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Abstract

Actor-critic algorithms such as DDPG, TD3, and SAC, which are built on Silver’s de-
terministic policy gradient theorem, are among the most successful reinforcement-learning
methods, but their mathematical basis is not entirely clear. In particular, the critic net-
works in these algorithms learn to estimate action-value functions by a “bootstrapping”
technique based on Bellman error, and it is unclear why this approach works so well in
practice, given that Bellman error is only very loosely related to walue error, i.e. to the
inaccuracy of the action-value estimate. Here we show that policy training in this class of
actor-critic methods depends not on the accuracy of the critic’s action-value estimate but
on how well the critic estimates the gradient of the action-value, which is better assessed
using what we call difference error. We show that this difference error is closely related
to the Bellman error — a finding which helps to explain why Bellman-based bootstrapping
leads to good policies. Further, we show that value error and difference error show different
dynamics along on-policy trajectories through state-action space: value error is a low-pass
anticausal (i.e., backward-in-time) filter of Bellman error, and therefore accumulates along
trajectories, whereas difference error is a high-pass filter of Bellman error. It follows that
techniques which reduce the high-frequency Fourier components of the Bellman error may
improve policy training even if they increase the actual size of the Bellman errors. These
findings help to explain certain aspects of actor-critic methods that are otherwise theo-
retically puzzling, such as the use of policy (as distinct from exploratory) noise, and they
suggest other measures that may improve these methods.

1 Introduction

Actor-critic methods (Witten) [1977), (Barto et al) |1983) are a class of reinforcement-learning algorithms
that work well in many applications, especially in continuous control tasks, where a simulated animal or
robot learns a motor behavior, such as hopping, walking, or running, based on information from sensors
in its body. Recent examples of these methods are DDPG (Lillicrap et all 2015 and several algorithms
that were developed from it, including TD3 (Fujimoto et al.l[2018) and SAC (Haarnoja et al., |2018|). These
latter two methods in particular have been very successful, matching or outperforming all rivals on several
benchmark tasks in OpenAl Gym and DeepMind Control Suite.

But despite their success, these algorithms are not yet fully understood mathematically, and in particular
there are open questions regarding the “bootstrapping” technique that is central to their operation. Here we
present mathematical results that clarify the justification for bootstrapping in these actor-critic methods,
and also help explain other aspects of these methods that are otherwise puzzling from a theoretical viewpoint.

The remainder of this paper is organized as follows. In section [2] we briefly review actor-critic methods,
specify which algorithms we are interested in, and formulate the precise questions that we address in this
paper. In section [3| we present our main contributions:
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(a) We introduce the difference error, and relate it to both the Bellman error and the error in the
Q-function estimates.

(b) We show that the difference error and the error in the @Q-function estimates are complementary
filters of the Bellman error.

(c) We establish a bound on the discrete Fourier coefficients of the Bellman error, which explains how
the dynamics of bootstrapping are governed by the regularity of the state dynamics, the policy, the
rewards and the @Q-function estimator.

And in section [d] we summarize our results and relate them to other topics in the literature.

2 Background

2.1 Reinforcement learning

The mathematical setting is reinforcement-learning problems where time advances in discrete steps. At
each time ¢, the agent receives information about the current state s; € S of its environment (and we will
focus on the case where that information is complete and accurate, or in other words where the state is
fully observable). The agent then applies a function u, called the actor or the policy, to choose an action,
a; = u(sy) € A. Having made this choice, the agent gets a scalar reward, which typically depends on the
state and the action, r; = (s, a;) € R. Time ticks forward to ¢ + 1, and the environment passes to its next
state, s;r1 = f(s¢,a¢), where f is the state transition or state dynamics function. The reward and dynamics
functions are deterministic, and the policy is also deterministic apart from “exploratory” and “policy” noise
terms, described below, that are added to its outputs during training but not during testing. In recent
applications, the policy is most often a deep neural network, and the aim of the reinforcement-learning
algorithm is to adjust the weights and biases of that network to yield an optimal policy, or in other words
one that maximizes the discounted cumulative reward or value,

oo

VE(se) 23 7 (s, 1(57)) (2.1)

T=t

averaged across all possible starting points s; of trajectories in state space. In this formula, ~ is a “discount
factor” in the range (0, 1) which expresses the idea that rewards in the distant future matter less to the agent
than more imminent rewards do. More generally, the final time point in the summation need not be oo, but
we will assume that it is, to simplify the math. So in short, the aim is to adjust p to maximize V*.

Actor-critic methods approach this problem by creating a critic network, distinct from the policy network,
and training the critic to learn the action-value function Q" : S x A — R, which takes as input a state-action
pair (s,a) and yields as output the quality of its outcome — the total discounted cumulative reward that will
result from taking action a in state s and then choosing all subsequent actions in accordance with policy u:

Q" (51, a¢) & 750, a0) + Z Vb (57, p(sr)) - (2.2)
T=t+1

Clearly Q" is closely related to V#, as Q¥ (s, u(s)) = VH(s).

From ([2.2) it follows that the action-value function obeys the Bellman equation (Bellman, 1957} [Sutton &
Barto, [2018)),
Q" (sts ar) = r(se, ar) + vQ" (st41, u(st41)) (2.3)

which we can write more simply as
QY =7t +7Q 1, (2.4)

where we use the shorthand notation Qf = Q" (s¢,ar), e = r(s¢,a¢), and Q41 = Q" (s¢41, 11(S¢41)). Note
that the action a; at time ¢ is arbitrary while the action at time ¢ + 1 must be on policy: aty1 = p(St41)-
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Usually, the critic network @ : S x A — R is trained by adjusting its weights and biases to shrink the
Bellman error eP : § x A — R, given at (s;,a;) by

e (s, ar) £ Q(se, ar) — r(se,a8) — YQ (041, u(5e41)) (2.5)

or more briefly by
etB 2 Qi — 7t — YQut1, (2:6)

with the same shorthand notation as in the previous paragraph.

What is noteworthy here is that @ is adjusted based on its own values at two time points, Q; and Q11 —
a process called bootstrapping — rather than on any direct feedback about Q#, the function it is trying to
approximate. In effect, ) is adjusted to obey more and more closely the Bellman equation , in the hope
that, if both @ and Q" obey that equation, then @ may resemble Q" in other ways as well. But in which
respects, exactly, do we need to make @ resemble Q*, and what is the mathematical justification for hoping
that this resemblance can be achieved by minimizing the Bellman error?

Here we will examine these questions for the large subclass of actor-critic methods that are off policy, that
work with continuous state and action spaces, and that train their critics in order to apply the [Silver et al.
(2014) deterministic policy gradient (DPG) theorem — a result that mathematically justifies the procedure
of improving the policy network by adjusting its parameters 0* up the gradient calculated by the chain rule:

00" _ 00" o
oo da OOr’

(2.7)

On the one hand, this subclass includes many important actor-critic algorithms such as DDPG (Lillicrap
et al.,[2015), TD3 (Fujimoto et al.,[2018), and SAC (Haarnoja et al., [2018]), but on the other hand, it excludes
other highly successful actor-critic methods such as PPO (Schulman et al.||2017)), for which the boostrapping
process is less of a conceptual issue.

To clarify this last point, we note that PPO estimates Q" directly by summing discounted rewards along
its most recent trajectory, and the critic network supplies a “baseline” or “control variate” to reduce the
variance of the direct estimate. In this setup, it is well understood that even a very poor estimate of Q* can
serve as a useful control variate, provided that it correlates with the true @Q*. But in DPG-type algorithms,
the critic network @ is the policy’s sole source of information about Q*, and so inaccurate critics are a more
severe problem, and the justification for bootstrapping is more pressing.

2.2  Question

Why do DPG-based actor-critic methods perform so well in practice, given that they rely on an estimator of
Q" that is trained using an error signal, e”, which is computed by bootstrapping, with no reference to Q*?

The usual justification is a theorem of (Bertsekas & Tsitsiklis, 1996) which guarantees that if e = 0 for all
state-action pairs (s, a), then the estimator @ will be perfectly accurate, meaning that what we will call the
value error is zero,

eQ(s,a) 2 Q(s,a) — Q"(s,a) =0, (2.8)

for all (s,a) € S x A.

Yet this standard rationale is not entirely reassuring, because it applies only in cases where e is exactly

zero throughout state-action space, whereas in practice e? is never zeroed, and the best we can hope for
is that it will be small enough. Worryingly in this context, it has been shown by (Fujimoto et all [2022)
that if e® is not zeroed but merely bounded, then e? may be very large even when e is small. Here we
analyze further the relation between e” and action-value estimators in the setting of DPG-based actor-critic
methods.
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3 Main results

3.1 Critics compute partial derivatives

One key observation is that in DPG-based actor-critic algorithms, the critic learns @Q* only in order to
compute an estimate of the partial derivative Q" /da, which the agent then uses to adjust its policy u — as
mentioned above, the policy parameters 6# are adjusted up the gradient of 9Q /90" = 0Q/da - Ou/06*, an
approach that is justified by (Silver et al., |2014]) if 0Q/0a = Q" /Da.

Therefore the agent cares less about the accuracy of @ itself and more about the accuracy of 9Q/da. And
this gradient-accuracy depends not on the values of @ and Q* at any one point, but on how the changes in
@ match the changes in Q" across state-action space S x A. For instance, if QQ = Q* + ¢ for some constant
¢, then V@Q = VQ@Q*, no matter how big c is. Consequently, a more-relevant error measure than the value
error €% is the difference error, given by

etAQ = (Qev1 — Q1) — (Qfﬂ -Qf) = Ae?» (3.1)

where Aef2 = etQJrl - e?, and 6? = e9(sy,a), and the trajectory is on policy after time ¢.

Proposition 1. The difference error is related to the Bellman error @ and the value error (@ by the
equation

B
AQ €y (1-7) Q

e =—— 4+ ——Te". 3.2
t ~y ~y t ( )

Proof. We subtract the right-hand side of (3.2]) from the left, multiply by 7, expand based on the definitions
of €29, B and e¥, and then simplif
t y “t o t P1y7t0get

ver? el — (1 -7 = 1(Qur1 — Qe — Qly + Q) + (Qr — 1t — YQus1) — (1= 7)(Qr — Q)
=Qf —ri—QY,, =0,

where the final equality follows from Bellman’s equation. O

With 1} in hand, we can compare how etQ and etAQ are bounded in relation to eZ.

Regarding e? , IFujimoto et al.| (2022) have shown that if the Bellman error is bounded so that |eZ| < C for
some constant C' > 0, then

C
(1=7)
That is, || may be as large as C/(1 — ), for example 100 times larger than C if v = 0.99, which is a
common value used in many applications (Lillicrap et al.,[2015; [Fujimoto et al.,|2018; Haarnoja et al., 2018)).
Q

lef’] <

(3.3)

But the corresponding bound for e, is much better:

Proposition 2. If |e?| < C, then

2
162Q) < 70 (3.4)

(That is, only about twice as large as C if v = 0.99.)

Proof. From equations (3.2 and (3.3)),

—ef|

aQ _ |
2 < + -
el = — ol

-7 ¢ ¢ d=-7 € _2C
||§7+ vy o (d=v) v
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This bound helps explain why DPG-based actor-critic learning works well in practice. As we discuss later,
this result does not resolve all the mathematical questions regarding actor-critic methods, but it does explain
why these methods perform so well despite the bad behavior of the value error etQ.

In the next section we explore the underlying reason why e? and etAQ have such different bounds.

3.2 €2 and 9 are complementary filters

Here we show that etQ and etA @ @

are inversely related, in the sense that e;* is a low-pass filter of eP, whereas
etAQ is a high-pass filter of eP. Therefore it is not just the size of e? that influences etQ and etA @ Rather,
a crucial factor is the temporal frequency of eP along the trajectories of the system, by which we mean the
frequency of variation of e with respect to ¢. It follows that techniques that reduce this temporal frequency

may improve the performance of actor-critic methods even if they increase e? itself.

In our discrete-time setting, a first-order linear time-invariant low-pass filter, or more simply a low-pass filter
from now on, can be described by the equation

Ytr1 = axip1 + (1 = By (3.5)

where x; is the filter’s input, y; is its output, and « and 3 are positive constants (Oppenheim et al., [1998|
Sec.3.9-11). The gain of this filter is /3, which means that, given a constant input z; = x, the filter’s
output y; will eventually converge to a steady, equilibrium value of (a/3)z. (In some papers, low-pass filters
are defined to have o = (3, and therefore a gain of 1, in which case any non-unity scaling is applied afterwards
by multiplying the filter output by the desired gain factor, but for us it will be convenient to treat the gain
as an intrinsic property of the filter.)

Returning now to the Bellman equation ([2.4), we can write it this way:

Qi =r+[1—(1-)]Q, (3.6)

which has the same form as (3.5)), except that the time indices ¢t and ¢ 4+ 1 have been swapped. In other
words, the Bellman equation defines a filter running backwards in time, or more briefly, an anticausal filter.
Therefore we have:

Proposition 3. The function QY is an anticausal low-pass filter of r¢, with a gain of 1/(1 — 7).

Similarly, (2.6)) can be written

Qi=ef +ri+[1—(1—7)] Q1. (3.7)

Subtracting (3.6) from (3.7) gives us:

Proposition 4. The value error e? is an anticausal low-pass filter of the Bellman error eP with constants

a=1land f=(1-7):

ef =ef +[1—(1—7)ed, (3.8)
and so we have
o0
e? = Z’y(T_t)ef. (3.9)
T=t

Proof. We establish equation (3.9)). From equation (3.8) we have

B _
Z =

e @ — ’yeg_l, for all 7 > ¢,
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so by multiplying both sides of this equality by 7("~* and then summing over 7 =t 4+ k with k = 0,1, -,
we get

9] 9] 0
e S B D
T=t T=t T=t
oS oo
=3 AC0 = 3 e
T=t T=t+1
— Q.

O

The gain of this filter is 1/(1 — v) which in practice is usually large. For instance, if v = 0.99 then the gain

is 100. This high-gain, low-pass filter behavior is the reason e? can grow so much larger than eP.

In this same discrete-time setting, a high-pass filter (Oppenheim et al.l [1998| Sec.3.10) is described by the
equation

Yer1 = (@1 — @) + (1 = Bye. (3.10)
From this fact, together with the definition of etAQ in 1) and equation 1D it follows that:

Proposition 5. The difference error etAQ

a=land f=1—7:

is an anticausal high-pass filter of the Bellman error eP with

A
etAQ = (eﬁ-l - ef) +[1—(1—7)] etﬁa (3.11)
and so

eR9 = ZV(T_t) (eTBH - eTB) . (3.12)
T=t

Proof. We have

er? = (Qir1 = Q1) = (Qr = Q) = (Qea1 — re41 —7Q12) — (Qr —7¢ —1Q1y)
= Q41— i1 — YQu42) — (Qr — 7t — YQur41) + 7 (Qug2 — Qi1 — Qly + Q11 y)

A
= (ef1 —ef) e
to establish (3.11). Equation (3.12) then follows by the same reasoning as that of (3.9). O

From this result, we know that etAQ shows the characteristic behavior of high-pass filters (Oppenheim et al.,
1998)): it ignores low-frequency events, and it responds to high-frequency events but then “forgets”, its value
fading to zero with the (backwards) passage of time.

So the main point of this section is that, owing to their different filtering properties, e? accumulates along

trajectories whereas etA Q does not, and this is the underlying reason that the bounds on e? discovered by
Fujimoto et al.| (2022) are large whereas the bounds on etAQ

have:

are small. Pushing this analysis further, we

Corollary 6. Let e : S x A — R be upper-bounded by C > 0, and suppose that there exists a point
(so0,a0) € S X A at which

C
eQ(SO,ao) = m

Then along the trajectory starting at (sg, ag) and following the policy u, we have that etAQ =0 for allt € N.

Proof. As |eB| < C and the anticausal low-pass filter e has a gain of 1/(1—+), the time series e can attain

a value of C'/(1 — v) if and only if it receives a strictly constant input e? = C for all t € N. The vanishing
of etAQ along the trajectory {(so,ao), (st, 1(s¢))}re, then follows from equation 1b O
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Figure 3.1: Spatial factors affecting temporal frequency along state-space trajectories. On the left of each
panel, the blue plane is the state space S of a simple environment — a discrete-time approximation to a bead
sliding without friction on a straight horizontal wire — and the blue curve is a trajectory through that space
generated by a policy p. Below it, the beige surface is the graph of the critic’s estimate @ of the policy’s
value function @Q*. On the right of each panel is a plot of the corresponding function ¢ — Q(s¢, p(s¢)). In
panel (A), the policy is a simple linear one, and the reward function is a simple quadratic with a small
Lip(r). Consequently, Lip(Q*) is also small, and so is Lip(Q), because the critic’s estimate is accurate. As
a result, the plot of @ vs time shows little in the way of high-frequency ripples. In panel (B), the critic is
less accurate and so Lip(Q) is increased, leading to high-frequency ripples in the time plot. In (C), the critic
is accurate but the reward function contains a hyperbolic-tangent term, and therefore Lip(r) and Lip(Q*)
are increased, again causing high-frequency activity in the time plot. In (D), the reward function is a simple
quadratic and the critic is accurate, but the policy is now only a rough approximation of a linear function,
with the result that Lip(Q*) and Lip(Q) are increased, once again leading to high-frequency ripples in the
time plot.

In words, if the Fujimoto et al. bound ([3.3) is tight at any point in state-action space, then the difference
error vanishes everywhere along the trajectory through that point. Consequently, there is a partial trade-off
Q AQ, . B L Q L AQ .
between e, and ey *: for any given bound on e;, maximizing e, means minimizing e, *. The practical
consequence is that for any given magmtude of Bellman errors, the lower we can make the temporal frequency

of variation of 2, the smaller e;*% will be.

3.3 Controlling temporal frequency

What factors influence the temporal frequency of e?? The standard way of analyzing frequency components
of tlme serles is to use the discrete Fourier transform or DFT: given any finite- length real time series

{xn e 0 = {xo,ml,--- _1}, where N is a positive integer, the DFT of {xn} is the N-element
sequence {& }n ;' given by (Stankovic, 2015 m

N—
Z rpexp(—i2mkn/N), k=0--- (N —1).

Here, the modulus |Z| corresponds to N times the amplitude of the component of {xn}ivz_ol of frequency
27k /N. Please see the Appendix for more explanation of the DFT and a proof of the following bound on
the frequency components of the Bellman error:
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Proposition 7. Along any finite-length segment {(so, ap), (sn,u(sn))}fj;f of a trajectory, the DFT terms
{ékB}fL—f of the Bellman error satisfy the inequality

o ) L2 e/ T TR (0 )Lip(@) + Lin(r)]}
N

+[(T+9)[Q1 — Qof + [r1 — rol] + 7 (|Qol + 1@n]),

where Lip(r), Lip(Q), and Lip(p) are the Lipschitz constants of r : Sx A = R, Q : S x A — R and
S — A respectively, and fMA(s) 2 f(s,u(s)) — s, and ||qu|max = maxs ||fuA B

of] <

Put more simply, the bounds on |¢Z| depend on the geometry of the functions r and @ across state-action
space, and on the system’s motion through that space, which is determined by the policy u and the state
dynamics f. These relations are illustrated in Figure [3.1}

So the lesson of Proposition [7|and Figure is that we can shrink the high-frequency components of e? by
reducing | fMA |max, or by choosing a simple, low-Lipschitz reward function r, or by smoothing out p or @, for
instance with weight decay. As regards | fMA |max, it is usually not possible to alter the function f2, which
is determined by the state dynamics. But in some tasks it may be possible to train an agent initially in a
simplified, lower-speed version of the environment it will ultimately operate in. This is a sensorimotor form
of curriculum learning (Bengio et al.l |2009; |[Wang et all [2021), and reflects the commonplace observation
that humans do often begin learning a skill in a simplified or lower-speed setting, as for instance with training
wheels or on a kiddie slope.

Our results also clarify the role of “policy noise”, which is a feature of many actor-critic algorithms. In this
context, the agent stores a large number of its past interactions with the environment in a “replay buffer”,
where the jth entry in the buffer is a tuplet (s;,a;,7;, s;), where s; was the state at the beginning of an
interaction, a; was the action taken, r; was the resulting reward, and s;» was the subsequent state. The critic
trains itself by drawing batches of these tuples from the buffer and for each one computing not its associated

Bellman error e? but a perturbed version of that error:
& = Q(sj,a5) —rj — Q" (s}, u(s)) +v), (3.13)

where v is a zero-mean policy noise term (distinct from the “exploratory noise” that the agent adds to its
actions when it interacts with the environment), and where Q' designates a target network, which is close
to but not identical with Q.

While the motivation behind exploratory noise is obvious, and the use of a target net has been shown to
bring certain benefits (e.g. in (Fan et all [2020])), the use of the policy noise term v in is less clear
conceptually, as its addition violates the rationale behind the learning rule. Indeed, the rationale for learning
from e® is the Bellman equation , but that equation holds only when the action at the subsequent state
is on policy (i.e. at+1 = p(si41) or, in the buffer, pu(s})); it fails if noise is added to u(s}) as in .
And yet adding v does improve learning. [Fujimoto et al. (2018), who introduced the idea of policy noise,
proposed that it might help performance by smoothing the learned @) estimate. In light of our results we can
add, more specifically, that v induces a spatial averaging of the target value around Q*8*(s’, u(s’)), and this
averaging is useful, at least in part, because it blurs out high-frequency components of Q). In other words,
our findings here clarify the sense in which using equation regularizes the critic’s learning, and provide
an explanation as to why policy noise improves actor-critic performance.

4 Summary and future work

In this paper we have addressed the question, why do DPG-based actor-critic methods, which train a value-
estimator @) based on the Bellman error e?, perform well even though e is not closely related to the value
error e?, and e? can be very large even when e” is small? The answer, we have shown, is that the accuracy
of the policy’s teaching signal 0Q/0a depends more on the difference error etA @ than on the value error etQ,

and etA @ is closely related to eP. We have also shown that this difference error is a high-pass-filtered version
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Figure 4.1: Learning curves for the standard TD3 algorithm (blue) and two variants of it: a small-target
version (orange) that trains its critics based on the smaller of two target-network outputs, and a mean-target
version (green) that trains based on the mean of the outputs of the target networks.

of e, suggesting that actor-critic performance may be improvable by taking steps to limit the high-frequency
spatial components of the functions r : S x A — R and @ : § x A — R, for instance by choosing tempered
reward functions, and using policy noise and weight decay to temper the critic network Q.

Of course, many open questions remain regarding the mathematical basis of actor-critic methods, including
convergence conditions (Williams & Baird), [1990), the effects of sparse training data (Fujimoto et al., 2022)),
and how critics learn the components of 9Q /da that are orthogonal to the on-policy trajectories of the system,
given that their learning is based on the Bellman equation, which holds mainly along those trajectories.

Finally, one possible implication of our results which may be worth exploring concerns the handling of “twin”
target networks. Many actor-critic algorithms, starting with TD3 (Fujimoto et all, [2018), use two critics
(Haarnoja et al., 2018; Wang et al., 2020). Each of the two critics, Q; for ¢ = 1,2, has its own target, but is
trained based on both targets:

ei = Qi(s,a) —r(s,a) — v min QF (5", u(s") +v) (4.1)

Fujimoto and colleagues advocated taking the minimum of the two target values, as shown in , on the
grounds that critic outputs tend to rise in the course of learning, and so taking the minimum would help
prevent () drifting up and away from the true Q*. But our results suggest that there may be value in using
the twin targets to temper the Q-function, so as to reduce its high-frequency components, rather than or in
addition to lowering it.

Figure illustrates this idea. The blue lines in the plots are learning curves for TD3 on two benchmark
continuous-control tasks from OpenAl Gym: Ant-v4 and HalfCheetah-v4. The orange lines are learning
curves for a very slightly different algorithm, just like TD3 and with the same initializations but training the
Q; based not on the lower of the two targets but on the one closer to zero, i.e. on the one whose absolute
value is smaller. And the green lines are learning curves for a third version of TD3, where the @Q; are trained
based on the mean of the two targets. These latter two methods will tend to squeeze the @ function, not just
from above as TD3 does, but also from below. The plots indicate that these small-target and mean-target
methods may outperform standard TD3 on some tasks. So there may be value in investigating new ways of
handling twin targets that temper ) rather than just lower it.
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A Appendix

A.1 Discrete Fourier Transform

We start with a brief review of the Discrete Fourier Transform (DFT), and establish a lemma that simplifies
the proof of Proposition [7]
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Recall that given any finite-length real time series {z,}Y-} = {xo, 1, - ,2n_1}, where N is a positive
integer, the DFT of {z,,}' is the N-element sequence {i)}_, whose terms are

~ A
"L‘ =

rpexp(—iwgn), Yk=0,---,(N —1), (A.1)

MZ

n=0

where i is a square root of —1, and the frequency variable wy = 27k/N for all k =0,--- , (N — 1).

Given the DFT terms {#4}; ', the original time series {x,, }" " is recovered using the identity (Stankovic,
2015, Sec.3.1)

N-1
1
Tn = 5 ,;J Zrexp(iwgn), Yn=0,---,(N —1),

meaning that the quantity |2|/N represents the amplitude of the component exp(iwgn) with frequency wy.
Moreover, it is a straightforward matter to compute that exp(+iwy) = exp(—iwn_) for k=1,--- (N —1),
which means that wy and wy_j represent the same frequency of cycling but in opposite directions — clockwise
vs counterclockwise. Therefore the DFT terms Z; corresponding to high frequencies are those with k& close
to N/2, while the terms corresponding to low frequencies are those with k close to 0 or (N — 1).

Now we show the following general facts:

Lemma 8. Let {x,}) =) be a finite-length discrete time-series.

1. The terms of its DFT {i:k}kN:_Ol are given by &g = 27127:—01 Tn and

L pinays exp(—inwy)
b= <le><p(1wk)) (& = n-1) (A2)

n=1
fork=1,--- (N —=1).
2. Forallk=1,--- (N —1), we have that

N -1
|§;k| < ( )Axmaxy (A?))
sin (7’”)
where AZpay = maxX,—i ... (N—1) |xn — xn_ll.

Proof. To prove , we write the terms of the sequence {xn}g:_f as a telescoping sum =z, = xg +
S (T — Ty 1) and using the geometric sums

= ) 1 — exp(—imwy)
Z eXp(_ank) = (]_ex) 5
=0 p(—iwy)
N-1
Z exp(—inwg) = 0,
n=0
we have from that for all k =1,--- , (N — 1),

N-1T n N—1[N-1
A lz (T — xml)] exp(—inwg) = [Z exp(—inwk)l (T — Tm—1)

m=1

N— N-—
Z [Z exp(—inwy, 1 (T — Tm—1) = —

m=1

n=m

1 — exp(—iwy) ) (Tm — Tm—1)-

! (1 — exp(—imwy)
1

And the case of k£ = 0 is trivial.
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Next, from the identity sin(f) = [exp(if) — exp(—if)] /2i, it follows that for all m =0,--- ,N — 1,

1 —exp(—imwy)|  |2iexp (—imwy/2) sin(mwy/2)| |Sin(mwk/2)| 1

2iexp (—iwg/2) sin(wr/2) | sin(wp/2) ~ sin(wp/2)

1 — exp(—iwy)

The right-hand side of equation (A.2)) can now be bounded as follows:

. (N-1) ey -1
n n— n — dn-1| = “h NA max
] < — W (Z |z, — @ 1|> < oy et P, |2 — 21| = sin (4) x

proving equation (A.3)). O

A.2  Proof of Proposition [7]

We now turn to the Bellman error e? and the difference error etAQ. We have seen that etA 9 is the result of

anticausal high-pass filtering of all the eZ from 7 = t to co. But if e? is upper-bounded by C > 0, then for
any finite 7', we have from equation (3.12) that

AQ _ ZVT t 67'+1 ef) Jr,yTJrlfte%_{C_zl7
3 (6B, — P 4 247G,

The term 297T1={C goes to 0 as T increases, which means that values of eZ in the distant future have

vanishing influence on etA Q. So with arbitrarily small error, we can consider long but finite time series of
Bellman errors, and analyze their frequency components using the DFT terms {ékB }kN:_Ol. In this context, we
derive a refinement of inequality (|A.3] m

Lemma 9. Suppose that {¢n is the discrete time series obtained by evaluating a Lipschitz function
¢:SxA— R along a finite- length segment {(so,ao), (sn,,u(sn))} 1 ' of a trajectory. The DFT terms
{(ﬁk}i\;l then satisfy the inequality:

16| < I — dol + ng)mpwmufﬁuw, (A4)

sin(wy

where Lip(¢) and Lip(p) are the Lipschitz constants of ¢ and u respectively, and qu(s) 2 f(s,u(s)) —

and [ £ o = maxses | £ ()]

Proof. Applying equation 1} to the DFT terms {g@k}g;ll yields:

N-1 1
S =—(¢1— o) — »_ (M

n=2

) (fn — dn-1),

then modifying the proof of (A.3)) gives the inequality:

(N -2)
- ot
sin(wg/2) 1<neN-1

|6k| < 61 — do| +

On = G0 |

12
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Since s, = f (sp—1, 4(Sp—1)) forn=2,--- | N — 1, we have

bn — ¢n71‘ = |¢ (f (sn—1, (80-1)) s 1 (f (8n-1, (80n-1)))) = ¢ (Sn—1, (80n—1)) }
< Lip(9) - | ( (st 1(0-1) 1 (f (s 1(5n-1)))) = (501, 1(50-1)) |
< Lip(6) - /£ (sus1(50-1)) = st | + Li()2 | £ (-1, pl50-1)) = s
< Lip(@) 1+ Lip(u)? | max | (su-1.ls0-1)) = s

< Llp((b)\/mnff ||max'

which completes the proof of the Lemma. O

Continuing with the notation of this last Lemma, we can now establish:

Proposition 7. Along any finite-length segment {(so, ao), (sn,u(sn))}i::f of a trajectory, the DFT terms
{eBYY1 of the Bellman error satisfy the inequality

E1 < gy (V2w T TGP 0+ 9LI0(@) + Lin(r)

2
+ {1+ Q1 — Qo| + [r1 — rol] + v (|Qo| + QN 1) -

Proof. From the definitions e} = Qn — 7 — ¥Qu+1 and (A.1), the DFT terms ékB of the Bellman error are
given by
N-1
e =Qr — 7 — Z exp(—inwr)Qni1, k=1,---, (N —1),

n=0

where Qk and 7 are the DFT terms of @ and r respectively. For the sum on the RHS, a direct computation

yields
N-1

> exp(—inwi)Qui1 = explior) (Qx — Qo+ Q)

n=0

where Qn = (Qn-1 —Tn-1 —€¥ _,)/7, so that

ékB = (1 — ~vexp(iwg)) Qk — 7k + vexp(iwg ) (Qo — Qn), (A.5)

and therefore
e8] < (1+ )| Qx| + 17l +7(1Qol +1Qn])-

The inequality in the statement then follows by applying Lemma |§| to the terms |Qk| and |7 O

In summary, the inequality of Proposition [7] relates the modulus of the DFT terms of the Bellman error
to the state dynamics and the regularity of the critic @, the reward function r, and the policy p on the
state-action space S x A. We also make the following remarks:

(a) Since Q1 — Qo| = |Q (s1,4(s1)) — Q(s0,a0)| and |r1 — 70| = |r(s1,1(s1)) — 7(50,a0)|, the term
(14 9)|Q1 — Qo| + |r1 — 7o| in the inequality quantifies a gap incurred by transitioning from an
arbitrary initial state-action (so, ao) to the on-policy part of the trajectory {(s,, u(sn)) A1 In the
case where ag = p(sp), the inequality reduces to:

N UZ(_li {172 o T+ Tin()? [(1 + )Lin(@) + Lin(r)] | + 7 (1Qol + Q1) -
2

e
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(b) The scale of the term Hf#A [max = maxses |f (s, 11(s))—s| depends on the smoothness of the trajectory
obtained by following the policy p: S — A.

(¢) The bounds on ‘éfj are much larger for the low frequencies 2k/N than for the high frequencies,
because sin(wy/2)~! ~ N/7k for k close to 0 or (N — 1) (low frequency), while sin(wy,/2)~* ~ 1 for
k close to N/2 (high frequency).

14



