This trend is amplified if we instead look at influence
predicted for per-timestep diffusion losses ℓt (Equation (11)) for earlier timesteps t, which can be
seen in Figure 14. On CIFAR-2, actual changes in ℓ1, ℓ50, ℓ100 measurements are actually always
positive, which the influence functions approximation completely misses. For all plots, K-FAC
Influence was ran with a damping factor of 10−8 and 250 samples for all gradient computations.

Figures 13 and 14 also shows that influence functions tend to overestimate the magnitude of the
change in measurement after removing the training data points. This is in contrast to the observation
in [14] in the supervised setting, where they found that influence functions tend to underestimate the
magnitude of the change in the measurement. There are many plausible reasons for this, ranging
from the choice of the Hessian approximation ([14] compute exact inverse-Hessian-vector products,
whereas we approximate the GGN), to the possible “stability” of the learned distribution in diffusion
models even when different subsets of data are used for training (Observation 3 and [12]).

Observation 3 Lastly, the observations that the ELBO measurements remain essentially constant for
models trained on different subsets of data is based on Figure 15. There, we plot the values of the
ELBO measurement for different pairs of models trained on different subsets of data, where we find

18

`1 `10 `20 `50 `80 `100 `200 `500 `800 `999

Influence measurement

`1

`10

`20

`50

`80

`100

`200

`500

`800

`999

T
ru

e
m

ea
su

re
m

en
t

6.1 4.7 3.8 3.7 3.8 3.9 3.8 -0.7 -1.2 -0.1

4.8 11.2 12.7 13.1 13.1 13.2 12.4 -6.0 -4.5 -0.9

4.3 13.4 16.6 18.2 18.2 18.3 17.0 -9.1 -5.8 -0.9

4.4 14.7 19.4 23.4 24.2 24.4 22.6 -13.1 -6.7 -1.3

4.6 14.9 19.8 24.6 25.9 26.3 24.8 -14.4 -6.8 -1.5

4.7 14.9 19.9 24.9 26.4 26.9 25.9 -14.6 -6.9 -1.5

4.5 14.0 18.5 23.2 25.1 26.0 28.1 -12.8 -6.9 -1.5

-1.0 -7.2 -10.3 -14.0 -15.0 -15.2 -13.2 29.9 -1.7 0.5

-1.6 -4.9 -6.1 -6.6 -6.6 -6.7 -6.6 -1.7 19.3 5.2

-0.2 -0.7 -0.7 -1.1 -1.3 -1.3 -1.1 0.4 3.8 -2.0

−20

−10

0

10

20

R
a
n
k

co
rr

el
a
ti

o
n

(%
)

Figure 12: Rank correlation between true measurements for losses at different diffusion timesteps on
CIFAR-2, but with the retrained models trained on the full dataset with a random subset of examples
having a down-weighted contribution to a training loss by a factor of ×0.5.

−0.06−0.04−0.02 0.00 0.02 0.04 0.06

Estimated change in `(x, θ)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ct

u
a
l

ch
a
n
g
e

in
`(
x
,θ

)

×10−2
CIFAR-2

−0.6 −0.4 −0.2 0.0 0.2 0.4

Estimated change in `(x, θ)

−2

−1

0

1

2

3

4

×10−3
CIFAR-10

100

101

102

103

F
re

q
u
en

cy
(#

o
f

sa
m

p
le

s
in

b
in

)
Figure 13: Change in diffusion loss ℓ in Section 2.1 when retraining with random subsets of 50% of
the training data removed, as predicted by K-FAC influence (x-axis), against the actual change in the
measurement (y-axis). Results are plotted for measurements ℓ(x, θ) for 50 samples x generated from
the diffusion model trained on all of the data. The scatter color indicates the sample x for which the
change in measurement is plotted. The figure shows that influence functions tend to overestimate
how often the loss will decrease when some training samples are removed; in reality, it happens quite
rarely.

near perfect correlation. The only pairs of models that exhibit an ELBO measurement correlation
of less that 0.99 are the CIFAR-2 model trained on the full dataset compared to any model trained
on a 50% subset, which is likely due to the fact that the 50% subset models are trained for half as
many gradient iterations, and so may have not fully converged yet. For CIFAR-10, where we train
for 5× as many training steps due to a larger dataset size, we observe near-perfect correlation in the
ELBO measurements across all models. Each ELBO measurement was computed with a Monte-Carlo
estimate using 5000 samples.

Interestingly, the observation does to an extent hold for the simple diffusion loss as well (see
Figure 16). For CIFAR-10, the correlation is again close to 100% among the retrained models, but
for CIFAR-2 it’s substantially lower. This is consistent with the results in [12, Figure 2], where the

19

−1 0 1

Estimated change in `1

1

2

3

4

5

A
ct

u
a
l

ch
a
n
g
e

in
` 1

×10−2

−0.6 −0.4 −0.2 0.0 0.2

Estimated change in `50

1

2

3

4

5

A
ct

u
a
l

ch
a
n
g
e

in
` 5

0

×10−2

−0.2 0.0 0.2

Estimated change in `100

1

2

3

4

5

A
ct

u
a
l

ch
a
n
g
e

in
` 1

0
0

×10−2

−0.04 −0.02 0.00 0.02 0.04

Estimated change in `500

0

1

2

3

4

A
ct

u
a
l

ch
a
n
g
e

in
` 5

0
0

×10−3

100 101 102 103

Frequency (# of samples in bin)

Figure 14: Change in per-diffusion-timestep losses ℓt when retraining with random subsets of 50%
of the training data removed, as predicted by K-FAC influence (x-axis), against the actual change in
the measurement (y-axis). Results are plotted for the CIFAR-2 dataset, for measurements ℓt(x, θ)
for 50 samples x generated from the diffusion model trained on all of the data. The scatter color
indicates the sample x for which the change in measurement is plotted. The figure shows that: 1)
influence functions predict that the losses ℓt will increase or decrease roughly equally frequently
when some samples are removed, but, in reality, the losses almost always increase; 2) for sufficiently
large time-steps (ℓ500), this pattern seems to subside. Losses ℓt in the 200− 500 range seem to work
well for predicting changes in other losses Figure 9.

results might suggest that models trained on different subsets of data eventually start behaving the
same if the number of data points is sufficiently large, but Figures 15 and 16 would imply that the
thresholds of sufficient data size might differ at different diffusion timesteps.

J Retraining without top influences

The counterfactual retraining results are shown in Figure 18 for CIFAR-2, CIFAR-10, with 2% and
10% of the data removed. In this evaluation, influence functions with K-FAC consistently pick more
influential training examples (i.e. those which lead to a higher loss reduction) than the baselines.

20

5
0
%

su
b

sa
m

p
le

1 r=0.668
ρ=0.649

r –Pearson correlation
coefficient

ρ –Spearman rank
correlation coefficient

5
0
%

su
b

sa
m

p
le

2 r=0.668
ρ=0.649

r=0.999
ρ=0.999

5
0
%

su
b

sa
m

p
le

3 r=0.669
ρ=0.648

r=0.999
ρ=0.999

r=0.999
ρ=0.999

Full
dataset

5
0
%

su
b

sa
m

p
le

4 r=0.668
ρ=0.651

50%
subsample 1

r=0.999
ρ=0.999

50%
subsample 2

r=0.999
ρ=0.999

50%
subsample 3

r=0.999
ρ=0.999

50%
subsample 3

r=1.000
ρ=1.000

50%
subsample 2

r=1.000
ρ=1.000

50%
subsample 1

r=1.000
ρ=1.000

Full
dataset

5
0
%

su
b

sa
m

p
le

1r=1.000
ρ=1.000

r=1.000
ρ=1.000

r=1.000
ρ=1.000

5
0
%

su
b

sa
m

p
le

2r=1.000
ρ=0.999

r=1.000
ρ=1.000

5
0
%

su
b

sa
m

p
le

3r=1.000
ρ=0.999

5
0
%

su
b

sa
m

p
le

4r=1.000
ρ=0.999

CIFAR-10→
←CIFAR-2

Figure 15: Correlation of the ELBO(x, θ) measurements on different data points x (samples gen-
erated from the model trained on full data), for models trained on different subsets of data. Each
subplot plots ELBO(x, θ) measurements for 200 generated samples x, as measured by two models
trained from scratch on different subsets of data, with the x-label and the y-label identifying the
respective split of data used for training (either full dataset, or randomly subsampled 50%-subset).
Each subplot shows the Pearson correlation coefficient (r) and the Spearman rank correlation (ρ)
for the ELBO(x, θ) measurements as measured by the two models trained on different subsets of
data. The two parts of the figure show results for two different datasets: CIFAR-2 on the left, and
CIFAR-10 on the right.

K Hessian Approximation Ablation

In Figure 19, we explore the impact of the Hessian approximation design choices discussed in
Section 3.1. We use K-FAC to approximate the GGN in all cases, with either the “expand” or the
“reduce” variant (Appendix D.1). We find that the better-motivated “MC-Fisher” estimator GGNmodel

in Equation (7) does indeed perform better than the “empirical Fisher” in Equation (9) used in TRAK
and D-TRAK. Secondly, we find that K-FAC expand significantly outperforms K-FAC reduce, which
stands in contrast to the results in the second-order optimisation setting where the two are on par
with one another [6]. There are multiple differences from our setting to the one from the previous
optimisation results: we use a square loss instead of a cross entropy loss, a full dataset estimate,
a different architecture, and evaluate the approximation in a different application. Notably, the
expand variant is the better justified one since the diffusion modelling problem corresponds to the
expand setting in Eschenhagen et al. [6]. Hence, our results all seem to imply that a better Hessian
approximation directly results in better downstream data attribution performance. However, we do not
directly evaluate the approximation quality of the estimates and also do not sweep over the damping
value for all variants.

L LDS results for probability of sampling trajectory

The results for the “log probability of sampling trajectory” measurements are shown in Figure 20. The
probability of sampling trajectory appears to be a measurement with a particularly low correlation
across different models trained with the same data, but different random seeds. This is perhaps

21

5
0
%

su
b

sa
m

p
le

1 r=0.960
ρ=0.957

r –Pearson correlation
coefficient

ρ –Spearman rank
correlation coefficient

5
0
%

su
b

sa
m

p
le

2 r=0.964
ρ=0.957

r=0.989
ρ=0.988

5
0
%

su
b

sa
m

p
le

3 r=0.964
ρ=0.954

r=0.991
ρ=0.993

r=0.991
ρ=0.990

Full
dataset

5
0
%

su
b

sa
m

p
le

4 r=0.965
ρ=0.956

50%
subsample 1

r=0.990
ρ=0.989

50%
subsample 2

r=0.991
ρ=0.990

50%
subsample 3

r=0.993
ρ=0.991

50%
subsample 3

r=1.000
ρ=1.000

50%
subsample 2

r=1.000
ρ=0.999

50%
subsample 1

r=1.000
ρ=1.000

Full
dataset

5
0
%

su
b

sa
m

p
le

1r=0.989
ρ=0.988

r=1.000
ρ=1.000

r=1.000
ρ=0.999

5
0
%

su
b

sa
m

p
le

2r=0.989
ρ=0.988

r=1.000
ρ=1.000

5
0
%

su
b

sa
m

p
le

3r=0.989
ρ=0.989

5
0
%

su
b

sa
m

p
le

4r=0.989
ρ=0.988

CIFAR-10→
←CIFAR-2

Figure 16: Correlation of the diffusion loss ℓ(x, θ) measurements on different data points x (samples
generated from the model trained on full data), for models trained on different subsets of data. See the
caption of Figure 15 for details, the plot is identical except for the measurement being the diffusion
loss rather than ELBO.

0 200 400 600 800 1000

Diffusion timestep

100

101

ELBO weighting

Training loss weighting

Figure 17: The diffusion loss and diffusion ELBO as formulated in [11] (ignoring the reconstruction
term that accounts for the quantisation of images back to pixel space) are equal up to the weighting of
the individual per-diffusion-timestep loss terms and a constant independent of the parameters. This
plot illustrates the relatives difference in the weighting for per-diffusion-timestep losses applied in
the ELBO vs. in the training loss.

unsurprising, since the measurement comprises the log-densities of particular values of 1000 latent
variables.

M Experimental details

In this section, we describe the implementation details for the methods and baselines, as well as the
evaluations reported in Section 4.

22

0.0024 ±0.0009

0.0029 ±0.0009

0.0032 ±0.001

0.0034 ±0.0009

0.0000 0.0025 0.0050 0.0075 0.0100

CIFAR-2 — 2% removed

0.0027 ±0.0009

0.0037 ±0.0009

0.0042 ±0.0008

0.0043 ±0.0008

0.0000 0.0025 0.0050 0.0075 0.0100

K-FAC Influence

D-TRAK

TRAK

Random

CIFAR-2 — 10% removed

2.3e− 05 ±0.0003

0.00041 ±0.0003

0.00067 ±0.0002

0.0008 ±0.0004

0.000 0.001 0.002 0.003 0.004 0.005

Measurement Change

CIFAR-10 — 2% removed

0.00015 ±0.0003

0.00069 ±0.0002

0.001 ±0.0002

0.0013 ±0.0005

0.000 0.002 0.004 0.006

Measurement Change

K-FAC Influence

D-TRAK

TRAK

Random

CIFAR-10 — 10% removed

Figure 18: Changes in measurements under counterfactual retraining without top influences for the
loss measurement. The standard error in the estimate of the mean is indicated with error bars and
reported after ‘±’, where the average is over different generated samples for which top influences are
being identified.

6.05% ±0.7

6.47% ±0.7

17.85% ±0.9

21.46% ±0.9

50.32% ±0.2

0 10 20 30 40 50 60 70

Rank Correlation % (LDS)

Exact Retraining

GGNmodel (MC-Fisher)

GGNloss (Empirical)

GGNmodel (MC-Fisher)

GGNloss (Empirical)
}

reduce

}
expand

Figure 19: Ablation over the different Hessian approximation variants introduced in Section 3.1.
We ablate two versions of the GGN: the “MC” Fisher in Equation (7) and the “Empirical” Fisher in
Equation (9), as well as two settings for the K-FAC approximation: “expand” and “reduce”.

7.1% ±0.7

3.1% ±0.8

9.8% ±0.8

12.3% ±0.8

25.1% ±0.3

(1.7%)

(12.3%)

0 20 40 60 80 100

Rank Correlation % (LDS)

CIFAR-2

3.4% ±0.7

0.5% ±0.8

3.1% ±0.7

2.3% ±0.8

3.2% ±0.1

(0.5%)

(2.3%)

0 20 40 60 80 100

Rank Correlation % (LDS)

Exact Retraining

K-FAC Influence(m. loss)

D-TRAK

K-FAC Influence

CLIP Cosine Similarity

CIFAR-10

Figure 20: Linear Data-modelling Score (LDS) for the probability of sampling trajectory. The
plot follows the same format as that of Figures 2a and 2b. Overall, probability of the sampling
trajectory appears to be a difficult proxy for the marginal probability of sampling a given example,
given that it suffers from the same issues as the ELBO on CIFAR-2 (it’s better approximated by the
wrong measurement function), and there is extremely little correlation in the measurement across the
retrained models on larger datasets (CIFAR-10).

M.1 Data attribution baselines

In our framework, their method can be tersely described as using GGNloss
D (Empirical Fisher) in

Equation (9) as a Hessian approximation instead of GGNmodel
D (MC-Fisher) in Equation (8), and

computing the Hessian-preconditioned inner products using random projections [5] rather than K-FAC.
We also compare to the ad-hoc changes to the measurement/training loss in the influence function
approximation (D-TRAK) that were shown by Zheng et al. [30] to give improved performance on

23

LDS benchmarks. Note that, the changes in D-TRAK were directly optimised for improvements in
LDS scores in the diffusion modelling setting, and lack any theoretical motivation. Hence, a direct
comparison for the changes proposed in this work (K-FAC Influence) is TRAK; the insights from
D-TRAK are orthogonal to our work. These are the only prior works motivated by predicting the
change in a model’s measurements after retraining that have been applied to the general diffusion
modelling setting that we are aware of. We also compare to naı̈vely using cosine similarity between
the CLIP [22] embeddings of the training datapoints and the generated sample as a proxy for influence
on the generated samples. Lastly, we report LDS results for the oracle method of “Exact Retraining”,
where we actually retraining a single model to predict the changes in measurements.

M.2 Datasets

We focus on the following dataset in this paper:

CIFAR-10 CIFAR-10 is a dataset of small RGB images of size 32× 32 [16]. We use 50000 images
(the train split) for training.

CIFAR-2 For CIFAR-2, we follow Zheng et al. [30] and create a subset of CIFAR-10 with 5000
examples of images only corresponding to classes car and horse. 2500 examples of class car
and 2500 examples of class horse are randomly subsampled without replacement from among all
CIFAR-10 images of that class.

M.3 Models

For all CIFAR datasets, we train a regular Denoising Diffusion Probabilistic Model using a standard
U-Net architecture as described for CIFAR-10 in [11]. This U-Net architecture contains both
convolutional and attention layers. We use the same noise schedule as described for the CIFAR dataset
in [11].

Sampling We follow the standard DDPM sampling procedure with a full 1000 timesteps to create
the generated samples as described by Ho et al. [11]. DDPM sampling usually gives better samples
(in terms of visual fidelity) than Denoising Diffusion Implicit Models (DDIM) sampling [28] when
a large number of sampling steps is used. As described in Section 2.1, when parameterising the
conditionals pθ(x

(t−1)|x(t)) with neural networks as N
(
x(t−1)|µt−1|t,0

(
x(t), ϵtθ(x

(t))
)
, σ2

t I
)

we
have a choice in how to set the variance hyperparameters {σ2

t }Tt=1. The σ2
t hyperparameters do not

appear in the training loss; however, they do make a difference when sampling. We use the “small”
variance variant from Ho et al. [11, §3.2], i.e. we set:

σ2
t =

1−
∏t−1

t′=1 λt′

1−
∏t

t′=1 λt′
(1− λt)

M.4 Details on data attribution methods

TRAK For TRAK baselines, we adapt the implementation of Park et al. [21], Georgiev et al. [7]
to the diffusion modelling setting. When running TRAK, there are several settings the authors
recommend to consider: 1) the projection dimension dproj for the random projections, 2) the damping
factor λ, and 3) the numerical precision used for storing the projected gradients. For (1), we use a
relatively large projection dimension of 32768 as done in most experiments in [30]. We found that the
projection dimension affected the best obtainable results significantly, and so we couldn’t get away
with a smaller one. We also found that using the default float16 precision in the TRAK codebase
for (3) results in significantly degraded results (see Figure 21, and so we recommend using float32
precision for these methods for diffusion models. In all experiments, we use float32 throughout.
For the damping factor, we report the sweeps over LDS scores in Figures 6 and 8, and use the best
result in each benchmark, as these methods fail drastically if the damping factor is too small. The
damping factor reported in the plots is normalised by the dataset size N , to match the definition
of the GGN, and to make it comparable with the damping reported for other influence functions
methods introduced in this paper. For non-LDS experiments, we use the best damping value from the
corresponding LDS benchmark.

CLIP cosine similarity One of the data attribution baselines used for the LDS experiments is CLIP
cosine similarity [22]. For this baseline, we compute the CLIP embeddings [22] of the generated

24

sample and training datapoints, and consider the cosine similarity between the two as the “influence”
of that training datapoint on that particular target sample. See [21] for details of how this influence
is aggregated for the LDS benchmark. Of course, this computation does not in any way depend on
the diffusion model or the measurement function used, so it is a pretty naı̈ve method for estimating
influence.

K-FAC We build on the https://github.com/f-dangel/curvlinops package for our imple-
mentation of K-FAC for diffusion models. Except for the ablation in Figure 19, we use the K-FAC
expand variant throughout. We compute K-FAC for PyTorch nn.Conv2d and nn.Linear modules
(including in attention), ignoring the parameters in the normalisation layers.

Compression for all K-FAC influence functions results, we use int8 quantisation for the query
gradients.

Monte Carlo computation of gradients and the GGN for influence functions Computing the
per-example training loss ℓ(θ, xn) in Section 2.1, the gradients of which are necessary for computing
the influence function approximation (Equation (4)), includes multiple nested expectations over
diffusion timestep t̃ and noise added to the data ϵ(t). This is also the case for the GGNmodel

D in
Equation (7) and for the gradients ∇θℓ(θ, xn) in the computation of GGNloss

D in Equation (9), as
well as for the computation of the measurement functions. Unless specified otherwise, we use
the same number of samples for a Monte Carlo estimation of the expectations for all quantities
considered. For example, if we use K samples, that means that for the computation of the gradient of
the per-example-loss ∇θℓ(θ, xn) we’ll sample tuples of (t̃, ϵ(t̃), x(t̃)) independently K times to form
a Monte Carlo estimate. For GGNmodel

D , we explicitly iterate over all training data points, and draw
K samples of

(
t̃, ϵ(t̃), x

(t̃)
n

)
for each datapoint. For GGNloss

D , we explicitly iterate over all training

data points, and draw K samples of
(
t̃, ϵ(t̃), x

(t̃)
n

)
to compute the gradients ∇θℓ(θ, xn) before taking

an outer product. Note that, for GGNloss
D , because we’re averaging over the samples before taking

the outer product of the gradients, the estimator of the GGN is no longer unbiased. Similarly, K
samples are also used for computing the gradients of the measurement function.

For all CIFAR experiments, we use 250 samples throughout for all methods (including all gradient
and GGN computations for K-FAC Influence, TRAK, D-TRAK), unless explicitly indicated in the
caption otherwise.

10−9 10−7 10−5 10−3 10−1 101 103 105

Damping factor

0.00

0.05

0.10

0.15

R
a
n
k

co
rr

el
a
ti

o
n

(L
D

S
)

Target Measure Train.Loss

Loss Loss Loss

Loss Sq.Norm Sq.Norm (D-TRAK)

ELBO ELBO* Loss

ELBO Sq.Norm Sq.Norm (D-TRAK)

CIFAR-2 - TRAK Influence

Figure 21: LDS scores on for TRAK (random projection) based influence on CIFAR-2 when using
half-precision (float16) for influence computations. Compare with Figure 6. NaN results are
indicated with ×.

M.5 Damping

For all influence function-like methods (including TRAK and D-TRAK), we use damping to improve
the numerical stability of the Hessian inversion. Namely, for any method that computes the inverse of
the approximation to the Hessian H ≈ ∇2

θLD = ∇2
θ
1/N

∑
ℓ(θ, xn), we add a damping factor λ to

25

https://github.com/f-dangel/curvlinops

the diagonal before inversion:
(H + λI)−1,

where I is a dparam × dparam identity matrix. This is particularly important for methods where the
Hessian approximation is at a high risk of being low-rank (for example, when using the empirical
GGN in Equation (9), which is the default setting for TRAK and D-TRAK). For TRAK/D-TRAK,
the approximate Hessian inverse is computed in a smaller projected space, and so we add λ to the
diagonal directly in that projected space, as done in [30]). In other words, if P ∈ Rdproj×dparam is the
projection matrix (see [21] for details), then damped Hessian-inverse preconditioned vector inner
products between two vectors v1, v2 ∈ Rdparam (e.g. the gradients in Equation (4)) would be computed
as:

(Pv1)
⊺
(H + λI)

−1
Pv,.

where H ≈ P∇2
θLDP

⊺ ∈ Rdproj×dproj is an approximation to the Hessian in the projected space.

For the “default” values used for damping for TRAK, D-TRAK and K-FAC Influence, we primarily
follow recommendations from prior work. For K-FAC Influence, the default is a small damping
value 10−8 throughout added for numerical stability of inversion, as done in prior work [3]. For
TRAK-based methods, Park et al. [21] recommend using no damping: “[...] computing TRAK does
not require the use of additional regularization (beyond the one implicitly induced by our use of
random projections)” [21, § 6]. Hence, we use the lowest numerically stable value of 10−9 as the
default value throughout.

Note that all damping values reported in this paper are reported as if being added to the GGN for
the Hessian of the loss normalised by dataset size . This differs from the damping factor in the
TRAK implementation (https://github.com/MadryLab/trak), which is added to the GGN for
the Hessian of an unnormalised loss (

∑
n ℓ(θ, xn)). Hence, the damping values reported in [30] are

larger by a factor of N (the dataset size) than the equivalent damping values reported in this paper.

M.6 LDS Benchmarks

For all LDS benchmarks [21], we sample 100 sub-sampled datasets (M := 100 in Equation (17)),
and we train 5 models with different random seeds (K := 5 in Equation (17)), each with 50% of the
examples in the full dataset, for a total of 500 retrained models for each benchmark. We compute the
LDS scores for 200 samples generated by the model trained on the full dataset.

Monte Carlo sampling of measurements For all computations of the “true” measurement functions
for the retrained models in the LDS benchmarks we use 5000 samples to estimate the measurement.

M.7 Retraining without top influences

For the retraining without top influences experiments (Figure 18), we pick 5 samples generated by
the model trained on the full dataset, and, for each, train a model with a fixed percentage of most
influential examples for that sample removed from the training dataset, using the same procedure as
training on the full dataset (with the same number of training steps). We then report the change in the
measurement on the sample for which top influences were removed.

Monte Carlo sampling of measurements Again, for all computations of the “true” measurement
functions for the original and the retrained models used for calculating the difference in loss after
retraining we use 5000 samples to estimate the measurement.

M.8 Training details

For CIFAR-10 and CIFAR-2 we again follow the training procedure outlined in [11], with the only
difference being a shortened number of training iterations. For CIFAR-10, we train for 160000 steps
(compared to 800000 in [11]) for the full model, and 80000 steps for the subsampled datasets (410
epochs in each case). On CIFAR-2, we train for 32000 steps for the model trained on the full dataset,
and 16000 steps for the subsampled datasets (800 epochs). We train for significantly longer than [30],
as we noticed the models trained using their procedure were somewhat significantly undertrained
(some per-diffusion-timestep training losses ℓt(θ, x) have not converged). We also use a cosine
learning-rate schedule for the CIFAR-2 models.

26

https://github.com/MadryLab/trak

M.9 Handling of data augmentations

In the presentation in Section 2, we ignore for the sake of clear presentation the reality that in most
diffusion modelling applications we also apply data augmentations to the data. For example, the
training loss LD in Equation (1) in practice often takes the form:

LD =
1

N

N∑

n=1

Ex̃n
[ℓ(θ, x̃n)] ,

where x̃n is the data point xn after applying a (random) data augmentation to it. This needs to be
taken into account 1) when defining the GGN, as the expectation over the data augmentations Ex̃n

can either be considered as part of the outer expectation Ez , or as part of the loss ρ (see Section 2.2.1),
2) when computing the per-example train loss gradients for influence functions, 3) when computing
the loss measurement function.

When computing GGNmodel
D in Equation (7), we treat data augmentations as being part of the out

“empirical data distribution”. In other words, we would simply replace the expectation Exn
in the

definition of the GGN with a nested expectation Exn
Ex̃n

:

GGNmodel
D (θ) = Exn

[
Ex̃n

[
Et̃

[
Ex(t̃),ϵ(t̃)

[
∇⊺

θ ϵ
t̃
θ

(
x(t̃)
)
(2I)∇θϵ

t̃
θ

(
x(t̃)
)]]]]

.

with x(t̃) now being sampled from the diffusion process q(x(t̃)|x̃n) conditioned on the augmented
sample x̃n. The terms changing from the original equation are indicated in yellow. The “Fisher”
expression amenable to MC sampling takes the form:

FD(θ) = Exn

[
Ex̃n

[
Et̃

[
E
x
(t̃)
n ,ϵ(t̃)

Eϵmod

[
gn(θ)gn(θ)

⊺]]]]
, ϵmod ∼ N

(
ϵt̃θ

(
x(t̃)
n

)
, I
)
,

where, again, gn(θ) = ∇θ∥ϵmod − ϵt̃θ(x
(t̃)
n)∥2.

When computing GGNloss
D in Equation (9), however, we treat the expectation over daea augmenta-

tions as being part of the loss ρ, in order to be more compatible with the implementations of TRAK
[21] in prior works that rely on an empirical GGN [30, 7].5Hence, the GGN in Equation (9) takes the
form:

GGNloss
D (θ) = Exn

∇θ (Ex̃n

[ℓ(θ, x̃n)])∇⊺
θ (Ex̃n

[ℓ(θ, x̃n)])︸ ︷︷ ︸
ℓ̃(θ,xn)

= Exn

[
∇θ ℓ̃(θ, x̃n)∇⊺

θ ℓ̃(θ, x̃n)
]
,

where ℓ̃ is the per-example loss in expectation over data-augmentations. This is how the Hessian
approximation is computed both when we’re using K-FAC with GGNmodel

D in presence of data
augmentations, or when we’re using random projections (TRAK and D-TRAK).

When computing the training loss gradient in influence function approximation in equation Equa-
tion (3), we again simply replace the per-example training loss ℓ(θ⋆, xj) with the per-example training
loss averaged over data augmentations ℓ̃(θ⋆, xj), so that the training loss LD can still be written as a
finite sum of per-example losses as required for the derivation of influence functions.

For the measurement function m in Equation (4), we assume we are interested in the log probability
of (or loss on) a particular query example in the particular variation in which it has appeared, so we
do not take data augmentations into account in the measurement function.

Lastly, since computing the training loss gradients for the influence function approximation for
diffusion models usually requires drawing MC samples anyways (e.g. averaging per-diffusion
timestep losses over the diffusion times t̃ and noise samples ϵ(t)), we simply report the total number
of MC samples per data point, where data augmentations, diffusion time t̃, etc. are all drawn
independently for each sample.

5The implementations of these methods store the (randomly projected) per-example training loss gradients
for each example before computing the Hessian approximation. Hence, unless data augmentation is considered
to be part of the per-example training loss, the number of gradients to be stored would be increased by the
number of data augmentation samples taken.

27

	Introduction
	Background
	Diffusion Models
	Influence Functions
	Generalised Gauss-Newton matrix

	Scalable influence functions for diffusion models
	Approximating the Hessian
	What to measure

	Experiments
	Discussion
	Background on denoising diffusion probabilistic models
	Derivation of Influence Functions
	Implicit Function Theorem
	Applying the implicit function theorem to quantify the change in the optimum of a loss

	Derivation of the Fisher “GGN” formulation for Diffusion Models
	Details on approaches to improving scalability of influence functions for diffusion
	K-FAC for diffusion models
	Gradient compression and query batching

	Evaluating Data Attribution
	Potential challenges to use of influence functions for diffusion models
	Gradient compression ablation
	Damping LDS ablations
	Empirical ablations for challenges to use of influence functions for diffusion models
	Retraining without top influences
	Hessian Approximation Ablation
	LDS results for probability of sampling trajectory
	Experimental details
	Data attribution baselines
	Datasets
	Models
	Details on data attribution methods
	Damping
	LDS Benchmarks
	Retraining without top influences
	Training details
	Handling of data augmentations

