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Abstract

In-context learning (ICL), which teaches a large language model (LLM) to perform1

a task with few-shot demonstrations rather than adjusting the model parameters,2

has emerged as a strong paradigm for using LLMs. While early studies primarily3

used a fixed or random set of demonstrations for all test queries, recent research4

suggests that retrieving semantically similar demonstrations to the input from a5

pool of available demonstrations results in better performance. This work expands6

the applicability of retrieval-based ICL approaches along several dimensions. We7

extend the success of retrieval-based ICL to instruction-finetuned LLMs as well as8

Chain-of-Thought (CoT) prompting. While the prior work utilizes general Large9

Language Models (LLMs), such as GPT-3, we find that retrieved demonstrations10

also enhance instruction-finetuned LLMs. This insight implies that training data,11

despite being exposed during the fine-tuning phase, can still be effectively used12

through retrieval and in-context demonstrations during testing, resulting in superior13

outcomes when compared to utilizing no demonstrations or selecting them at14

random. For CoT, when the demonstrations contain reasoning chains, we get15

improvements by retrieving based on such chains. Finally, we train a task-specific16

demonstration retriever that outperforms off-the-shelf retrievers.17

1 Introduction18

Language models are now the foundation models for many natural language processing tasks across a19

wide range of domains [2]. One of the most exciting emergent abilities [27] of large language models20

(LLMs) is in-context learning (ICL) [3]. With ICL, instructions and a few demonstrative examples21

are augmented to the inputs of LLMs, allowing them to perform well on new tasks without the need22

for fine-tuning.

Figure 1: The average performance of PaLM and Flan-PaLM on five datasets, with one and few-shot
ICL. Retrieved demonstrations given by either BM25 or GTR yield better performance than random
demonstrations.

23

Typically, ICL approaches utilize random or hand-crafted demonstrations that are applied across24

various queries. This may, however, not always be optimal. Recent research has revealed that using25



Inference 
Query: q R d1+… + dn

LLM

Answer

xq R LLM

Demonstration 
Candidates

POSI

NEG

Obtain the positive and negative demonstrations  to train R LLM Inference with R 

d1+q
d2+q
…

dk+q

Re-rank

Sorted 
Candidates

Figure 2: Pipeline for training demonstration retriever and inference (R for a neural retriever). Figure
on the left shows the procedure of obtaining data to train a demonstration retriever: an off-the-shelf
retriever takes an input query xq and retrieves top-k (e.g., 100) demonstrations candidates from the
training corpus. Then an LLM is used to output the score of the ground truth of yq with each retrieved
demonstration and xq. Figure on the right shows the inference pipeline for in-context learning with
the trained demonstration retriever.

demonstrations semantically similar to the input query can enhance performance [14]. Here, we26

investigate two off-the-shelf retrievers, BM25 [23] and GTR [20], where BM25 is a sparse retriever27

that finds demonstrations with the highest (weighted) word overlap with the query, while GTR is a28

dense retriever that seeks demonstrations semantically closest to the query. We use these retrievers to29

obtain query-specific demonstrations, and study demonstration-retrieved ICL (Dr. ICL) with both a30

general LLM and an instruction-finetuned LLM.31

Beyond previous work, several interesting findings are discovered through our experiments, as32

shown in Figure 1. Firstly, despite their simplicity, we establish that both BM25 and GTR can33

find more effective demonstrations than random demonstrations in both one-shot and few-shot ICL34

settings. Such off-the-shelf retrievers make Dr. ICL an appealing paradigm for real-world applications.35

Secondly, our results with an instruction-finetuned LLM, i.e., Flan-PaLM [7], indicate that training36

data can be useful not only for training models but for accompanying a retriever at inference time,37

suggesting a more efficient way to utilizing training data which are expensive to collect. Thirdly, the38

combination of Chain-of-Thought (CoT) [26] and retrieved demonstrations surpasses the performance39

of CoT alone. Moreover, selecting demonstrations based on their annotated reasoning chains proves40

to be more beneficial than retrieving without considering reasoning chains. Last but not least, we41

provide a detailed analysis by comparing retrieved demonstrations with input queries. This analysis42

underscores an interesting observation: the labels of the retrieved demonstrations frequently do43

not coincide with the input query’s label across multiple tasks. We also compare the diversity of44

demonstrations and find that diversity might impact how much improvement Dr.ICL makes.45

Nevertheless, while demonstrations from off-the-self retrievers perform better than random ones, they46

may still be suboptimal for the target task, since the retrievers were optimized for other tasks such as47

question answering and information retrieval. We thus propose to train a demonstration retriever that48

retrieves the most beneficial demonstrations for the target task as demonstrated in Figure 2 (§2.2).49

Our experimental results show that the fine-tuned demonstration retriever outperforms off-the-shelf50

retrievers, with more noticeable improvement in one-shot ICL. This encouraging result indicates that51

for a fixed target task, the trained retriever could offer an effective substitute for off-the-shelf models.52

Given the constraints of the page limit, we’ve provided the related work and a comparison with prior53

studies in AppendixA.54

2 Demonstration-Retrieved In-Context Learning (Dr. ICL)55

We first describe ICL for general tasks (including both classification and generation tasks). For a56

task T , given an input text xq, an LLM is used to predict the answer yq conditioned on a set of57

demonstrations, Demo = {d1, d2, · · · , dn}, where di = (xi, yi) is a pair of input and ground truth58

answer. Typically, di is linearized as a string (e.g., “question: xi \n answer: yi”) and then59

provided to the LLM alongside xq .60
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There are multiple strategies for choosing the set of demonstrations. For instance, one could randomly61

or manually select a fixed set Demo to be applied to all queries of task T . Alternatively, a retriever62

can be used to find query-specific demonstrations from the training set Dtrain:63

Demoxq = Retriever(xq, Dtrain, n), (1)

where Demoxq
contains the top-n demonstrations that the retriever considers most suitable for the64

input xq. In this work, we consider two off-the-shelf retrievers, BM25 and GTR (Section 2.1), and65

then propose a method to train a retriever tailored to the target task T (Section 2.2).66

2.1 Off-the-shelf Retrievers67

BM25 [23] is a bag-of-words model that calculates relevance scores using term frequency, inverse68

document frequency, and document length normalization. It has proven effective and efficient,69

making it easily deployable in large-scale, real-world applications. However, BM25 heavily relies70

on keyword matching and lacks context understanding, which may result in less accurate outcomes.71

In contrast, GTR [20] is a dual-encoder neural retriever (based on T5) trained on the MS MARCO72

dataset [19]. GTR excels in semantic and context comprehension and is easily transferable to73

downstream tasks or specific domains. However, it has lower memory and computational efficiency,74

and lacks interpretability.75

2.2 Demonstration Retriever Training76

Demonstration retrieval aims to find the most representative demonstrations for each input query.77

Ideally, the demonstrations should capture both (a) the query-specific knowledge required to answer78

the query, and (b) the nature of the task and how the task should be solved in general.79

Off-the-shelf retrievers such as BM25 and GTR were designed for information retrieval and question80

answering. As such, they mostly retrieve demonstrations of type (a) but not (b). To fill this gap, we81

propose to train a demonstration retriever by leveraging the feedback from a language model. As82

demonstrated in the left part of Figure 2, the process involves two steps: obtaining the training data83

and training a retriever on the data.84

Obtain the Training data We want to teach the retriever model to locate examples that lead to85

the most accurate predictions. We propose to mine a set of demonstrations for each input query xq86

in the training data as follows. First, given a question-answer pair (xq, yq) ∈ Dtrain, we use an87

off-the-shelf retriever to find a demonstration candidate set D for xq , where xq itself is excluded from88

D. We then test each demonstration d ∈ D on how much it helps on the target task. Specifically,89

the LM probability pLM(yq | d, xq) of the gold answer yq is used as the score for the demonstration.90

Finally, we keep the top-n demonstration as the positive demonstrations, and the bottom-n as the91

hard negative demonstrations.92

Training Procedure Our retriever is a dual encoder, which defines the score of any query-document93

pair (q, d) as s(q, d) = v⊤q vd, where vq and vd are the embeddings of q and d. We initialize our94

retriever with GTR, and then fine-tune it on the training data via contrastive loss with both in-batch95

and hard negatives:96

Lcon = − log
es(q,d

+)

es(q,d+) +
∑

j e
s(q,d−

j )
, (2)

where d+ and d−j are the positive and negative demonstrations. The negative demonstrations include97

the positive demonstrations for the other input queries in the same batch and one randomly-chosen98

hard negative demonstration.99

3 Experiments100

Benchmarks We study various tasks across 5 datasets: free-form question answering (NQ), natural101

language inference (ANLI-r3), mathematical reasoning (GSM8K and AQuA) and boolean question102

answering (StrategyQA). All the tasks are evaluated by exact match accuracy.103
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Figure 3: PaLM: One-shot and few-shot inference with three types of demonstrations: random,
BM25, and GTR. Retrieved demonstrations are more effective than random ones.

Figure 4: Flan-PaLM: One-shot and few-shot inference with three types of demonstrations: random,
BM25, and GTR. Retrieved demonstrations are more effective than random ones.

Language Models PaLM-540B [6] and Flan-PaLM (540B) [7] are used as the primary LLMs. Both104

models have the same architecture, but Flan-PaLM has been further trained on thousands of tasks105

for instruction learning (including all the five datasets we studied in this paper) and shows superior106

generalization performance compared to PaLM. For GSM8K, AQuA, and StrategyQA, we also apply107

Chain-of-Thought (CoT) prompting [28], which has shown effectiveness in such complex reasoning108

tasks. The main idea is to have the LLM generate a CoT containing reasoning steps before generating109

the answer. In order to induce such a behavior, each in-context demonstration is additionally equipped110

with a CoT, which is available from the training data. Note that the CoT can also be utilized during111

retrieval, and in our experiments, we will show the benefits of retrieving based on the CoT. We use112

the temperature of 0.0 and maximum decoding length 10 for tasks without CoT and 256 for tasks113

involving CoT.114

Retrievers As explained in §2, we explore using BM25 and GTR as off-the-shelf retrievers, as well115

as training our own retriever for each task. For BM25, we use uncased BERT wordpiece tokenization116

and parameters (k1, b) = (1.5, 0.75). For GTR, we use the pretrained GTR-Base model. When117

mining data for training our retriever, we use the pretrained GTR to retrieve 100 demonstrations118

candidates, and then use PaLM-62B to score each candidate. (We used the smaller PaLM-62B instead119

of 540B for efficiency.) Then we select the top-5 reranked demonstrations as the positive candidates120

to fine-tune GTR. Retrieval Corpus. We create a separate retrieval corpus for each task using the121

associated training data. For tasks with CoT, each entry in the corpus is composed of the question,122

the CoT, and the answer, while for other tasks are without the CoT.123

3.1 Off-the-shelf-retriever Performance124

Figures 3 and 4 show the performance of PaLM and Flan-PaLM under one-shot and few-shot ICL125

settings, with and without retrievers. We make the following observations.126

Observation 1: Off-the-shelf retrievers are capable of finding more effective demonstrations than127

random ones. Figure 3 shows that the demonstrations retrieved by BM25 or GTR are better than128

random ones under both one-shot and few-shot scenarios for the PaLM model, suggesting that in real129

life applications, rather than using random demonstrations, retrieved demonstrations can yield better130

performance. It is worth mentioning that BM25 is more efficient in terms of indexing memory and131

retrieval latency compared to semantic retrievers like GTR or other sentence encoders [14], which132

makes it easier to deploy.133
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# Shots w/o CoT PaLM Flan-PaLM
GSM8K StrategyQA AQuA GSM8K StrategyQA AQuA

One without 47.2 62.8 42.5 65.4 78.3 51.2
with 57.7 73.4 44.9 70.5 82.6 54.3

Few without 58.5 72.9 44.1 71.3 80.2 54.0
with 61.9 76.8 42.9 72.0 82.6 54.7

Table 1: Comparison between two strategies of retrieving demonstrations: with or without CoT.
BM25 is used as the retriever. Retrieval with CoT is better than without.

# Shots w/o CoT PaLM Flan-PaLM
GSM8K StrategyQA AQuA GSM8K StrategyQA AQuA

One without 49.1 61.8 43.7 66.1 72.5 51.2
with 54.6 71.5 46.5 70.5 82.6 54.3

Few without 59.4 70.5 46.1 69.9 78.7 54.3
with 64.4 75.8 43.3 70.2 82.1 54.3

Table 2: Comparison between two strategies of retrieving demonstrations: with or without CoT. GTR
is used as the retriever. Retrieval with CoT is better than without.

Observation 2: Dr. ICL improves instruction-finetuned LLM. Previous research has primarily fo-134

cused on investigating demonstration retrieved ICL with general LLMs (such as GPT-3) rather than135

instruction-finetuned LLMs, possibly because they did not consider reusing the training data. In136

our study, we examine Dr. ICL with Flan-PaLM, an instruction-finetuned LLM, and present the137

results in Figure 4. Overall, the retrieved demonstrations outperform no demonstrations or random138

demonstrations. This implies that the training data should be reused during inference as they can be139

retrieved and enhance the performance, even if the model has already seen such data. We conjecture140

that the retrieved demonstrations may enhance knowledge localization for ICL, which could explain141

the observed improvement.142

Observation 3: Dr. ICL can further improve advanced prompting technique, Chain-of-Thought. In143

our experiments on GSM8k, StrategyQA, and AQuA, using Dr. ICL in conjunction with CoT results144

in improved performance under both one-shot and few-shot ICL scenarios. This finding suggests that145

Dr. ICL has the potential to enhance the performance of powerful prompting techniques.146

The observations above hold significant values for real-world applications. Incorporating ICL with147

a simple BM25 demonstration retriever, which is highly scalable in terms of latency and indexing148

memory, is proven to improve the performance of the LLM, including when instruction finetuning149

or Chain-of-Thought were used. Examples of retrieved demonstrations given by the off-the-shelf150

retrievers are given in the Table 6 in Appendix.151

Retrieval Strategies for CoT For the tasks involving CoT, we evaluate two approaches for retriev-152

ing demonstrations: incorporating CoT and excluding CoT when computing the retrieval scores (e.g.,153

for GTR, including CoT means that the demonstration’s CoT is add to the input of the embedding154

model). Note that in both approaches, the CoT will then be added to the in-context demonstrations155

during LLM inference, so that the LLM knows to generate a CoT. Tables 1 and 2 indicate that156

implementing CoT in the retrieval phase typically provides better results (with only one exception157

on the AQuA dataset). This holds true for both one-shot and few-shot scenarios with the PaLM and158

Flan-PaLM models. Thus, we suggest the integration of CoT during retrieval.159

3.2 Trained Demonstration Retriever Performance160

We experiment our trained demonstration retriever with PaLM. Table 3 displays both one-shot and161

few-shot performance, and shows that the trained demonstration retriever is better than off-the-shelf162

GTR in almost all cases, leading to a better overall performance. Notably, the improvements were163

most significant in one-shot ICL scenarios, which require less inference latency and computing164

resources than few-shot ICL. These promising results suggest that the trained retriever could provide165

an effective alternative to off-the-shelf models.166
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Task Method One Shot Few Shots

NQ GTR 37.8 43.9
Demo-GTR(our) 39.2(+1.4) 43.9

ANLI (r3) GTR 54.0 57.9
Demo-GTR(our) 54.8(+0.8) 59.0(+1.1)

GSM8k GTR 54.6 64.4
Demo-GTR(our) 59.3(+4.7) 61.5(-2.9)

StrategyQA GTR 71.5 75.8
Demo-GTR(our) 72.0(+0.5) 77.3(+1.5)

AUQA GTR 46.5 43.3
Demo-GTR(our) 42.5(-4.0) 44.5(+1.2)

Avg. GTR 52.9 57.1
Demo-GTR(our) 53.6(+0.7) 57.2(+0.1)

Table 3: Performance of PaLM using GTR and Demo-GTR retrieved demonstrations. Demo-GTR
consistently achieves better performance than GTR in one-shot case.

4 Analysis167

To rule out the chance that retrieved demonstrations are more advantageous than random ones simply168

because in the benchmark datasets the former’s answers are identical to the correct ones, we assess169

the overlap percentage between the demonstration responses and the target. In the few-shot scenario,170

we aggregate the answers from the demonstrations via majority voting. From Table 4, it is evident that171

for the first forth datasets, the overlap ratio is roughly equal to or less than the uniform distribution,172

suggesting that the benefits of the retrieved demonstrations are not due to label identification. In the173

case of the NQ, we notice a considerable overlap between demonstration answers and the ground174

truth. We then randomly select 100 instances out of the 433 overlapped cases from GTR-retrieved175

demonstrations (one-shot) and manually examine them. We find that, indeed, for the majority of the176

100 instances, the input questions are semantically equal to the demonstration questions.177

Task Random Retriever One-shot Few-shot

ANLI3 33.33 BM25 33.33 31.42
GTR 34.75 32.25

StrategyQA 50.0 BM25 48.79 47.34
GTR 47.83 48.31

AQUA 20.0 BM25 22.83 25.98
GTR 24.02 22.05

GSM8K 0.0 BM25 1.36 1.82
GTR 0.99 1.14

NQ 0.0 BM25 8.95 8.70
GTR 11.99 11.08

Table 4: Overlapped Ratio of Demonstrations Answers with Targets: Random represents the
probability of selecting the correct label if we select randomly from the space of possible labels.

5 Discussion and Conclusion178

In our study, we employed off-the-shelf retrievers to boost ICL through query-oriented demonstrations.179

Our findings show that these retrievers outperform random demonstrations. Using Flan-PaLM, we180

highlight that training data enhances fine-tuned LLM performance during ICL testing. Combining Dr.181

ICL with advanced prompting techniques, as seen in our CoT experiments, further bolsters model182

performance. We also detail a method to train a demonstration retriever that surpasses off-the-shelf183

retrievers, especially in one-shot scenarios. Exploring demonstrations across tasks without training184

data presents a promising future research avenue.185
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A Related Work268

Paper LLMs Retrieval Method Retrieval Corpus Evaluation Tasks # of Shots in
Prompts

CoT

KATE [14] GPT-3 RoBERTa+kNN In-Domain TD SA, T2T Few-shots No

EPR [24] GPT-J,
GPT-Neo,
CODEX,
GTP-3

SBERT, BM25, FT
Retriever

In-Domain TD SRM Few-shots No

CEIL [30] GPT-Neo,
GPT2-XL,
CodeX

BM25, BERT, DPR,
FT Retriever

In-Domain TD SA, PD, NLI, CSR,
QA, codeG, and SP

Few shots No

UPRISE [5] GPT-Neo,
BLOOM,
OPT, GPT-
3

FT Retriever Cross Tasks TD RC, QA, NLI, SA,
CSR, CR, PD

Few shots No

Dr.ICL
(Ours)

PaLM,
Flan-
PaLM

BM25, GTR, FT Re-
triever

In-Domain TD QA, NLI, MathR, BC One-shot, Few-shots Yes

Table 5: Comparison with Related Work. TD: training data, QA: question answering, RC: reading
comprehension, NLI: natural language inference, SA: sentiment analysis, CSR: commonsense
reasoning, CR: Coreference Resolution, MathR: mathmatical reasoning, PD: paraphrase detection,
SP:semantic parsing, CodeG: code generation, SRM: Sentence representation mapping, T2T: Table
to Text generation, Question Answering,

A.1 Few-shot In-context Learning269

Few-shot in-context learning (ICL) is a technique that allows language models, such as GPT-3 [3]270

and PaLM [6], to generalize to new tasks based on a small number of examples. ICL offers several271

advantages over the traditional training approach of language models, which involves pre-training272

followed by fine-tuning. One key benefit is that fine-tuning may not always be feasible due to273

restricted access to the LLM or inadequate computational resources [3]. Additionally, ICL avoids the274

issues commonly associated with fine-tuning, such as overfitting or shocks [31, 12], as it does not275

modify the model’s parameters, allowing it to remain general.276

However, the effectiveness of ICL hinges on various factors, such as the order of the demonstra-277

tions [13], the distribution of the demonstrations [18], and the complexity and quality of the prompts278

themselves [32, 1]. Some research has shown that lower perplexity prompts [11] and open-ended279

question-answer formats [1] tend to lead to better performance, while others have found that interme-280

diate reasoning steps [28] and higher complexity prompts [10] can also improve results on certain281

tasks [25, 26]. In an effort to understand how ICT works, studies have suggested that ICL may involve282

implicit Bayesian inference [29] and a symbiotic relationship between text and patterns [17], and can283

behave similarly to explicit fine-tuning [8]. Our work focuses on the effect of demonstrations for ICL284

with large language models.285

A.2 Retrieval Augmented Demonstrations286

As summarized in Table 5, several previous works have explored retrieval techniques for identifying287

more informative demonstrations to boost in-context learning. KATE [14] discovers that semantically288

closer demonstrations outperform random ones for GPT-3 in-context learning. They employ language289

models trained on tasks like natural language inference and sentence textual similarity as semantic290

representations and utilize the kNN algorithm to search for demonstrations. EPR [24] develops a291

retriever based on language model signals to find superior demonstrations compared to off-the-shelf292

retrievers. Instead of using a separate retriever for each task, UPRISE [5] merges multiple training293

datasets into a retrieval corpus and trains a universal retriever for cross-domain tasks. PARC [21]294

employs a multilingual retrieval strategy to find demonstrations from high-resource tasks, thereby295

enhancing the performance of low-resource domain tasks. CEIL [30], instead of retrieving few-shot296

demonstrations independently, introduces an iterative retrieval method to identify both diverse and297

similar few-shot examples. While the aforementioned methods retrieve demonstrations from training298

data, [16] and [9] incorporate human feedback to create demonstrations and maintain a dynamic299

retrieval corpus. Z-ICL [15] generates pseudo demonstrations to enhance zero-shot in-context300
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Question BM25 Demo GTR Demo
Q: when does the new episodes of
supernatural start?
A: October 12, 2017

Q: when does the new episodes of
ghost adventures start?
A: June 16, 2018

Q: when does the next episode of
supernatural come out?
A: April 5, 2018

Kaj Birket-Smith (20 January 1893
– 28 October 1977) was a Danish
philologist and anthropologist. He
specialized in studying the habits
and language of the Inuit and Eyak.
He was a member of Knud Ras-
mussen’s 1921 Thule expedition. In
1940, he became director of the
Ethnographic Department of the Na-
tional Museum of Denmark.
question: Kaj Birket-Smith would
have been a ripe old age of 128 if
he were still alive today. Is it true,
false, or neither?
answer: false

Kaj Birket-Smith (20 January 1893
– 28 October 1977) was a Danish
philologist and anthropologist. He
specialized in studying the habits
and language of the Inuit and Eyak.
He was a member of Knud Ras-
mussen’s 1921 Thule expedition. In
1940, he became director of the
Ethnographic Department of the Na-
tional Museum of Denmark.
question: Kaj Birket-Smith was on
the Thule expedition. Is it true, false,
or neither?
answer: true

Kaj Birket-Smith (20 January 1893
– 28 October 1977) was a Danish
philologist and anthropologist. He
specialized in studying the habits
and language of the Inuit and Eyak.
He was a member of Knud Ras-
mussen’s 1921 Thule expedition. In
1940, he became director of the
Ethnographic Department of the Na-
tional Museum of Denmark.
question: Kaj Birket-Smith was a
very educated man about many dif-
ferent cultures and expressed love
in his field of expertise. Is it true,
false, or neither?
answer: neither

Q: The original retail price of an ap-
pliance was 60 percent more than
its wholesale cost. If the appliance
was actually sold for 20 percent less
than the original retail price, then it
was sold for what percent more than
its wholesale cost?
Options: (A) 20(B) 28(C) 36(D)
40(E) 42Step-by-step reasoning pro-
cess: wholesale cost = 100; original
price = 100*1.6 = 160; actual price
= 160*0.8 = 128.
A: (B)

Q: A retail appliance store priced a
video recorder at 20 percent above
the wholesale cost of $200. If
a store employee applied the 20
percent employee discount to the
retail price to buy the recorder, how
much did the employee pay for the
recorder?
Options: (A) $198 (B) $216 (C)
$192 (D) $230 (E) $240
Step-by-step reasoning process:
Wholesale cost of video recorder =
200 $ Video recorder was priced
at 20 percent above 200 = 240 $ %
discount given by store employee =
20 Emlpoyee paid = .8 * 240 = 192
$
A: (C)

Q: A retailer bought a machine at
a wholesale price of $108 and later
on sold it after a 10% discount of
the retail price. If the retailer made
a profit equivalent to 20% of the
whole price, what is the retail price
of the machine?
Options: (A) 81 (B) 100 (C) 120 (D)
135 (E) 144
Step-by-step reasoning process: My
solution: Wholesale Price= 108 Re-
tail Price, be = x He provides 10 %
discount on Retail price= x-10 x/100
This Retail price = 20 % profit on
Wholesale price x-10 x/100 = 108+
1/5(108) x=144;
A: (E)

Table 6: Examples of retrieved demonstrations from NQ, ANLI(r3), and AQUQ.

performance. In contrast to the methods that retrieve explicit demonstrations, RETROPROMPT [4]301

transforms explicit demonstrations into implicit neural demonstrations represented by vectors. Rather302

than using a retriever, [22] applies a cross-attention reranker to re-rank documents retrieved by303

BM25. Our work distinguishes itself from previous research in that it integrates CoT prompting with304

a retriever and additionally examines the fine-tuned model based on instruction.305

B Examples of Retrieved Demonstrations306

In Table 6 and 7, we show the retrieved demonstrations given by BM25 and GTR.307
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Question BM25 Demo GTR Demo
Q: Lori wants to buy a $320.00 pair
of shoes and a matching belt that
is $32.00. Her part-time job pays
her $8.00 an hour. How many hours
will she have to work before she
can make her purchase?
Step-by-step reasoning process:
b"She wants to buy a pair of
shoes for $320.00 and a belt for
$32.00 for a total of 320+32 =
$«320+32=352.00»352.00 Her
purchase will total $352.00 and
she makes $8.00 at her part-time
job so she’ll have to work 352/8 =
«352/8=44»44 hours
A: 44

Q: Joanne makes $16.00 working
at her main job for 8 hours a day.
She has a part-time job, working
an extra 2 hours a day where she
makes $13.50 an hour. How much
money does she make if she works
this schedule 5 days a week?
Step-by-step reasoning process: She
works 8 hours a day at $16.00 an
hour so she makes 8 * 16 = $128.00
a day. She works this job 5 days
a week so she makes 128 * 5 =
$640.00 in 5 days. She works 2
hours a day at $13.50 an hour so she
makes 2 * 13.50 = $27.00 a day. She
works this job 5 days a week so she
makes 27 * 5 = $135.00. She makes
$640 at her main job and $135 at her
part - time job so all total she makes
640 + 135 = $775.00 in 5 days.
A: 775

Q: Janice has been working part-
time at a convenience store 5 days a
week. She can earn $30 per day and
can earn $15 more when she works
a 2 hour overtime shift. If she works
three overtime shifts this week, how
much will she earn this week?
Step-by-step reasoning process: Jan-
ice can earn $30 x 5 = $150 per
week. She will earn $15 x 3 = $45
more if she works three overtime
shifts. Therefore, Janice will earn
$150 + $45 = $195 this week.
A: 195

Q: If it socially acceptable to wear
an icon depicting crucifixion?
Step-by-step reasoning process:
The crucifixion of Jesus is a
common sign used by Catholics
and Christian denominations.Many
jewelry stores offer necklaces with
the Crucifixion of Jesus Christ.
A: yes

Q: Was the Donatello crucifix
identified in 2020 life size?
Step-by-step reasoning process:
The crucifix discovered in the
church of Sant’Angelo depicts an
adult man. The crucifix discovered
in the church of Sant’Angelo is 89
cm high. The crucifix discovered
in the church of Sant’Angelo
was identified as being a work of
Donatello. The average height of an
adult man has been at least 150 cm
in historical times.
A: no

Q: Did any cultures associate celery
with death?
Step-by-step reasoning process: An-
cient Greeks used garlands of celery
leafs to bury their dead. Ancient
Greece was considered a culture.
A: yes

Table 7: Examples of retrieved demonstrations from GSM8K and StrategyQA.

11


	Introduction
	Demonstration-Retrieved In-Context Learning (Dr. ICL)
	Off-the-shelf Retrievers
	Demonstration Retriever Training

	Experiments
	Off-the-shelf-retriever Performance
	Trained Demonstration Retriever Performance

	Analysis
	Discussion and Conclusion
	Bibliography
	Related Work
	Few-shot In-context Learning
	Retrieval Augmented Demonstrations

	Examples of Retrieved Demonstrations

