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Abstract

Diffusion-based generative models (diffusion
models) often require a large amount of data to
train a score-based model that learns the score
function of the data distribution through denoising
score matching. However, collecting and clean-
ing such data can be expensive, time-consuming,
and even infeasible. In this paper, we present
a novel theoretical insight for diffusion models
that two factors, i.e., the denoiser function hypoth-
esis space and the number of training samples,
can affect the denoising score matching error of
all training samples. Based on this theoretical
insight, it is evident that minimizing the total de-
noising score matching error is challenging within
the denoiser function hypothesis space in exist-
ing methods, when training diffusion models with
limited data. To address this, we propose a new
diffusion model called Limited Data Diffusion
(LD-Diffusion), which consists of two main com-
ponents: a compressing model and a novel mixed
augmentation with fixed probability (MAFP) strat-
egy. Specifically, the compressing model can
constrain the complexity of the denoiser func-
tion hypothesis space and MAFP can effectively
increase the training samples by providing more
informative guidance than existing data augmen-
tation methods in the compressed hypothesis
space. Extensive experiments on several datasets
demonstrate that LD-Diffusion can achieve better
performance compared to other diffusion mod-
els. Codes are available at https://github.
com/zzhang05/LD-Diffusion.

1. Introduction

Diffusion-based generative models (diffusion models) have
decisively surpassed GANSs in generative modeling, achiev-
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ing superior image quality, greater diversity, and more sta-
ble training on image generation tasks (Dhariwal & Nichol,
2021; Ho et al., 2020; Karras et al., 2022). In theory, diffu-
sion models aim to train a score-based model (Song et al.,
2021) that matches the score function of the data distribu-
tion via denoising score matching (Song et al., 2021; Karras
et al., 2022; Wang et al., 2023a). The current success of
diffusion models in unconditional image synthesis (Vahdat
et al., 2021; Song et al., 2023; 2020; Nichol & Dhariwal,
2021), text-to-image generation (Podell et al., 2023; Rom-
bach et al., 2022a; Nichol et al., 2021; Saharia et al., 2022;
Wang et al., 2023b) and audio generation (Kong et al., 2020;
Popov et al., 2021) tasks is fueled by the almost unlimited
supply of samples. Nevertheless, collecting and cleaning
such data can be expensive, time-consuming, and sometimes
infeasible, which significantly constrains the applications of
diffusion models in real-world scenarios.

Focusing on training diffusion models with limited data,
we present a novel theoretical insight for diffusion mod-
els that the denoising score matching error of all training
samples, i.e., the total denoising score matching error, is
determined by two key factors: the denoiser function hy-
pothesis space and the number of training samples (§3.2).
To further validate this theoretical insight, we conduct sev-
eral experiments to illustrate that both factors significantly
influence the training of diffusion models (§3.3). According
to the unveiled insight, challenges arise when directly adapt-
ing existing methods (Karras et al., 2022; Song & Ermon,
2019; Ho et al., 2020; Dhariwal & Nichol, 2021; Karras
et al., 2024) to limited data settings because they struggle
to minimize the total denoising score matching error within
their denoiser function hypothesis space.

To improve the training of diffusion models with limited
data, we propose a new diffusion model called Limited Data
Diffusion (LD-Diffusion). Motivated by the theoretical in-
sight, LD-Diffusion consists of two main components. The
first main component is a compressing model with the en-
coder and decoder obtained from different pre-trained VAE
models, which aims to reduce the complexity of denoiser
function hypothesis space. Although image compression
models have previously been applied to several diffusion
models (Esser et al., 2021; Vahdat et al., 2021; Rombach
et al., 2022a), they all seek to accelerate the training speed
and reduce the computational cost. In contrast, the com-
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Figure 1. The comparison of EDM + DA'(Karras et al., 2022)
and LD-Diffusion on the FFHQ (Karras et al., 2020b) dataset
(256 x 256) under limited data settings. Left: Compared Fréchet
Inception Distance (FID) (Heusel et al., 2017) scores of LD-
Diffusion and EDM + DA on the FFHQ dataset. The FID score of
LD-Diffusion on FFHQ-100 is even lower than the FID score of
EDM + DA on FFHQ-1K, which demonstrates that LD-Diffusion
can achieve huge data efficiency compared with EDM + DA. Right:
Comparison of images generated by EDM +DA and LD-Diffusion
on the FFHQ dataset, highlighting the superior quality of images
produced by the latter.

pressing model in LD-Diffusion aims to constrain the com-
plexity of the denoiser function hypothesis space to obtain
a low-dimensional hypothesis space that can better repre-
sent the diffusion-based high-dimensional hypothesis space
(Wang et al., 2024; Boffi et al., 2024; Li et al.). Having such
a compressed low-dimensional hypothesis space can make
minimizing the total denoising score matching error easier
with limited data (§4.1). The second main component in
LD-Diffusion is a novel data augmentation called Mixed
Augmentation with Fixed Probability (MAFP), which is
designed for the compressed low-dimensional hypothesis
space. Concretely, MAFP is more informative than existing
data augmentation (DA) methods (Karras et al., 2022) in
the compressed low-dimensional hypothesis space, and can
effectively increase the number of training samples while
avoiding leaking issues (Karras et al., 2020a; Zhang et al.,
2020; Zhao et al., 2021; Zhang et al., 2024a). In addition, we
introduce improved training techniques, i.e., patch training
(Wang et al., 2023c) and Out-of-Distribution (OOD) regu-
larization, to further boost performance under limited data
settings. With these components and techniques, we select
the most representative diffusion model, i.e., EDM (Karras
et al., 2022), to implement LD-Diffusion. As illustrated
in Figure 1, LD-Diffusion shows significant improvements
compared with EDM + DA! (Karras et al., 2022) under
limited data settings.

In summary, our paper is a pioneering study focusing on
training diffusion models with limited data with three main
contributions as follows: (1) We are the first to propose
the novel theoretical insight for diffusion models that the
total denoising score matching error is affected by two fac-
tors, i.e., denoiser function hypothesis space and the number
of training samples. According to this theoretical insight,
when training diffusion models with limited data, the total

'The EDM + DA is the method that EDM applies DA, where
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denoising score matching error is challenging to be min-
imized within the denoiser function hypothesis space of
existing methods; (2) We propose a novel diffusion model
called Limited Data Diffusion (LD-Diffusion), which con-
sists of two main components and two improved training
techniques. These components and techniques can effec-
tively improve the training of diffusion models with limited
data; (3) Experiments on FFHQ and low-shot (Zhao et al.,
2020) datasets demonstrate that LD-Diffusion can achieve
better performance compared to other diffusion models.

2. Preliminary
2.1. Diffusion-based Generative Models

In recent years, diffusion models (Karras et al., 2022; Ho
et al., 2020; Dhariwal & Nichol, 2021) have exhibited their
effectiveness in ima%?—generation tasks. Suppose we are
given a dataset {«,, },,_,, where each sample in the dataset
is independently drawn from the data distribution pgatq ().
The goal of diffusion models is to construct a diffusion
process {:c(t)}tT:O indexed by a continuous time variable
t € [0,T]. According to Song et al. (2021), this diffusion
process can be modeled as the solution to a stochastic dif-
ferential equation (SDE):

dx = f(x,t)dt + g(t)dw, (1
where w denotes a standard Brownian motion, f(-,¢) :
R? — R is a vector-valued function called the drift coeffi-
cient of x(¢), g(t) € R is a real-valued function called the
diffusion coefficient, and dt represents a negative infinites-
imal time step. Then, the reverse of a diffusion process is
also a diffusion process, given by the reverse-time SDE,
running backwards in time:

dx = [f(z,t) — g(t)*Va log po, (x)] dt + g(H)dW, (2)
where o; is a schedule that defines the desired noise level
at time ¢, w is a standard Wiener process when time flows
backwards from 71" to 0, and dw can be viewed as infinites-
imal white noise. The corresponding ordinary differential
equation (ODE) of the reverse SDE is the probability flow
ODE (Song et al., 2021), expressed as:

dw = |f(. 1) — 50(1)Valogps, (@) dt, ()

where V log p,, () is the score function (Hyvérinen &
Dayan, 2005), a vector field that points towards the higher
density of data at a given noise level. The only unknown
term in Eq.(2) and Eq.(3) is the score function. Thus, a func-
tion €y (x, o) parameterized by a learnable neural network,
is applied to estimate the score function’s values. Denoising
score matching is currently the most popular way of esti-
mating score functions applied in diffusion models. After
learning the estimated score function €y (x, 0 ), an estimated
reverse SDE or ODE can be obtained in order to collect data
samples from the estimated data distribution.
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2.2. Diffusion Models with Limited Data

Recently, diffusion models have significantly outpaced
GANS in generative modeling, delivering higher image qual-
ity, enhanced diversity, more stable training, and cutting-
edge performance across various image generation tasks.
However, training diffusion models commonly requires a
large amount of data, which is expensive and difficult to
clean. Although some studies (Wang et al., 2023c; Moon
et al., 2022; Zhu et al., 2022; Hur et al., 2024; Wang et al.,
2023a; Lu et al., 2023; Ruiz et al., 2023; Sinha et al., 2021b;
Giannone et al., 2022; Yang et al., 2024) have attempted to
finetune diffusion models with limited data, their approaches
are similar to the transfer learning task and rely on the simi-
larity of the source and target domain (Hur et al., 2024). In
contrast, except for Patch Diffusion (Wang et al., 2023c),
there are very few contributions that focus on training dif-
fusion models with limited data from scratch. Specifically,
Patch Diffusion introduces a diffusion model with the patch
training strategy to reduce data and computational resources.
However, experimental results show that Patch Diffusion
still needs thousands of training samples. In this study, we
aim to train robust diffusion models with only hundreds of
samples from scratch, aligning with the training GANs with
limited data (Zhang et al., 2025; 2024b).

2.3. Limited Data Settings in Generative Models

For limited data settings in GAN-based approaches (Zhao
et al., 2020; Li et al., 2022), there are two common scenar-
ios: Case 1: A small subset of a large dataset is used to train
the model, while the full dataset serves as the reference dis-
tribution for calculating the FID. This case is applied to the
experiments with the FFHQ dataset; Case 2: The original
small dataset is used both for training and as the reference
distribution for FID calculations. This case is typically uti-
lized in experiments with low-shot datasets. In this study,
we consider both cases when designing LD-Diffusion.

3. Theoretical Insight
3.1. Score-based Model and Denoising Score Matching

Without loss of generality, we choose the most representa-
tive diffusion model, i.e., EDM (Karras et al., 2022), for
our analysis. Notably, EDM can be implemented using
various diffusion architectures, such as noising conditional
score network (NCSN) (Song & Ermon, 2019), denoising
diffusion probabilistic model (DDPM) (Ho et al., 2020)
and ablated diffusion model (ADM) (Dhariwal & Nichol,
2021). According to Song et al. (2021) and Karras et al.
(2022), diffusion models aim to train a score-based model
€g(x, o) that matches the score function of data distribu-
tions Y/ zlogp,, (). To achieve this goal, EDM builds up
the denoiser function with preconditioning (Karras et al.,

2022), i.e., Dy(x, o) parameterized by a neural network,
to minimize the expected Lo denoising error for samples
drawn from the distribution p4,¢, independently for every
o¢. This can be expressed as:

L(D;0¢) = Eyrpynra Ennioozr 1 Doy +ni00) =yl

“
where v is a training image, 7 is noise and o; is a schedule
that defines the desired noise level. Then, the score-based
model can be represented as:

co(x,0¢) = (Dy(x,04) — ) /0?. Q)
Based on Appendix B.3 in EDM (Karras et al., 2022), by

expanding the expectations in Eq.(4), it can be rewritten as
an integral over the noisy sample x:

Y
1
L(Dgior) = | 5 D N (@5y,,071) | Do(@;00) — y,l3 da.
R i=1

=:L(Dg;xz,0¢)
(6)
Eq.(6) demonstrates that we can minimize £(Dy; o) by
minimizing £(Dy; x, o;) independently for each x. Based
on the theory presented in Song et al. (2021), Karras et al.
(2022) and Wang et al. (2023c), with sufficient data pro-
vided, the optimal D} (x; o) can be expressed as:
Dj(x;04) = arg I?in L(Dg;x,0). @)
o\L;0t
Based on Eq.(7), the optimal score-based model €} (x, o)
in EDM can match the score function of data distributions
Vzlogps, (x) at any time ¢, which can be formulated as
follows:

eo(@,01) = (Dy(x, 00) — x)/0} = Valogps, (x). (8)

3.2. Theoretical Analysis of Denoising Score Matching
with Limited Data

Based on Eqs.(4), (6) and (7), we provide the theoretical
analysis of denoising score matching with limited data. Ac-
cording to Wang et al. (2020), minimization of Eq.(6) can
be analyzed by empirical risk minimization (Mobhri et al.,
2018; Vapnik, 1991) (with possible regularizers) in theory.
For a better illustration, we define essential mathematical
symbols as follows.

Let Dj(x,0¢) = argminp,(zs,)L(Dg;x,0) be the
function that minimizes the expected risk, Dy(x, o)
arg minp, (z;0,)ep L£(Dg; T, 0:) be the function in
that minimizes the expected risk and D} (z,0;)
arg MiNpx (z.5,)eD L(DY; x, o) be the function in D that
minimizes the empirical risk with /N samples provided. D
is the denoiser function hypothesis space in practice and N
is the number of training samples.

9|l

As Dj(z, 0y) is unknown, the common approach is to ap-
proximate it by certain Dy(x;0:) € D. Dy(x;0y) is the
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Figure 2. Validation experiments for the two factors highlighted in §3.2. Here, we select the EDM (Karras et al., 2022) with the FFHQ
(Karras et al., 2020b) dataset for experiments: (a) The comparison of FID (Heusel et al., 2017) curves on EDM with the FFHQ-100
(64 x 64) dataset and EDM with the FFHQ-140K (64 x 64) dataset during training; (b) Generated images of EDM with FFHQ-140K
(256 x 256) dataset; (c) Generated images of EDM with the FFHQ-100 (256 x 256) dataset; (d) Generated images of EDM with the

FFHQ-100 (64 x 64) dataset.

best approximation for Dy(x;0:) € D, and D) (x, ;)
is the optimal hypothesis in D obtained by empirical risk
minimization. For simplicity, we assume that Dj(x, o),
Dy(x; o) and D) (z, 0;) are unique. Then, the total error
of L(Dy; x, o) in Eq.(6) during training can be formulated
following existing approaches (Bottou & Bousquet, 2007;
Bottou et al., 2018) as:

E [L (ng;m, o‘t) "y (D;;m,ot)] —E [L (ﬁg;m,ot) ) (D;;m,at)]

Eapp (D)

+E [,C (Dé\r;w,at) —L (ﬁg;w,otﬂ,

Eest (D,N)

C))
where E,pp, (D) is the approximation error which measures
how close the functions in D can approximate the op-
timal D} (xz,0;), and &g (D, N) is the estimation error
which measures the effect of minimizing the empirical risk
L(D); x,0;) instead of the expected risk £(Dg; x, o) in
D.

Eq.(9) demonstrates that the total error is affected by both D
and N. In general, with sufficient N, £(D}; z, ;) can be
a good approximation of £(D}; z, ;) with the empirical
risk minimizer D) (z, o). Then, the & (D, N) can be
easily reduced in D. However, with only limited N pro-
vided in D, the £(D}'; x, 0;) may then be far from being
a good approximation of the expected risk E(Dg; x,01).
Thus, the empirical risk minimizer D} (z, o) is no longer
reliable. In this case, based on Eq.(9), the total error of
L(Dg; x, o) is difficult to minimize, which leads to a sub-
optimal score-based model that matches the score function
of data distributions in practice, resulting in a decrease in
the quality of generated images (shown in Figure 2 (c)).

3.3. Validation Experiments

To further demonstrate the theoretical insight in §3.2, we
approach the experiments by artificially subsetting larger
commonly-used datasets, i.e., FFHQ (Karras et al., 2020b),

following the studies of GANs with limited data (Karras
et al., 2020a; Zhao et al., 2020). We select EDM as the
baseline with FFHQ-100 and FFHQ-140K datasets for ex-
periments. Specifically, FFHQ-100 is a subset of 100 im-
ages in the FFHQ dataset and FFHQ-140K is the full FFHQ
dataset with xflip augmentation. The FFHQ dataset with
70K images is used as the reference distribution for the FID
calculation. We measure quality by computing FID between
50K generated images and all available training images, as
recommended by Heusel et al. (2017), regardless of the
subset actually used for training. Following the EDM, the
generated images are based on the same ODE solver, i.e.,
the number of function evaluations (NFE) is 79.

The influence of the N on the training of the EDM is shown
in Figure 2 (a), (b) and (c). Without loss of generality, we
select the FFHQ dataset with different image resolutions
(representing different dimensions of D) for experiments.
Figure 2 (a) compares the FID curves of EDM during train-
ing on the FFHQ-100 and FFHQ-140K datasets with 64 x 64
resolution. Figure 2 (b) and (c) compare the generated im-
ages of EDM with the FFHQ-140K (256 x 256) and FFHQ-
100 (256 x 256) datasets. These results demonstrate that N
can significantly influence the quality of generated images
with the same D.

The effects of the D on the training of the EDM are shown
in Figure 2 (c) and (d). Specifically, we select different
image resolutions with the same NN for experiments. It is
clear that the quality of generated images with EDM under
the 256 x 256 FFHQ-100 dataset (Figure 2 (c)) is much
worse than the quality of generated images with EDM under
the 64 x 64 FFHQ-100 dataset (Figure 2 (d)), demonstrating
that low-dimensional D is easier to optimize, leading to
higher quality generated images.

4. Limited Data Diffusion (LD-Diffusion)

To address the challenges identified in our theoretical anal-
ysis in §3.2, we propose a novel diffusion model called
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Figure 3. An overview of Limited Data Diffusion (LD-Diffusion). LD-Diffusion consists of two components: A compressing model with
pre-trained encoder (¢) and decoder (D) models from similar but slightly different VAE models (with the same latent space) in Rombach
et al. (2022b) and a novel data augmentation method called Mixed Augmentation with Fixed Probability (MAFP). The compressing
model can obtain a compressed low-dimensional denoiser function hypothesis space by constraining its complexity. MAFP can effectively
increase the number of training samples within the compressed low-dimensional hypothesis space. Furthermore, we apply patch training
(Wang et al., 2023c) to Case 1 (§2.3) and propose novel Out-of-distribution (OOD) regularization for Case 2 (§2.3) to further improve the

training of diffusion models with limited data.

Limited Data Diffusion (LD-Diffusion) to improve the train-
ing of diffusion models with limited data, as shown in Figure
3. LD-Diffusion has two components: (1) A compressing
model that reduces the complexity of the D, where D is the
denoiser function hypothesis space in practice, same as in
§3.2; (2) A novel data augmentation method, MAFP, de-
signed to increase the number of training samples N within
the compressed low-dimensional D. Furthermore, we intro-
duce improved training techniques for LD-Diffusion with
two different limited data cases (shown in §2.3). More the-
oretical interpretations of LD-Diffusion can be found in
§A.1.

4.1. Compressing Model

The compressing model in LD-Diffusion is built using un-
paired pre-trained encoder (Rombach et al., 2022d) and
decoder (Rombach et al., 2022¢) models to reduce the com-
plexity of D. The purpose of applying pre-trained encoder
and decoder models is to constrain the complexity of D,
thereby resulting in a low-dimensional D that can better
represent the diffusion-based high-dimensional hypothe-
sis space (Wang et al., 2024; Boffi et al., 2024; Li et al.).
According to Wang et al. (2020), the low-dimensional D
consists of a small area to be considered for optimization.
With the compressed low-dimensional D, the limited N
is sufficient to reduce the total denoising score matching
error (Germain et al., 2016; Mahadevan & Tadepalli, 1994;
Nguyen & Zakynthinou, 2018). Notably, it has already
been proven that the encoder and decoder models do not
eliminate significant details (Rombach et al., 2022a). Thus,
the compressing model can prevent the heavy leaking issue

(Karras et al., 2020a; Zhang et al., 2020; Zhao et al., 2021;
Zhang et al., 2024a) during training. Furthermore, applying
the pre-trained encoder and decoder models from the same
pre-trained VAE models can unavoidably lead to a small
loss of image details (Rombach et al., 2022a), which can
limit the variety of detailed information in generated images,
thereby leading to a decrease in performance. Therefore,
we select the pre-trained encoder and decoder models from
similar but slightly different VAE models (with the same
latent space) for the compressing model in practice, which
can further improve performance (See §B.2).

4.2. Mixed Augmentation with Fixed Probability

Although data augmentation (DA) methods have already
been applied to EDM (Karras et al., 2022), this DA is de-
signed based on ADA (Karras et al., 2020a) in the larger
denoiser function hypothesis space. In contrast, following
the proposed compressing model in §4.1, the DA for diffu-
sion models with limited data should be more informative in
the compressed low-dimensional D. With the fact that Dift-
Augment (Zhao et al., 2020) is more informative than ADA
in the low-dimensional feature space (Sauer et al., 2021),
combining Diff-Augment and ADA is the most straightfor-
ward approach to achieving this goal. However, directly
combining Diff-Augment and ADA can cause a significant
leaking issue. To address this, we propose a novel DA
method called Mixed Augmentation with Fixed Probability
(MAFP), which applies two fixed probabilities p; and p»
with a conditional input strategy (Karras et al., 2022) to
control Diff-Augment and ADA, respectively. Specifically,
Diff-Augment (Translation) is applied with a probability p;
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Figure 4. Understanding the improved training techniques, i.e., patch training and OOD regularization, on two scenarios. (a) Patch training
leads to the leaking problem in two situations, i.e., different training data with patch training and augmentation data with patch training.
Both situations result in different patches in patch-wise denoising score matching. (b) Schematic overview of the learning distributions
with two techniques on Case 1 (§2.3). (c) Schematic overview of the learning distributions with two techniques on Case 2 (§2.3).

and skipped with a probability 1 — p;, and ADA is applied
with a probability ps and skipped with a probability 1 — po
in MAFP. As a result, MAFP can avoid unnecessary DA
operations with a fixed probability during training, thereby
effectively avoiding the leaking problem in the compressed
low-dimensional denoiser function hypothesis space. Addi-
tionally, the proposed MAFP also has great generalization
ability, allowing it to be applied to GAN-based methods
to improve performance under limited data settings. More
details of MAFP can be found in §A.2 and §B.3.

4.3. Improved Training Techniques for Two Cases of
Limited Data Settings

Due to the difference in reference distribution for the two
limited data cases (§2.3), the common leaking issue (Kar-
ras et al., 2020a; Zhang et al., 2020; Zhao et al., 2021;
Zhang et al., 2024a) affects performance differently in each
case. Specifically, for Case 1, leaking samples (Out-of-
Distribution (OOD) samples) from the subset may actually
be in-distribution for the full dataset, potentially improving
training under limited data. Conversely, for Case 2, leak-
ing samples are truly OOD samples for the dataset, which
hinders the training under limited data. Based on the above
analysis, we introduce the patch training (Wang et al., 2023c)
for Case 1 and propose a novel OOD regularization for Case
2 to enhance the training of diffusion models with limited
data, respectively.

Patch training. Recently, Patch Diffusion (Wang et al.,
2023c) introduces patch training into diffusion models.
Patch Diffusion presents the patch-wise denoising score
matching to improve the training of diffusion models. How-
ever, patch training can unavoidably lead to leaking issues.
Specifically, we observe that patch training in diffusion
models can also result in different patches during patch-
wise denoising score matching in two situations, as shown
in Figure 4 (a). Both situations can lead to the selection of

different patches at the same image position during patch-
wise denoising score matching. Sampling the images from
these random different patches can lead to the leaking prob-
lem (Karras et al., 2020a; Zhang et al., 2020; Zhao et al.,
2021; Zhang et al., 2024a), i.e., producing OOD samples, in
the diffusion models.

Out-of-Distribution (OOD) regularization. Motivated by
the success of the regularization method in GANs with lim-
ited data (Fang et al., 2022; Tseng et al., 2021), we propose
a novel regularization method called OOD regularization.
To the best of our knowledge, OOD regularization is the
first regularisation method designed for diffusion models.
Specifically, OOD regularization aims to penalize the gradi-
ent if the generated samples are close to the OOD samples.
To achieve this, the novel denoiser score matching with
OOD regularization is shown as follows:

2
L(Do;0¢) = Ey~pdam]E‘Q~inamEnNN(o,atQ1) Do (y +m;04) — yll5

Original loss

1
+ P
IDo(y + n;o0) — GlI2 +n

],

Our OOD regularization

(10)
where ¢ is the OOD samples which are obtained by apply-
ing the Negative Data Augmentation (NDA) (Sinha et al.,
2021a) on the real samples y, and 7 is a constant 100 that
aims to enable the loss function to become stable. Eq.(10)
demonstrates that the proposed OOD regularization penal-
izes the gradient in denoiser score matching if generated
samples are close to the OOD samples, which can effectively
avoid the potential leaking issue.

More explanation of applying patch training and OOD
regularization in two cases. To better understand how the
leaking problem influences the training of diffusion models
with limited data, the schematic overview of the learning
distributions for patch training and OOD regularization in
two limited data cases is shown in Figure 4 (b) and (c).
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FFHQ
Method P? 100 1K 2K
EDM (Karras et al., 2022) No 79.10 - -
EDM + DA (Karras et al., 2022) No 50.73 30.75 27.17
Patch Diffusion (Wang et al., 2023c) No 44.45 28.03 25.32
LPDM-8 (Wang et al., 2023c) Yes 32.78 19.67 15.47
LD-Diffusion (ours) Yes 28.51 17.76 14.36

Table 1. FID scores (lower is better) of different methods on the
256 x 256 FFHQ dataset. Massive Augmentation (MA) (Cui et al.,
2022), i.e., xflipping, is applied in all methods. The results of the
EDM are directly from Adaptive IMLE (Aghabozorgi et al., 2023)
while the results of EDM + DA are obtained based on the official
open-source codes (Karras et al., 2022). The results of Patch
Diffusion and LPDM-8 are obtained by ourselves based on official
codes (Wang et al., 2023c). The downsampling factors in the pre-
trained encoder and decoder are selected as 8 for LPDM-8 and
LD-Diffusion. The FIDs are averaged over three runs; all standard
deviations are less than 1%, relatively. Here, P represents the
Pre-training model to facilitate the training of diffusion models
in the latent space.

Figure 4 (b) demonstrates that the leaking issue caused
by the patch-training can benefit the training of diffusion
models when the reference distribution is based on the large-
scale dataset, i.e., Case 1 (§2.3). Figure 4 (c) indicates that
the leaking issue can decrease the training of the diffusion
models when the reference distribution is based on small
datasets, i.e., Case 2 (§2.3). Therefore, the patch training
should be applied to Case 1 and the OOD regularization
should be applied to Case 2.

5. Experiments

5.1. Datasets and Implementation Details

We select FFHQ (Karras et al., 2020b) and low-shot (Zhao
et al., 2020) datasets for the experiments. For fair compar-
isons, we follow the official open-source codes® for pre-
processing and resizing the FFHQ to 256 x 256, as used
in existing studies (Karras et al., 2020a; Zhao et al., 2020;
Li et al., 2022). We select the most representative diffu-
sion model, i.e., EDM, as the baseline for LD-Diffusion.
Specifically, the noising conditional score network (NCSN)
(Song & Ermon, 2019) is selected as the architecture of
the EDM baseline on low-shot datasets and the denoising
diffusion probabilistic model (DDPM) (Ho et al., 2020) is
selected as the architecture of the EDM baseline on the
FFHQ dataset (refer to §5.4.4). For the compressing model
in LD-Diffusion, the pre-trained encoder is selected from
SD-MSE (Rombach et al., 2022d) and the pre-trained de-
coder is selected from SD-EMA (Rombach et al., 2022¢)
with a downsample factor of § (refer to §B.2). For the MAFP
in LD-Diffusion, we set p; and p» as 0.1 for all experiments
(refer to §5.4.2). Furthermore, patch training (Wang et al.,

https://github.com/NVlabs/edm

2023c) is applied to LD-Diffusion on experiments with the
FFHQ dataset. In contrast, the proposed OOD regulariza-
tion is applied to LD-Diffusion in experiments with low-shot
datasets. Based on EDM (Karras et al., 2022), the denoise
sampling Number of Function Evaluations (NFE) is set as
79 and 511 for all diffusion-based methods on FFHQ and
low-shot datasets, respectively.

5.2. Results on the FFHQ Dataset

We compare LD-Diffusion with other diffusion models with
limited data by conducting experiments on the 256 x 256
FFHQ dataset. As shown in Table 1, LD-Diffusion achieves
state-of-the-art (SOTA) performance compared to other dif-
fusion models. To further demonstrate the effectiveness of
LD-Diffusion, we also compare LD-Diffusion with other dif-
fusion methods using Precision and Recall (Kynkdinniemi
et al., 2019). As shown in Table 2, LD-Diffusion achieves
SOTA Precision and Recall performance compared with
other methods.

5.3. Results on Low-shot Datasets

We compare LD-Diffusion with all of the other state-of-
the-art diffusion models by conducting experiments on
the low-shot datasets. The results are shown in Table
3. LD-Diffusion outperforms other diffusion models and
achieves SOTA performance. Additional comparisons of
LD-Diffusion with other methods using Precision and Recall
can be found in §B.6. To further demonstrate the superi-
ority of LD-Diffusion, the comparisons of LD-Diffusion
with other SOTA generative models with limited data can be
found in §B.7. The compared generated images on low-shot
datasets by EDM + DA and LD-Diffusion are shown in
Figure 5.

5.4. Ablation Study

5.4.1. EFFECTIVENESS OF COMPONENTS IN
LD-DIFFUSION

We conduct the ablation study to show the components
of LD-Diffusion are effective in both limited data settings
introduced in §2.3. The results are shown in Tables 4 and 5.
It is clear that the design of LD-Diffusion (refer to Figure 3)
is reasonable and can indeed improve performance.

5.4.2. EFFECTIVENESS OF FIXED PROBABILITY IN
MAFP

To show the effectiveness of the fixed probability p; and
p2 in MAFP, we conduct an ablation study by selecting
different values of probability p; and ps in LD-Diffusion.
To achieve this goal, we first apply ps with ADA to LD-
Diffusion in order to find the best value of po (without p1),
and the results are shown in Table 6. Then, applying the best
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Method FFHQ-100 FFHQ-1K FFHQ-2K

P R P R P R
EDM + DA (Karras et al., 2022) 0.724  0.005 0.668 0222 0.709 0.281
Patch Diffusion (Wang et al., 2023c) 0.746 0.006 0.707 0.224 0.718 0.292
LPDM-8 (Wang et al., 2023c¢) 0.789  0.011 0.762  0.241 0.759  0.323
LD-Diffusion (ours) 0.791 0.018 0.767 0.249 0.769  0.323

Table 2. A comparison of Precision (P) and Recall (R) (Kynkéddnniemi et al., 2019) (higher is better) of LD-Diffusion with other diffusion
models on the 256 x 256 FFHQ dataset. Massive Augmentation (MA), i.e., xflipping, is applied to all methods. The P and R are averaged

over three runs; all standard deviations are less than 1%, relatively.

Method Pre-training? 100-shot Animal-Face
Obama  Grumpy  Panda Cat Dog
EDM (Karras et al., 2022) No 51.30 36.90 23.70 48.60 100.10
EDM + DA (Karras et al., 2022) No 37.10 29.94 10.81 36.88 57.14
Patch Diffusion (Wang et al., 2023c) No 41.47 30.89 13.25 43.71 72.17
LPDM-8 (Wang et al., 2023c) Yes 14.27 14.56 5.13 14.92 15.95
LD-Diffusion (ours) Yes 13.00 13.31 4.70 12.77 12.48

Table 3. FID scores (lower is better) of different methods on low-shot datasets (256 x 256). We follow the setting used in (Zhao et al.,
2020). Massive Augmentation (MA), i.e., xflipping, is applied in all methods. The FIDs are averaged over three runs; all standard

deviations are less than 1%, relatively.

Method FFHQ-100 (Case 1) P1 0.0 0.1 0.2 0.4 0.8

LD-Diffusion 28.51 FID 13.40 13.00 13.24 13.92 14.67

w/ OOD regularization 32.02

LD-Diffusion 2851 li;ablel 7. EID ;f:fc;res on the 'l g%s.?fotA Obama dzrilfasetl(Z.E')G X 236)

w/o Patch Training 31.57 y selecting di erentpl with Diff-Augment (Translation) under
/o Compressine model 4929 best value po = 0.1 with ADA. The FIDs are averaged over three

w/o p g : runs; all standard deviations are less than 1%, relatively.

w/o MAFP 79.10

Table 4. FID scores on the FFHQ-100 dataset (256 x 256) by
adding or gradually removing the corresponding component in
LD-Diffusion. The FIDs are averaged over three runs; all standard
deviations are less than 1%, relatively.

Method 100-shot Obama (Case2)
LD-Diffusion 13.00
w/ Patch training 13.97
LD-Diffusion 13.00
w/o OOD regularization 13.28
w/o Compressing model 36.31
w/o MAFP 51.30

Table 5. FID scores on the 100-shot Obama dataset (256 x 256)
by adding or gradually removing the corresponding component in
LD-Diffusion. The FIDs are averaged over three runs; all standard
deviations are less than 1%, relatively.

0.0
13.98

0.1
13.55

0.2
13.86

0.4
14.51

0.8
15.22

P2
FID

Table 6. FID scores on the 100-shot Obama dataset (256 x 256)
by selecting different p2 with ADA. The FIDs are averaged over
three runs; all standard deviations are less than 1%, relatively.

Method Obama FFHQ-100
LD-Diffusion (with DA in EDM) 13.57 29.87
LD-Diffusion (with MAFP) 13.00 28.51

Table 8. FID scores on the 100-shot Obama and FFHQ-100
datasets (256 x 256) for comparisons of MAFP with the exist-
ing DA in EDM using LD-Diffusion. The FIDs are averaged over
three runs; all standard deviations are less than 1%, relatively.

value ps = 0.1 with ADA, we add p; with Diff-Augment
(Translation) in LD-Diffusion to obtain the best value of p1,
and the results are shown in Table 7. Consequently, we set
p1 = 0.1 and py = 0.1 for all experiments.

5.4.3. COMPARISON OF DIFFERENT DATA
AUGMENTATIONS IN LD-DIFFUSION

We conduct experiments by applying MAFP and the existing
DA to LD-Diffusion. The results are shown in Table 8,
indicating that MAFP is more informative than the existing
DA method (Karras et al., 2022) for LD-Diffusion.
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FID 37.10 FID 10.81 FID 29.94

FID 36.88

FID 57.14

Figure 5. The comparison of generated images with LD-Diffusion and EDM + DA on (a) 100-shot Obama, (b) 100-shot Panda, (c)
100-shot Grumpy-cat, (d) AnimalFace-cat and (¢) AnimalFace-dog datasets. Top: Images generated by EDM + DA. Bottom: Images
generated by LD-Diffusion. The decreasing value of FID in red color demonstrates the improvement of LD-Diffusion over EDM + DA.

Method DDPM ADM NCSN
EDM + DA 50.73 60.17 52.89
LD-Diffusion 28.51 3339 29.59

Table 9. FID scores (lower is better) on the FFHQ-100 dataset with
different selected architectures for EDM + DA and the proposed
LD-Diffusion. The FIDs are averaged over three runs; all standard
deviations are less than 1%, relatively.

Method DDPM ADM NCSN
EDM + DA 38.09 4589 37.10
LD-Diffusion  13.11  15.87 13.00

Table 10. FID scores (lower is better) on the 100-shot Obama
dataset with different selected architectures for EDM + DA and the
proposed LD-Diffusion. The FIDs are averaged over three runs;
all standard deviations are less than 1%, relatively.

5.4.4. COMPARISON OF DIFFERENT DIFFUSION
ARCHITECTURES IN LD-DIFFUSION

To demonstrate how different diffusion model architectures
influence the training of diffusion models with limited data,
we conduct experiments by selecting different diffusion
model architectures for EDM + DA and LD-Diffusion in
two limited data cases. For Case 1, we study this by conduct-
ing experiments on the EDM + DA and LD-Diffusion with
the FFHQ-100 dataset, and the results are shown in Table 9.
DDPM (Ho et al., 2020) slightly outperforms NCSN (Song
& Ermon, 2019) and achieves better performance compared
to ADM (Dhariwal & Nichol, 2021). For Case 2, we ap-
proach this by conducting experiments on the EDM + DA
and LD-Diffusion with the 100-shot Obama dataset. The
results are shown in Table 10. NCSN (Song & Ermon, 2019)
marginally outperforms DDPM (Ho et al., 2020) and demon-
strates superior performance compared to ADM (Dhariwal
& Nichol, 2021). The denoise sampling NFE is selected
as 511 and 79 for the 100-shot Obama and FFHQ datasets,
respectively. Furthermore, both Tables 9 and 10 show that

Method 100-shot Obama FFHQ-100
EDM (Karras et al., 2022) 51.30 79.10
EDM2 (Karras et al., 2024) 112.26 119.72

Table 11. Compared FID scores (lower is better) of EDM and
EDM2 on the 100-shot obama and FFHQ-100 dataset (256 X 256).

the proposed LD-Diffusion can significantly improve perfor-
mance compared with EDM + DA with all three different
diffusion architectures, demonstrating the generality of the
proposed method. Additionally, one recent approach called
EDM2 (Karras et al., 2024) has been proposed to scale up
EDM (Implemented with the ADM architecture). To demon-
strate that selecting EDM as the baseline in LD-Diffusion is
reasonable, we conduct experiments comparing EDM and
EDM2 on both limited data cases. The results are shown
in Table 11. Given that EDM2 is implemented with the
ADM architecture consisting of more parameters, it is rea-
sonable that the results of EDM2 are worse than EDM in
both limited data cases.

Additional ablation studies on utilizing various pre-trained
encoders and decoders in the compressing model (§B.2),
applying different augmentations in MAFP (§B.3), using
diverse denoise sampling NFE during the sampling stage
(§B.4) and applying different NDA methods in OOD regu-
larization (§B.5) can be found in Appendix.

6. Conclusion

In this paper, we theoretically demonstrate that minimiz-
ing the total denoising score matching error is difficult to
achieve under limited data within the denoiser function hy-
pothesis space of existing methods. To address this, we fur-
ther propose a new diffusion model called Limited Data Dif-
fusion (LD-Diffusion) to improve the training of diffusion
models with limited data. Extensive experiments on several
datasets demonstrate the superiority of LD-Diffusion.
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A. More Explanation of LD-Diffusion
A.1. Theoretical Interpretations for LD-Diffusion

ODE formulation of LD-Diffusion. Based on the exist-
ing studies (Wang et al., 2023c; Sinha et al., 2021a), the
proposed improved training techniques do not influence the
diffusion model learning data distributions, demonstrating
that the proposed improved training techniques will not
influence the convergence of diffusion models. Then, fol-
lowing the ODE formulation in Song et al. (2021), Karras
et al. (2022) and Vahdat et al. (2021), the probability flow
ordinary differential equation (ODE) of LD-Diffusion can
be formulated as:

de = —610t Ve(1(a)) 108P0, (e(T'(x))dt, (11)
where T is proposed MAFP, o, is a schedule that defines the
desired noise level at time ¢ and ¢ is the pre-trained encoder
as in Rombach et al. (2022d). According to §4, both ¢ and
T would not result in the leaking issue.

Denoising score matching for LD-Diffusion. According
to the denoising score matching in Karras et al. (2022), we
build up the denoiser function, i.e., Dg(x; o), that mini-
mizes the expected Ly denoising error for samples drawn
from distribution p(¢(T'(data))) independently for every o;.
Following the two limited data cases in §2.3, the denoising
score matching for Case 1 is based on the patch diffusion
(Wang et al., 2023c) and can be expressed as:

L(Do;01) = Eyrp(e(T(data))) Enan (0,021 Eigs)~n .

HDg(yi,j,s +n;04) — yz]-st )
where 7 is noise, ¢ is the pre-trained encoder model, 7" is
the proposed MAFP, 1 denotes the uniform distribution on
the corresponding value range and y, ; , is the randomly
crop small patches for any y ~ p(e(T'(data))). Specifically,
(4, 4) is left-upper corner pixel coordinates to locate each
image patch, and s denotes the patch size. Then, following
Eq.(12), the denoising score matching for Case 2 can be
expressed as:

L(Do;01) = Eyp(e(r(data)) Eo~i. ara) EBnmn(0,021)

1
(Do (y + nyo¢) — yll3 +

Do (y + ny00) — Gl +1

Original loss
Our OOD regularization

13)
where y is a training image and ¢ is the OOD sample that
is obtained by applying the NDA on the real samples y, and
71 is a constant 100 that aims to enable the loss function
to become stable. Eq.(12) and Eq.(13) are the denoising
score matching for FFHQ and low-shot datasets, respec-
tively. Both Eq.(12) and Eq.(13) demonstrate that the denois-
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ing score matching for LD-Diffusion is in the compressed
low-dimensional denoiser function hypothesis space, which
consists of a smaller area to be considered for optimiza-
tion, thus resulting in better performance with limited data
provided.

According to Wang et al. (2023c¢) and Sinha et al. (2021a),
the patch training and proposed OOD regularization do
not influence the learning data distribution, demonstrating
that our proposed improved training techniques will not
influence the convergence of the score-based model. Then,
following Karras et al. (2022) and Vahdat et al. (2021),
there still exists an optimal D} (e(T'(x)); o) for Eq.(12)
and Eq.(13) in theory. In this case, based on Eq.(5) and
Eq.(8), the optimal score-based model €} (¢(T'(x)), o) can
match the score function /(7 (z))logps, (e(T'(x)) at any
time ¢, which can be expressed as:

co(e(T(x)),00) = (D (e(T(x)); 0¢) — e(T(x))) /o7

(14)
= Ve(r(a))logp(e(T'(x)); ot),

where o; is a schedule that defines the desired noise level.
Eq.(14) demonstrates that the score-based model can also
reach an optimal in the compressed low-dimensional de-
noiser function hypothesis space in theory.

A.2. Generalization of Proposed Mixed Augmentation
with Fixed Probability (MAFP)

Based on §4.2, to demonstrate the generalization of the
proposed MAFP, we apply it to Generative Adversarial Net-
works (GANs), following the existing studies (Karras et al.,
2020a; Jiang et al., 2021). Specifically, we set the prob-
abilities p; and po in MAFP to be controlled adaptively
by the overfitting degree of D (Karras et al., 2020a; Jiang
et al., 2021), denoted as MAFP (Adaptive). The results
are presented in Table 12, revealing that MAFP (Adaptive)
outperforms Diff-Augment (Zhao et al., 2020) and ADA
(Karras et al., 2020a) on low-shot datasets with StyleGAN2
(Karras et al., 2020b).

B. More Experiment Results

B.1. Experimental Implementation Details

], We conduct all the experiments on a single workstation with

two A5000 (24G) GPUs, with a total of 10 same worksta-
tions for all experiments. We follow the EDM? to build
up our software environment. We set the overall train-
ing duration for all diffusion-based generative models on
the FFHQ dataset and low-shot datasets as 20000kimgs
and 40000kimgs, respectively. To reduce the inference
time for the diffusion models, we evaluate the model per

*https://github.com/NVlabs/edm
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Method

MA

100-shot Animal-Face

Cat

Obama Grumpy Cat Panda Dog

StyleGAN2 + Diff-Augment (Zhao et al., 2020) Yes

StyleGAN2 + ADA (Karras et al., 2020a)
StyleGAN2 + MAFP (Adaptive)

46.87 27.08 12.06 42.44 58.85
Yes 45.69 26.62 12.90 40.77 56.83
Yes 41.13 25.87 10.93 38.69 54.15

Table 12. FID score (lower is better) on several low-shot datasets (256 x 256). We follow the setting as in Zhao et al. (2020). Massive
Augmentation (Cui et al., 2022) is applied to all of the methods. The FIDs are averaged over three runs; all standard deviations are less

than 1%, relatively.

Compressing Model

Obama AF-Dog

Both encoder and decoder from SD-EMA (Rombach et al., 2022c)
Encoder from SD-EMA and decoder from SD-MSE (Rombach et al., 2022d)

Both encoder and decoder from SD-MSE

Encoder from SD-MSE and decoder from SD-EMA

13.31  12.85
13.20  12.71
13.13  12.63
13.00 12.48

Table 13. FID score (lower is better) by selecting different pre-trained encoders and decoders in the compressing model in LD-Diffusion.
The FIDs are averaged over three runs; all standard deviations are less than 1%, relatively.

500kimgs for the FFHQ dataset and per 1000kimgs for
low-shot datasets. The snapshot with the best FID for each
method is reported in the experiments.

B.2. Impact of Different Pre-trained Encoder and
Decoder in Compressing Model

To demonstrate which pre-trained encoder and decoder are
suitable for the compressing model in LD-Diffusion, we con-
duct experiments by selecting different pre-trained encoders
and decoders with downsample factors 8 in the compressing
model, and the results are shown in Table 13. It is clear
that the pre-trained encoder and decoder in SDE-MSE and
SD-EMA, respectively, can lead to the best performance.
Additionally, we do not select the pre-trained encoder and
decoder in SDXL (Podell et al., 2023) because they can only
work on full precision, i.e., FP32, rather than half precision,
i.e., FP16, which can significantly increase computational
resources for all of the experiments.

B.3. More Experiments on MAFP

According to §4.2, the ablation study of Diff-Augment
(Zhao et al., 2020) in MAFP on the 100-shot Obama dataset
is shown in Table 14. It is clear that Diff-Augment (Trans-
lation) achieves the best performance compared with other
settings. Therefore, we apply the Diff-Augment (Transla-
tion) in MAFP for LD-Diffusion.

B.4. More Ablation Studies of Denoising Sampling
Number of Score Function Evaluations (NFE)

We conduct experiments by varying the denoising sampling
NFE during the inference stage for LD-Diffusion. The
results are presented in Table 16. The selection of NFE
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aligns with the different denoising sampling NFE settings
in EDM (Karras et al., 2022). It is evident from the results
that setting NFE=79 for the FFHQ dataset and NFE=511
for low-shot datasets in the main paper is reasonable.

B.5. More Ablation Studies of NDA in OOD
Regularization

We conduct an ablation study by selecting different NDA
methods, i.e., Jigsaw, Stitching, Mixup (Zhang et al., 2018),
Cutmix (Yun et al., 2019) and Cutout (DeVries & Taylor,
2017) as in NDA-GAN (Sinha et al., 2021a), for the pro-
posed OOD regularization in LD-Diffusion. The results of
the 100-shot Obama dataset are shown in Table 17. Jig-
saw achieves better performance compared with other NDA
methods in the proposed OOD regularization.

B.6. More Experimental Results on Low-shot Datasets

According to §5.3, we present the comparative results of
LD-Diffusion and other methods using Precision and Recall
on low-shot datasets, as shown in Table 15. LD-Diffusion
outperforms other diffusion models and always achieves the
best Precision compared with other diffusion models. This
strongly demonstrates that the generated image distribution
produced by LD-Diffusion has a high likelihood of falling
into the real data distribution, indicating the superiority of
LD-Diffusion. Moreover, Patch Diffusion achieves the high-
est Recall score in most cases. This is attributed to the fact
that Patch Diffusion applies the patch training and does not
utilize pre-trained models to compress difficult information
within image distributions. Consequently, Patch Diffusion
endeavors to learn such difficult information with various
patches, increasing the likelihood of the real distribution
falling into the generated image distribution compared to
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Method FID

No Diff-Augment in MAFP for LD-Diffusion 13.32
Diff-Augment (Translation) in MAFP for LD-Diffusion 13.00
Diff-Augment (Color) in MAFP for LD-Diffusion 13.36
Diff-Augment (Cutout) in MAFP for LD-Diffusion 16.15
Diff-Augment (Translation + Color) in MAFP for LD-Diffusion 13.11
Diff-Augment (Translation + Color + Cutout) in MAFP for LD-Diffusion  15.01

Table 14. FID score (lower is better) on the 100-shot Obama (256 x 256) by selecting different Diff-Augment cases in the MAFP module
in LD-Diffusion. Massive Augmentation (Cui et al., 2022) is applied to all of the settings. The FIDs are averaged over three runs; all

standard deviations are less than 1%, relatively.

Method Obama Grumpy Cat Panda AnimalFace-Cat  AnimalFace-Dog
P R P R P R P R P R
EDM + DA 0.965 0.380 0.870 0.330 0.874 0360 0969 0306 0.955 0.188
Patch Diffusion 0952 0410 0.861 0370 0.866 0.392 0961 0324 0.943 0.201
LPDM-8 0991 0.180 0.990 0.100 0998 0.120 0.997 0.146  0.997 0.772
LD-Diffusion (ours) 0.996 0.100 0.994 0.080 1.000 0.012 0999 0.103 1.000 0.773

Table 15. A comparison of Precision (P) and Recall (R) of LD-Diffusion with other diffusion models on the 256 x 256 low-shot datasets.
Massive Augmentation (MA) is applied to all of the methods. The Precision and Recall are averaged over three runs; all standard

deviations are less than 1%, relatively.

Number of NFE FID (100-shot Obama) FID (FFHQ-100)

NFE=35 13.56 32.61
NFE=79 13.32 28.51
NFE=511 13.00 30.11

Table 16. FID score (lower is better) on the 100-shot Obama
dataset (256 x 256) and FFHQ-100 dataset (256 x 256) by ap-
plying different numbers of denoising sampling NFE during the
inference stage in LD-Diffusion. The FIDs are averaged over three
runs; all standard deviations are less than 1%, relatively.

NDA method in OOD regularization FID

Jigsaw 13.00
Stitching 13.24
Mixup (Zhang et al., 2018) 14.12
Cutmix (Yun et al., 2019) 13.47
Cutout (DeVries & Taylor, 2017) 13.29

Table 17. FID score (lower is better) on the 100-shot Obama
dataset (256 x 256) by selecting different NDA methods for OOD
regularization in LD-Diffusion. Massive Augmentation (Cui et al.,
2022) is applied to all of the settings. The FIDs are averaged over
three runs; all standard deviations are less than 1%, relatively.

15

diffusion-based generative models with pre-trained models
without patch training, thereby resulting in a higher Recall
score.

B.7. Comparisons of LD-Diffusion with Other
Generative Models

To further demonstrate the superiority of our proposed LD-
Diffusion, we compare it with other state-of-the-art (SOTA)
generative models with limited data, namely Diffusion-
Projected GAN (Wang et al., 2023d) and RS-IMLE (Vashist
et al., 2024). The results, presented in Table 18, show that
LD-Diffusion achieves performance comparable to other
SOTA generative models. Notably, LD-Diffusion attains the
best FID scores on the AnimalFace-Cat and AnimalFace-
Dog datasets.

B.8. Computational Cost

The comparison of the training and inference time of EDM
+ DA and LD-Diffusion on the 100-shot Obama dataset have
been demonstrated in Table 19. LD-Diffusion can reduce
the huge training and inference time compared with EDM +
DA.



Training Diffusion-based Generative Models with Limited Data

Method 100-shot Animal-Face

Obama  Grumpy  Panda Cat Dog
Diffusion Projected GAN (Wang et al., 2023d) 10.54 15.13 3.39 17.86 17.22
RS-IMLE (Vashist et al., 2024) 14.00 11.50 3.50 1590  23.10
LD-Diffusion (ours) 13.00 13.31 4.70 12.77 12.48

Table 18. Compared FID scores (lower is better) of LD-Diffusion with other state-of-the-art (SOTA) generative models on low-shot
datasets (256 x 256). We follow the setting used in Zhao et al. (2020). Massive Augmentation (MA), i.e., xflipping, is applied in all
methods. The FIDs are averaged over three runs; all standard deviations are less than 1%, relatively.

Method Training by 50K images (min) Generating 5K images during inference (min)
EDM + DA 40 165
LD-Diffusion (ours) 7 28

Table 19. The training and inference time of EDM + DA and LD-Diffusion on the 100-shot Obama dataset (256 x 256). The half precision,
i.e., FP16, is applied to all methods. The results are calculated by averaging over ten times on the two NVIDIA A5000 GPUs. All standard
deviations are less than 1%, relatively.

C. Discussion DE-GANSs have applied this dataset in their experiments,
demonstrating its application is reasonable and does not

C.1. Discussion about Pre-trained Models and Limited raise any ethical issues.

Data Settings

This paper proposes a compressing model with the pre-  C.3. Limitation
trained encoder and decoder models in Rombach et al.
(2022b) to constrain the complexity of the denoiser function
hypothesis space, thus improving the training of the diffu-
sion model with limited data. Some viewpoints may think
that applying pre-trained models could break the limited
data rules because pre-trained models are trained on a large
dataset. We argue this from two aspects. First, applying
pre-trained models to generative models to improve their
training under limited data has been widely used in GANS.
For example, the well-known approaches Projected GAN
(Sauer et al., 2021) and vision-aided GAN (Kumari et al.,
2022) have both applied the pre-trained models to improve
the training with limited data. Second, our goal aims to
train diffusion models with limited data from scratch. The
pre-trained models applied to the LD-Diffusion are based
on the pre-trained VAE models, which are not related to the
diffusion models. Therefore, the proposed LD-Diffusion is
trained with limited data from scratch and does not break
the limited data rules.

According to §B.1, to reduce the computational cost dur-
ing the inference stage of diffusion models, we evaluate
the model per 500kimgs for the FFHQ dataset and per
1000kimgs for low-shot datasets. The snapshots with the
best FID for each method are reported in the experiments.
This evaluation strategy is fair and can indeed reduce the
computational cost. However, it can also make the reported
results in the paper slightly worse than the best result.

C.2. Discussion of Ethical Issues

This paper applies the 100-shot Obama dataset, i.e., the
dataset consists of Obama faces, in the experiment section.
This dataset is widely and commonly used without limi-
tations in Data Effcient GANs (DE-GANSs) research, and
we follow the recent existing DE-GANSs research to apply
them to diffusion models with limited data. Furthermore,
a lot of recent studies (Zhao et al., 2020; Cui et al., 2022;
Chen et al., 2021; Li et al., 2022; Zhang et al., 2024a) on

16
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