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Abstract

While many studies have shown that linguistic information is encoded in hidden
word representations, few have studied individual neurons, to show how and in
which neurons it is encoded. Among these, the common approach is to use an
external probe to rank neurons according to their relevance to some linguistic
attribute, and to evaluate the obtained ranking using the same probe that produced
it. We show that this methodology confounds distinct factors—probe quality and
ranking quality—and thus we separate them. We compare two recent ranking
methods and a novel one we introduce, both by probing and by causal interventions,
where we modify the representations and observe the effect on the model’s output.
We show that encoded information and used information are not always the same,
and that individual neurons can be used to control the model’s output, to some
extent. Our method can be used to identify how certain information is encoded,
and how to manipulate it for debugging purposes.1

1 Introduction

What linguistic information is encoded in a hidden representation? A popular approach to tackle this
question is by probing: training a simple model to predict some information from the representation
[Adi et al., 2017, Conneau et al., 2018]. Most studies focus on training the classifier using the entire
high-dimensional representation to predict the desired attribute. Such a method can show whether
the information is encoded in the representation, but not how it is encoded: in which neurons? is
it localized (concentrated in a small set of neurons) or dispersed? A few recent studies [Elazar
et al., 2021, Feder et al., 2020] have tackled a related, causal question: given that the information
is encoded, is it actually being used by the language model that encoded it? If we want to alter a
model’s behaviour—for example, for debugging purposes—we would like to know both how the
information is encoded and whether it is used by the model. Such knowledge may allow us to modify
specific neurons of the representation in a certain way that would change the model’s output, with
respect to that attribute—as in Bau et al. [2019]—and provide us with parameters-level explanations
of the model’s decisions. Other reasons to look at individual neurons can be to reduce the number of
components in the model, using methods such as pruning [Voita et al., 2019, Sajjad et al., 2020], as
well as gain a general scientific understanding of the model.

In this work, we focus on two prior neuron ranking methods, which aim to rank the neurons of a word
representation according to their importance for a linguistic property, such as part of speech. Both of
these methods—LINEAR [Dalvi et al., 2019] and GAUSSIAN [Torroba Hennigen et al., 2020]—rely
on an external probe to obtain a ranking: the first makes use of the internal weights of a linear probe,
while the second considers the performance of a decomposable generative probe.

1Our code is available at: https://github.com/technion-cs-nlp/Individual-Neurons
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Both methods evaluate the quality of their ranking according to the probe’s accuracy using only the
k-highest ranked neurons. However, using this metric, two distinct factors are conflated: the probe’s
quality as a classifier, and the quality of the ranking it produces. We claim that we should separate the
two: a good classifier may provide good results even if its ranking is bad, and an optimal ranking may
cause an average classifier to provide better results than a good classifier that is given a bad ranking.
To avoid this conflation, we propose a simple ranking method, PROBELESS, which ranks neurons
according to the difference in their values across labels, and thus can be derived directly from the
data, with no probing involved.

To disentangle probe quality and ranking quality, we use a probe from one method with a ranking from
another one. We find that while GAUSSIAN generally provides higher accuracy, its selectivity [Hewitt
and Liang, 2019] is lower, implying that it relies more on memorization, which improves probing
quality but not necessarily ranking quality. We further find that GAUSSIAN provides the best ranking
for small sets of neurons, while LINEAR provides a better ranking for large sets.

To apply a comparison that focuses on the rankings and is free of probing, and to find which ranking
selects neurons that are used by the model, we apply interventions on the representation: we modify
subsets of neurons from each ranking and observe the effect on language modeling w.r.t to the
property in question. We find that PROBELESS tends to select neurons that are used by the model,
more so than the two probing-based rankings.

We introduce a novel intervention method that allows a fine-grained control of the model’s output
with respect to a linguistic attribute, to some extent. For example, intervening on the tense attribute in
English may turn the words “using” and “think” into “used” and “thought”. This method can be used
as a neuron-level debug tool, allowing developers to understand how easy or hard it is to reduce or
magnify some of the model’s properties, e.g., gender bias, by observing how the gender attribute is
spread along the neurons and the success rate of changing a word’s gender. By comparing probing
results and intervention results, we deduce that there is an overlap between encoded information and
used information, but they are not the same.

We experimentally analyze the M-BERT model [Devlin et al., 2019] on 9 languages and 12 morpho-
logical attributes, from the Universal Dependencies dataset [Zeman et al., 2020]. Our experiments
reveal the following insights:

• We show the need to separate between probing quality and ranking quality, by showing
cases where intentionally poor rankings provide better accuracy than good rankings, due to
probing weaknesses.

• We present a new ranking method that is free of any probes, and tends to prefer neurons that
are being used by the model, more so than existing probing-based rankings.

• We show that there is an overlap between encoded information and used information, but
they are not the same.

• We show the advantage of looking into individual neurons, especially for debugging pur-
poses, to allow a fine-grained control over the model’s output.

2 Neuron Rankings and Data

We begin by introducing some notation. We denote the word representation space as H ⊆ Rd and
an auxiliary task as a function F : H → Z, for some task labels Z (e.g., part-of-speech labels).
Given a word representation h ∈ H and some subset of neurons S ⊆ {1, ..., d}, we use hS to
denote the subvector of h in dimensions S. For some auxiliary task F and k ∈ N, we search for
an optimal subset S∗ such that |S∗| = k and hS∗ contains more information regarding F than any
other subvector hS′ , |S′| = k. For the search task, we define neuron-ranking as a permutation Π(d)
on {1, ..., d} and consider the subset Π(d)[k] = {Π(d)1, ...,Π(d)k}. Our goal is to find an optimal
ranking Π∗(d) such that ∀k,Π∗(d)[k] is the optimal subset with respect to F . However, finding such
an optimal ranking, or even an optimal subset, is NP-hard [Binshtok et al., 2007]. Thus, we focus on
several methods to produce rankings, which provide approximations to the problem, and compare
them.
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2.1 Rankings

The ranking methods we compare include two rankings obtained from previously suggested probing-
based neuron-ranking methods, and a novel ranking we propose, based on data statistics rather than
probing.

2.1.1 LINEAR

The first method, henceforth LINEAR (named linguistic correlation analysis in Dalvi et al. [2019]),
trains a linear classifier on the representations to learn the task F . Then, it uses the trained classifier’s
weights to rank the neurons according to their importance for F . They showed that their method
identifies important neurons through probing and ablation studies, and found that while the infor-
mation is distributed across neurons, the distribution is not uniform, meaning it is skewed towards
the top-ranked neurons. In Dalvi et al. [2019], after the probe has been trained, its weights are fed
into a neuron ranking algorithm. However, we observed that the proposed algorithm distributes the
neurons equally among labels, meaning that each label would contribute the same number of neurons
at each portion of the ranking, regardless of the amount of neurons that are actually important for this
label. Thus, we chose a different way to obtain the ranking: for each neuron, we compute the mean
absolute value of the |Z| weights associated with it, and sort the neurons by this value, from highest
to lowest. In early experiments we found that this method empirically provides better results, and is
more adapted to large label sets.

2.1.2 GAUSSIAN

The second method, henceforth GAUSSIAN [Torroba Hennigen et al., 2020], trains a generative
classifier on the task F , based on the assumption that each dimension in {1, ..., d} is Gaussian-
distributed. Then, it makes use of the decomposability of the multivariate Gaussian distribution to
greedily select the most informative neuron, according to the classifier’s performance, from {1, ..., d}
at every iteration. This way we greedily obtain a full neuron ranking after training only once, while
applying this greedy method to LINEAR would require retraining the probe d! times, which is clearly
infeasible. They found that most of the tasks can be solved using a relatively low number of neurons,
but also noted that their classifier is limited due to the Gaussian distribution assumption.

2.1.3 PROBELESS

The third neuron-ranking method we experiment with is based purely on the representations, with no
probing involved, making it free of probing limitations [Belinkov, 2021] that might affect ranking
quality. For every attribute label z ∈ Z, we calculate q(z), the mean vector of all representations
of words that possess the attribute and the value z. Then, we calculate the element-wise difference
between the mean vectors,

r =
∑
z,z′∈Z

|q(z)− q(z′)|, r ∈ Rd (1)

and obtain a ranking by arg-sorting r, i.e., the first neuron in the ranking corresponds to the highest
value in r. In the case of a binary-valued attribute, this is simply the difference in means. For
attributes with more than two values, PROBELESS prefers neurons that separate different labels over
neurons that have a similar value across labels.

2.2 Data

Throughout our work, we follow the experimental setting of Torroba Hennigen et al. [2020]: we
map the UD treebanks [Zeman et al., 2020] to the UniMorph schema [Kirov et al., 2018] using the
mapping by McCarthy et al. [2018]. We select a subset of the languages used by Torroba Hennigen
et al. [2020]: Arabic, Bulgarian, English, Hindi, Finnish, French, Russian, Spanish and Turkish, to
keep linguistic diversity. We work with morphological attributes from these languages. Full data
details are provided in Torroba Hennigen et al. [2020] and further data preparation steps are detailed
in Appendix A.1. We process each sentence in a pre-trained M-BERT, and take word representations
from layers 2, 7 and 12 of the model, to see if there are different patterns in the beginning, middle
and end of the model. We end up with a total of 156 different configs (language, attribute, layer) to
test. For words that are split during tokenization, we define their final representation to be the average
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over their sub-token representations. Thus, each word has one representation for each layer, of 768
dimensions. We do not mask any words throughout our work.

3 Probing

Given some ranking Π(d), we would like to evaluate how well it sorts the neurons for the task F .
Our first ranking-evaluation approach is the standard probing approach from previous work [Dalvi
et al., 2019, Torroba Hennigen et al., 2020], where we expose the classifier to a subvector of the
representation and evaluate how well it predicts the task. However, while previous work conflated
rankings and classifiers, we are more careful: we separate the two, and pair each ranking with two
classifiers, meaning that at least one of them is completely unrelated to the ranking.

Formally, for an increasing k ∈ N, we train a classifier fθ : Hk → Z with parameters θ to predict
the task label, F (h), solely from hΠ(d)[k]

(the subvector of the representation h in the top k neurons
in ranking Π), ignoring the rest of the dimensions.2 The general assumption is that the better fθ
performs, the more task-relevant information is encoded in hΠ(d)[k]

. Yet, the behaviour of fθ itself
might affect results and conclusions about the ranking. Hence, we aim for a fine-grained analysis of
our results, and also measure selectivity (§ 3.1.1).

3.1 Experimental Setup

As classifiers, we experiment with both classifiers used by the first two ranking methods (§ 2.1.1,
2.1.2). As rankings, we experiment with the 3 ranking methods described in 2.1. For each, we use
the original ranking it produces and its reversed version, and refer to them as top-to-bottom and
bottom-to-top, respectively. To those we add a random ranking baseline, ending up with 7 different
rankings overall. We compare all classifier-ranking combinations for the same k.

Since both of the first two ranking methods are inherently tied to the classifier that was used to
generate them, and the third ranking is a classifier-neutral ranking, it can be used for a fair comparison
between the classifiers.

3.1.1 Metrics

Accuracy First, we measure the accuracy of the probe’s predictions. Since we experiment with
many different configs, we use the Wilcoxon signed-rank test [Wilcoxon, 1992] as a statistical
significance test to determine whether a certain combination of a classifier and a ranking is statistically
significantly better than another combination.

Selectivity We also evaluate our probes by selectivity [Hewitt and Liang, 2019], which is defined
as the difference between the classifier’s accuracy on the actual probing task and its accuracy on
predicting random labels assigned to word types, called a control task. Low selectivity implies that
the probe is capable of memorizing the word-type–label pair, and so high accuracy in the probing
task does not necessarily entail the presence of the linguistic attribute. Thus, we prefer probes that
are both accurate and selective.

3.2 Results

Fig. 1a shows a t-SNE [van der Maaten and Hinton, 2008] projection after performing K-means
clustering on our 156 accuracy results from the configs we tested, where each point represents
accuracy results from one config (details on clustering procedure are in Appendix A.2). It shows
three clusters of configs, which correspond to three distinct patterns, demonstrated in Figs. 1b-1d. In
these figures, each color represents a combination of a classifier and a ranking, where a solid line is
used for the top-to-bottom version of the ranking and a dotted line is for the bottom-to-top version of
it, and a dashed line is used for random ranking.

Almost half of the configs follow the Standard pattern (Fig. 1b), in which all top-to-bottom rankings
are always better than the random ranking, which is always better than all bottom-to-top rankings. In

2We only probe into representations of words that possess the attribute, e.g., if the attribute is gender we do
not probe into the representation of the word “pizza”.

4



(a) t-SNE projection of clustered probing results. (b) Bulgarian definiteness layer 7 (Standard pattern).

(c) Hindi part of speech layer 12 (G>L pattern). (d) Russian animacy layer 2 (L>G pattern).

Figure 1: Clustering of the three different patterns (1a), and an example of each of the patterns (1b–
1d). Solid lines are top-to-bottom rankings; dashed are random rankings; dotted are bottom-to-top
rankings. "X by Y" means classifier X using ranking Y. Some lines are omitted for clarity.

the G>L pattern (Fig. 1c), the GAUSSIAN classifier performs exceptionally well, providing higher
accuracy (after a certain point) using a random or even a bottom-to-top ranking, than the LINEAR
classifier using its top-to-bottom ranking. In the L>G pattern (Fig. 1d), the GAUSSIAN classifier fails
quickly, and thus the LINEAR classifier provides higher accuracy using a random or bottom-to-top
ranking than the GAUSSIAN classifier using its top-to-bottom ranking. We now turn to analyze the
patterns we observe.

3.2.1 Ranking methods are inherently consistent

In most configs, each classifier provides better accuracy using a top-to-bottom ranking (solid lines)
compared to the bottom-to-top version of the same ranking (same color, dotted line), and the
random ranking (dashed lines) is in between. This is also seen in our statistical significance tests
(Appendix A.3). We conclude that even if they are not optimal, all ranking methods we consider
generally rank task-informative neurons higher than non-informative ones.

3.2.2 Which classifier is better?

In the Standard and G>L patterns (Figs. 1b, 1c), GAUSSIAN achieves better accuracy than LINEAR
when both of them use the same ranking (including top-to-bottom LINEAR), especially when using
small sets of neurons. Our statistical significance tests (Appendix A.3) show that GAUSSIAN performs
significantly better than LINEAR with 6 out of the 7 rankings we tried when using 10 neurons, with
5 rankings when using 50 neurons, and with 5 rankings when using 150 neurons. We now turn to
analyze what makes GAUSSIAN more successful, and show some exceptions.
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GAUSSIAN is memorizing Across all configs, LINEAR provides higher selectivity than GAUSSIAN
using any ranking, after a certain point (Appendix A.4). This means that GAUSSIAN tends to
memorize the word-type–label pair when solving the task. While this is apparent in all configs, we
note that specifically in the part-of-speech attribute there is a large portion of function words, i.e.
closed set labels (e.g., pronouns, determiners), meaning that memorization can significantly help
solve the task. Thus, most configs involving part of speech belong to the G>L pattern.

LINEAR is more stable On the other hand, pattern L>G shows that there are certain configs where
GAUSSIAN is struggling to model the distribution, resulting in mediocre accuracy results—which
even start decreasing at some point—sometimes even below majority baseline, as seen in Fig. 1d.
This has also been mentioned in Torroba Hennigen et al. [2020]. We hypothesize that it happens
because in those configs, there are only a few (or no) dimensions that are informative for the attribute
and are Gaussian-distributed. Thus, the GAUSSIAN classifier tries to model these distributions with
the wrong tools, and fails. Poor modeling then leads to wrong predictions and low accuracy. In
general, LINEAR behaves similarly across configs, making it more stable.

3.2.3 Which ranking is better?

When looking at rankings, we would like to compare performance of the same classifier, using
different rankings. We would expect that each classifier would perform best when using the ranking it
has generated. However, this is not always the case. As we can see in all patterns in Fig. 1, for small
sets of neurons, LINEAR actually achieves better accuracy when using GAUSSIAN’s ranking (solid
green) than its own ranking (solid orange). As the number of neurons increases, at some point its
accuracy with its own ranking becomes higher than with GAUSSIAN’s ranking.

We suggest two explanations for this phenomenon: First, due to its greediness, the GAUSSIAN ranking
is not guaranteed to provide the optimal subset. For a subset of size 1, it goes over all possibilities,
but as the size grows there are more subsets that are not taken into consideration in the algorithm, so
it is more likely to miss the best sets. Second, GAUSSIAN assumes the embedding distribution to be
Gaussian. On dimensions which are not Gaussian-distributed, it makes a less accurate evaluation
of the contribution of each neuron. So, if a neuron is informative towards the attribute but is not
Gaussian-distributed, its addition to the selected neurons set is unlikely to improve performance, and
thus it is not selected. This is a problem with a performance-based selection criterion, where the
selection of neurons depends on the performance of the probe.

To summarize, it seems that GAUSSIAN is good at selecting specific informative neurons, but misses
the rest. While LINEAR’s ranking is not optimal (it is definitely worse then GAUSSIAN’s on small
sets), it does seem to be more stable on different sizes. PROBELESS provides decent performance
(and is inherently consistent), but is usually behind the other two.

4 Interventions

The variance of results in our probing experiments can mostly be attributed to probing limitations [He-
witt and Liang, 2019, Pimentel et al., 2020, Belinkov, 2021, Ravichander et al., 2021], and emphasizes
the need to distinguish between two properties: the probe’s classification quality, and the neuron-
ranking quality. To isolate the latter, and to shed light on which ranking prefers neurons that are
actually being used by the model, we take a second ranking-evaluation approach: we intervene by
modifying the representation in the neurons selected by the ranking, and observe how (and if) our
intervention affects the language model output. This approach is more of a causal one, inspired by
similar prior work [Giulianelli et al., 2018, Elazar et al., 2021, Feder et al., 2020, Vig et al., 2020,
Dai et al., 2021], and can provide neuron-level explanations to some of the model’s decisions. We
note that in this section, we use only the ranking itself, detaching it from any probes, thus removing
classification quality from ranking comparisons.

Formally, for a representation h ∈ H , ranking Π(d) (corresponding to an attribute F ) and an
increasing k ∈ N, we intervene by modifying h only in the Π(d)[k] neurons, and observe the effect
our intervention had on the model’s output—the word prediction (given the modified representation).3
We divide the model to two components: an encoder E : V → H and a decoder D : H → V , such

3We apply the intervention on representations of all words that possess the attribute in the sentence.
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that for interventions in layer i, E is composed of all the layers of the model up to (including) i, and
D is composed of all of the rest of the layers. After receiving a representation h = E(w) for word
w, we intervene and modify h to get a new representation h′. If D(h) 6= D(h′), then D is using the
information we modified.

However, knowing that the information is being used is not enough; we would like to know to what
purpose it is being used, and to verify that it only affects the specific attribute we are interested
in. Thus, we perform a finer-grained analysis, and check if D(h′) is similar, to some extent, to
D(h). For that, we define a lemmatizer L : V → V , which maps words to their lemmas, and
an analyzer A : V → Z, which maps words to their task labels. Our goal is to intervene such
that L(D(h)) = L(D(h′)), but A(D(h)) 6= A(D(h′)). If this is the case, it implies that we have
successfully identified where the task-relevant information that D uses is encoded, and how it is
being used.

4.1 Intervention Methods

We consider two methods for modifying hπ(d)k , and compare them.

Ablation A common modification method is trying to remove the information [Ravfogel et al.,
2020] by ablating some neurons [Bau et al., 2019, Lakretz et al., 2019], meaning we set hπ(d)k = 0.
By that we aim to erase the information encoded in hπ(d)k .

Translation For a word w ∈ V with attribute label z ∈ Z, we attempt to translate its representation
(in the geometric sense) to produce a word with attribute label z′ ∈ Z, z 6= z′ by taking a step in the
direction of z′, where bigger steps are applied to neurons that are marked as more important for the
attribute. Formally, we apply the following protocol:

1. We calculate q(z) and q(z′) as in eq. (1).
2. We set

hΠ(d)[k]
= hΠ(d)[k]

+ αk(q(z′)Π(d)[k]
− q(z)Π(d)[k]

) (2)

where α ∈ Rd is a log-scaled coefficients vector in the range [0, β], such that the coefficient
of the highest-ranked neuron is β and that of the lowest-ranked neuron is 0, and β is a
hyperparameter.

Note that the rest of the neurons—those not in Π(d)[k]—remain unaffected. Using this protocol,
we give each neuron its own special treatment—an approach that was not applied before (as far we
know). This can be seen as a generalization of Gonen et al. [2020].

4.2 Experimental Setup

We handle the data the same way as in our probing experiments. However, since we analyze
the model’s predictions—which may be different from the original input—we do not have gold
morphology labels anymore. Thus, for morphologically analyzing the model’s predictions (L and A),
we use spaCy [Honnibal et al., 2020]. Out of the languages we used in our probing experiments, in
this section we are limited only to those that are supported by spaCy (English, Spanish and French).
We calculate q(z) based on the entire training set, and perform our interventions on the test set. We
compare the same 7 rankings we used in our probing experiments (§ 3.1).

4.3 Metrics

Error Rate For our intervention experiments, we first measure the error rate of the language model.
We want error rate to be high, since high error rate means we modified parts of the representation that
have been used by the model in its prediction.

Correct Lemma, Wrong Value (CLWV) While inspecting predictions that are wrong after inter-
vening (M(h′) 6= w, where w is the true word), we categorize them by L(M(h′)) and A(M(h′)).
If our intervention were successful, meaning we changed only the word’s specific attribute, and
not other information, then we expect to see L(M(h)) = L(M(h′)) and A(M(h)) 6= A(M(h′)).
For example, if the word “makes” becomes “made” when intervening for tense, then it counts as a
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(a) Spanish gender layer 2, translation results with
β = 8. Solid lines are error rates, dashed are
CLWVs.

LINEAR GAUSSIAN PROBELESS

English
tense

0.39, 60
0.37, 50
0.51, 60

0.26, 150
0.34, 70
0.41, 120

0.38, 30
0.34, 30
0.46, 30

Spanish
number

0.28, 110
0.26, 50
0.23, 150

0.19, 100
0.20, 40
0.16, 140

0.35, 60
0.25, 30
0.40, 80

Spanish
gender

0.29, 50
0.29, 50
0.26, 130

0.25, 80
0.31, 50
0.16, 110

0.37, 50
0.33, 30
0.35, 60

(b) CLWV value at saturation point and number of neu-
rons modified at the saturation point, using the trans-
lation method on different settings, with β = 8. In
each cell, the three lines refer to layers 2, 7 and 12
respectively.

Figure 2: Translation error rate and CLWV results from a number of settings.

CLWV, but if it becomes “make” or “prepared” it does not. Thus, we define CLWV as the portion
of those errors out of all predictions.

4.4 Results

4.4.1 Ablation is not Effective

Generally, across most languages, attributes and rankings we use, about 400 neurons from layer 2
and 200–300 neurons from layers 7 and 12 can be ablated without any implications on the output,
meaning error rate remains the same; an example is shown in Appendix A.5. Moreover, when we do
encounter more errors made by the model, our analysis does not reveal any pattern among those errors,
i.e. CLWV is very low. By qualitatively analyzing those errors we see that most predicted words
are mostly simply common words, e.g., “and”, “if” in English. After ablating 600–700 (80%–90%)
neurons from the representations, we observe a lot of errors, but most of them are because the word
is predicted as nonsensical punctuation.

One major concern is that in these experiments, in some configs ablating by a bottom-to-top ranking
provides better results than by the top-to-bottom version of the same ranking. In general, there are no
distinct differences between the rankings. Thus, from now on we focus on translation rather than
ablation.

4.4.2 Translation is Effective

Across all translation experiments (Fig. 2a shows one example), CLWV increases until a certain
saturation point, after which it remains constant or drops a little 4. This means that we reached neurons
that are not relevant for the attribute, and modifying them can result in loss of other information—error
rate grows while CLWV does not. Thus, we are interested in the CLWV value at the saturation point
(higher is better), and in the number of neurons modified at the saturation point (lower is better). We
report these values in a number of configs in Table 2b, and the rest of the configs in Appendix A.6.

Compared to ablation, translating a relatively small number of neurons results in a higher error rate,
and these errors are closer to what we would expect. For example, translating only 50 neurons
in Spanish gender layer 2 results in 37% CLWV and 49% error rate, while ablating 50 neurons
from the same config and ranking gives no CLWV errors and only 1% of error rate. We further
note that unlike in ablation experiments, here our rankings are inherently consistent, i.e. across all
configs, all top-to-bottom rankings perform better than the rest, while random ranking’s error rate

4We define “saturation point” as the first point from which there are two consecutive points where the value
increase is by a factor lower than 1.05.
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sometimes increases a little, and bottom-to-top rankings do not manage to affect the model’s output
at all (Fig. 2a).

4.4.3 PROBELESS is the Most Effective Ranking for Interventions

A clear trend from our results (Tables 2b, 2 and Fig. 2a) is that in most cases, PROBELESS achieves
higher CLWV values, and does so using a smaller number of neurons, than the other two rankings.
Furthermore, its error rate is significantly higher than the other two. This implies that PROBELESS
tends to select neurons that are being used by the model, more so than the other rankings. However,
while it does select neurons that are relevant for the attribute in question (CLWV is relatively high),
it also tends to select neurons that are used by the model for other kinds of attributes (the difference
between error rate and CLWV is relatively high).

Among LINEAR and GAUSSIAN, LINEAR seems to have the upper hand, with higher CLWV values
in most configs. This provides another evidence that the superiority of GAUSSIAN in the probing
experiments may be due to the quality of its classifier, and specifically its memorization ability, rather
than the quality of the ranking it produces, as here only the ranking affects results.

5 Discussion and Conclusion

In this work, we compare different methods for ranking neurons according to their importance for
a morphological attribute. We show that to evaluate a ranking in a probing scenario, one should
separate between the ranking itself and the quality of the classifier that is using the ranking. We
also show the need to evaluate a ranking using causal methods, such as interventions, especially for
applications such as controlling or debugging the model. We propose a new ranking method that
relies solely on the data, without training any auxiliary classifier, and show that it is valid, and prefers
neurons that are being used by the model, more so than other ranking methods. We also propose
a method for intervening within the model’s representations such that it transforms the output in a
desired way.

5.1 Encoded Information and Used Information are not the Same

When modifying the selected neurons, in most configs, top-to-bottom PROBELESS affects the output
more than top-to-bottom GAUSSIAN and top-to-bottom LINEAR, and does so using a smaller number
of neurons. This is in contrast to our probing results, where PROBELESS rarely overcame the other
two, implying that encoded information and used information are not the same, and high probing
accuracy does not necessarily entail that the information is actually important for the model. This
finding is in line with previous work [Elazar et al., 2021, Ravichander et al., 2021].

5.2 Individual Neurons are Important

In our intervention experiments, modifying too many neurons results in more errors that are not
related to the true word. This proves the importance of looking into individual neurons, especially
when trying to intervene in the inner workings of the model. For example, Gonen et al. [2020] try
to change the language of a word by intervening with the representation, using the same translation
method we use, but with the same coefficient for every neuron, and on the entire representation. Our
results imply that they may get better results by using our method.
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Željko Agić, Amir Ahmadi, Lars Ahrenberg, Chika Kennedy Ajede, Gabrielė Aleksandravičiūtė,
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Florinel Hociung, Petter Hohle, Eva Huber, Jena Hwang, Takumi Ikeda, Anton Karl Ingason,
Radu Ion, Elena Irimia, O. lájídé Ishola, Tomáš Jelínek, Anders Johannsen, Hildur Jónsdóttir,
Fredrik Jørgensen, Markus Juutinen, Sarveswaran K, Hüner Kaşıkara, Andre Kaasen, Nadezhda
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Özateş, Arzucan Özgür, Balkız Öztürk Başaran, Niko Partanen, Elena Pascual, Marco Passarotti,
Agnieszka Patejuk, Guilherme Paulino-Passos, Angelika Peljak-Łapińska, Siyao Peng, Cenel-
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A Appendix

A.1 Data Preparation

We remove any sentences that would have a sub-token length greater than 512, the maximum allowed
for M-BERT, the language model we use for generating representations. As in Torroba Hennigen
et al. [2020], we remove attribute labels that are associated with less than 100 word types in any of
the data splits. This mostly removes function words, and we found it makes it harder for probes to
use memorization for solving the task.

A.2 Clustering probing results

For each config out of the 156 we experimented with, we have results of 14 classifier–ranking
combinations, each of length 150, the max k (number of neurons) we used. For clustering these
results, we first remove all combinations involving a bottom-to-top ranking, as these add a lot of
noise to the clustering algorithm, making it focus on irrelevant signals. Thus, our results matrix is of
shape [156, 8, 150]. We then reshape the matrix to shape [156, 8× 150] and run K-means over it with
K = 3. Projecting the K-means output with t-SNE gives us Fig. 1a.

A.3 Statistical Significance Tests

Table 1 shows the results of our statistical significance tests. The three rows in each cell correspond
to using 10, 50 and 150 neurons. If there is an * in the [i, j] cell, is means that the p-value under
the null hypothesis that probe j is better than probe i is lower than 0.05, when using the matching
number of neurons. For example, we see that there is an * in the first and second rows in the [0, 3] cell,
meaning we can confidently reject the hypothesis that LINEAR by LINEAR is better than GAUSSIAN
by GAUSSIAN when using 10 or 50 neurons, but we cannot do so for 150 neurons. In fact, looking at
the [3, 0] cell shows us that when using 150 neurons, GAUSSIAN by GAUSSIAN is not better than
LINEAR by LINEAR.

While we do not show random and bottom-to-top rankings in Table 1 for clarity, we asserted that
each classifier is statistically significant better when using a top-to-bottom ranking compared to a
random ranking, and when using a random ranking compared to a bottom-to-top ranking.

A.4 Probing Selectivity

A selectivity example is provided in Fig. 3. In all configs, LINEAR is significantly more selective
than GAUSSIAN using any ranking.

A.5 Ablation Results

One ablation example is shown in Fig. 4. No matter the ranking, ∼ 400 neurons can be ablated with
little impact on the output, and CLWV remains low.

A.6 Translation results

The rest of the translation results (complementing Table 2b) is found in Table 2.
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G by
ttb G

L by
ttb G

G by
ttb L

L by
ttb L

G by
ttb P

L by
ttb P

G by
ttb G —

*
*
*

*
*
*

*
*

*
*
*

*
*

L by
ttb G —

* * *
*

*
*

G by
ttb L * —

*
*
*

*

L by
ttb L *

*
* *

— *
*

*
*

G by
ttb P

* *
—

*

L by
ttb P *

*

*
—

Table 1: Statistical significance results. G, L, P and ttb are abbreviations for GAUSSIAN, LINEAR,
PROBELESS and top-to-bottom, respectively.

(a) Hindi part of speech layer 12 selectivity.

Figure 3: Selectivity example. Solid lines are top-to-bottom rankings; dashed are random rankings;
dotted are bottom-to-top rankings. Some lines are omitted for clarity.
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Figure 4: Spanish gender layer 2, ablation results. Solid lines are error rates, dashed are CLWVs.

LINEAR GAUSSIAN PROBELESS

English
number

0.04, 70
0.09, 50
0.11, 130

0.02, 60
0.07, 30
0.04, 60

0.06, 90
0.11, 50
0.17, 110

Spanish
tense

0.20, 110
0.16, 80
0.31, 130

0.15, 140
0.11, 70
0.18, 70

0.27, 60
0.20, 60
0.33, 60

French
number

0.19, 110
0.18, 50
0.07, 110

0.09, 150
0.17, 30
0.11, 150

0.25, 60
0.20, 30
0.33, 120

French
tense

0.10, 110
0.10, 120
0.14, 150

0.01, 90
0.06, 100
0.07, 110

0.13, 70
0.08, 70
0.15, 90

French
gender

0.17, 80
0.16, 40
0.14, 170

0.17, 80
0.16, 40
0.06, 140

0.22, 60
0.17, 30
0.20, 60

Table 2: CLWV value at saturation point and number of neurons modified at the saturation point,
using the translation method on different settings. In each cell, the three lines refer to layers 2, 7 and
12 respectively.
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