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Abstract

We present a method to generate 3D objects in styles. Our

method takes a text prompt and a style reference image as

input and reconstructs a neural radiance field to synthesize a

3D model with the content aligning with the text prompt and

the style following the reference image. To simultaneously

generate the 3D object and perform style transfer in one

go, we propose a stylized score distillation loss to guide a

text-to-3D optimization process to output visually plausible

geometry and appearance. Our stylized score distillation

is based on a combination of an original pretrained text-to-

image model and its modified sibling with the key and value

features of self-attention layers manipulated to inject styles

from the reference image. Comparisons with state-of-the-art

methods demonstrated the strong visual performance of our

method, further supported by the quantitative results from

our user study.

1. Introduction

Creating 3D content has been a key but demanding task

in computer graphics. Traditional interactive tools such as

Maya [1], Blender [3] are among the most popular choices

for novices and professionals to perform 3D modeling. In

the wave of generative AI development, there have been in-

creased interests in automatic synthesis of 3D content using

generative models [45, 59]. This is an open research area

with tremendous progress in recent years, with the rise of

language models enabling the widespread adoption of natu-

ral languages to condition the automatic generation of data

in different modalities.

This trend has stimulated the development of text-to-3D

generation methods [59, 69], where 3D objects can be gen-

erated by simply prompting an input sentence that describes

the desired object content. These methods are generic to the

appearance of the generated objects, which means that the

final look and feel of the 3D content is barely controllable.

This is in contrast to a common requirement in traditional

3D modeling, where a visual artist might aim to decorate a

3D object in particular styles. For example, one might be

interested in creating a 3D object with low polygon count,

making its geometry appear as a collection of flat surfaces,

or a 3D object with stylized textures in photorealistic or car-

toon styles. Performing such a stylization using traditional

tools is a tedious task. Therefore, integrating stylization into

generative models is a promising idea to explore.

At its core, text-to-3D generation [59, 71] performs an it-

erative update on a 3D representation such that its rendering

converges to a photorealistic image scored by a pretrained

text-to-image model. So far, most development of text-to-3D

generation has focused on objects with generic appearance.

Creating 3D content with particular styles remains challeng-

ing to achieve. A straightforward approach is to incorporate

style description into text prompts used to generate 3D con-

tent, but this approach is not effective due to the ambiguity

in how styles can be described using natural languages.

In this paper, we propose a new stylization method for 3D

content creation from text prompts. Our method uses a style

reference image to guide text-to-3D generation, transferring

the detailed visual elements such as color, tone, or texture

in the reference image to the final 3D object. This design

choice is made to maximize style guidance so that the desired

style can be described by both the reference image and the

text prompt. Our method follows an optimization-based text-

to-3D framework, performing a gradient descent update to

optimize a 3D representation. Our update is regularized by a

style-based score distillation that works as a critique to the

rendered 3D content using a style-aware text-to-image model

modified from the original pretrained model without any

finetuning. We formulate this process using a stylized score

distillation gradient, which dynamically combines scores

from both the original and modified pretrained model. Our

experiments demonstrate the effectiveness of the proposed

method along with its flexibility and robustness in the styles

of the generated 3D content. Some example results are

shown in Figure 1.

In summary, our contributions are threefold. First, we pro-

pose to adapt a generic pretrained text-to-image model with

a reference style image and build a training-free modified

pretrained model for stylized text-to-3D generation. Second,

we propose a stylized score distillation gradient to steer the
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Figure 1. We aim to generate a 3D object jointly from a text prompt and a style reference image so that the object integrates the descriptive

elements in the text prompt and the aesthetic style in the reference image. Our method employs a stylized score distillation to steer a

text-to-3D optimization using combined scores from a pretrained text-to-image model and its modified variant on attention layer features,

generating stylized 3D objects in a single-stage optimization.

3D generation toward the desired style specified in the ref-

erence style image. Third, we demonstrate the flexibility

of our method by applying our stylized distillation to differ-

ent text-to-3D generation losses, including score distillation

sampling (SDS) [59], noise-free score distillation [34], and

variational score distillation (VSD) [71]. We also demon-

strate the robustness of our 3D stylization via a diverse set

of text prompts and styles.

2. Related works

2.1. Style transfer

Style transfer is a traditional computer graphics problem that

aims to synthesize images in artistic styles. Example-based

methods such as image analogies [23, 41] learn to filter a pair

of source images so that when applied to a new target image,

the filter can generate analogous filtered results. Image analo-

gies are built upon texture synthesis, which requires source

pairs to approximately align to learn effective filters. This

restriction is alleviated in modern deep-learning based style

transfer methods. Neural style transfer [17] optimizes the

target image so that it shares the content of an input image

and the style of a reference image with feature correspon-

dences characterized by a pretrained neural network. Several

extensions of style transfer follow, notably for efficiency

improvement with a feed-forward neural network [32] and

image-to-image translation networks [29, 44, 80], style rep-

resentation with statistical features [27], style representation

using text-image features [15, 36, 57], and video style trans-

fer [40]. We refer the reader to the comprehensive survey

paper [31] for a broader coverage on visual style transfer

methods.



2.2. Generative content creation

Generative models such as generative adversarial net-

works [18, 33] and diffusion models [25, 58] are notable

tools to synthesize realistic data of different modalities, no-

tably text and images when trained on large-scale datasets.

Recently, text-to-image models like DALL-E [53] and Stable

Diffusion [60] have shown great promise in generating pho-

torealistic images from arbitrary text prompts. Text-to-image

diffusion models can be used for image editing [48] includ-

ing style transfer by learning a copy of a pretrained diffusion

model [79], bridging the latent space of two diffusion mod-

els for image-to-image translations [37, 64], and instruction-

based translations supervised using image-prompt-image

datasets [4] and test-time editing directions [56]. Personal-

ized text-to-image methods [61] can generate images in sim-

ilar subjects defined by a small set of reference images, but

these methods requires multiple images to finetune the pre-

trained diffusion models. Textual inversion methods [16, 20]

instead only optimize the text embedding to obtain a text

prompt that preserves the subject identity of an input im-

age. Training-free methods [22, 30] inject reference features

into the denoising process of a pretrained diffusion model

through manipulating features input to attention layers of the

denoising U-Net to influence the stylized generation.

In the 3D domain, generative models can be trained

to sample 3D data represented by voxels [74] and point

clouds [52], but high-quality 3D training datasets are rela-

tively scarce and are in smaller scales compared to language

and image datasets [10, 11]. A recent approach to sidestep

this issue is to generate 3D data by learning from images.

3D-aware GANs [5] learn to generate 3D-consistent images

by incorporating a neural radiance field [50] as the interme-

diate 3D representation, but their results are limited to a few

categories of objects. Instead of focusing on 3D generation,

novel view synthesis [6, 66] predicts 3D-consistent views

from a sparse set of input views, with support from pre-

trained image diffusion models [45]. Large reconstruction

models [26, 77] demonstrate effective image-to-3D gener-

ation by scaling up the training to millions of 3D objects.

Text-to-3D generation [59, 69, 71] is a recent advance aim-

ing to generate 3D objects directly from text prompts by

using a pretrained text-to-image model to score the render-

ing of 3D objects at random angles. Text-to-3D methods

have witnessed rapid development recently, with significant

advances made toward improved distillation [34], shape qual-

ity [7, 42, 76, 81] with textures [49], fast rendering [67],

amortized sampling [47, 75], 3D editing [21, 35], and an-

imated models [2]. Our method belongs to the text-to-3D

family, but focuses on stylized 3D generation.

2.3. 3D stylization

Several approaches for 3D stylization exist. Traditionally,

image analogies can be adapted to stylize 3D rendering while

preserving physically based illumination effects [14, 65]. Re-

cent notable advances in neural radiance fields (NeRFs) [50]

allow us to perform stylization on implicit neural scene rep-

resentations. NeRF stylization methods [13, 43, 51, 55, 78]

often assume a two-stage process in which a radiance field is

first reconstructed on photorealistic images and then stylized

based on style reference images. This process can be im-

proved by several techniques including optimizing semantic

correspondences between the radiance field and the style ref-

erence image [55, 78] or generalizing the stylization across

scenes and styles with generalizable NeRFs [9, 28]. Two-

stage stylization methods tend to change only the appearance

of the NeRF while keeping the geometry intact [9, 28] be-

cause these methods lack a generative prior and therefore

cannot generate style-related geometry. For example, given

a car model and a fire style image in Fig. 1, two-stage NeRF

stylization methods cannot generate a car made of fire with

additional geometry representing fire. We refer the reader to

a recent survey [8] for more techniques on 3D stylization.

With the rapid development of image-to-3D based on

large reconstruction models [26, 46, 68, 72, 77], one can also

consider generating stylized 3D objects by lifting a single

stylized image to 3D. However, these pretrained image-to-

3D models do not generalize well to stylized images with

complex visual effects, e.g., fire around a car, resulting in

3D models with limited geometry quality. By contrast, our

method integrates styles into 3D generation by consider-

ing style guidance using reference images in a text-to-3D

generation framework. Our method follows a single-stage

generation principle, simultaneously optimizing 3D geome-

try, appearance, and styles.

3. Background

3.1. Text-to-3D generation

The basic concept in text-to-3D generation is to use a pre-

trained text-to-image diffusion model to score the rendering

of a 3D object described by a text prompt. Particularly,

given a text prompt y and a pretrained text-to-image diffu-

sion model with the noise prediction network ϵϕ(zt | y),
we aim to generate a 3D object, parameterized by θ, such

that its rendering x = g(θ) follows the image distribution

generated by the pretrained diffusion model. This generation

can be formulated as an optimization problem with a score

distillation sampling (SDS) gradient [59]:

∇θLSDS = Et,ϵ

[

ω(t) (ϵϕ(zt | y)− ϵ)
∂x

∂θ

]

, (1)

where ω(t) is a weighting function with t ∼ U(0.02, 0.098),
ϵ ∼ N (0, I), zt = αtx + σtϵ. In practice, the score func-

tion ϵϕ(zt | y) is implemented with classifier-free guid-

ance [24] to steer the denoising process toward conditional

generation to align the generated samples with text prompt



y. Several variants of score distillation have been explored

to improve the fidelity of generated 3D objects, e.g., varia-

tional score distillation (VSD) that expresses the generated

objects as probabilistic distributions [71], noise-free score

distillation [34] that decomposes distillation scores into in-

terpretable components.

3.2. Baseline methods for 3D stylization

This section discusses three baseline methods for incorporat-

ing style into text-to-3D generation. We focus on supporting

arbitrary styles in our synthesis, and therefore do not con-

sider techniques that can only support a limited number of

styles such as generation guided from style-dependent Lo-

RAs of pretrained diffusion models.

Style-in-prompt. A straightforward baseline method is to

use prompt engineering to add a style description directly

to the input text prompt. For example, instead of having

“ironman” as the original prompt, we can change to “golden

ironman” to indicate the desired style of the generation. Al-

though this approach can work for simple styles and objects,

style representation using text prompts is generally ambigu-

ous and can only capture high-level styles. It remains chal-

lenging to describe detailed visual elements in styles using

text prompts, e.g., styles of sketches. Empirically, increasing

the complexity of text prompts tends to make text-to-3D

optimization more challenging to converge.

Neural style loss. The challenges encountered from the

first method motivate us to use a reference image to de-

scribe detailed visual elements for style transfer. Our second

baseline method involves using a neural style loss [17] to

enforce style consistency between the 3D rendering and a

style reference image. The style loss is defined by

Lstyle(θ) = ∥f(x)− f(s)∥2
2
, (2)

where f represents the style features extracted by VGG-

19 [63]. Style features were extracted from images using the

conv1 1, conv2 1, conv3 1, conv4 1, conv4 2, and conv5 1

layers. We apply the style loss as a regularization to an

existing score distillation loss.

Textual inversion. The third baseline method is spe-

cialized for text-to-3D generation by using textual inver-

sion [16, 20] to map a style reference image to the text

embedding of a text-to-image pretrained model, resulting

in an augmented text prompt that implicitly encodes the

style reference image. Particularly, we follow [16] to

optimize a token h to reproduce the style reference im-

age s so that the augmented prompt can be defined by

y′ = [y + “in the style of” + h]. We can then use the aug-

mented prompt y′ instead of y in a standard text-to-3D op-

timization. This baseline method depends on the accuracy

of textual inversion that might affect the final 3D genera-

tion, and also requires additional computation to perform the

textual inversion.

Inspired by the challenges of existing baseline methods,

let us now describe our method that aims to circumvent

these limitations and generate stylized 3D objects in a robust

manner.

4. Method

4.1. Overview

Our method seeks a 3D object such that its rendering aligns

to an input text prompt and a style reference image. We

optimize a 3D neural representation using score distillation,

where the rendering of the 3D object is scored by a pretrained

text-to-image diffusion model [59]. Compared to the generic

text-to-3D generation, one particular challenge here is to

integrate the style reference image into the optimization pro-

cess to generate stylized 3D objects. Our method is designed

to be a single-stage optimization, where both stylized ge-

ometry and appearance are generated simultaneously. This

differs from some existing 3D stylization methods where

only geometry or appearance is optimized to stylize a pre-

constructed neural representation [55, 78].

We propose to consume our style reference image using

an attention swapping mechanism on the denoising U-Net of

the pretrained diffusion model [22, 30] so that the modified

diffusion model can generate images analogously to the

style reference image. We show that this modified pretrained

model remains suitable for score distillation, which we then

leverage to guide the 3D optimization.

4.2. Style-based score distillation

Mathematically, given a text prompt y and a style reference

image s, we seek a 3D object parameterized by θ, with

x = g(θ) being the rendered image from a differentiable ren-

dering function g. We apply diffusion on x, with the forward

process q and reverse process p as follows. The forward

process q(zt | x = g(θ)) = N (αtx, σ
2

t I) generates a noisy

version zt of x at time step t by adding Gaussian noise to x

to remove its structure. The reverse process p predicts the

noise from the intermediate state zt to reconstruct x.

We aim to synthesize the 3D object via optimizing its

parameter θ by minimizing the following KL loss:

L(θ) = KL(q(zt | x = g(θ)) ∥ pϕ(zt | y, s)), (3)

where pϕ(zt | y, s) is a probability distribution with score

function parameterized by ϕ that conditions on both the text

prompt y and the style reference s.

To model pϕ(zt | y, s), we take inspiration from training-

free methods for style transfer using diffusion models [22,

30]. We assume that there are two denoising processes:

one process for generating an image using the original text



prompt, and another process for generating a style reference

image. Here, the style reference image can be generated by

its own text prompt, or from textual inversion of a real style

image. Our goal is to influence the former process so that

its generated image has the original content but shares the

style in the latter process. This can be achieved by sharing

features in self-attention blocks [22] or swapping key and

value features at self-attention blocks of the latter process

with those of the original process [30], allowing features

from the style reference images to propagate into image

synthesis of the former process. As no finetuning is done on

the diffusion model itself, this leaves the parameters of the

original diffusion model intact, only the score predictions

are updated due to the feature changes in the self-attention

blocks. We adopt this concept for text-to-3D generation as it

allows us to use the same pretrained model for original and

stylized score distillation for text-to-3D generation. In our

implementation, we follow the swapped attention in visual

style prompting [30] but similar methods such as shared

attention [22] should work as well.

Mathematically, we represent the modified denoising pro-

cess by a modified score function ϵ̂ϕ(zt | y, s) that shares

the same network parameters ϕ as the original score function

ϵϕ(zt | y). Note that the modified score function has an

additional parameter s which is the style reference image.

Specifically, assume that the style image can be generated

by a prompt ys so that s ∼ p0(z0 | ys). Here we abuse

the notation to rewrite the score functions to include self-

attention features, namely ϵϕ(zt | y; att(y)) for the original

denoising process and ϵϕ(zt | ys; att(ys)) for the process

generating the style reference image. We define the modified

score function as

ϵ̂ϕ(zt | y, s) = ϵϕ(zt | y; att(ys)), (4)

where the condition now includes the original prompt y and

style features att(ys).
It is tempting at first to use the modified score function as

a standalone distillation for 3D generation, but we very soon

realize that this does not work well because the modified

score function steers the generated samples toward stylized

rendering. Predicting 3D shapes from stylized images is

highly ambiguous, which often results in low-quality 3D

geometry. By contrast, the original score function remains

useful to steer the denoising process to construct meaningful

object shapes. This inspires us to propose a combined score

function that balances between the original and modified

scores, as follows.

Combined score function. We define pϕ(zt | y, s) as a

mixture of two distributions in the log space:

log pϕ(zt | y, s) = (1− λ) log pϕ(zt | y) + λ log p̂ϕ(zt | y, s),
(5)

where pϕ(zt | y) is the conditional probability distribution

of the original pretrained model that only conditions on the

text prompt y, and p̂ϕ(zt | y, s) is the conditional probability

distribution of the modified pretrained model that conditions

on both the text prompt and the style reference. λ ∈ [0, 1] is

the style ratio to control the mixture. Using this definition,

minimizing KL(q ∥ pϕ) is equivalent to:

min
θ

Eϵ [log(q(zt | x = g(θ)))

−(1− λ) log(pϕ(zt | y))− λ log(p̂ϕ(zt | y, s))] .
(6)

Taking the derivative w.r.t. θ results in our stylized score

distillation (SSD) gradient:

∇θLSSD = Et,ϵ [ω(t) ((1− λ)ϵϕ(zt | y)

+λϵ̂ϕ(zt | y, s)− ϵ)
∂x

∂θ

]

. (7)

Notably, our stylized score distillation results in linearly

interpolated scores of the original and modified pretrained

diffusion model, resembling SDS-family gradients. This

makes extensions on SDS become applicable on our method

as well, e.g., classifier-free guidance [24], and noise-free

score distillation [34], as demonstrated subsequently.

Adaptation to noise-free score distillation. Following the

noise-free score distillation loss decomposition and taking

into account classifier-free guidance [34], we can represent

the score function as a composition of a domain direction

δD, a noise direction δN , and a conditioning direction δC .

The noise-free version of our stylized score distillation can

be written as

∇θLSNF = Et [ω(t) ((1− λ) (δD + βδC)

+λ
(

δ̂D + βδ̂C

)) ∂x

∂θ

]

, (8)

where the domain directions are defined by

δD =

{

ϵϕ(zt | y = ∅), if t < 200

ϵϕ(zt | y = ∅)− ϵϕ(zt | y = pneg), otherwise,

(9)

and

δ̂D =

{

ϵ̂ϕ(zt | y = ∅, s), if t < 200

ϵ̂ϕ(zt | y = ∅, s)− ϵ̂ϕ(zt | y = pneg, s), otherwise,

(10)

where pneg is a negative prompt to represent out-of-

distribution samples such as “unrealistic, blurry, low quality”.



The conditioning directions are defined by

δC = ϵϕ(zt | y)− ϵϕ(zt | y = ∅), (11)

and

δ̂C = ϵ̂ϕ(zt | y, s)− ϵ̂ϕ(zt | y = ∅, s), (12)

where β is the classifier-free guidance (CFG) scale.

4.3. Optimization

We found that the style ratio λ greatly affects the convergence

of the optimization as it controls the gradients that steer the

denoising process toward generating a generic 3D object and

its stylized version. We devise a dynamic schedule to adapt

the style ratio during optimization as follows. We aim for a

small style ratio in early iterations so that basic structures in

the 3D object can be generated following the vanilla scores.

In subsequent iterations, we increase the style ratio to favor

stylized score distillation, emphasizing the importance of

generating stylized 3D objects. We explore two dynamic

schedules using a square root function:

τsqrt(λ;λmax, k,K) = λmax

√

k

K
, (13)

and a quadratic function:

τquad(λ;λmax, k,K) = λmax

(

k

K

)2

, (14)

where k and K are the current and total iterations in the

optimization, respectively. λmax is the maximum value that

the style ratio parameter λ will reach at the end of the scaling

process when k = K.

5. Experimental Results

We perform several experiments to demonstrate the effec-

tiveness of our proposed method. First, we compare our

method with three baseline methods for stylized text-to-3D

generation. Second, we demonstrate that our method can be

adapted to other score distillation losses. Finally, we provide

ablation studies to validate the importance of our combined

score distillation, as well as perform parameter studies to

validate our style ratio scheduling. We perform quantitative

evaluation of our method through a human-like user study

using large language models [73].

5.1. Implementation details

We use the implementation of neural radiance fields from

threestudio [19], which is based on NerfAcc [39], as the

3D representation for our optimization. We follow the im-

plementation of DreamFusion [59], noise-free score distilla-

tion [34] and ProlificDreamer [71] to implement the score
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Figure 2. Qualitative comparisons to baseline methods. Our styl-

ized score distillation leads to 3D generation results consistently

aligned with the text prompts and the style reference images. Mul-

tiple view rendering are shown in the supplementary video.

distillations. In our method, we apply an augmentation of

the text prompt y by concatenating it with a BLIP2 gen-

erated caption [38] of the style reference image, and use

this augmented prompt for the modified score ϵ̂. We set the

classifier-free guidance (CFG) scale to 100 for score dis-

tillation sampling (SDS) [59], and 7.5 for noise-free score

distillation (NFSD) [34], and variational score distillation

(VSD) [71]. We use NFSD as the default score distillation

for our method.

Our experiments are performed on a NVIDIA RTX 4090

GPU with 24 GB of VRAM. Our method optimized a 3D ob-

ject in approximately 1.5 hours using SDS [59] or NFSD [34]

and 2.5 hours using VSD [71], similar to the training time

of the vanilla implementations of these methods.

5.2. Qualitative results

We compare our method with the baseline methods proposed

in Section 3.2. Figure 2 presents a list of text prompts and

style reference images with the corresponding outputs of all

methods. As can be seen, our results have the best visual

quality with consistent alignment to the input pairs of text

prompts and reference images.

To demonstrate the adaptability of our method to other
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Figure 3. Our method applied to different score distillation losses.

Multiple view rendering are shown in the supplementary video.
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Figure 4. Our results on various style images from [22].
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Figure 5. Our results on complex and detailed text prompts.

score distillation losses, we apply our method to the vanilla

score distillation sampling (SDS), noise-free score distilla-

a castle

Prompt
Style
image

Baseline A
vanilla

distillation

Baseline B 
modified 

distillation

Ours
combined
distillation

a toy
truck

a batman
figure

a reindeer

Figure 6. Ablation studies. We confirm the effectiveness of our

combined distillation by comparing with two baselines: A) the

vanilla text-to-3D generation without styles, B) text-to-3D genera-

tion guided by only the modified pretrained model.

tion (NFSD), and variational score distillation (VSD). Fig-

ure 3 provides the results of our method adapted to these

score distillation losses. It can be seen that the NFSD vari-

ant works best, outperforming SDS and VSD. Our method,

however, does not yet adapt the LoRA model for scoring

noisy rendering in VSD for stylization which is the subject

of future work.

To demonstrate the robustness of our method across dif-

ferent styles and complex prompts, we tested it on various

styles as in [22], as shown in Figure 4. Additionally, we ap-

plied our approach to more complex textual prompts, which

are illustrated in Figure 5.

To verify the robustness of our stylized score distillation

across training-free methods for style transfer, we attempted

our method on StyleAligned [22]. Compared to visual style

prompting (VSP) [30] that only attends to the style image,

StyleAligned attends to both the style image and the resulting

image. We observed that our SSD with VSP has more natural

results. For example, given a fire style image and prompt ’a

toy car’, SSD with StyleAligned generates fire around a car,

while VSP produces a car made of fire (similar trend with

their 2D results). A more detailed discussion is provided in

the supplementary material.

5.3. Ablation studies

Figure 6 provides an ablation study on the effectiveness of

our method by comparing with two baselines: A) no style

reference image (i.e., the vanilla text-to-3D generation), B)

text-to-3D generation guided by only the modified pretrained

model. It is shown that baseline A has high-quality object

geometry and appearance, while baseline B has consistent

styles with the reference images but causes corrupted ge-
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Figure 7. Effects of our schedule function with different style ratios

on the stylization results.

ometry. This confirms the need for using our stylized score

distillation to generate the desired objects in styles.

Figure 7 provides a study on the choice of the style ratio

λ. We found that starting the generation process with an

unstyled object and then gradually adding the style works

best. We evaluated two scheduling functions, quadratic and

square root, which sets λ between 0 and λmax. The results

are shown in Figure 7. We found that the sqrt schedule

works best with λmax = 0.6 in general. When the style ref-

erence image represents abstract concepts without a specific

foreground object, it is preferred to use the quad schedule

with λmax = 1.0.

5.4. Quantitative results

The existence of large language models with vision capabil-

ity (e.g., GPT-4v model [54]) allows us to prompt a language

model for 3D asset evaluation, which had been demonstrated

to work well for the text-to-3D generation task with human-

like performance [73]. We follow [73] and extend their

GPTEval3D tool to incorporate style evaluation, resulting

to six evaluation criteria including text-geometry alignment,

text-asset alignment, style alignment, geometry details, tex-

ture details, and 3D plausibility. We use this tool to compare

the results generated by four methods, including style-in-

prompt, neural style loss, textual inversion, and our method.

We set up the style-in-prompt method as the base/anchor

for the evaluation process. We asked GPTEval3D to per-

form 120 pairwise comparisons, and then calculated the Elo

score [12] for each method. The results are presented in

Figure 8. It can be seen that our method outperforms all

baseline methods in this evaluation.
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Figure 8. Results of GPTEval3D on text-geometry alignment, text-

asset alignment, style alignment, geometry details, texture details,

and 3D plausibility, which confirm the effectiveness of our method.

6. Conclusions and limitations

We present a method for text-to-3D generation in styles.

Our method is based on a combined score distillation to

balance the influence of the original and the modified pre-

trained diffusion model in generating stylized 3D objects.

We demonstrated the performance and robustness of our

method in various comparisons.

Our method is not without limitations. A particular prob-

lem is that our results are prone to the Janus problem [59],

which could be mitigated by using pretrained diffusion mod-

els for multi-view generation [62, 70]. Additionally, our

method is best compatible with SDS-family losses. Adapt-

ing our method to non-SDS losses is future work. It is of

great interest to extend the investigation of stylized text-to-

3D generation to videos and 4D data for style references and

outputs, respectively.
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