
Proceedings of Machine Learning Research 1–10, 2021 Full Paper – MIDL 2021

A Surprisingly Effective Perimeter-based Loss for Medical
Image Segmentation

Rosana El Jurdi 1,2 rosana.el-jurdi@univ-rouen.fr
Caroline Petitjean 1 caroline.petitjean@univ-rouen.fr
Paul Honeine 1 paul.honeine@univ-rouen.fr
Veronika Cheplygina 4,5 v.cheplygina@tue.nl
Fahed Abdallah 2,3 fahed.abdallah76@gmail.com
1 Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, Rouen, France
2 Université Libanaise, Hadath, Beyrouth, Liban
3 ICD, M2S, Université de technologie de Troyes, Troyes, France
4 Computer Science Department, IT University of Copenhagen, Denmark
5 Medical Image Analysis group, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract
Deep convolutional networks recently made many breakthroughs in medical image segmen-
tation. Still, some anatomical artefacts may be observed in the segmentation results, with
holes or inaccuracies near the object boundaries. To address these issues, loss functions
that incorporate constraints, such as spatial information or prior knowledge, have been
introduced. An example of such prior losses are the contour-based losses, which exploit
distance maps to conduct point-by-point optimization between ground-truth and predicted
contours. However, such losses may be computationally expensive or susceptible to triv-
ial local solutions and vanishing gradient problems. Moreover, they depend on distance
maps which tend to underestimate the contour-to-contour distances. We propose a novel
loss constraint that optimizes the perimeter length of the segmented object relative to the
ground-truth segmentation. The novelty lies in computing the perimeter with a soft ap-
proximation of the contour of the probability map via specialized non-trainable layers in the
network. Moreover, we optimize the mean squared error between the predicted perimeter
length and ground-truth perimeter length. This soft optimization of contour boundaries
allows the network to take into consideration border irregularities within organs while still
being efficient. Our experiments on three public datasets (spleen, hippocampus and cardiac
structures) show that the proposed method outperforms state-of-the-art boundary losses
for both single and multi-organ segmentation.

Keywords: Medical Image Segmentation, Convolutional Neural Networks, Prior-based
Losses, perimeter length Constraint.

1. Introduction

Medical image segmentation consists of making per-pixel predictions in an image. The seg-
mentation process is a key step in assisting early disease detection, diagnosis, monitoring
treatment and follow up. Segmentation approaches based on convolutional neural networks
(CNNs) are leading approaches in the field. However, the segmentation results they provide
often suffer from anatomical errors, with holes, voids or high inaccuracies close to organ
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boundaries (Bernard et al.). Recent works aim to alleviate this issue by integrating addi-
tional boundary or contour-based losses into the CNN (Kervadec et al., 2019a; Karimi and
Salcudean, 2020; Caliva et al., 2019; Yang et al., 2019). In fact, (Kervadec et al., 2019a;
Karimi and Salcudean, 2020; Caliva et al., 2019) show that contour-based losses could allow
for more anatomical plausible segmentation when trained independently or in conjunction
with a regional loss such as the soft Dice approximation or the cross-entropy. Contour-based
losses often aim to minimize directly or indirectly the one-to-one correspondence between
points on the predicted and label contour. Therefore, despite their significance, these losses
are rather complex in nature and are characterized by hard gradients and high computational
cost. Moreover, they often exploit distance maps to represent the change between predicted
and ground-truth boundaries (Kervadec et al., 2019a) which in turn tend to underestimate
the contour-to-contour distances given that the closest point is chosen systematically. As
a result, the segmentation model may suffer from trivial local solutions (Kervadec et al.,
2019a) or vanishing/exploding gradients. The problem becomes particularly challenging
when the anatomical object under consideration has a complex shape with concavities or
border irregularities.

In this work, a novel contour-based loss is proposed, which targets to constrain the
perimeter or contour length of the organ to be segmented. Inspired by methods of (Shit et al.,
2020), we extract contour maps from both the ground-truth and predicted segmentation
maps. We then minimize the error between the predicted and ground-truth perimeter lengths
by considering the sum over each respective contour via a mean squared error. We argue that
by targeting the perimeter length rather than the point-by-point distance, the model will
be able to take into consideration border irregularities, such as sudden corners or curvatures
within organ shapes. In doing so, it avoids shrunken or expanded anomalies. Moreover, the
simplicity of the proposed loss, being the mean squared error between two lengths, may play
an important role in allowing the network to learn at a faster rate and with high efficiency.

The proposed loss is evaluated across three public datasets of different tasks and modal-
ities. The spleen dataset is from the Medical Segmentation Decathlon and consists of CT
images that target spleen segmentation. The ACDC dataset contains cardiac magnetic reso-
nance images (MRI) and the goal is to segment the two ventricles and the myocardium. The
Decathlon hippocampus dataset consists of segmenting two neighboring small structures in
MRI images. These public datasets were chosen in such a way that the structures to be
segmented are characterized by particular shapes and non-convexity as is shown in Figure 1.
We test the significance of the proposed loss in both a single-organ segmentation setting
and a multi-organ segmentation setting. Surprisingly, despite the simplicity of the proposed
loss, it outperforms state-of-the-art contour losses for organs with non-convex shapes and
maintains segmentation performance for simple shapes such as circles and holes. Moreover,
the proposed loss allows for accurate delineation of common boundaries between neighboring
organs in the multi-organ segmentation framework.

The rest of the paper is organized as follows. Section 2 provides a brief overview of the
state-of-the-art contour-based losses. Section 3 elaborates on the proposed loss. Section
4 presents the datasets as well as the experimental settings. Section 5 analyzes model
performance on the three datasets. Finally, Section 6 concludes with future works and
perspectives.
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(a) Spleen (b) ACDC (c) Hippocampus

Figure 1: Sample images from the 3 datasets with ground-truth regions overlaid. (a) Spleen
is in green, (b) right ventricle is in blue, left ventricle is yellow and myocardium in green,
(c) brain hippocampus with outer (H1) and internal (H2) tissues in pink and green resp.

2. Related Work

In the literature, many research works have attempted to impose constraints at the level
of the loss function in segmentation networks. One way to do so is to directly exploit the
ground-truth map in order to enhance specific geometric properties, e.g. via distance map
or Laplacian transform (El Jurdi et al., 2020; Bohlender et al., 2021). In this regard, two
major contributions are the boundary loss, proposed by (Kervadec et al., 2019a), and the
Hausdorff loss, proposed by (Karimi and Salcudean, 2020). Both works tackle the problem
of contour optimization between ground-truth and predicted segments, to increase anatom-
ical plausibility in their respective deep learning segmentation models. However, whereas
(Karimi and Salcudean, 2020) conduct a direct point-by-point optimization of the predicted
and ground-truth contours, (Kervadec et al., 2019a) derive, through (Boykov et al., 2001)
graph theories, an equivalent term that fine-tunes the probability distribution via ground-
truth distance maps. In this way, (Kervadec et al., 2019a) alleviate the high computational
load demonstrated by (Karimi and Salcudean, 2020), resulting from the online computation
of the predicted distance maps per each iteration and for all images in the dataset. In-
stead of weighting the probability distributions as in (Kervadec et al., 2019a), (Caliva et al.,
2019) exploit distance maps as weighing factors for a cross-entropy loss term in order to im-
prove extraction of shape bio-markers and enable the network to focus on hard-to-segment
boundary regions. As a result, they give more weight to pixels lying in close proximity of the
segmented anatomical objects than those that are far away. Instead of distance maps, (Yang
et al., 2019) exploit Laplacian filters in order to develop a boundary enhanced loss term that
invokes the network to generate strong responses around the boundary areas of organs while
producing a zero response given pixels that are farther from the peripheries. In the same
context, (Arif et al., 2018) extend the regular cross-entropy term with an average point to
curve Euclidean distance factor between predicted and ground-truth contours in order to
allow the network to take into consideration shape specifications of segmented structures.
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Figure 2: Principle of the contour function z: the difference (-) between the erosion (min-
pool) and the dilation(max-pool) layers followed by a ReLu layer. Right side: example of
ground-truth segmentation image and respective contour image.

3. Proposed Method

Many works in the field base their losses on distance maps in order to integrate geometric
and location prior into the learning framework. Alternatively, we exploit contour maps
produced via a combination of non-trainable max and min pooling layers.

3.1. Implementation of the contour function z

Implementation of the contour function z is conducted via subtracting the erosion of the
segmentation map from the dilation of the eroded map as shown in Figure 2. Dilation and
erosion of the predicted and ground-truth maps are carried out via max and min pooling
layers, followed by a ReLu layer. We note that z can extract the contour of any image,
whether it is a binary or a probability map. Hence, one can consider the contour function as
a simple morphological gradient that can accommodate back-propagationin CNN training.
The contour function z is inspired by works of (Shit et al., 2020) that exploit this extraction
strategy in order to integrate skeletonization constraints at the level of the loss function for
tabular and vessel segmentation. (Shit et al., 2020) repeated this extraction process each
time on the transformed image resulting from the previous iteration, consecutively summing
over the output of all iterations in order to obtain the desired skeleton maps. After, they
have taken into consideration the intersection over union of the precision and sensitivity
between the ground-truth and respective skeleton maps. In our work, we have produced
the contour maps by considering the subtraction of the erosion of the original segmentation
map from the dilation of the eroded as is shown in Figure 2. After, we optimized the mean
squared error between the sum of the ground-truth contour map representing ground-truth
contour length vs. the predicted contour maps representing predicted contour length.
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3.2. Loss Formulation

Let Ω ⊂ R2 be the spatial image domain. Let y be the true label map and ŷ the predicted
label (probability) map, both of dimension |Ω|. Consider z to be a function that extracts
the contour map of any image, as described in the previous section. The proposed loss is
defined as a combination of the Dice loss (Milletari et al., 2016) and the perimeter-based
loss weighted by _ as follows:

L = (1 − _)L�824 + _L?4A8< (1)

with

L?4A8< =
©«
∑
?∈Ω

Ĥ�? −
∑
?∈Ω

H�?
ª®¬
2

(2)

where H�? (resp. Ĥ�? ) is the value of pixel ? in the map z(y) (resp.. z(ŷ)), equal to H? (resp..
Ĥ?), if ? belongs to the contour, 0 otherwise. The contour function z extracts for each of the
predicted and ground-truth segmentation maps, a contour map of the segmented objects.
The proposed loss then sums over the pixels for both the predicted and ground-truth contour
maps and minimizes the mean squared error between them. Hence, one can consider the
proposed perimeter-based loss as a regularizing term on the object perimeter.

4. Experiments

4.1. Datasets

In order to assess the added value of the proposed perimeter-based loss, several anatomi-
cal datasets are considered, with organs presenting varying characteristics in terms of size,
shape, and border smoothness. The spleen dataset is a CT dataset from the Medical Seg-
mentation Decathlon1 whose objective is to segment a single organ (the spleen) characterized
with a largely varying size and mild convexity issues at boundary levels, as is shown in Fig-
ure 1. The spleen dataset is composed of 41 patients divided into 32 for training and 9
for validation. The Hippocampus Dataset is also a medical Decathlon dataset designed for
the segmentation of 2 neighboring tissues in the brain. It is composed of 263 mono-modal
MRI scans divided into 206 patients for training and 56 for validation. The ACDC dataset
is a cardiac cine MRI dataset consisting of 123 patients divided into 99 training and 24
validation. The task at hand is to segment simultaneously three elements of the heart: the
left and right ventricular endocardium (LVC and RVC, resp.) and the myocardium (MYO).
The segmentation task is rather challenging as the 3 components are in very close proximity
to each other and are characterized by non-convex shapes or holes.

4.2. Implementation details

We deploy the unified U-Net based (Ronneberger et al., 2015) framework proposed in (Ker-
vadec et al., 2019a,b, 2020) and modify the loss function accordingly. Training is done using
a batch size of 8 and a learning rate of 10−3. The learning rate is halved if the validation

1. http://medicaldecathlon.com/
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Table 1: Mean (± std) Dice index (%) and Hausdorff distance (mm) on the Spleen and RVC
from ACDC dataset

Spleen Dataset ACDC Dataset (RVC)
Loss Dice index Hausdorff Dice index Hausdorff
L�824 76.80 ± 7.59 1.33 ± 0.28 81.22 ± 1.05 2.47 ± 0.04
L?4A8< 58.98 ±11.42 1.89 ±0.35 29.34 ±11.83 4.21 ±0.49
L�824 + L�>D=30A H 80.38 ± 5.46 1.34 ± 0.21 81.73 ± 0.81 2.35 ± 0.01
L�824 + L�� 91.79 ± 2.67 0.92 ± 0.15 81.47 ± 1.01 2.42 ± 0.05
L�824 + L?4A8< 95.39 ± 1.26 0.71 ± 0.07 85.67 ± 0.50 2.21 ± 0.09

performance does not improve during 20 epochs. In the implementation of the contour
function F , max and min pooling were carried out via a kernel of size (3,3) and stride of 1.
Since the contour extraction function is mainly composed of non-trainable layers, there is
no considerable addition to the complexity of the network or the computational cost. Our
code is publically available on GitHub 2

The U-Net is trained with the loss as defined in Eq. 1, with a dynamic fine-tuning of the
parameter _ which was conducted in (Kervadec et al., 2019a). Thus, the parameter was set
to 0.01 and increased by 0.01 per epoch for 200 epochs for the Spleen and ACDC datasets
and for 45 epochs for the Hippocampus dataset.

For pre-processing, we have resized the images to a size of 256 × 256 and normalized
them to the range [0, 1]. We have kept negative samples for training and validation. Each
dataset was split into train and validation based on an 80 % , 20 % partition respectively
and validated via three Monte-Carlo simulations (Arlot and Celisse, 2010).

5. Results and analysis

The proposed perimeter-based loss is evaluated in two segmentation settings: a single-organ
segmentation setting, where we intend to train the network on the spleen dataset and on
each of the structures of the heart in the ACDC dataset independently; and a multi-organ
segmentation setting where simultaneous segmentation of the anatomical objects of the
Hippocampus and ACDC dataset is carried out. We have compared the proposed loss
L?4A8< to the Dice loss alone L�824 and to two state-of-the-art contour-based losses: the
Boundary loss L�>D=30A H (Kervadec et al., 2019a) and the Hausdorff loss L�� (Karimi and
Salcudean, 2020), each one trained in conjunction with the L�824 given the same dynamic
strategy presented in (Kervadec et al., 2019a) and explained in section 4.2.

5.1. Single Organ Segmentation

Results reported in Table 1 relative to spleen segmentation show that the proposed loss
outperforms the Dice baseline and the state-of-the-art boundary losses by a large margin.
When compared to the best state-of-the-art performance, the proposed perimeter-based loss
has registered an increase by about 4% and a decrease in about 20% on the Dice index and
Hausdorff distance respectively. Since the spleen is an organ characterized by a concave

2. https://github.com/rosanajurdi/Perimeter_loss
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Figure 3: Segmentation results of the proposed loss against the Dice loss baseline and state-
of-the-art losses in red with the ground-truth as a region filled with green for spleen and
blue for the right ventricle (RVC) segmentation. Each row is a different image.

Table 2: Dice index and Hausdorff distance (pixels) results for ACDC (simultaneous) seg-
mentation. RVC: right ventricular cavity, MYO: myocardium, LVC: left ventricular cavity

Dice index Hausdorff Distance
Loss RVC MYO LVC RVC MYO LVC
L�824 80.79 ±0.95 83.92 ±0.13 90.26 ±0.13 2.44 ±0.04 2.60 ±0.01 1.95 ±0.02
L?4A8< 23.19 ±13.38 26.53 ±9.63 9.78 ±4.07 4.29 ±0.17 4.59 ±0.43 4.39 ±0.05
L�824 + L�>D=30A H 81.04 ±0.87 84.16 ±0.83 89.53 ±0.74 2.41 ±0.05 2.57 ±0.01 1.95 ±0.02
L�824 + L�� 80.54 ±1.30 83.91 ±0.85 88.98 ±0.90 2.33 ±0.04 2.65 ±0.01 1.98 ±0.01
L�824 + L?4A8< 84.49 ±0.57 86.22 ±0.41 90.69 ±0.41 2.19 ±0.03 2.55 ±0.04 1.94 ±0.02

border, we hypothesize that the significant decrease in Hausdorff distance highlights the
ability of the proposed loss in accounting for varying curvature and border irregularities.
This is illustrated qualitatively in Figure 3, where the proposed loss based on the object
perimeter length and that is able to capture the specifications of the spleen contour.

Given that the RVC has a concave shape, it is similar to the spleen shape in many ways.
Hence, we anticipate a similar behavior of the loss performance. Indeed, from Table 1, we
gather that the proposed loss outperforms the best boundary state-of-the-art loss by 4% in
Dice index and by more that 6% (from 2.35 to 2.21) in Hausdorff distances. Conducting
further experiments where the other cardiac structures were segmented independently, we
observe that the proposed loss maintains state-of-the-art performance when trained to seg-
ment organs with simpler shapes with circles (MYO) or holes (LVC). However, the results
are not presented here due to the space limit.

5.2. Multi-organ segmentation

We have benchmarked the performances of the proposed loss on the Hippocampus dataset,
which is composed of two neighboring structures, and on the ACDC datasets with the 3
cardiac structures. Multi-label segmentation performance on ACDC as shown in Table 2
reveals that training the model via the perimeter-based loss in conjunction with the Dice loss
not only allowed improved segmentation on the irregular shaped RVC but also on the LVC
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Figure 4: Curve evolution of Dice index on the three cardiac structures of the ACDC dataset
in the multi-label segmentation. RVC/LVC: right/left ventricular cavity, MYO: myocardium

Table 3: Results for the Hippocampus Dataset. H1: green tissue, H2: pink tissue

Dice index Hausdorff Distance
Loss H1 H2 H1 H2
L�824 49.37 ± 1.76 66.85 ± 3.73 3.89 ± 0.14 2.52 ± 0.18
L?4A8< 16.60 ± 10.06 36.21 ± 1.68 7.97 ± 6.33 3.10 ± 0.12
L�824 + L�>D=30A H 62.86 ± 0.59 75.52 ± 0.48 3.18 ± 0.02 2.16 ± 0.02
L�824 + L�� 62.46 ± 3.34 74.12 ± 3.42 3.16 ± 0.04 2.44 ± 0.25
L�824 +L?4A8< 67.52 ± 0.21 79.80 ± 0.46 3.07 ± 0.03 2.01 ± 0.00

and MYO as well. This shows that improving segmentation performance on the hard-to-
segment LVC has permitted proper delineation of other organs in its neighborhood. These
observations were further validated by the evolution plot of the Dice index of its 3 structures
as shown in Figure 4 given the 3 state-of-the-art losses against our proposed loss. Regarding
the Hippocampus dataset, Table 3 shows that the proposed loss improves the Dice index and
Hausdorff distance, for both tissues, by a considerable margin when compared relative to
the state-of-the-art boundary losses. This verifies the ability of the proposed loss to properly
delineate neighboring structures relative to other contour-based losses in the domain.

6. Conclusion

In this work, we propose a novel contour-based loss for medical image segmentation. The
proposed loss considers the perimeter length of the segmented organ instead of exact bound-
ary matching as is usually done in present state-of-the-art boundary losses in the field. We
evaluate the proposed loss against three different datasets, which are characterized by vary-
ing and non-convex shapes. Despite the simplicity of the proposed loss, it is able to exceed
state-of-the-art boundary loss performances by a large margin for both single and multi-
organ segmentation. Future work includes customizing the proposed loss to accommodate
multi-connected component organs and investigating different weighting strategies for the
multi-organ segmentation setting under the proposed loss based on the degree of border
irregularity of the considered organs.
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