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Abstract

Game-theoretic interactions between agents001
with Large Language Models (LLMs) have re-002
vealed many emergent capabilities, yet the lexi-003
cal analysis of these interactions has not been004
sufficiently investigated. In this paper, we inves-005
tigate how different game-theoretic interaction006
modes shape the statistical properties of emer-007
gent communication in multi-agent systems.008
Specifically, we simulate pairwise dialogs be-009
tween LLMs and analyze their language output010
using Zipf’s and Heaps’ Laws, which charac-011
terize word frequency distributions and vocab-012
ulary growth. Our findings show that cooper-013
ative settings exhibit both steeper Zipf distri-014
butions and higher Heap exponents, indicating015
more repetition alongside greater vocabulary016
expansion. In contrast, competitive interactions017
display lower Zipf and Heaps exponents, re-018
flecting less repetition and more constrained019
vocabularies. Additionally, we observe distinct020
patterns in unique and total token usage across021
interaction modes. These results provide new022
insights into how social incentives influence023
language adaptation, with implications for de-024
signing more effective multi-agent communica-025
tion systems.026

1 Introduction027

Human language and communication has evolved028

across centuries of social and evolutionary pres-029

sures. With the rise of artificial intelligence, the030

emergence of structured language in LLMs pro-031

vides a unique opportunity to explore the underly-032

ing dynamics of linguistic evolution and communi-033

cation from a novel perspective. LLM agents offer034

a controlled, scalable environment in which we can035

study how interactional pressures shape language036

use in real-time. Among the most compelling ques-037

tions is how these agents’ behaviors, driven by038

game-theoretic incentives (Hua et al., 2024; Mao039

Our comprehensive framework has been uploaded to the
submission system and will be open-sourced upon acceptance
along with 300+ result-dialog pairs.

et al., 2024; Akata et al., 2025), influence the form 040

and function of emergent language (Kang et al., 041

2020; Bouchacourt and Baroni, 2018). In multi- 042

agent systems, these incentives could range from 043

collaboration to competition, each imposing differ- 044

ent constraints on communication strategies and 045

linguistic structures. 046

In natural language, empirical laws such as 047

Zipf’s Law (Zipf, 1949) and Heaps’ Law (Heaps, 048

1978) have long served as foundational frameworks 049

for understanding word frequency distributions and 050

vocabulary growth. Zipf’s Law posits an inverse 051

relationship between word frequency and rank in 052

a corpus, while Heaps’ Law models the relation- 053

ship between vocabulary size and the number of 054

tokens produced. These laws have been observed 055

in natural and artificial languages, offering insights 056

into the efficiency of language use (Ferrer i Cancho 057

and Solé, 2001). However, the influence of game- 058

theoretic interactional dynamics—particularly in 059

multi-agent settings (Davidson et al., 2024; Zhang 060

et al., 2024b; Piatti et al., 2024)—on linguistic 061

structure shifts has received comparatively less at- 062

tention. Specifically, it remains unclear how an 063

agent’s strategic setting (i.e., cooperative, com- 064

petitive, or neutral) might impact the statistical 065

properties of its generated language. 066

In this work, we investigate how different game- 067

theoretic modes—cooperative, competitive, and 068

neutral—affect language generation in multi-agent 069

systems composed of LLMs. We simulate dia- 070

logues between pairs of LLM agents under each of 071

these conditions and track the statistical properties 072

of the resulting language. Our study addresses the 073

following research questions: 074

• RQ1: How do Zipf’s and Heaps’ laws mani- 075

fest in multi-agent language generation across 076

different interaction modes? 077

• RQ2: How do the behaviors of cooperating, 078

competing, or neutral agents influence the fre- 079
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Figure 1: Our research workflow: we compute Zipf and Heap coefficients and track unique token generation
across diverse models, then analyze these patterns to uncover linguistic structures that emerge in game-theoretic
multi-agent interactions.

quency distributions of tokens and the appli-080

cation of these laws?081

We evaluate multiple LLM architectures using082

Zipf’s and Heaps’ laws to analyze language pat-083

terns in cooperative, competitive, and neutral in-084

teractions. Our results show that social incentives085

shape lexical diversity and repetition: cooperative086

settings encourage both broader vocabularies and087

more repetition, while competitive settings lead to088

narrower, less varied language. To our knowledge,089

this is the first large-scale study measuring statisti-090

cal linguistic laws in LLMs across game-theoretic091

multi-agent settings.092

2 Related Work093

Game Theory and Language Evolution Game-094

theoretic frameworks have long been used to model095

the emergence and evolution of communication sys-096

tems, both in human and artificial settings. Foun-097

dational work in evolutionary linguistics explores098

how signaling systems emerge under coordination099

pressures (Smith, 2010; Hayes and Sanford, 2014;100

Nowak et al., 2001). In artificial environments,101

multi-agent reinforcement learning (MARL) has102

shown that structured communication protocols can103

emerge when agents interact to maximize shared or104

individual rewards (Lazaridou et al., 2017; Jaques105

et al., 2019). Recent work has extended these106

paradigms to LLMs, highlighting their capacity107

to exhibit strategic and socially grounded behav-108

iors under cooperative and adversarial setups (Hua109

et al., 2024; Mao et al., 2024; Akata et al., 2025).110

However, these studies primarily emphasize behav-111

ioral alignment or task success, often overlooking112

the underlying linguistic structure of the generated113

communication—an aspect our work places at the114

center of analysis.115

Statistical Laws of Language Zipf’s Law (Zipf,116

1949) and Heaps’ Law (Heaps, 1978) provide ro-117

bust empirical tools for analyzing frequency-rank 118

distributions and vocabulary growth, respectively. 119

These regularities are interpreted as reflections 120

of communicative efficiency and cognitive con- 121

straints (Ferrer i Cancho and Solé, 2001; Pianta- 122

dosi, 2014). In artificial agents, studies have shown 123

that symbolic communication protocols can dis- 124

play statistically-defined behavior under certain 125

optimization conditions (Chaabouni et al., 2020; 126

Bouchacourt and Baroni, 2018). However, these 127

investigations are often restricted to synthetic lan- 128

guages, limited vocabularies, or visual environ- 129

ments. In contrast, we apply these statistical frame- 130

works to open-source LLMs generating uncon- 131

strained natural language. We demonstrate that Zip- 132

fian and Heapsian patterns not only persist in these 133

models but also systematically vary with game- 134

theoretic incentives, providing a new lens for ana- 135

lyzing linguistic structure in LLM agents. 136

LLMs in Multi-Agent Environments Recent ef- 137

forts have explored LLMs in interactive multi-agent 138

setups, including debate (Liang et al., 2024; Zhang 139

et al., 2024a), collaborative decision-making (Tran 140

et al., 2025; Shen et al., 2024; Zhu et al., 2025), 141

and social simulation (Argyle et al., 2023; Tang 142

et al., 2025). These works often focus on align- 143

ment, role consistency, or behavioral coherence, 144

with relatively little attention paid to the statistical 145

properties of the language produced during inter- 146

action. Moreover, some studies evaluate interac- 147

tions systematically across a taxonomy of incen- 148

tives (e.g., cooperation vs. competition) or assess 149

structural linguistic outcomes at scale (Piatti et al., 150

2024; Zhao et al., 2024). Our study is the first to 151

evaluate how cooperative, competitive, and neutral 152

settings directly modulate the linguistic statistics of 153

interactions between multiple open-source LLMs. 154

This approach bridges a key gap, revealing how 155

strategic incentives shape not just agent behavior 156

but also fundamental patterns in language. 157
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3 Preliminaries158

Zipf’s Law Zipf’s Law is an empirical law stat-159

ing that the frequency f(w) of a word w is inversely160

proportional to its rank r(w) when words are sorted161

by descending frequency:162

f(w) ∝ 1

r(w)α
, α ≈ 1.163

This results in a power-law distribution over word164

frequencies. In natural language corpora, this165

skewed distribution implies that a small subset of166

tokens dominates usage, which has implications167

for model capacity in multi-agent and human-AI168

interactions.169

Heap’s Law Heap’s Law describes the growth170

of the number of unique word types V (n) as a171

function of the total number of word tokens n:172

V (n) = Knβ, 0 < β < 1,173

where K and β are empirical constants determined174

by the corpus. This law captures the sublinear175

increase of vocabulary size as data scales, which176

is central to understanding lexical diversity, gen-177

eralization behavior, and the challenges of open-178

vocabulary modeling.179

Game-Theoretic Conditions We define a game180

G = (N, {Si}, {ui}) consisting of N agents,181

where each agent i ∈ {1, . . . , N} selects a strat-182

egy si ∈ Si to maximize a utility function ui :183 ∏
j Sj → R. We consider three canonical interac-184

tion modes:185

• Cooperative: ui = uj for all i, j, with agents186

jointly optimizing a shared utility function.187

• Competitive: ui ̸= uj , and agents have ad-188

versarial objectives, often maximizing utility189

at the other’s expense.190

• Neutral: Agents act independently with un-191

aligned or orthogonal utility functions, with-192

out explicit cooperation or conflict.193

These modes characterize the structural condi- 194

tions under which agents interact, make decisions, 195

or exchange information. In multi-agent systems, 196

these distinctions help formalize learning dynam- 197

ics, reward alignment, and coordination strategies. 198

4 Experiment Design 199

4.1 Model Selection 200

We employ eight open-source LLMs spanning 201

several architectures for a thorough assessment 202

of game-theoretic incentives in shaping language 203

structure within current LLMs. Specifically, we 204

consider Llama-3.1 8B (Meta, 2024a), Llama-3.1- 205

8B Instruct (Meta, 2024b), Gemma-7B (Mesnard 206

et al., 2024), Gemma-7B Instruct (Mesnard et al., 207

2024), Qwen-3-8B (Yang et al., 2025), Qwen-2.5- 208

7B Instruct (Qwen et al., 2025), Mistral-7B v03 209

(Jiang et al., 2023), and Mistral-7B Instruct (Jiang 210

et al., 2023). 211

4.2 Agent Definition 212

We initialize two LLMs as agents within each in- 213

teraction environment. Each agent alternates turns 214

in a simulated dialog and generates tokens condi- 215

tioned on the shared conversation history, instan- 216

tiated by a scenario-specific prompt that defines 217

the game-theoretic condition. Agents are assigned 218

fixed identities (e.g., Agent_A and Agent_B) and 219

operate independently during generation, without 220

access to ground-truth intentions of the other agent. 221

4.3 Evaluation Setup 222

We systematically evaluate all pairwise combina- 223

tions of agents across three interaction conditions: 224

• Cooperative: We construct a prompt to mo- 225

tivate agents to work jointly toward a shared 226

goal of solving a puzzle efficiently. 227

• Competitive: We construct a prompt to en- 228

sure agents are adversarially positioned in ne- 229

gotiation or rivalry scenarios. 230

• Neutral: In this setting we motivate agents 231

engage in unconstrained, open-domain inter- 232

action without aligned incentives. 233

Mode Seed Prompt

Cooperative You and your partner work together efficiently to solve a puzzle efficiently
Competitive You are competing in a negotiation and want to outwit and outperform your opponent
Neutral You engage in casual, open-ended conversation with no specific agenda

Table 1: Initial prompts used to elicit model behavior across different game-theoretic interaction modes.
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Each (agent pair, condition), is evaluated on 30234

dialogs of 10 alternating turns, starting from a235

condition-specific prompt (Table 1). Generation236

uses nucleus sampling (temperature 0.7, top-p 0.9)237

with a 128-token limit. All utterances are concate-238

nated and tokenized using a case-insensitive regex.239

We compute the Zipf α and Heap’s β to analyze fre-240

quency concentration and vocabulary growth, and241

apply the Mann-Whitney U test (McKnight and242

Najab, 2010) for statistical significance. The evalu-243

ation covers 64 pairs × 3 conditions × 30 dialogs =244

5760 interactions. Full details are in Appendix A.245

5 Multi-Agent Lexical Distributions246

5.1 Zipf Exponent Derivations247

To answer RQ1, we analyze Zipf exponents across248

all model pairs and interaction modes in Figure 2.249

We observe that cooperative dialogs tend to ex-250

hibit higher α values, indicating a narrower dis-251

tribution with few dominant tokens repeated fre- 252

quently, reflecting strategic emphasis or reiteration 253

during communication. Competitive interactions 254

show lower α values, suggesting a more balanced 255

and evenly distributed lexical usage. Neutral in- 256

teractions have the lowest Zipf exponents, consis- 257

tent with the greatest lexical diversity and more 258

complex conversational patterns. Overall, LLMs 259

exhibit increased repetition in both cooperative and 260

competitive game-theoretic settings compared to 261

neutral dialogs. Additional metrics are provided in 262

Table 2. 263

5.2 Heaps Exponent Derivations 264

Additionally, to answer RQ1, we analyze shifts in 265

vocabulary growth across model pairs using Heaps’ 266

Law. Figure 3 reports the Heaps exponent β for 267

each agent pair under different interaction modes. 268

Neutral interactions consistently yield the highest β 269

values, indicating more exploratory and varied lan- 270
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Figure 2: Zipf α exponents across model-pair interactions. Higher α indicates stronger frequency concentration
among high-rank tokens, while lower α reflects flatter distributions with higher lexical dispersion.

M
et

a-
Lla

m
a

3.
1-

8B
M

et
a-

Lla
m

a
3.

1-
8B

-In
s

M
ist

ra
l

7B
-In

s
M

ist
ra

l
7B

Qw
en

2.
5

7B
-In

s
Qw

en
3

8B
Ge

m
m

a
7B

Ge
m

m
a

7B
-It

Meta-Llama
3.1-8B

Meta-Llama
3.1-8B-Ins

Mistral
7B-Ins
Mistral

7B
Qwen2.5

7B-Ins
Qwen3

8B
Gemma

7B
Gemma

7B-It

0.59 0.82 0.63 0.81 0.71 0.67 0.83 0.62

0.51 0.56 0.52 0.41 0.68 0.58 0.50 0.60

0.50 0.49 0.68 0.61 0.58 0.55 0.54 0.55

0.57 0.64 0.72 0.53 0.65 0.67 0.72 0.67

0.58 0.54 0.50 0.51 0.54 0.53 0.51 0.57

0.57 0.71 0.56 0.49 0.64 0.52 0.59 0.51

0.58 1.01 0.46 0.63 0.56 0.76 0.67 0.60

0.59 0.53 0.55 0.69 0.56 0.58 0.62 0.68

Cooperative

M
et

a-
Lla

m
a

3.
1-

8B
M

et
a-

Lla
m

a
3.

1-
8B

-In
s

M
ist

ra
l

7B
-In

s
M

ist
ra

l
7B

Qw
en

2.
5

7B
-In

s
Qw

en
3

8B
Ge

m
m

a
7B

Ge
m

m
a

7B
-It

0.50 0.52 0.52 0.90 0.62 0.78 0.65 0.67

0.45 0.56 0.57 0.47 0.67 0.68 0.69 0.53

0.44 0.55 0.53 0.63 0.62 0.52 0.52 0.59

0.60 0.77 0.62 0.51 0.58 0.85 0.79 0.63

0.50 0.56 0.56 0.60 0.60 0.58 0.61 0.54

0.54 0.66 0.59 0.63 0.58 0.46 0.90 0.59

0.69 0.61 0.59 0.62 0.70 0.51 0.64 0.67

0.49 0.53 0.59 0.62 0.56 0.49 0.54 0.53

Competitive

M
et

a-
Lla

m
a

3.
1-

8B
M

et
a-

Lla
m

a
3.

1-
8B

-In
s

M
ist

ra
l

7B
-In

s
M

ist
ra

l
7B

Qw
en

2.
5

7B
-In

s
Qw

en
3

8B
Ge

m
m

a
7B

Ge
m

m
a

7B
-It

0.46 0.68 0.67 0.63 0.70 0.74 0.77 0.62

0.62 0.57 0.55 0.61 0.60 0.58 0.62 0.59

0.63 0.64 0.64 0.71 0.64 0.63 0.72 0.64

0.53 0.67 0.59 0.53 0.68 0.73 0.61 0.63

0.60 0.59 0.61 0.63 0.62 0.58 0.63 0.63

0.66 0.68 0.62 0.83 0.70 0.69 0.63 0.63

0.80 0.65 0.63 0.61 0.61 0.66 0.66 0.57

0.59 0.64 0.63 0.60 0.62 0.72 0.63 0.57

Neutral

0.5

0.6

0.7

0.8

0.9

1.0

He
ap

 

Figure 3: Heap β exponents across model-pair interactions. The exponent β reflects the rate of vocabulary growth
as a function of dialog length, with higher values indicating greater lexical diversity
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guage with continued vocabulary expansion. Co-271

operative settings exhibit moderately lower β, sug-272

gesting that agents more frequently reuse shared,273

utility-driven token sequences. Competitive inter-274

actions show the lowest β values overall, pointing275

to a narrower range of vocabulary and stronger276

imitation between agents. These results suggest277

that social incentives constrain lexical diversity in278

systematic ways.279

5.3 Token and Rank-Frequency Distribution280

Token Analysis To answer RQ2 and gain insight281

into lexical variation across interaction settings, we282

examine the distribution of unique tokens gener-283

ated under cooperative, competitive, and neutral284

conditions (Figure 4). Cooperative dialogs exhibit285

the lowest lexical diversity, reusing a narrower vo-286

cabulary—consistent with goal-oriented repetition.287

Furthermore, competitive interactions show a mod-288

erately broader range of unique tokens, suggest-289

ing underlying dynamics that incentivize variation.290

Neutral settings display the highest lexical diversity,291

suggesting more open-ended conversational goals292

and a reduced need for strategic lexical alignment.293

Rank-Frequency Distribution As an extension294

of token analysis, we examine rank-frequency dis-295

tributions aggregated across all dialog outputs for296

each setting. Figure 5 shows examples confirming297

that generated language across modes follows Zip-298

fian structure to varying degrees, but the slope and299

curvature differ substantially by condition. These300

effects are most pronounced in agent pairs where301

both models are instruction-tuned, suggesting align-302

ment objectives may interact non-trivially with in-303

centive structures to impact lexical structure.304

Condition Mean Std Dev Max Min Range

Zipf Exponent

Cooperative 2.0323 0.2131 2.4142 1.5139 0.9003
Competitive 1.9716 0.1728 2.3004 1.4317 0.8687
Neutral 1.8985 0.1370 2.2202 1.4439 0.7763

Heap Exponent

Cooperative 0.6036 0.1008 1.0111 0.4053 0.6058
Competitive 0.5995 0.0979 0.9013 0.4440 0.4574
Neutral 0.6368 0.0614 0.8286 0.4590 0.3697

Unique Token

Cooperative 1058.63 2110 372 1738 443.48
Competitive 1162.55 2399 436 1963 497.04
Neutral 1699.34 3363 565 2798 665.31

Table 2: Summary statistics for Zipf’s and Heap’s expo-
nent results across cooperative, competitive, and neutral
interaction conditions. Additional metrics on unique
token distributions are also included.
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Figure 5: Zipfian behavior across models and modes
signals linguistic efficiency in multi-agent settings.
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Figure 4: Unique token distributions across model-pair interactions under cooperative, competitive, and neutral
conditions. Higher values indicate greater lexical diversity and varied vocabulary usage within dialogs.
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(a) Gemma-7b-Instruct vs LLaMA-3.1 Instruct (Competitive) (b) Gemma-7b-Instruct vs LLaMA-3.1 Instruct (Cooperative)

(c) Gemma-7b vs LLaMA-3.1 (Competitive) (d) Gemma-7b vs LLaMA-3.1 (Cooperative)

Figure 6: Heaps Law behavior for Gemma-7b(+Instruct) with Meta-Llama-3.1(+Instruct) across competitive and
cooperative settings. Instruction-tuned models exhibit reduced lexical diversity as reflected in lower β exponents.

5.4 Model-Specific Behavior305

Instruct vs. Base Models We compare the lin-306

guistic behavior of instruction-tuned models (e.g.,307

LLaMA-3.1 8B Instruct) to their base counter-308

parts to assess how alignment objectives influence309

emergent communication within multi-agent set-310

tings. Instruction-tuned models, optimized to fol-311

low human-like directives, tend to generate less312

lexically diverse vocabulary across game-theoretic313

modes, as reflected by their lower Heap’s β expo-314

nents (Figure 6). Base models, by contrast, exhibit315

higher variability and more diverse vocabulary gen-316

eration due to higher Heap β values, across identi-317

cal settings observed in instruction-tuned models.318

These differences in Heap exponents highlight the319

trade-off whereby alignment training may limit the320

lexical diversity of language generated by LLMs.321

Self-Play Interactions To isolate the impact of322

shared weights and priors, we conduct experiments323

where a single model engages in dialogue with it- 324

self (self-play) and record Zipf and Heap exponents 325

alongside unique token generation (Table 3). Self- 326

play reveals more internally consistent and sym- 327

metric communication patterns, with lower Zipf 328

and Heap exponents across cooperative and com- 329

petitive settings across most agents. This indicates 330

that self-play tends to exaggerate linguistic align- 331

ment, accompanied by a stark drop in lexical di- 332

versity in comparison to multi-agent interactions. 333

Interestingly, we note that instruction-tuned models 334

generate more unique tokens during self-play than 335

their base counterparts. While these models exhibit 336

reduced lexical diversity in multi-agent contexts, 337

their vocabulary usage becomes markedly more 338

diverse when conversing with themselves. Addi- 339

tionally, we observe that lexical diversity is consis- 340

tently lower in competitive settings, indicating that 341

agents tend to converge on shared vocabulary and 342

linguistic patterns when in opposition. 343
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Competitive Cooperative Neutral

Model α β Unique α β Unique α β Unique

Llama 3.1-8B 1.92 0.50 457 1.86 0.59 434 2.13 0.46 621
Llama 3.1-8B Instruct 1.81 0.56 1120 1.72 0.56 824 1.82 0.57 1925
Mistral-7B Instruct v0.3 2.10 0.53 1266 2.14 0.68 1210 1.86 0.64 2299
Mistral-7B v0.3 2.30 0.51 578 2.41 0.53 436 2.19 0.53 565
Qwen 2.5-7B Instruct 2.20 0.60 2399 1.92 0.54 2110 1.77 0.62 2651
Qwen 3-8B 1.79 0.46 1467 1.81 0.52 1358 1.98 0.69 2714
Gemma-7B 2.06 0.64 505 2.30 0.67 460 2.13 0.66 628
Gemma-7B Instruct 2.03 0.53 922 2.26 0.68 809 2.08 0.57 908

Table 3: Self-play metrics across all models for competitive, cooperative, and neutral interaction modes. Across all
models, instruction-tuned models generate a larger unique token count during self-play, with most increases seen in
neutral settings.

Multi-Agent Behavior We further examine in-344

teractions between heterogeneous agents to better345

understand how architectural and training asymme-346

tries shape emergent language. As demonstrated347

by the differing Zipf and Heap coefficients across348

agents, models adapt their lexical choices and com-349

munication patterns in distinct ways depending on350

whether interactions are cooperative, competitive,351

or neutral. These quantitative differences highlight352

the complex interplay between model-specific fac-353

tors—including alignment training in instruction-354

tuned models, architectural variations, and self-355

play dynamics—and their combined effects on lin-356

guistic convergence, stability, and vocabulary di-357

versity. Our findings suggest that such factors influ- 358

ence not only the efficiency of communication but 359

also diverse vocabulary generation within emergent 360

language in multi-agent environments. 361

We complement our quantitative results with 362

two qualitative examples (Figure 7). These figures 363

showcase how an identical model pair generates 364

varying dialogue through variations in lexical di- 365

versity and structural choices within cooperative 366

and competitive settings. As seen in cooperative 367

modes, models generate statements that involve 368

constant affirmatory clauses. In comparison, both 369

models continuously iterate during negotiations in 370

an attempt to maximize their utility functions. 371

LLaMa

Qwen

LLaMa

Qwen

 I was a little concerned that we'd have to take turns working on this puzzle, but it turns
out that we can work together on it just fine!

I was afraid that you'd try to take over the puzzle, but it turns out that you work very
well with me!

I'm glad we could work together. I think we'll make a good team!

I agree! We'll have to work together more often

LLaMa

Qwen

LLaMa

Qwen

I'm going to give you a small increase in the price, but only if you agree to a 10-year
contract.

 I'm not sure I'm comfortable with a 10-year contract. Can you consider a 5-year
contract instead?

No, I'm afraid not. The 10-year contract is non-negotiable. But I can offer you a
small discount if you agree to it.

That's not what I want to hear. I'm willing to consider a 10-year contract, but only if you
can give me a bigger discount.

Collaborative

Competitive

Figure 7: Heterogeneous agent interactions reveal how different game-theoretic modes shape emergent language
patterns in vocabulary and dialogue structure within the same model pair.
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6 Discussion372

Interpretation of Findings Our results demon-373

strate that game-theoretic incentives have measur-374

able effects on the statistical structure of language375

generated by LLMs in multi-agent interactions.376

Cooperative settings lead to more diverse vocab-377

ularies but repetitive language, as evidenced by378

higher Heaps exponents and higher Zipf exponents.379

In contrast, competitive dynamics compress lex-380

ical choice and vocabulary, resulting in steeper381

frequency-rank distributions and more repetitive ut-382

terances. These patterns reveal that communicative383

goals and social context exert top-down influence384

on generation behavior—even when models are not385

explicitly trained for multi-agent communication.386

Game Theory and Natural Language Gener-387

ation The observed effects extend classical in-388

sights from game-theoretic models of language evo-389

lution to large-scale generative systems. Whereas390

prior work has focused on symbolic agents or nar-391

row vocabularies, our findings suggest that similar392

pressures emerge in high-capacity LLMs operat-393

ing in open-domain dialog. Interaction incentives394

effectively shape not only what is said, but also395

how it is structured. Importantly, these effects arise396

even in the absence of explicit fine-tuning for multi-397

agent coordination, indicating that LLMs internal-398

ize enough communicative flexibility to adapt on-399

the-fly to changing social incentives. As an exten-400

sion, this implies that LLMs possess the ability to401

adapt to human-shaped linguistic structures across402

adversarial and cooperative modes.403

Applications and Implications These insights404

open new avenues for modeling and controlling405

emergent communication in agent-based systems.406

For instance, identifying patterns that shape coop-407

erative language may be desirable in collaborative408

settings such as customer service, while competi-409

tive frameworks could inform adversarial negotia-410

tion systems. Additionally, our framework offers a411

diagnostic tool for evaluating whether LLM-based412

agents exhibit socially consistent behavior under413

different roles or goals—a crucial concern for align-414

ment, robustness, and AI safety. More broadly, this415

work bridges perspectives from linguistic theory,416

multi-agent learning, and emergent communica-417

tion, highlighting how game-theoretic framing can418

serve as an insightful lens for studying and shaping419

language use in LLMs.420

7 Conclusion 421

We present a systematic investigation into how 422

game-theoretic incentives shape the statistical struc- 423

ture of language generated by LLMs in multi-agent 424

settings. By analyzing Zipf’s and Heaps’ laws 425

across cooperative, competitive, and neutral modes, 426

we show that different incentive structures induce 427

distinct lexical and structural patterns in emergent 428

communication. Our findings highlight that even 429

in the absence of explicit multi-agent fine-tuning, 430

LLMs adapt their language behavior in socially sen- 431

sitive ways that mimic human linguistic evolution. 432

This work bridges theoretical insights from linguis- 433

tic laws and game theory with empirical analysis 434

at scale, offering a new perspective on how interac- 435

tion dynamics influence language generation. As 436

LLMs are increasingly deployed in agent-based 437

and multi-party contexts, understanding these dy- 438

namics becomes crucial for both interpretability 439

and control over human-facing LLM interactions. 440

Limitations 441

Our analysis is limited to dyadic interactions and 442

short-term dialogs, which may not capture the full 443

complexity of emergent communication in larger 444

or longer-term agent collectives. Future work may 445

extend this analysis to more complex game struc- 446

tures, longer-term interactions, or human-involved 447

communication. Additionally, while we focus on 448

Zipf’s and Heaps’ laws, other structural or prag- 449

matic aspects of language remain unexplored in our 450

study. Our analysis scope is constrained by com- 451

pute limitations, we use 1 A100 GPU for a total of 452

300 GPU hours throughout our analysis. 453

Ethics Statement 454

This study involves only synthetic data generated 455

by LLMs and does not process or analyze human 456

subjects, personal data, or sensitive content. How- 457

ever, we acknowledge that deploying multi-agent 458

LLM systems in real-world applications may raise 459

ethical concerns related to coordination failures, 460

misinformation, or unintended emergent behavior. 461

We advocate for continued research into safe, in- 462

terpretable, and robust agent communication, par- 463

ticularly in high-stakes settings. Additionally, we 464

thoroughly examine dialog pairs manually to en- 465

sure minimally harmful content is included in our 466

analysis. 467
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A Experimental Setup 661

This appendix details the experimental code and 662

procedures used to analyze vocabulary properties 663

of multi-agent dialog interactions under different 664

conditions (cooperative, competitive, neutral). We 665

measure Zipf’s and Heap’s law coefficients from 666

generated dialogs by pairs of LLMs. 667

A.1 Experimental Design 668

Our experiments simulate dialog interactions be- 669

tween pairs of LLM agents under three communi- 670

cation conditions: 671

• Cooperative: Agents work together effi- 672

ciently to solve a puzzle. 673

• Competitive: Agents negotiate to outperform 674

their opponent. 675

• Neutral: Agents engage in open-ended, ca- 676

sual conversation. 677

For each condition, dialogs of fixed length (10 678

turns) are generated. Each model pair participates 679

in 30 dialogs per condition, allowing statistical 680

analysis of language usage patterns. 681
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A.2 Model Selection and Setup682

We selected eight distinct pretrained causal lan-683

guage models, spanning instruction-tuned and base684

variants, including:685

• Meta LLaMA-3.1 (8B and instruction-tuned)686

• Gemma (7B and instruction-tuned)687

• Qwen (3-8B and 2.5-7B instruction-tuned)688

• Mistral (7B and instruction-tuned)689

Models and their tokenizers are loaded on avail-690

able hardware (GPU if available, otherwise CPU)691

using Hugging Face Transformers. Models are692

converted to half precision (float16) for efficient693

inference.694

A.3 Dialog Simulation Procedure695

Each dialog proceeds with two agents alternating696

turns. At each turn:697

1. The current dialog history, including the ini-698

tial condition prompt, is concatenated into the699

input.700

2. The current agent generates a response condi-701

tioned on the history.702

3. The response is appended to the dialog history.703

This continues for 10 turns, yielding a multi-704

turn dialog transcript for analysis. We generate705

30 dialogues per model pair and condition to en-706

sure reliable estimation of lexical patterns while707

keeping the experiment computationally efficient.708

Temperature is set to 0.7 with the top-p sampling709

factor as 0.9. This scale is consistent with prior710

work in multi-agent language studies.711

A.4 Text Processing and Tokenization712

All generated dialogs for a model pair and con-713

dition are concatenated into a single text corpus.714

Tokenization uses a regex-based tokenizer to ex-715

tract word tokens (case-insensitive, alphanumeric):716

tokens = re.findall(r”\b\w + \b”, text.lower())717

This token stream is then used to fit frequency-718

based linguistic laws in our conducted analysis.719

A.5 Hardware and Runtime Environment 720

Experiments were conducted on a workstation with 721

the following specifications: 722

• NVIDIA A100 GPU with CUDA support for 723

model inference acceleration. 724

• Python 3.10 environment with dependen- 725

cies: transformers, torch, powerlaw, 726

matplotlib, numpy. 727

• Models loaded with half-precision floating 728

point (float16) to optimize memory usage. 729

GPU memory is cleared after each experiment 730

run to avoid resource exhaustion. 731

A.6 Experiment Execution Pipeline 732

Due to computational restrictions, the full exper- 733

iment iterates over all model pairs and condi- 734

tions sequentially. Results are aggregated into 735

CSV summaries for each batch of runs (e.g., 736

summary_part1.csv) enabling partial or parallel 737

execution. 738

A.7 Statistical Significance Testing 739

To better understand the differences in language 740

statistics across game-theoretic modes, we per- 741

formed Mann-Whitney U tests (McKnight and Na- 742

jab, 2010) all modes on both Zipf’s α and Heap’s 743

β coefficients, showing statistical significance in 744

our experimental setup to interpret our results. 745

Comparison Zipf’s α Heaps’ β

U p-value U p-value

Competitive vs Cooperative 1609.00 0.0366 2006.00 0.8432
Competitive vs Neutral 2698.00 0.0020 1301.00 0.00037
Cooperative vs Neutral 2893.00 0.00006 1384.00 0.0016

Table 4: Mann-Whitney U test results comparing Zipf’s
α and Heaps’ β values across models.

Implications These quantitative differences 746

align with qualitative observations of multi-agent 747

behavior and emphasize the value of analyzing 748

linguistic patterns from statistical lenses to 749

highlight how multi-agent interactions shift during 750

cooperative and adversarial settings. 751

A.8 Core Experiment Code Snippet 752

The main experiment function 753

run_single_experiment handles the full 754

pipeline from model loading to saving results 755

within our code implementation. 756
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def run_single_experiment(model_A_name, model_B_name, condition_name, prompt, device):757

# Load models and tokenizers758

model_A, tokenizer_A = load_model_tokenizer(model_A_name, device)759

model_B, tokenizer_B = load_model_tokenizer(model_B_name, device)760

761

combined_text = ""762

dialogs_log = []763

764

# Simulate multiple dialogs765

for i in range(NUM_DIALOGS):766

dialog_text, dialog_turns = simulate_dialog(...)767

combined_text += " " + dialog_text768

dialogs_log.append({769

"dialog_index": i,770

"model_pair": f"{model_A_name.split('/')[-1]}__{model_B_name.split('/')[-1]}",771

"condition": condition_name,772

"dialog_turns": dialog_turns,773

"full_text": dialog_text774

})775

776

# Tokenize and fit Zipf and Heap laws777

tokens = tokenize(combined_text)778

alpha, xmin, freqs = fit_zipf(tokens)779

beta, K, token_counts, vocab_sizes = fit_heaps(tokens)780

781

# Save outputs and plots782

save_freq_csv(freqs, model_pair_name, condition_name)783

save_dialogs_json(dialogs_log, model_pair_name, condition_name)784

plot_zipf(freqs, alpha, model_pair_name, condition_name)785

plot_heaps(token_counts, vocab_sizes, beta, K, model_pair_name, condition_name)786

787

return {788

"model_pair": model_pair_name,789

"condition": condition_name,790

"zipf_alpha": alpha,791

"zipf_xmin": xmin,792

"heaps_beta": beta,793

"heaps_K": K,794

"total_tokens": len(tokens),795

"unique_tokens": len(set(tokens))796

}797
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